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Abstract

Coupled Multiscale Modeling of Aortic Valve Tissue

by

Ahmed A Bakhaty

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Sanjay Govindjee, Chair

Recent studies have uncovered the pivotal role that valvular interstitial cells play in the
aortic valve system. The valvular interstitial cells regulate the extracellular matrix, maintain
homeostasis, and modulate pathology, among other vital functions. The inherent connection
between the aortic valve as an organ and its constituent cells may explain the shortcoming of
traditional biomechanical modeling, particularly when the goal is to understand the cause,
evolution, treatment, and prevention of disease.

Multiscale modeling of aortic valves has recently emerged, but is relatively nascent and
much is missing from the literature. Most notably is the lack of a coupled multiscale model of
the aortic valve, wherein the biomechanics of the aortic valve organ and its constituent cells
impact one another. In this work, we investigate a novel multiscale approach to modeling
aortic valve tissue that is coupled, i.e., biomechanical events occurring at disparate length
scales are simultaneously captured.

We begin by presenting a model of aortic valve tissue that explicitly accounts for the
collagen fibers that make up its microstructure and is consistent with experimental data.
We then apply this model in an FE2 (computational homogenization) framework to model
the aortic valve tissue as an organ and its constituent valvular interstitial cells. We show
the validity of such an approach and use it to argue the necessity of 3D multiscale modeling.
Finally, we apply the multiscale model to a calcified aortic valve to study the mechanical
behavior of the valvular interstitial cells in pathological tissue.
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Chapter 1

Introduction

We begin by introducing the physiology of the aortic valve (AV) system and discuss dis-
eases and treatments. The emphasis of this chapter is on the application of computational
modeling to AV tissue mechanics and we highlight models that link physical processes (mul-
tiphysics) and multiple length scales (multiscale) together. This chapter is not intended to
be a comprehensive review of AVs and so we point the reader to a multitude of references
throughout.

This chapter is organized as follows. First, we present an overview of heart valve function,
disease, and existing treatment methods. Next, we discuss existing methods for modeling
tissue mechanics which are primarily continuum models that do not explicitly consider cel-
lular and molecular processes. We expand this discussion by including studies at the cellular
and molecular scales and modeling that links the macro and micro-scales together. To con-
textualize these models, we present several applications related to identifying and treating
diseased valves. Finally, we conclude with an outlook on future trends in the computational
modeling of valve tissue.

1.1 Background

Heart valve disease is the cause of over 20,000 deaths per year in the United States alone [60].
This growing public health concern has prompted much research on heart valves, but the
pathobiology of valve disorders is yet to be fully understood. Studies of the pathogenesis
of valve disease have established a link between biomechanical events at the cellular and
molecular scales with valve function at the organ and tissue scales [104, 168, 183]. Thus,
understanding heart valve cellular and molecular biomechanics, and more importantly, their
interaction with the organ and tissue scales, can lead to further advances in treatment and
prevention measures for valve disease.

Experimental investigation at the cellular and molecular scales is, however, difficult,
costly, and often impossible, particularly for in vivo studies. Alternatively, numerical simu-
lation offers a way of simulating the native condition of heart valves, from the organ to the
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molecular scale, in a cost-effective manner. Limitations in computational capabilities in the
past have hindered the applicability of numerical simulation to heart valves, which exhibit
inherently nonlinear and anisotropic material response, [146] distinct heterogeneous features
at the various length scales, [139] and complex geometries that vary from person to person,
over time, and with pathological conditions. With the advent of modern high-performance
computing, it has become possible to simulate heart valve systems using fewer simplifying
assumptions, and account for the interaction of the different processes and scales [80, 172].
These models can help further our understanding of valve disease and aid in developing novel
treatment and prevention methods.

Because about 67% of heart valve disease is attributed to the aortic valve, [60] much
of the effort dedicated to computational modeling of heart valves has been focused on the
AV [32, 152]. In particular, there has been continued effort in characterizing the material
response of the AV, as it is fundamental to capturing the physical response of the AV system.

1.2 Structure and function of the aortic valve

An understanding of the physiology and biomechanics of the AV is necessary to properly
develop numerical models that properly represent AV tissue behavior. In this section, we
present a brief summary of the structure and function of healthy and diseased AVs. We
present this overview as a background on heart valves and restrict the discussion to features
important to modeling valve tissue behavior. For further details on the biomechanics of
heart valves, the reader is referred to the review by Sacks and Yoganathan [139].

Healthy aortic valves

Blood flow through the heart is controlled passively by four valves: the pulmonary valve
between the right ventricle and pulmonary artery, the aortic valve between the left ventricle
and the aorta, the tricuspid valve between the right ventricle and right atrium, and the mitral
valve between the left ventricle and left atrium. These valves open and close in response to
pressure changes to allow blood to flow between the chambers and prevent retrograde flow.
During ventricular systole, the ventricles contract to increase the pressure, opening the AV
and allowing blood to flow into the aorta. The ventricles relax during ventricular diastole
when the pressure equilibrates, closing the AV. The closing of the valve is referred to as
coaptation.

The AV has distinct biomechanical features and function at different length scales (Fig. 1.1).
At the organ scale, a healthy AV consists of three leaflets, or cusps1, that fully open and
fully seal in response to blood pressure [83]. At the tissue scale, the valve leaflets are com-
posed of three layers: the ventricularis, the spongiosa, and the fibrosa with a total combined
thickness of 0.2-2.0 mm [146]. The fibrosa, comprised of an organized collagen structure, is
the main load-bearing component. The ventricularis is the thinnest layer lining the inflow

1We use the term cusp and leaflet interchangeably throughout.
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surface and it consists primarily of a dense network of collagen fibers and some elastin. In the
middle is the gel-like spongiosa, composed of proteoglycans, which functions as a cushion to
absorb the tension and friction between the two layers [73, 142]. and serves to resist fatigue
in the leaflet under the cyclic flexural cyclic loading caused by opening and closing of the
AV. At the cellular scale, two main cell types are embedded in the tissue matrix: interstitial
cells, which are thought to be responsible for maintaining the matrix and modulating disease
pathology [104] and endothelial cells, which line the blood-facing surfaces. At the molecular
scale is a sponge-like fibrous matrix of elastin which surrounds bundles of collagen fiber [158].
Both collagen and elastin are kinked fibers that demonstrate large extension at low stresses
until straightened, where they require large stresses for small extensions. Collagen is the
main load-bearing component and elastin serves to return the collagen to its undeformed
state [165].

Figure 1.1: Representation of the multiscale nature of heart valve mechanics: organ-, tissue-,
cell-, and molecular-scale features.[174]

The cardiac cycle results in large, cyclic deformation in heart valve tissue, whose structure
is capable of withstanding the rapidly varying stress and strain states that persist throughout
the lifetime of a healthy species. Diseased valves can develop different stress and strain
states that can lead to fatal secondary complications, such as thromobosis [30, 87, 94, 147].
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Consequently, identifying stress and strain states associated with a diseased valve can help
in diagnosis and treatment.

Aortic valve disease and treatment

Valve pathology is inextricably linked to valve biomechanics. An understanding of the biome-
chanical function of the valve at different scales can potentially lead to effective management
of valve disease. There are various diseases that impact the AV. The most common of them
is aortic stenosis which affects about 0.4% of the US population and about 3% of those over
75 years of age [60]. It is characterized by the failure of the valve to fully open and it is
attributed to age-related wear, rheumatic disease, and stiffening of the valve leaflets due
to development of calcified nodes [59]. Aortic stenosis resulting from extensive calcification,
known as calcific aortic stenosis (CAS), affects about 2% of the population over age 65 [103].,
[126] Patients with symptomatic CAS are at risk for heart failure unless the calcified AV is
replaced [18]. Other AV diseases include aortic regurgitation (when the AV does not fully
close) and bicuspid AV (a congenital disease in which the AV has two leaflets instead of
three [160]).

Approximately 40% of patients with severe aortic stenosis undergo valve replacement
surgery and 10% undergo valve repair cardiothoracic surgeries [60]. The remainder do not
undergo surgery due to perioperative risk, age, lack of symptoms, or refusal [8]. Recently,
transcatheter AV replacement (TAVR) has come forward as a promising technique [7]. Com-
putational methods can potentially improve techniques like this by monitoring tissue stresses
in TAVR with inverse finite element modeling (i.e., computing the tissue stress state based
on deformations measured from images) and the design of nano drug delivery devices [48].

1.3 Tissue-scale continuum modeling

There have been several efforts undertaken to characterize the mechanical properties of heart
valve tissue using standard uniaxial, biaxial, and bending tests [27, 44, 114, 146, 166]. These
experiments have demonstrated a distinct nonlinear, inhomogeneous, and anisotropic re-
sponse of AV tissue. It is important (and arguably standard practice) to model the anisotropy
of valve tissue leaflets [89]. In addition, experiments conducted at physiological strain rates
demonstrated low levels of viscoelasticity that has rendered elastic constitutive models of
valve tissue to be accepted [65].

Continuum mechanics provides a suitable framework for capturing the general stress-
strain characteristics of valve tissue [76]. Hyperelastic models, in which the material stress
is obtained by differentiating a strain energy function with respect to the current state of
strain, are typically used:

S = 2
∂W

∂E
. (1.1)
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Strain energy functions are constructed by summing up elementary strain energy func-
tions that account for the extracellular matrix (ECM) and fiber behavior, [56]

W =
∑
i

Wi. (1.2)

Once constructed, parameters are fit to experimental data to achieve the desired material
response. For proper implementation into finite element (FE) methods, [153] these functions
must also be numerically well behaved. This generally requires certain properties of the
strain energy function to guarantee the existence of a nonlinear solution [13]. For compu-
tational efficiency, valve tissue is often modeled in FE simulations using shell elements [88,
129]., These elements, however, do not capture the through-thickness heterogeneity of the
the tissue. A more detailed treatment of continuum mechanics theory and FE analysis is
presented in Chapter 2.

Multilayer models at the tissue-scale have generally included only the fibrosa and ventric-
ularis, as they bear the majority of the load [28]. The three leaflet layers have different com-
positions and mechanical properties, but they act as a single unit, resulting in the observed
mechanical response. Experimental complications make it difficult to validate hypotheses
regarding the mechanical function of the glycosaminoglycan (GAG)-rich spongiosa. To ad-
dress this concern, Buchanan and Sacks [21] considered the addition of the spongiosa layer
in the computational modeling of AV tissue mechanics. Their study suggests that the three
layers function as a bonded structure in low-strain flexure, with physical sliding prohibited
between the layers due to a large number of collagen fibers interconnecting the fibrosa and
the ventricularis.

Exponential fiber stress functions are used to match the observed experimental response of
valve tissue (Fig. 1.2a). This behavior is attributed to the lack of extensibility with increasing
force as the collagen fibers become uncrimped. Fibers in the radial and circumferential
directions exhibit remarkably distinct response (Fig. 1.2b), with a strong mechanical coupling
between the two [139]. This behavior can be captured by accounting for the distribution,
angle, and rotation of the fibers in the tissue layers [16].

These anisotropic properties are attributed to the collagen structure and alignment at
the cellular and molecular scales [136]. It is hypothesized that this alignment is a result of
contractile forces generated by the valvular interstitial cells (VICs), which express myofibrob-
last phenotype markers. [55, 149, 155, 164, 180] The mechanical loading, and subsequent
change in the internal state of strain, triggers collagen fiber remodeling (synthesis and degra-
dation) [15]. Driessen at al. developed a theory and computational model of valve tissue that
accounts for this remodeling [39, 38, 40, 41]. This model assumes that collagen fibers align
with the principal stretch directions. As the stretch increases, fibers rotate into alignment
with the principal directions. The recruitment phenomenon is captured by a rate law that
governs the evolution of collagen fibers. Since the mechanical properties of valve tissue are
dependent on the collagen structure, type, thickness, orientation, and cross-linking, captur-
ing the changes (i.e., remodeling) in the collagen fiber is important for obtaining the proper
material response.
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Figure 1.2: a) Representative circumferential and radial stress-strain curves demonstrating
valve tissue anisotropy. b) AV cusp demonstrating fibrous structure and biaxial directions.
The white circles indicate where strain measurements were taken by Billiar and Sacks [16].
Refer to Fig. 3.4 for a 3D representation of the cusp.

1.4 Aortic valve tissue modeling across multiple scales

The observed mechanical properties represented by the strain energy functions of the con-
tinuum models are a consequence of the microstructure, but macro-scale continuum models
typically do not explicitly model the microstructure. They are sufficient for obtaining the ag-
gregate macroscopic material response, but not for capturing microscopic mechanical events.
In this section, we discuss the importance of biomechanical events occurring at the cellular
and molecular scales and modeling that attempts to link them to the continuum tissue-scale
models.

Valvular interstitial cells (VICs) have garnered attention recently due to their role in
maintaining the leaflet tissue matrix and modulating disease pathology [98, 104]. VICs,
characterized as myofibroblasts, exhibit a plastic and reversible phenotype, becoming acti-
vated and contractile in remodeling and diseased valves [130]. The behavior and role of VICs
in healthy and diseased valves has prompted several experimental investigations to measure
the mechanical behavior of VICs [26, 50, 115]. For instance, Liu et al. used atomic force
microscopy (AFM) to quantify the elastic moduli of VICs [105] and Huang developed an
elastic constitutive model [79].

Isolated VICs have been observed to respond to their mechanical environment and engage
in cell-ECM communications [97, 123, 158]. These interactions are speculated to regulate tis-
sue homeostasis, but the nature of these mechanisms is not yet understood. Computational
models that account for these interactions can further our understanding of these mecha-
nisms. For instance, a combined experimental-FE analysis revealed that the distribution of
collagen fibers and VIC nuclei play a role in tissue stress mitigation [81]. This study is in
line with other FE studies that demonstrated the dependence of tissue stress distribution on
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the collagen fiber distribution, [89, 101, 106, 119], but differs from by including the VICs to
clarify the force-transfer mechanism between the ECM and VICs.

Continuum models of the cells tend to be simplified, missing important aspects of the
cellular structure. For instance, the filamentous structure of the cytoskeleton is not consid-
ered [84]. These fibers can be modeled, in a manner similar to the tissue models, to obtain
more refined cellular behavior [163]. Another issue with continuum models is the represen-
tation of a continuous interface with the ECM. Studies have demonstrated that cells are
attached to the ECM dynamically at discrete points known as focal adhesions [118, 158].
Modeling these discrete attachments (Fig. 1.3) is important for capturing the cell-ECM in-
teractions properly. Alternatively, tensegrity models [84] can be used in treating the unit
cell or the “representative volume element” (RVE). Tensegrity models capture the structure
of the cytoskeleton by modeling the force transfer through the filaments by tensile elements
and struts. This captures the discrete nature of the cellular structure.

Figure 1.3: a) Cell attachment to substrate (ECM) at focal adhesions. b) Schematic of valvu-
lar interstitial cell (VIC) interface with extracellular matrix (ECM) in continuum model.

The process of cells responding to mechanical stimuli, and, in turn, initiating various
cellular processes is known as mechanotransduction and it can underlie morphogenesis, dif-
ferentiation, determination, development, and pathology [90]. At the molecular and atomic
scales, continuum modeling is not appropriate due to the discrete and stochastic nature of
the chemical interactions. The interactions of atoms in proteins, and other biomolecules, are
computed with molecular dynamics (MD). Application of these models in heart valve biome-
chanics is still a work in progress, but similar studies with direct applications exist [128, 133,
140]. One significant challenge is linking molecular scale simulation with continuum mod-
eling. The core of the challenge lies in efficiently reconciling the disparate time and length
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scales involved in the nanoscale molecular dynamics of the biochemical processes with the
macroscopic mechanics [85, 187].

Multiscale models that link valve tissues to VICs have recently emerged [35]. Weinberg
and Mofrad developed a 3D AV model that combined organ, tissue, and cellular scales [172].
Kinematic results computed at the larger scales were passed down as boundary conditions to
the successive smaller scale, allowing organ scale events to be translated to VIC deformations
(Fig. 1.4). This model was further applied to study aging and calcification of the AV [23]. The
model did not, however, translate cellular scale events to tissue response. It is important to
extend this model to account for the bidirectional communication to achieve true multiscale
coupling.

Figure 1.4: Multiscale model ranging over organ, tissue, and cellular scales [172].

One technique that achieves this coupling is computational homogenization [29, 116,
150]. In this method, a system is modeled using FE, but rather than using a mathematical
relationship (material law) for the material response, a separate FE model of the periodic (or
random) microstructure, the representative volume element (RVE) (see Fig. 1.5), is used to
determine the material response. One disadvantage of this method is the computational cost
of solving an embedded FE problem, particularly for the complex geometry of heart valves.
Several approaches have been developed to speed up computations, such as databases of
pre-computed microstructural responses [185] or simplified models of the RVE [184]. Care
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must be taken in modeling the embedded cellular scale to assure tractability of the problem.
In Chapter 3 and 4, we will use computational homogenization to couple the model proposed
by Weinberg and Mofrad.

Figure 1.5: Representative volume element (RVE) of heart valve tissue: valvular interstitial
cell embedded in the extracellular matrix [80].

Huang et al. used computational homogenization in 2D to link valve tissue behavior with
VICs [80]. To our best knowledge, 3D computational homogenization models of valve tissue
have not yet been developed. The technique has been applied to tissue-engineering [24, 178]
and other soft-tissue modeling applications [61, 107]. For instance, Chan et al. used homog-
enization to model tissue-engineering scaffolds and account for the nanoscale [24]. Quantum
mechanical computations are used at the nanoscale to compute the total energy from ap-
plying strains to the RVE [17]. The stress-strain response of the scaffold can consequently
be predicted [2]. It may be promising to apply a similar approach to factor in molecular
processes that occur in VIC mechanotransduction.

1.5 Applications of aortic valve models

To put these computational models into context, we present several applications. These in-
clude studying disease pathology, designing valve prosthetics, tissue-engineering, and aiding
in surgical procedures. We limit our discussion to models that are concerned with tissue
response of AVs.
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Aortic valve disease

Computational models have been used to study bicuspid aortic valve (BAV), a congenitally
occurring disorder characterized by an AV with two leaflets instead of three [126, 160]. FE
analysis revealed large changes in the leaflet stress/strain distribution [4] and excessive strains
when the BAV is opening [87]. FE studies also indicated morphological changes, such as a
greatly reduced orifice area [86]. Although it is hypothesized that these morphological and
stress/strain differences directly impact the cellular-scale events that lead to, for instance,
calcification, multiscale studies have shown that the stresses and strains are not directly
translated to the VICs [171]. Instead, the abnormal hemodynamics caused by the BAV
has emerged as the probable cause of the induced diseases [14]. For example, dilation and
thinning of the ascending aorta downstream of the BAV is marked by smooth muscle cell
depletion, elastic fiber degeneration and abnormal ECM remodeling [154]. These findings
have been supported by computational studies that demonstrate tissue sensitivity to shear
stress abnormalities [4]. Nevertheless, studies maintain that BAV is linked with secondary
complications such as aortic regurgitation and stenosis, particularly, calcified aortic stenosis
(CAS) [49].

CAS is characterized by stiffening of the AV leaflets due to the development of calcified
nodules. The disease is relatively common but the pathogenesis is not currently known.
It is theorized that the key to the progression of CAS lies in the VICs [100]. Multiscale
computational studies have supported this theory, maintaining the importance of the cell-
ECM interaction on CAS [171]. Lipid-lowering pharmaceutical therapy has not demonstrated
effectiveness in halting the progression of aortic stenosis, [177] but there is potential for
inhibition at the cellular and molecular scales in the case of CAS [122]. This emphasizes the
need for multiscale studies that couple cellular-level mechanics and biochemistry driving the
calcification growth process [173]. In Chapter 4, we take a look at applying our multiscale
framework to calcified AV leaflets.

Assessment and design of artificial valves

AVs with compromised function are typically replaced. FE models can help identify re-
gions of large stresses for the design of more efficient replacement valves that reproduce the
native stress configuration [88, 92]. An understanding of the native tissue structure and
function is crucial to developing an adequate replacement. The collagen and elastin fiber
structure of the leaflet tissue acts as a stress-reducing mechanism to prevent tearing and cal-
cification. Prosthetic valves that are designed with a similar microstructure are potentially
more durable [22]. FE models can aid in the design of these valves by determining areas of
stress concentrations such that the appropriate fiber distribution is chosen and by simulating
long-term effects, such as fatigue [111, 93].
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Tissue engineering

Complications associated with prosthetic valves, [34, 67] primarily, thrombogenecity and
durability, have shifted artificial valve research towards tissue engineering as an alternative
approach for heart valve replacement. Sun et al. categorize the application of computation
to tissue engineering, or computer aided tissue engineering (CATE), as follows: (1) anatomi-
cal modeling, (2) design/manufacturing, and (3) tissue implantation [151]. The first consists
of using noninvasive imaging techniques, namely computed tomography (CT), X-RAY, and
magnetic resonance imaging (MRI), to construct 3D anatomical models to identify and clas-
sify tissues, traumas, and tumors. The second is concerned with fabricating physical models
of hard tissues, tissue scaffolds, and custom-made tissue implant prostheses. The third in-
volves applying anatomical and physical modeling for surgical purposes (e.g., implantations
of prostheses).

In tissue engineering, cells are seeded onto treated scaffolds, which are subsequently sub-
jected to mechanical stimulation in a bioreactor to grow tissue with the desired mechanical
properties. Computational models can be a powerful tool for quantifying the mechanical
stimuli in the bioreactors. Computational fluid dynamics models can be used to determine
the average shear stresses on the engineered tissue sample, which are directly related to its
mechanical properties [45]. On the other hand, mechanochemical models can be used to
model tissue growth by explicitly modeling the chemical processes (e.g., nutrient diffusion)
that result in growth [96].

The appropriate mechanical loading required to recreate the appropriate tissue fiber
structure, however, is not currently known. It is hypothesized that the density, arrangement,
diameter, and cross-linking of the collagen fibers are correlated with regions of varying stress
in the tissue. Computational models have been used to compute the stress distribution during
a cardiac cycle and correlate it with the fiber structure. This information can be used to
tailor loading protocols for tissue-engineering and optimize scaffold design for engineering
adequate leaflet tissue replacements [46].

Surgical Intervention

Characterization of leaflet stresses and optimal placement of valves with patient-specific
models can help improve success rates of valve insertion, repair, and replacement operations,
whereas post-operative modeling can avoid future complications and increase longevity of
valve replacements [7, 66, 156, 162, 179]. Inverse finite element approaches can be used to
back-calculate the stress state in the tissue from medical imagery [54, 81, 82, 134]. Compu-
tational models can provide insight on the optimal prosthetic design and insertion procedure
in a predictive sense.

Grande et al. developed a FE model of the aortic root, including the AV leaflets, to study
the effects of aortic root dilatation [62]. The change in geometry of the ascending aorta is
associated with AV incompetence [63]. One treatment option consists of replacing the aortic
root with a synthetic graft, while preserving the AV [36]. Grande et al. used their model
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to study the stress distribution in the AV leaflets compared to native, healthy condition for
these valve-sparing procedures to determine the optimal graft and insertion position [64].
Using a similar modeling approach, Soncini et al. compared different valve-sparing aortic
root replacement techniques [145].

AV replacement treatments involve surgical insertion of a valve prosthetic. Auricchio
et al. considered patient-specific modeling of the aortic root to aid in the pre-operative
planning of the surgical insertion of a prosthetic [5]. The patient-specific FE model was
used to study the stress distribution and coaptation area resulting from different prosthetics
and their attachment. They further considered the effect of the prosthetic leaflet material,
namely the fiber reinforcement distribution, on the AV implant [6]. Similar investigations
were carried out by other researchers on stentless prosthetic valves in an effort to characterize
the optimal prosthetic and insertion procedure [162]. Additionally, Auricchio et al. simulated
transcatheter AV replacement (TAVR) [7]. In TAVR, a balloon-expandable prosthetic valve
is surgically implanted via a catheter [31]. The model was used to predict stresses in the
aortic root for various positioning of the stent implant (Fig. 1.6).

For AVs that are not too severely diseased, particularly in the case of regurgitation, AV
leaflet surgical repair may be performed [112, 177] Labrosse et al. developed FE models
to study the impact of different repair techniques on insufficient AVs [95]. The model was
validated against in vitro experimental data and conclusions were compared to short-term
and mid-term clinical experience. Such models can be used to explore the effectiveness of
various and novel repair procedures.

1.6 Summary and future directions

Biological tissue exhibits complex behavior that is often hard to model precisely. In partic-
ular, heart valve tissue is inhomogeneous, nonlinear, and anisotropic. Continuum elasticity
models are typically used with the addition of fiber recruitment and alignment, leading to
acceptable agreement with experimental data. These unique properties, however, are a con-
sequence of the microstructure of valve tissue: the valvular interstitial cells (VICs) and the
extracellular matrix (ECM). It has further been shown that the VICs, and their interactions
with the ECM, play a significant role in regulating valve pathology.

Understanding and modeling these interactions has potential to halt disease progression
at the cellular level [169]. For instance, calcific aortic disease is strongly associated with the
appearance of myfibroblasts as a cellular phenotype [130]. Myofibroblasts engage in tissue
healing by remodeling the ECM but persistence of myofibroblasts can lead to fibrosis and
matrix protein disorganization [74, 175]. Additionally, an osteoblast-like phenotype of VICs
has been observed in calcified valve tissue, [132] with corresponding ossification in severely
calcified valve tissue satins [120]. The regulation of VIC phenotypes is associated with
biomolecular interactions with the ECM, [20] hence, molecular-scale modeling is important
for understanding AV disease.
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Figure 1.6: Finite element model used to compute stresses for two different stent configura-
tions in an aortic stent insertion operation [5].

One important aspect of any type of model that needs careful consideration is proper
validation. Typically, models have been validated with in vitro data [23, 42]. Samples are
excised and tested to produce stress and strain data to compare the models to. In vivo data
is, however, difficult to obtain. Noninvasive medical imaging techniques, such as X-RAY,
echocardiography, magnetic resonance imaging (MRI), and computed tomography (CT),
offer a powerful means of obtaining in vivo data of physiological conditions [71, 117, 186].
Combining the images with inverse finite element models can reproduce in vivo stress-strain
data to validate models against.

We conclude this chapter with an outlook on future directions in heart valve computa-
tional modeling.
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Patient-specific modeling

The current trend in biomedical modeling is to develop patient-specific models from imaging
data. The aim is to use these models to aid the clinician in diagnosis, customizing treatment
plans, and planning surgical procedures. This requires the development of databases that
the biomedical engineer, or ideally, the clinician can use to identify aberrances. For instance,
Doppler echocardiography signatures can be used to detect, calcification, regurgitation, and
stenosis by looking for irregular patterns. The reader is referred to the review by Votta et
al. for more on patient-specific modeling [167].

Intra-operative surgical modeling

An important next step for patient-specific models of heart valve computational models is
to develop intra-operative models to aid the surgeon by monitoring tissue and fluid stresses
during valve surgery [143]. Xu et al. developed such a framework that combines imaging,
echocardiography, and FE modeling to assess the in vivo stress of the mitral valve [176].
Other examples of this include the real-time surgical electromechanical model of pulmonary
valve replacement surgeries and the intra-operative ultrasound magnetic navigation of tran-
scatheter implantation of AVs [108]. This is still largely a work in progress since, as Labrosse
et al. demonstrated, computational time per cycle can be too long to be practical for intra-
operative simulation [95]. Mansi et al., however, were able to achieve computational runtimes
that are adequate for real-time simulations [110]. The concept of intra-operative systems is
to develop a system similar to an existing system that is used for detecting coronary arterial
disease in real time with computational fluid dynamics [125, 157, 186].

Engineered valve replacements

Analysis-based design is becoming the standard in all industries, biomedical engineering
notwithstanding. Advances in tissue engineering, polymer science and computational tech-
niques have led to the design of robust, versatile, durable, and cost-effective biomaterials
and biomedical devices that mimic human tissue. Ongoing studies are aiming to develop
bioprosthetic replacement heart valves that mimic human tissue structure (see for instance
Argento et al. for a multiscale study of tissue-engineered scaffolds [2]) with the use of novel
materials, such as nanocomposite polymers [131]. Nanomanufactored engineered tissues
show great promise for achieving this, and thus, there is a need for developing nanoscale
simulation techniques to aid in design and assessment [37].

Coupled multiscale modeling

There is a need to develop multiscale models that account for the interaction of the different
length and time scales. This is crucial for accurately capturing the macroscopic behavior of
materials, which is a consequence of their microstructure, to study the effect of macroscopic
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events on, for instance, VICs. Furthermore, incorporating nanoscale modeling is essential
for the future of heart valve simulations due to the important role of the interstitial cells
and collagen fiber network on the observed material properties, regulation, function, and
pathologies of tissue.

The remainder of this will work is focused on coupled multiscale modeling. We will
introduce the multiscale model in Chapter 3 and apply it to calcific aortic disease in Chapter
4. But first, we will lay down the foundation for the continuum biomechanics modeling of AV
tissue in Chapter 2. Finally, we will conclude in Chapter 5 with limitations of our approach
and future directions for building on our methodology.
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Chapter 2

Aortic Valve Tissue Biomechanics

Aortic valve tissue exhibits highly nonlinear, anisotropic, and heterogeneous material behav-
ior due to its complex microstructure. A thorough understanding of these characteristics
permits us to develop numerical models that can shed insight on the function of the aortic
valve in health and disease. In this chapter, we take a closer look at consistently capturing
the observed physical response of aortic valve tissue in a continuum mechanics framework.
Such a treatment is the first step in developing the multiscale models in the sequel.

2.1 Introduction

Aortic valve (AV) disease is a public health concern with no effective treatment options
available, due in part to our incomplete understanding of the complex biological system.
Computational modeling is a promising approach for us to gain insight on AVs and to
develop viable prevention and treatment modalities. However, such modeling must first
accurately reproduce the known before we can use it to probe the unknown. Our focus
here is to discuss critical aspects of developing a continuum biomechanical model of AV
tissue that is consistent with available experimental data. This basic material specification
is a fundamental building block for more complex and comprehensive AV studies, such as
multiscale and multiphysics simulations.

Background

AV tissue is comprised of three layers: the fibrosa, the ventricularis, and the spongiosa. The
fibrosa and the ventricularis are the main load-bearing layers and they consist of organized
networks of collagen and elastin fibers. The crimped collagen fibers align, uncrimp and
quickly stiffen in response to loading, resulting in the observed anisotropic, exponential
stress-strain behavior. The highly compliant spongiosa serves as a buffer between the other
two layers and is composed of proteoglycans. Little data is available on the mechanical
behavior of the spongiosa, but the three layers act together as a single unit [139].
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Typical continuum models of AV tissue assume homogeneous materials that aim to cap-
ture the gross mechanical response; see e.g. [87, 95, 173, 171, 172], as well as [9] and [174]
for reviews. Fewer studies look at the heterogeneous nature of the trilayer AV structure (see
for instance [172] and [21]). This heterogeneity is essential for correct multiscale modeling
efforts [165, 138, 80]. Such models rely upon layer-scale (and possibly finer scale) measure-
ments that can be incorporated into detailed composite models that predict the behavior of
intact AV tissue. The consistency of the layer level response model and the composite tissue
model is essential for the validity of the entire exercise and a major goal of this paper.

Aortic valve tissue biomechanics

To understand the heterogeneous layer-scale and composite AV tissue behavior, Stella and
Sacks [146] subjected excised AV tissue samples to equibiaxial tractions along the “circum-
ferential” and “radial” axes1. The layers (fibrosa and ventricularis) were then separated and
tested individually. The average load-response curve for each layer and the AV composite
tissue is reproduced in Fig. 2.1. We highlight the following from the experiments:

1. The tissue is highly anisotropic: the circumferential response being significantly stiffer
than the radial (due to the gross alignment of the collagen fibers in the circumferential
direction [11]). Additionally, the fibrosa is significantly stiffer than the ventricularis.

2. At the layer-scale, we observe a “kickback” behavior in the circumferential direction,
characterized by a decrease in stretch with increasing load.

3. After separation, the fibrosa expands, while the ventricularis contracts, indicating the
existence of a prestress in the native AV tissue.

4. Interconnecting fibers that run transmurally (longitudinally/axially) are believed to
cause the AV tissue composite to act as a single unit (see also Buchanan et al. [21]).

5. The composite AV response in the radial direction is stiffer than the individual layers
in the same direction. Note the stiffness in Fig. 2.1 may be misleading due to the
use of membrane stress, but when correcting for the relative size of the individual and
composite samples, the conclusion remains.

Our aim is to develop a model that captures the observed mechanical response of the AV
tissue composite within a continuum mechanics framework, based upon layer-scale models
which are calibrated to layer-scale measurements.

We restrict our attention to the equibiaxial data presented in Stella and Sacks, as opposed
to more general biaxial experiments2 [16]. The latter study lacks data on the individual
layers and it is our goal here to capture layer-scale consistency. We do, however, consider
the bending experiment of Sacks [137] to calibrate the small-strain response of the material.

1These directions orient the tissue sample with respect to the valve organ; c.f [146]. or [138]
2See Sec. 2.5 for a discussion.
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Figure 2.1: Aortic valve layer equibiaxial stretch response via [146]. Circles indicate circum-
ferential response and diamonds indicate radial response.

Outline

This chapter is outlined as follows. In Sec. 2.2 we introduce the continuum mechanics
framework. In Sec. 2.3 we detail the model which we calibrate to existing experimental data
in Sec. 2.4. We conclude with a discussion, including limitations, in Sec. 2.5.

2.2 Continuum mechanics framework

Continuum mechanics framework

We model the AV tissue within a classical continuum mechanics framework (see e.g., [75]),
wherein we seek to solve the governing equations of motion for a body (manifold with bound-
aries) subject to boundary conditions (tractions and displacements). We define a one param-
eter (time t) family of finite deformation maps ϕt : R3 7→ R3 of a hyperelastic body from a
reference configuration (B0) to a current configuration (Bt) (see Fung [56] or Holzapfel [75]).
Namely, Bt = ϕt(B0).

We define the deformation gradient F = ∇ϕ. Note that F is a 2-point tensor mapping
vectors from the reference manifold to the deformed manifold. We define the left and right
Cauchy-Green deformation tensors by C = F TF and b = FF T , respectively. We further
define the associated strain tensors: the Green-Lagrange strain tensor E = 1

2
(C − I) for

the reference configuration and the Almansi strain tensor e = 1
2
(I − b−1) for the current

configuration. I is the identity tensor for vectors in R3.
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The equilibrium deformation map at time t is the one that minimizes the potential energy
(Π) of the elastic system subject to conservative traction loading t̄t:

ϕeqt = arg inf
ϕt

Π(ϕt; t̄t). (2.1)

Under the assumption of hyperelasticity, the 1st Piola-Kirchhoff stress of the system, P , is
obtained from the Helmholtz free energy, ψ̂, of the material:

P =
∂ψ̂

∂F
. (2.2)

Although the solution to (2.1) is in general not unique, polyconvexity (in the sense of
Ball [12]) of the energy function guarantees the existence of a solution. We solve the problem
with a standard Finite Element (FE) numerical procedure (Sec. 2.2). Our challenge is to
specify ψ̂ such that the FE model is consistent with the observed experimental response.

We can further define two additional stress tensors: the 2nd Piola-Kirchhoff stress tensor
S and the Cauchy stress tensor T . The relationship between the stress tensors is

T = J−1FP = J−1FSF T , (2.3)

where J = det(F ) is the Jacobian (of the deformation gradient).

Polyconvexity

A sufficient condition for the existence of ϕeqt in (2.1) is the quasi-convexity of ψ̂ [121]. A
more tractable condition (that implies quasi-convexity) is the notion of polyconvexity, in the
sense of Ball [12].
F 7→ ψ̂(F ) is polyconvex if and only if there exists a function G : R19 7→ R such that

ψ̂(F ) = G
(
X), (2.4)

where X = (F ,AdjF , detF ), AdjF is the transpose of the cofactor matrix of F , detF
is the determinant of F and G : R19 7→ R is convex ∀X ∈ R19. Quasi-convexity implies
rank-1 convexity3, which in turn implies (for smooth, twice differentiable ψ, as we have) the
Legendre-Hadamard condition [33]:

∃c > 0 ∀F ∈ R3×3, ∀a, b ∈ R3 \ {0} | D2ψ(F )[a⊗ b,a⊗ b] ≥ c||a||2||b||2. (2.5)

Thus, polyconvexity of an energy function implies ellipticity of the acoustic tensor for all
deformation, which is a sufficient condition to guarantee the material wave speed is real and
positive [144].

3Rank-1 convexity: f(t) := ψ(F + ta⊗ b) is convex ∀a, b ∈ R3, and ∀F | detF > 0.
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Finite element modeling

We use an FE approach to solve (2.1). Let ∂Bu and ∂Bt denote the partitions of the boundary
(∂B0) of the body, B0, where deformation and tractions are imposed, respectively, with
∂Bu ∩ ∂Bt = ∅, ∂Bu ∪ ∂Bt = ∂B0. Equation (2.1) is solved by satisfying the weak form
statement:

Find
ϕ ∈ S := {ϕ | ϕ = ϕ̄ on ∂Bu},

such that ∫
B0
P · ∇(δϕ) dV =

��������
∫
B0
B · δϕ dV +

∫
∂Bt
t̄ · δϕ dA, (2.6)

∀δϕ ∈ V := {δϕ | δϕ = 0 on Bu},

where ρ0 is the material density in B0 and we assume there is no body force B. The FE
solution begins with a tessellation of the domain (viz. Fig. 3.4) into a finite set of discrete
nodes and elements. Letting the superscript g denote discretized parameters, and NA(x)
denote interpolating shape functions in each element, we construct a Galerkin discretization
as:

Bh0 =

nel

A
e=1
Be0, ug =

nn∑
A=1

NAuA, δug =
nn∑
A=1

NAδuA, (2.7)

where e indexes the nel elements in the domain, u denotes displacements, δu denotes vari-
ational displacements, uA denotes nodal displacements indexed by A over nn nodes per

element, and
nel

A
e=1

is the assembly operator [188]. Substituting (2.7) into (2.6) leads to the

nonlinear (static) equilibrium equations:

R(ut) = ft −
nel

A
e=1

∫
Be0
∇NT

e Pe dVe = 0, (2.8)

whereR is the residual for a state of displacements ut at time t, which must be in equilibrium
with the applied nodal forces ft at time t, and ∇N is the matrix formed from derivatives
of the shape functions NA(X) with respect to X. The reader is referred to Zienkiewicz and
Taylor [188] for a comprehensive treatment of the FE procedure.

We use an iterative Newton-Rhapson approach to solve (2.8). Given an initial state u0
t ,

the update equations are

uk+1
t ← ukt −K−1

T (ukt )ft, (2.9)

where
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KT =
∂R

∂u
=

nel

A
e=1

(ke,mat + ke,geom), (2.10)

is the linearized tangent stiffness. The element material stiffness is

ke,mat =

∫
Be
∇̄NT

e c∇̄Ne dV, (2.11)

where, ∇̄ is the gradient operator with respect to the spatial manifold, and c is the spatial
material tangent, defined as

cijkl =
1

J
FiAFjBFkCFlDCABCD, (2.12)

the push-forward of the material tangent C = 2∂S/∂C. The element geometric stiffness is

kABe,geom =

(∫
Be
NA
,i TijN

B
,j dV

)
I, (2.13)

where summation convention is implied, with lower-case subscripts indicating the spatial
coordinates, subscript commas indicating partial differentiation, upper-case subscripts in-
dicating the reference coordinates, and upper-case superscripts indicating nodal numbers.
Note that the integrals for the stiffnesses are taken over the deformed element. The itera-
tions are carried out until a stopping criterion, such as the satisfaction of (2.8) within some
tolerance. For the Newton-Rhapson strategy to converge, the initial guess must be in the
neighborhood of the solution. This requirement poses an issue for the highly nonlinear AV
tissue, particularly in the low stiffness regime.

To address this problem, we apply the load incrementally and adaptively. We start with
a small load factor αt (ft = αtf0) and adjust the factor heuristically based on the number
of iterations (ni) it takes for (2.9) to converge (αt ∝ n−1

i ). In this manner, we are able to
circumvent the use of unreasonably small load factors (i.e., excessive computational time)
during the entire load path. If a load factor is too large and the Newton-Rhapson algorithm
diverges, we appropriately scale the load factor down.

2.3 Consistent tissue model

Material model

For each individual layer we choose a Helmholtz free energy ψ(I1, J4, J) := ψ̂(F ) of the form

ψ = C1m

{
exp

[
C2m(I1 − 3)

]
− 1
}

+

nf∑
i=1

C1f

2C2f

{
exp

[
C2f (J

i
4 − 1)3

+

]
− 1

}
+c1(I1 − 3) + c2(J2 − 1) + c3 ln(J).

(2.14)
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The first term on the right hand side is a Fung-like [56] isotropic term, where I1 = tr(F TF )
is the first invariant, and C1m, C2m are material parameters. The second term is a directional
term in the spirit of Holzapfel [76, 77] to account for the nf collagen fiber directions, where
J i4 = tr(CMi) is the first mixed invarient for the fiber direction indexed by i, with Mi =
mi ⊗mi, ||mi||2 = 1, as the rank-1 structure tensor. C1f , C2f are material parameters and
(x)+ := max(x, 0) guarantees that the fibers do not take compressive load. The last three
terms represent a Neo-hookean ground substance (see [68]) with parameters c1, c2, c3.

To establish the polyconvexity of (2.14), we turn to Appendices B and C of Schröder
and Neff [144], namely, Lemmas B.9, C.2, and C.4. A necessary and sufficient condition for
polyconvexity is then

C1m, C2m, C1f , C2f , c1, c2,−c3 > 0. (2.15)

Note that for the case C1m, C2m, C1f , C2f = 0, e.g., the spongiosa, the material is Neo-
hookean, which is indeed polyconvex.

We impose that our material model, in the infinitesimal strain limit, recovers an isotropic
linear elastic model.4 Define the linearization operator as:

Linf(y)[u] := f(y) +Df(y)[u], (2.16)

where Df [u] denotes the Fréchet differential in direction u. We then linearize about 0 and
impose that

LinT (0)[u] = σ`in, (2.17)

where T is the Cauchy stress tensor and σ`in is the infinitesimal stress tensor. Equation
(2.17) leads to the following conditions:

c1 = µ/2− C1mC2m, c2 = K/4− µ/6− C1mC
2
2m, c3 = 2C1mC

2
2m −K/2− 2µ/3, (2.18)

where µ and K are the infinitesimal-strain shear and bulk moduli, respectively. The stress
and tangent are given by

T = 2c1
b

J
+ 2C1mC2mAm

b

J
+

nf∑
i

3C1f (J
i
4 − 1)2

+Afbm/J + (2c2J + c3/J)I, (2.19)

where, Af := exp
[
C2m(I1−3)

]
, Am := exp

[
C2f (J

i
4−1)3

+

]
, and bm = FMF T . The material

tangent (in the spatial configuration) is:

4By construction, the fibers have negligible contribution in the infinitesimal regime.
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c =
1

J

[
4c2J

2I ⊗ I − 2(2c2J
2 + c3)I

+ 4C1mC
2
2mAmb⊗ b

+ 6C1fAf
(
2(J4 − 1)+ +

nf∑
i

3C2f (J
i
4 − 1)4

+

)
bm ⊗ bm

]
,

(2.20)

where I is the order-2 3×3 identity tensor and (I)ijkl = 1
2
(δikδjl+δilδjk), (δij is the Kronecker

delta).
In valve tissue, the collagen fibers are primarily aligned in the circumferential direc-

tion [16]. We define a locally Cartesian coordinate system (c, r, h) aligned with the circum-
ferential, radial, and transmural directions, respectively (see Fig. 2.2 and/or [16]). In the
spirit of Billiar and Sacks [16], we assume a normally distributed family of fibers lying in the
ec ⊗ er plane. The structure tensor for each fiber is fully defined by the direction

mi := cos(θi)ec + sin(θi)er, (2.21)

where θi ∈ N (µf , σf ), a normal distribution with mean µf and standard deviation σf .
Herein, we take µf = 0 (i.e., mean alignment in the circumferential direction) and let σf be
a free parameter.

Little information is available regarding the mechanical properties of the Spongiosa, and
thus, we assume it behaves like a Neo-hookean material (i.e., C1m = C2m = C1f = C2f = 0).

Remark on the fiber model: We follow the discrete Holzapfel fiber model [76] as op-
posed to the continuous one [77] because it allows us to explicitly model the individual fiber
directions. The latter gives the asymptotic response of the former (i.e., limnf→∞) in a com-
putationally efficient manner. We recommend the continuous models (see also [57] and [52])
for larger problem sizes (e.g., full aortic valve geometry), but the discrete model provides a
more accurate and insightful representation of the fiber micromechanics. Note that unlike
the Holzapfel model, we have (J4− 1)3, rather than (J4− 1)2 so that ψ is smooth and twice
differentiable in the presence of the hinge (x)+.

Remark on viscoelasticity: AV tissue demonstrates viscoelastic behavior when subject
to relaxation experiments [99]. Due to the slow nature of the loading in the referenced
experiments, one can safely neglect viscoelasticity.

Parameter fitting

We consider calibrating the parameters in (2.14) to experimental data. We first begin by
drawing and fixing a set of nf = 30 fibers5 from N (0, 1), then scale appropriately by σf :

5Our choice of nf = 30 is a balance between accuracy and computational efficiency.
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Figure 2.2: a) FEM trilayer tissue model generated with Paraview [1]. b) 1/4 symmetry
FEAP model with boundary displacement and traction boundary conditions. c) FE bending
simulation a la Sacks [137]

N (0, σf ) = σfN (0, 1). The finite-strain parameters (C1m, C2m, C1f , C2f , σf ) are, by con-
struction, little effect for infinitesimal deformation. However, the prestressing engages these
parameters and leads to a co-dependence between the finite-strain and infinitesimal-strain (µ
and K) parameters. In light of this, we fit the full parameter set in an iterative manner be-
tween the small deformation bending and large deformation equibiaxial stretch experiments
as follows:

1. Choose an initial value of µ (K is fixed) from Euler-Bernoulli beam bending theory.

2. Fit the finite-strain parameters for each layer with the procedure described in 2.3.

3. Determine the necessary prestress for the composite tissue with the procedure described
in 2.3.
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4. Determine µ with the procedure described in 2.3.

5. Repeat 2-4 until convergence.

We present a metric in (2.22) to assess the goodness of fit for the layers and the composite
with respect to the equibiaxial stretch experiments.

Equibiaxial stretch

We define a residual sum of squares loss

`(C) :=
n∑
i=1

(λec − λmc (C))2
i + (λer − λmr (C))2

i , (2.22)

where C := (C1m, C2m, C1f , C2f , σf ), λ is the stretch for a given membrane stress, obtained
from the 1st Piola-Kirchhoff stress tensor, and n is the total number of data points; the
subscript indicates the direction, and the superscripts e,m denote experimental and model,
respectively. We seek the parameters that minimize the nonconvex loss:

C∗ = arg min `(C) subject to C > 0. (2.23)

Despite the nonconvexity, we can converge to a sufficiently good local minimum using
warm-start projected gradient descent with backtracking line-search ([124] Chap. 3) imple-
mented in the MATLAB [113] package minConf [141]. Because `(C) is not an analytical
function (λm(C) is computed from an FE model, detailed in Sec. 2.2), we estimate the
gradients (∇`) with finite differences by probing the FE model with perturbed parameters:

∂λm

∂Cj
≈ λm(C + δej)− λm(C)

δ
, (2.24)

where ej ∈ R5 is the standard Cartesian basis vector and δ is a suitable differential.

Bending

We fit the infinitesimal-strain parameters to the bending experiment of Sacks [137], where
the AV tissue exhibits linear response over the range of applied deformation. Since we fix
the “bulk modulus” K = 2.2 × 103 kPa (see Sec. 2.3), all that remains is to fit the “shear
modulus” µ such that the bending stiffness is consistent with the values measured by Sacks.
Due to a lack of further experimental data, we assume all three layers have the same K
and µ. Note that the interlayer heterogeneity is mostly a consequence of the collagen and
elastin fiber content of each layer (or lack thereof) and thus it is not unreasonable to assume
a homogeneous matrix otherwise.

Sacks’ bending experiment consisted of ∼14×3 × 0.4 mm strips of AV tissue that are
subject to 3-point bending. Positive and negative midspan deflections were applied with a
rigid rod attached to a load cell and the beam deformation field was measured with markers
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along the edge. The moment-curvature (M versus κ) response was observed to be linear over
the range of applied midspan deflections (∼ ±1 mm), with an effective Young’s modulus
E = M/(Iκ) ≈ 5.3 kPa. Our bending model is described in 2.3 where we choose µ such that
M/(Iκ) ≈ 5.3 kPa. Note that due to the linearity of the response, only a single simulation
is needed to determine µ once K has been fixed.

Models and boundary conditions

We consider four models: 1) equibiaxial stretch of the fibrosa, 2) equibiaxial stretch of the
ventricularis, 3) equibiaxial stretch of the trilayer AV composite, and 4) beam bending of
the trilayer AV composite. For all models, we tessellate the domain into 8-node linear brick
elements (Fig. 2.2a) to obtain an approximate numerical solution to (2.6) using the FE
software package FEAP [159].

The fibrosa and ventricularis equibiaxial stretch model dimensions (c× r× h) are 11.5×
6.3× 0.20 mm and 8.0× 5.5× 0.15 mm, respectively, with a mesh size of 13× 13× 1. The
AV composite equibiaxial stretch model dimensions are ∼9.0 ×6.0 × 0.46 mm with a mesh
size of 13 × 13 × 3. The AV composite beam dimensions are 14.0 × 3.0 × 0.46 mm with a
mesh size of 80× 4× 12. A mesh convergence study is given in Fig. 2.4.

Equibiaxal stretch

Stella and Sacks applied equibiaxial membrane stresses6 via four discrete points per side and
measured the approximately homogeneous strain in the center of the tissue on the surfaces of
the fibrosa and the ventricularis. The overall mechanical behavior of the tissue is not affected
by the technical details of these boundary conditions. In fact, we can simply apply uniform
normal tractions along the circumferential and radial edges with (1/4) symmetry boundary
conditions on the respective opposite edges (Fig. 2.2b). To see this we take a closer look
at the equibiaxial stretch experiment of Stella and Sacks [146] and discuss the appropriate
use of boundary conditions when recreating the experiment with a finite element model. We
refer the reader to [138] for details on the biaxial testing apparatus and [146] for details on
preparation of the tissue samples.

The excised tissue samples are loaded in biaxial tension via four nylon strings per side,
attached with surgical staples. The deformation is applied via load transducers such that
the membrane stress (force divided by length) is equal on both the circumferential and
radial axes. The deformation reported is obtained via strain imaging near the center of the
specimen on the two surfaces: the fibrosa and ventricularis. The deformation in the fibrosa
and the ventricularis are nearly identical. Prior to the main experiment, the samples are
preconditioned with cyclic loading. The loading protocol begins with a small preload (0.5g)
and the deformation is then measured with reference to the preloaded initial state.

6Membrane stress here is the force divided by the initial length of the edge the force is applied to, i.e.,
the 1st Piola-Kirchhoff membrane stress.
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In our simulations, we apply the load as a uniform traction along two juxtaposed edges
with boundary restraints in the same direction on the respective opposite edges. We then
measure the deformation at the center of the specimen on the surface of both the fibrosa
and the ventricularis. We use stiff springs on the edges to mimic the effect of the staples,
i.e., the layers deform together under traction-controlled loading.

To demonstrate that our choice of boundary conditions does not change the overall be-
havior of the material, we fit additional models with the load applied at four discrete points
per edge (Figure 2.3 right). We present the fit parameters for both models (uniform and
discrete boundary conditions) in Table 2.1 and the deformed shape at maximum loading (60
N/m) in Figure 2.3. Note that the parameters for the “discrete” case are within the 95%
confidence intervals in Table 2.2.

Model C1m C2m C1f C2f σf

Fibrosa Uniform 4.38 8.82 18.0 1.53× 103 6.28
Fibrosa Discrete 2.65 8.90 24.25 1.70× 103 5.89
Ventricularis Uniform 1.13 4.11 8.68× 10−2 46.10 8.19
Ventrcularis Discrete 0.74 4.21 6.63× 10−1 27.81 9.51

Table 2.1: Material parameters for uniform and discrete boundary condition models.

Figure 2.3: Loading and deformation of biaxial stretch models. Left: Uniform boundary
conditions. Right: Discrete boundary conditions.

The nature of the biaxial testing rig forces the three layers to deform together, so we apply
stiff spring constraints along the thickness on the boundaries where the traction is applied to
ensure that the three layers deform homogeneously in the plane (but heterogeneously out of
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plane). Motion in the h direction is restrained at the bottom (ventricularis) corners7. Note
that the boundary conditions apply to the layer models as well as the composite model.

Bending

The simply supported bending model is depicted in Fig. 2.2c. We apply symmetry boundary
conditions in the r direction. A midspan deflection is incrementally imposed on the beam
and the resulting curvature is computed from a fourth order polynomial fit to the nodal
displacements at mid-depth to mimic the experiments. The prestressing (see Sec. 2.4) results
in an initial curvature κ0, and thus the moment-curvature response is measured relative to
the initial curvature (i.e., M versus ∆κ, where ∆κ = κ− κ0).

Interconnecting fibers

The AV composite tissue is known to act as a single bonded unit [21]. Dissection of the
layers reveals interconnecting fibers that span from the fibrosa to the ventricularis [146]. We
model the effect of the interconnecting fibers with perfectly bonded interfaces (i.e., no slip)
between adjacent layers.

Prestress

The average AV specimen dimensions from the experiments of Stella and Sacks are ≈ 9 ×
6 × 0.5 mm, c × r × h respectively. When separated, the fibrosa (on average) expands to
11.5×7×0.4 mm and the ventricularis (on average) contracts to 8×5.5×0.2 mm. We perform
the experiment in reverse: we prestress the native stress-free configurations of the layers and
attach them (with rigid links) to form the AV composite. The prestressing procedure is
summarized as follows:

1. The ventricularis and fibrosa are stretched from their “stress-free” configurations to
(approximately) the AV dimensions (as reported by Stella and Sacks [146]).

2. The layers are then attached and allowed to equilibrate. The AV composite analysis
(biaxial stretch and bending) is performed with reference to the attached and equilib-
riated state.

Remark on prestressing

The fibrosa exhibits a corrugated structure when part of the unloaded AV composite.
This geometry is a consequence of a buckling phenomenon in the fibrosa which makes it
difficult to determine its true stress-free configuration with the material model we consider
here. Thus, we leave the stress-free configuration of the fibrosa as a free parameter in item
1 above. We return to this point in Sec. 2.5.

7The corner boundary conditions translate to only one of the four corners for the 1/4 symmetry model.
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Quasi-incompressibility

AV tissue exhibits quasi-incompressiblity [139]. To obtain a numerically stable, quasi-
incompressible material response, we choose a “bulk modulus” of K = 2.2× 103 kPa. Note
from (2.18), K acts as a penalty-like enforcement of J ≈ 1. We accordingly use u − p − ϑ
mixed-formulation elements [109]. We observe a change of volume well below 1% for the
biaxial stretch and bending simulations.

Remark on FE modeling

Note that although we can solve the biaxial stretch problem for the individual layers
analytically, the prestressed trilayer AV composite requires a numerical approach.

2.4 Results

Mesh convergence

Figure 2.4 shows mesh convergence studies for our beam and equibiaxial models for the AV
composite system, in both prestressed and non-prestressed states. The mesh densities we use
in our study are consistent with converged mesh densities from these plots. The quantities
we monitor for convergence are those relevant to the data analysis we are interested in. Note
that for brevity we do not show the convergence study for the single layer equibiaxial cases,
and simply note they are similar.
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Figure 2.4: Convergence studies for AV trilayer FE meshes.
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Parameter fitting

The parameter fitting is performed using the equibiaxial data for the AV composite plus
the individual layers, together with the bending data. Table 2.2 summarizes each layer’s
calibrated finite-strain parameters. Also shown are 95% confidence intervals computed via
bootstrap [43] and a sample `(C) per (2.22) (the loss curves of both layers have the same
characteristic shape). Figure 2.5 top demonstrates convergence of `(C). Figure 2.5 bottom
features a perturbation analysis of the fit parameters and demonstrates convergence to a
local minimum. Note the relative sensitivity of C2m. The individual layer load-deformation
curves are presented in Fig 2.6 bottom.

Model C1m [Pa] C2m [-] C1f [Pa] C2f [-] σf [◦]

Fibrosa
4.38

(1.15,7.15)
8.82

(8.20,10.40)
18.0

(5.11,50.72)
1.53× 103

(0.76,1.98)×103

6.28
(5.87,7.59)

Ventricularis
1.13

(0.45,2.13)
4.11

(3.76,4.51)
8.68× 10−2

(0.24,40.1)×10−1

46.10
(25.06,58.67)

8.19
(7.21,10.53)

Table 2.2: Summary of calibrated model parameters for a normally distributed fiber model
with nf = 30 (see (2.14)). Fibrosa loss ` = 5.13×10−4 and ventricularis loss ` = 8.01×10−3.
95% confidence intervals computed via bootstrap are reported below the corresponding value.
For all layers, K = 2.2× 103 kPa and µ = 478 Pa.

We find the moment-curvature response of the bending simulation to be linear, for a
midspan deflection loading of ±1 mm, despite a prestressed initial state (per Sec. 2.4). We
find µ = 478 Pa results in M/(I∆κ) ≈ 5.3 kPa.

Fiber distribution

To illustrate the significance of the fiber distribution model, we present two equibiaxial
stretch results for the individual layers: 1) a single family of circumferentially oriented fibers
(nf = 1, σf = 0◦ (2.14)) in Figure 2.6 top and 2) a normally distributed family of fibers
with nf = 30 in Figure 2.6 bottom. Unique parameters are fit for each model. Figure 2.7
is a close-up look at the response for low membrane stresses. We notice that the loss, `(C),
goes from 1.01× 10−3 to 5.13× 10−4 for the fibrosa and from 2.50× 10−2 to 8.01× 10−3 for
the ventricularis, thus indicating a better fit.

We observe that the single fiber family model fails to capture the “kickback” response, de-
spite being highly anisotropic. The distributed fiber model captures the “kickback” response
and boasts a lower loss.

Trilayer composite biaxial stretch

Next, we look at the equibiaxial stretch response of the trilayer composite, with material
parameters per Table 2.2 and no prestressing, presented in Figure 2.8 top. Note the poor fit
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Figure 2.5: Top: Convergence of loss (2.22) using warm-start projected gradient descent
with backtracking line-search. Bottom Perturbation analysis of parameters for fibrosa (left)
and ventricularis (right). For clarity of exposition, the abscissa on the ventricularis plot is
truncated.

despite each layer being consistent with its corresponding experiment.
We can reconcile this inconsistency by applying the prestressing procedure outlined in

Sec. 2.3. We take the initial configuration of the fibrosa (i.e., the dimensions along the c
and r directions) as a free parameter, which we tune to obtain the response in the bottom
of Figure 2.8.
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Figure 2.6: Equibiaxial stretch response of individual layers plotted against experimental
data (gray with errorbars). The two left curves are the responses in the circumferential
direction and the two right curves are the responses in the radial direction. Top: Single
family of fibers: nf = 1, σf = 0◦. Bottom: Distributed family of fibers: nf = 30, ∼
N (0, σf ), see Table 2.2 for σf values.

We find that an initial size of 9.05 × 4.85 × 0.145 mm of the fibrosa results in the best
response, with a loss ` = 1.71× 10−2 (as opposed to ` = 1.55× 10−1 for the non-prestressed
case). It is worth remarking that due to the nature of our prestressing protocol, the “initial”
(i.e., after prestressing but prior to loading) size of the AV specimen is 8.7× 5.3× 0.46 mm.
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Figure 2.7: Close-up of circumferential response in Figure 2.6. Left: Single family of fibers:
nf = 1, σf = 0◦. Right: Distributed family of fibers: nf = 30, ∼ N (0, σf ).

2.5 Discussion

Fiber micromechanics

In Figure 2.6, we see that AV tissue exhibits a peculiar layer-scale “kickback” behavior in
the circumferential direction, wherein increasing load initially results in increasing stretch,
followed by a sustained decrease in stretch. We do not observe this behavior when the
fibers are oriented in just the circumferential direction (top plot in Figure 2.6), despite an
anisotropic material specification. We observe the “kickback” behavior in the bottom plot
of Figure 2.6 when the distribution of fibers is explicitly included.

The “kickback” behavior is a result of the fibers, predominantly aligned in the circum-
ferential direction, rotating into the radial direction, and “transfering” stiffness over. To
see this more clearly, consider the deformation gradient at the maximum biaxial loading
shown in Figure 2.1, F = λcec ⊗ ec + λrer ⊗ er, where λc < λr are the circumferential
and radial stretches, respectively. Take an arbitrary unit vector along a particular fiber,
m = cos(θ)ec + sin(θ)er. The orientation of this fiber with respct to ec is given by θ. The
fiber transforms as mt := Fm = λccos(θ)ec + λr sin(θ)er with the deformation. We can
compute the deformed fiber’s angle as:

|θt| =
∣∣∣∣atan

(
er ·mt

ec ·mt

)∣∣∣∣ =

∣∣∣∣atan

(
λr
λc

tan(θ)

)∣∣∣∣ > |θ|, (2.25)

since λr/λc > 1 and arctangent is a monotonically increasing odd function. Thus, we see
a geometric softening in the circumferential direction and a corresponding stiffening in the
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Figure 2.8: Equibiaxial stretch response of AV composite tissue with (bottom) and without
(top) prestress.

radial directions, as the fibers rotate under the influence of the applied biaxial loading.
It is possible to capture this behavior with other models. For instance, the general

Fung model [56] with appropriate choice of parameters can result in the same behavior for
equibiaxial stretch. Our model, however, serves as an intuitive (and heuristic) understanding
of the micromechanics by explicitly modeling the discrete fiber directions and tracking their
respective rotations. Furthermore, this model allows us to model planar (span{ec, er})
heterogeneity of the fibers.
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Prestressing

Stella and Sacks [146] remark on a native prestress in AV tissue, as evidenced by the defor-
mation of the fibrosa and ventricularis post-dissection. We observe that a model that lacks
prestressing (Figure 2.8 top) fails to capture the AV composite behavior, despite consistent
layer-scale behavior. When we apply a prestress (Figure 2.8 bottom), we observe a more
consistent material response. We conclude that to properly model AV tissue response with
layer-scale consistency, prestressing must be included.

Limitations

Prestressing

The main limitation of our model comes from the rather artificial prestressing, in the sense
that we do not have the exact same before-and-after dimensions as in the experiments of [146].
The fibrosa exhibits a corrugated structure when part of the AV composite, but becomes
flat when removed, indicating a buckling phenomenon. We contend that to have a fully
consistent model, the buckling micromechanics of the collagen fibers in the fibrosa would
need to be considered.

Affine fiber transport

We have assumed that the fibers deform affinely, but it is known that this is not always
true [72, 25]. Further study is required to properly account for non-affine fiber transport.

Equibiaxial stretch

By restricting our attention to equibiaxial stretch experiments, we risk overfitting the model.
Indeed, biaxial stretch experiments alone may be insufficient for fully characterizing material
response [78]. However, the lack of consistent, layer-specific data for AV tissue leaves few
options. Though we have incorporated the bending experiments to better capture the true
material response. Note that our general modeling framework makes it relatively straight-
forward to efficiently fit to larger datasets, should they become available.

2.6 Conclusion

In this Chapter we presented we presented the continuum mechanics framework and a method
to consistently model AV tissue. We demonstrated the significance of modeling the normal
distribution of fibers in the microstructure (in corroboration of the findings of Billiar and
Sacks [16]). We further demonstrated the need for appropriate prestressing of the AV com-
posite to achieve consistent trilayer mechanical behavior. Our demonstration, however, did
not investigate the complex stress state associated with the buckling of the fibrosa in the AV
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composite, a point that warrants further study. In the sequel, we will apply our framework
and methodology in a multiscale setting.
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Chapter 3

Multiscale Leaflet Model

In Chapter 1 we introduced mechanotransduction, the process by which biological cells
respond to mechanical stimuli and activate biochemical pathways, and we discussed the
essential role of the valvular interstitial cells (VICs) in overall aortic valve (AV) function.
Armed with the biomechanical modeling tools we developed in Chapter 2, we now move on
to present a multiscale modeling technique (by way of computational homogenization, also
known as FE2), to incorporate the biomechanics of VICs into AV organ modeling.

Huang [79] proposed the VIC aspect ratio as a mechanical measure of cellular mechan-
otransduction activity and performed experiments that investigated the metric in response
to loading of aortic valve leaflet tissue to in vivo physiological levels. Numerical simulations
that mimic these experiments were carried out but limited to 2D and uncoupled 3D models
(i.e., no interaction between the macroscale and microscale).

In this Chapter, we apply FE2 to AV leaflet tissue in 3D to study the mechanical behavior
of the VICs in response to organ-scale mechanical loading. Our simulations demonstrate a
viable method for fully multiscale modeling of aortic valve tissue. We also find that the
“apparent” VIC aspect ratio observed in experiments may not necessarily be consistent with
the actual 3D deformations of the cells.

3.1 Introduction

Background

Aortic valve (AV) function and disease are a result of processes occurring at the cellular scale.
Biochemical pathways are activated from mechanical feedback loops between the valvular
interstitial cells (VICs) and the AV leaflet tissue.[158] In an effort to better understand the
nature of AV disease, researchers have been exploring the central role of VICs (see Chapter
1). In particular, a series of studies pioneered by Huang et al have been aimed at modeling
multiscale behavior of valve tissue [79, 80, 172, 82].

Huang et al [80] looked at the VIC deformation in 2D in response to physiological loading
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at the tissue level. Weinberg and Mofrad [172] expanded to 3D and incorporated the aortic
valve as an organ. Missing from the literature, however are coupled multiscale models, i.e.,
models that allow for two-way interaction between the disparate length scales. Naturally,
a meaningful model of the full resolution of the AV, incorporating the cells that make up
its microstructure, is a computationally intractable problem. An alternative is computa-
tional homogenization, sometimes known as FE2, where a statistical representation of the
microstructure (the so-called representative volume element) is embedded into a macroscale
model.

Computational homogenization is a viable way of coupling multiscale behavior [91]. We
use this approach to study the VIC aspect ratio (VICAR), proposed by Huang [79] as a
suitable metric for VIC mechanotransduction, the process in which cells activate biochemical
pathways in response to mechanical stimuli. We are able identify that the perceived aspect
ratio from experiments may not be consistent with the actual 3D VIC deformations. Wth
this methodology, we expose a framework for more complex multiscale and multiphysics AV
models.

Aortic valve function

Details regarding AV physiology are given in Chapter 1. We briefly revisit them here. The
AV complex consists of the aortic root, the sinus, the leaflets, and the ascending aorta, as
depicted in Fig. 3.1. Our main focus here are the leaflets (or cusps), colored in Fig. 3.1.

Healthy AVs have three leaflets that open in close to allow blood flow from the ventricle
into the ascending aorta and prevent retrograde flow. During the cardiac cycle (illustrated
in Fig. 3.2), blood flows in from the left atrium into the left ventricle during diastole, and
the AV leaflets open (close) at the beginning (end) of systole.

Huang carried out a series of in vitro experiments to measure the VIC aspect ratio
(VICAR) in response to AV tissue loading during the cardiac cycle. AV leaflet samples
were fixed in a tank and a pressure head was applied at five different levels per Table 3.1.
The average VICAR was then measured at each pressure by image processing procedures of
sections through the tissue section in the c × h plane. The authors note that the VICAR
reported is the observed value, i.e., the apparent 2D elliptical aspect ratio that, in general,
is not concentric with the presumed ellipsoidal shape. For further details regarding the
experimental procedure, see [79].

Load step 1 2 3 4 5

Pressure 1 2 4 60 90

Table 3.1: Pressure loading protocol in mmHg.

Note that the net pressure load is on the aortic side of the leaflet. Physiologically this
corresponds to the period between systole and diastole (Fig. 3.2), right after the valve closes
and the transvalvular pressure is the greatest.
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Figure 3.1: One-sixth of a symmetric idealized aortic valve geometry as obtained from Wein-
berg and Mofrad [172]. The leaflet is highlighted. Rendering generated with ParaView [1].

3.2 Multiscale Modeling

The assumptions made throughout are discussed in Sec. 3.4

Computational homogenization

We begin with (2.6), the weak form statement of the FE problem. The integrals in (2.6)
are computed via numerical quadrature. At each quadrature point, P is generally obtained
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Figure 3.2: Aortic valve cardiac cycle pressures as adaptedfrom [160].

from a constitutive model (for hyperelastic materials, viz. (2.2)).
In computational homogenization, or FE2, the macroscopic stress, now denoted PM , is

obtained from an embedded FE problem representative of the microstructure of the mate-
rial, referred to as the representative volume element (RVE). The macroscopic deformation
gradient, now denoted as FM , is passed from the macroscale model to the RVE (with do-
main given by Ω) as a constraint condition, the energy of the RVE is minimized (e.g., an
FE solution is obtained for the RVE) subject to the condition that the volume average of
the pointwise RVE deformation gradient, Fm, is equal to the imposed macroscopic deforma-
tion gradient FM . This procedure is depicted in Fig. 3.3. The resulting stress and tangent
stiffness are computed from the Hill-Mandel principle:

PM · δFM =
1

V (Ω)

∫
Ω

Pm · δFm dV, (3.1)

where, as introduced, the superscript M denotes macroscale and m denotes microscale.
We now outline the homogenization procedure (see Kouznetsova [91] for a comprehensive

treatment). We begin by imposing FM on ∂Ω, the boundary of the RVE. We partition the
displacements accordingly

u = ud ∪ uf , ud ∩ uf = 0. (3.2)

We refer to uf as the free displacements in the RVE domain and

ud = (FM − I)X, ∀X ∈ ∂Ω. (3.3)
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Figure 3.3: Computational homogenization, i.e. FE2. The macro problem passes the defor-
mation gradient F to the RVE (micro problem), where (2.1) is solved. The homogenized
stress and tangent (as given by (3.4) and (3.7)) are then computed and passed up to the
macro problem. The process is iterated typically as in (2.9). This graphic is adapted from
Kouznetsova [91].

The free displacements are computed by satisfying (2.1) for the RVE, under the assumption
of an appropriate material description1 (e.g., hyperelasticity), using a standard FE procedure
as in Sec. 2.2. Application of (3.1) leads to an expression for the homogenized stress:

PM =
1

V (Ω)

∫
Ω

Pm dV. (3.4)

1An interesting extension is a two-stage FE2 procedure with a “nanoscale” RVE.
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Next we turn to an expression for the homogenized tangent stiffness. We begin by forming
the Schur complement of the partitioned tangent stiffness as given by (3.2):

Kc = Km
dd −Km

df (Km
ff )
−1Km

fd. (3.5)

We define the order-4 tangent stiffness AM that satisfies the variational inner product

δPM = AM · δFM . (3.6)

It is not difficult to show that application of (3.1) reveals

AM =
1

V (Ω)

nd∑
A=1

nd∑
B=1

(
XA ⊗KAB

c ⊗XB
)L
, (3.7)

where nd is the number of boundary nodes, and thus KAB
c refers to the 3 degrees of freedom

at nodes A,B leading to AM ∈ R3×3×3×3. (Dijkl)
L = Djikl is the left conjugation of a

4-tensor D.

RVE boundary conditions

The Dirichlet boundary condition specified in (3.3) is not unique. In fact, any boundary
conditions that are compatible with (3.1) are feasible. Other examples include traction,
periodic, and Taylor boundary conditions (where FM is imposed everywhere in Ω, not just
the boundary). As a rule of thumb, Taylor and Dirichlet boundary conditions tend to
overestimate the stiffness of the RVE, traction boundary conditions tend to underestimate
the stiffness, and periodic boundary conditions seem to be closer to the ground truth. The
latter, however, demands a structured mesh which may not be possible (as in our case).

Taylor boundary conditons are used in the remainder of this chapter and so we discuss
briefly. In (3.2) we have uf = ∅ and thus in (3.5) Kc = Km

d = Km
T (FM), the ordinary

tangent stiffness of the global micro problem at the deformation state FM (see (2.10)). See
Sec. 3.4 for further discussion of the RVE boundary conditions.

FE model

We use FEAP[159] to conduct the FE2 analysis. The macroscale model is the AV leaflet and
the RVE is a VIC embedded in the extracellular matrix (ECM).

Macroscale model

Our geometric representation of the AV leaflet is shown in Fig. 3.4 via the mesh. Dimensions
are obtained from Hajali et al [69], Weinberg and Mofrad [172], Huang [79], and Stella and
Sacks [146]. Eight node mixed-formulation elements are used in a hexahedral mesh generated
with FEAP built-in tools and a custom algorithm. We exploit symmetry and model only half
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of the leaflet with appropriate boundary conditions at the symmetry plane. The remaining
edges around the leaflet are fixed as in the experiments.

As is typical in AV leaflet literature, we define the circumferential, radial, and transmural
(CRT) curvilinear basis. Referencing Fig. 3.4, the circumferential direction is tangential to
the curved surface and orthogonal to the symmetry plane, the radial direction is tangential
to the curved surface and orthogonal to the circumferential direction, and the transmural
direction is orthogonal to the curved surface through the thickness of the leaflet.

Figure 3.4: Macroscale AV leaflet (symmetric) mesh generated with a custom algorithm and
FEAP built-in tools. Paraview is used for visualization [1].

An important characteristic of the AV leaflet is its natural curvature (hence the name
cusp). Exact data on the curvature of the cusp used in the experiments of Huang is not
available, so we approximate the surface curvature with the following out-of-plane (OOP)
surface deformation:

ω(x, y) =
rρ2

π2

(
cos

(
π

ρ
(x− x0)

)
+ 1

)(
cos

(
π

ρ
(y − y0)

)
+ 1

)
, (3.8)
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where r, ρ are parameters that control the shape and are dictated by the experimental ge-
ometry. (x0, y0) is the planar center of curvature in a Cartesian system. We define x0 = 0
for symmetry, leaving y0 as a free parameter. Note that (3.8) defines a mapping between the
Cartesian basis and the CRT basis.

The trilayer structure of the AV leaflet tissue is explicitly modeled with three discrete
layers (ventricularis, spongiosa, and fibrosa). Interconnecting fibers through the thickness
are modeled with perfectly bonded layers [21, 139]. The in-plane fibers are embedded in the
RVE via (2.14), but the OOP orientations are computed from (3.8) in the macro-scale mesh
and passed down to each RVE. Note that due to lack of available data, we do not prestress
the layers as in Sec. 2.4.

Microscale model (RVE)

The geometric representation of the RVE is shown in Fig. 3.5 via the mesh. Mixed-
formulation four node tetrahedral elements are used in an unstructured mesh generated
with the open-source package Iso2mesh [47]. A coarse mesh (Fig. 3.5 right) is chosen for
computational efficiency (see Sec. 3.4 for a discussion).

Figure 3.5: Right: Low-fidelity RVE mesh used for FE2 computation. Left: High-fidelity
RVE mesh used for post-processing calculation. Both meshes enforce the same volume ratio.
Meshes generated and visualized with Iso2mesh [47].
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The VIC is approximated as an ellipsoid, with aspect ratios (in CRT coordinates):
C/T = 1.8, C/R = 1.3, and a major axis length of 9.6 µm. The VIC volume ratio (VR) is
approximated from Huang et al [80] but allowed to vary (see Sec. 3.3). We assume the cell
behaves as a Neohookean material, i.e., (2.14) with C1m = C2m = C1f = C2f = 0, µ = 400
Pa and K = 2.2 MPa [79] and is perfectly bonded with the ECM. The ECM material is
given by (2.14) with parameters defined in Table 3.2. We use Taylor boundary conditions
(see the previous section), i.e., the deformation gradient is imposed everywhere in the do-
main. Let F k

t be the deformation gradient t and iteration k passed to an RVE (Ω). Then
the displacement field is

ukt (X) = (F k
t − I)X, ∀X ∈ Ω. (3.9)

VICAR computation

In the spirit of the experiments, we fix the macroscale model around the edges (with the
exception of the symmetry boundary conditions) and apply a uniform pressure loading (Ta-
ble 3.1) on the aortic side (with the curvature). Note that the large deformation necessitates
the use of convecting “follower” pressure loads [188].

We compute the VICAR by tracking the deformation of nodes at the ends of the major
and minor axes (circumferential and transmural directions, respectively) of the VIC during
the loading. To simulate the “apparent” ratio, we track nodes at the ends of the major and
minor axes of the elliptical projection of the ellipsoidal VIC on a cutting plane (Fig. 3.6).
The cutting plane is a subset of the circumferential-transmural plane and convects with the
deformed to maintain the same reference configuration. The initial cutting plane is defined
with a random (normal) perturbation from the center of the ellipsoid.

Let P0 define the reference cutting plane, then

Pt = ϕt(P0). (3.10)

We compute the VICAR in a post-processing step.of the analysis. The deformation
gradients at each quadrature point in space and time are applied to a higher fidelity RVE
mesh (a la Fig. 3.6). Furthermore, we randomly perturb the location and orientation of the
VIC inside the RVE for each quadrature point. We assume the major axis of the ellipsoid is
randomly oriented in a normal cone about the circumferential direction. Let

E = [ac,ar,at], (3.11)

represent the axes of the ellipsoid with ETE = EET = I. Then we define the rotated axes
as,

E ′ = Rcr(θ2)Rct(θ1)ERct(θ1)TRcr(θ2)T , (3.12)

where
R(θ)ab := cos(θ)(ea ⊗ ea + eb ⊗ eb) + sin(θ)(eb ⊗ ea − ea ⊗ eb), (3.13)
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Figure 3.6: Visualization [47] of VICAR measurement. Blue circles indicate actual VICAR
while red circles indicate “apparent” VICAR as measured via the projection of the ellipsoidal
cell on thecutting plane that convects with the deformation.

is a counterclockwise planar rotation matrix and

θi ∼ N (0, σθ), (3.14)

are angles drawn from a zero-mean normal distribution. The parameters σθ and the volume
ratio of the cell VR are discussed in the sequel.

Remark

Note that with Taylor boundary conditions, we only need to track the extrema of the VIC
ellipsoid during the deformation. We include the RVE mesh to illustrate a more general
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procedure for VICAR computations.

3.3 Results

RVE material parameter fitting

We fit the hyperelastic material in the RVE ECM, given by (2.14), to experimental tis-
sue equibiaxial stretch data [79]. The fitting procedure is described in Sec. 2.3. Fig. 3.7
demonstrates the fit and Table 3.2 summarizes the parameters. Note that the layers are not
prestressed as in Sec. 2.3.
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Figure 3.7: Equibiaxial membrane stress vs stretch for RVE material (colored: red is circum-
ferential and blue is radial) and experimental data (black). See Sec. 2.3 for details regarding
the fitting experiment and procedure.

Model C1m [Pa] C2m [-] C1f [Pa] C2f [-] σf [◦]

Fibrosa 4.72× 10−2 6.7 16.31 43.19 0.64
Ventricularis 0.25 0.39 1.51 3.63 9.71

Table 3.2: Summary of calibrated model parameters (see (2.14)). µ = 1.62 kPa and K = 2.2
MPa. C1m = C2m = C1f = C2f = 0 for the spongiosa.
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Mesh convergence

Macroscale

A mesh objectivity study is summarized in Fig. 3.8. The sufficiently converged mesh size
represented by the middle point is chosen for computational considerations.
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Figure 3.8: Convergence study for the macroscale mesh. Each curve represents displacements
(in the belly region of the leaflet) at the load steps in Table 3.1. The mesh size represented
by the middle point is chosen for computational considerations.

Microscale

Convergence of the embedded RVE (Fig. 3.5 right) in the FE2 procedure is not of interest
as it is intentionally downsampled. The postprocessing high-fidelty mesh (Fig. 3.5 left)
mesh is relatively straightforward because we impose deformations everywhere in the domain
(Taylor boundary conditions). Our quantity of interest is the VICAR, so the mesh must be
sufficiently dense such that there is high probability that nodes are close enough to the
apexes of the ellipsoid in the (randomized) unstructured tetrahedral mesh generation. We
control the mesh density with a parameter that enforces a maximum element area on the
surface of the ellipsoid, Amax, in the Delauanay triangulation [170].
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FE2 result

Simulations were tested on an in-house 32 processor cluster, Iron, and run on 60 processors
of the 8,109 cluster SAVIO.2 Each simulation ran for approximately 20 hours on the latter.

Fig. 3.9 shows the deformed shape at the five steps of the loading protocol defined in
Table 3.1. We compute an average Jacobian in all the elements throughout the loading of
J ≈ 1, within 1.5%, indicating the desired quasi-incompressible behavior.

VICAR result

The VICAR plots are computed from the RVEs at every gauss point in the elements along
the symmetry plane: a total of 144 × 8 = 1152 RVEs. The average is reported, and where
shown, error bars represent standard deviation. Note that the authors of the experimental
data do not specify whether their error bars represent one standard deviation or one standard
error.

Throughout this discussion, a two-tailed t-test is used to test significant differences in
means. We use the term significant to indicate that the p-value is p < 0.05 for the t-test,
i.e., the difference in means is statistically significant

Fig. 3.10 shows the VICAR for σθ = 5◦ and volume ratio VR=0.01. The red curve
indicates “apparent” VICAR and blue curve is the actual VIC aspect ratio (see Fig. 3.6 and
the corresponding discussion). The black curve is experimental data [80]..

Fig. 3.11 demonstrates the effect of varying the parameters σθ and volume ratio (VR) on
the “apparent” VICAR. We only observe a significant for σθ = 20◦ vs σθ = {5◦, 10◦}, with
a remarkable decrease in the former. No significant variation is found for the VR over two
orders of magnitude.

Next we briefly look at the initial cusp curvature defined by (3.8). Fig. 3.12 demonstrates
the VICAR for y0, as a fraction of the size parameter r (e.g., an offset of 10% =⇒ y0 =
0.1r). Significant but small differences are observed throughout. We note that for large
values of y0, convergence issues in the FE problem are encountered.

Finally, Fig. 3.13 demonstrates the VICAR in each layer. Significant differences are ob-
served everywhere except between the spongiosa and ventricularis at low pressures. The
fibrosa demonstrates a larger VICAR, consistent with experimental findings.

3.4 Discussion

Macroscale model

We have designed a set of simulations to mimic the experiments of Huang [79], namely, the
pressurization of a “fixed” valve leaflet, loaded from the aortic side. This corresponds to the

2http://research-it.berkeley.edu/services/high-performance-computing
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Figure 3.9: Leaflet deformation under load protocol defined in Table 3.1.

region in the cardiac style between systole and diastole (Fig. 3.2) where the transvalvular
pressure is the largest.

These boundary conditions represent in vitro experiments rather than the proper in vivo
conditions. They allow us to simulate physiological states in the laboratory. The nature of
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Figure 3.10: VICAR result as an average of 1156 RVEs measured along the radial direction
in the center of the leaflet. One standard deviation errorbars are shown. Red curve indicates
“apparent” VIC aspect ratio as measured a la Sec. 3.2 and blue curve is the actual VIC
aspect ratio. Black curve is experimental data from Huang [80].

the fixed boundary conditions, including the “free” coaptation edge, results in a “balloon-
inflation” like response, as seen in Fig. 3.9. The response is consistent with the material
response in Fig 3.7. Low pressure (load) results in large deformation in the compliant
regime. The tissue quickly stiffens and we see only small changes in deformation for larger
increasing loads. Note that the tissue is not prestressed as in Chapter 2, but we saw similar
behavior in Sec. 2.4 for prestressed tissue.

The initial curvature also plays a role in the response of the tissue. In particular, we
encountered convergence issues for variations of the parameters in (3.8). However, without
“patient-specifc” geometry, the best we can hope for is an aggregate consistent result, which
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(a) Volume ratio (V R) fixed, varying angle.
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(b) Angle (σθ) fixed, varying volume ratio.

Figure 3.11: Effect of VIC orientation and size on “apparent” aspect ratio. We note only a
significant difference for 60/90 mmHg with the standard deviation of angle of the VIC.

we observe in Fig. 3.10.

RVE

At the heart of our model is the RVE. We first discuss several important assumptions we
have made. Miehe et al [116] argue that due to the averaging process in homogenization,
the details of the RVE do not greatly impact the macroscale problem, something we also
observe. To facilitate computational efficiency, we downsample the RVE mesh and use an
auxiliary high-fidelity mesh to extract details in a post-processing step (Fig. 3.5)

Again, for efficiency purposes we assume Taylor boundary conditions, which results in an
overestimation of stiffness response [102]. We use the rather inaccurate boundary conditions
because we are not interested in accuracy of the model, but rather, consistency. Naturally,
we also use Taylor boundary conditions in the VICAR post-processing.

Fig 3.14 illustrates the difference in VICAR with Taylor and Dirichlet boundary con-
ditions. As expected, the Dirichlet VICAR is on average lower. This is a result of only
imposing motions on the boundaries, allowing for a relaxation of the VIC. Note that al-
though the difference is large of the “apparent” VICAR, the actual VICAR does not differ
by much.

Finally, we assume the VIC bonds perfectly with the ECM, which is not a physiologically
realistic assumption (see Sec. 1.1). Modeling the discrete attachments via focal adhesions of
the VIC requires special attention and is left as a limitation of the study.
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Figure 3.12: The effect of the initial cusp curvature on the VICAR. “Offset” y0 viz. (3.8) is
reported as a fraction of the size parameter r (e.g., an offset of 10% =⇒ y0 = 0.1r). Signif-
icant but small differences are observed throughout.

VICAR

The aspect ratio being measured in the experiments is that of the nucleus, not the cell. We
do not make a distinction between the nucleus and the cell in this analysis, i.e., we neglect
the cytoskeleton. This is in line with previous analyses [80, 172]. We acknowledge that a
more detailed model should incorporate this distinction, and we leave this to a future study.

The most notable result above is the large discrepancy between actual and “apparent”
VICAR, as seen in Fig. 3.10. We observe that the (arithmetic) mean “apparent” response
is more consistent with the experimental results. We note that there is also large variation
in the “apparent” ratio.
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Figure 3.13: VICAR as measured in each of the three layers. significant differences are
observed everywhere except low pressures between the spongiosa and ventricularis.

The procedure used to determine the “apparent” value, as depicted in Fig. 3.6, is repre-
sentative of the experiments but naturally not exactly identical. They stand to show that
the observed cellular deformation may be significantly different than the true deformation.
This is of great importance when developing mechanotransduction models calibrated from
experiments.

Figs 3.10, 3.11 and 3.12 show that the “apparent” response is not highly sensitive to
the RVE (or macroscale) configuration, and that the largest source of discrepancy between
the apparent and actual response comes from the “perspective” used to measure (i.e., the
projection of the ellipsoid on the cutting plane). Thus, the orientation of the cutting plane
has the greatest impact.

In Fig. 3.11 we observe “apparent” VICAR closer to the actual VICAR for σθ = 20◦.
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(a) “Apparent” VICAR.
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(b) Actual VICAR.

Figure 3.14: Effect of RVE boundary conditions on VICAR response. Taylor boundary
conditions impose motion everywhere in the domain and Dirichlet boundary conditions only
impose motion on the boundary.

However, the true distribution of the cell orientation is closer to σθ ≤ 10◦, due to the
consistency of the “apparent” VICAR with the experiments. We can interpret the larger
spread as more control over the cutting plane orientation (i.e. the “perspective”) to argue
our previous claim regarding the largest source of discrepancy between the “apparent” and
actual VICAR.

Finally, Fig. 3.13 shows that the greatest deformation in the tissue occurs in the fibrosa,
consistent with previous findings [80, 172]. Indeed, the prevalence of calcification in the top
layer of the fibrosa, a process driven by circumferential strain in the VIC, is consistent with
this (see Chapter 4).

Computational considerations

As we mentioned, one full day of computation on 60 nodes of a compute cluster are required
for a quasi-static analysis with simplified RVE boundary conditions. This is representative of
only one small part of the cardiac cycle. Indeed, more relevant cyclic dynamic problems with
more suitable RVE boundary conditions can prove to be challenging. This emphasizes the
strict need for efficient implementation of FE2. Nevertheless, the method is computationally
tractable, and the abundant availability of large computing resources, as of the time of this
study, render this issue an inconvenience.
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3.5 Conclusion

We have demonstrated the feasibility of using computational homogenization, or FE2, for
modeling the multiscale behavior of aortic valve tissue. The method is, however, computa-
tionally expensive and required a large number of computing resources to run small static
simulations in a reasonabe amount of time. Indeed, modeling full aortic valve geometry with
dynamics and even fluids remains a daunting task.

As we argued in Chapter 1, multiscale modeling is necessary for understanding AV be-
havior and the method we have presented provides the first feasible way of achieving a fully
coupled multiscale analysis for aortic valves. Furthermore, the RVEs can be used to develop
cellular driven models. In the sequel, we will take a look at modeling calcification driven at
the cellular scale.
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Chapter 4

Multiscale Analysis of Calcified Tissue

The ultimate goal of aortic valve biomechanical models is to ameliorate, and prevent, dis-
ease. As discussed in Chapter 1, aortic valve disease is regulated by processes occurring
at the cellular scale, hence the motivation for developing the multiscale model in Chapter
3. We developed an approach for simultaneously capturing organ-scale and cellular-scale
biomechanics that is computationally tractable.

In this chapter, we will extend our multiscale model to study aortic valve disease. We
consider the most prevalent of disease: calcification. The aim here is to understand relation-
ship between the valvular interstitial cell aspect ratios, a metric established for characterizing
cellular mechanotransduction, and calcification.

4.1 Aortic valve tissue calcification

We will begin by expanding on some of the concepts introduced in Sec. 1.2. As previously
discussed, calcified aortic stenosis (CAS) is the most prevalent AV disease, affecting about
25% of adults over 65 years of age [148]. It is characterized by a failure of the valve leaflets
to fully open due to the formation of calcified lesions similar to bone tissue [120].

The calcification process is hypothesized to begin with differentiation of VIC phenotype
into osteoblast-like cells that alter the structure of the ECM [132]. The calcified legions
begin as nodules that grow into non-random patterns [173]. A few common patterns were
identified, with the two most common being“arc” and “partial arc” patterns (Fig 4.1) [161,
70]. Halevi et al [70]. used reverse CT to classify these patterns and how they progressed
temporally and spatially. The calcification occurs more frequently on the aortic side of the
valve (fibrosa) and the stiffening results in altered valve function [127, 174, 182, 58].

The underlying cause of calcification is still under investigation, but tissue strain and
hemodynamic shear stresses have been identified as the main biomechanical factors driving
their growth [10, 19, 35, 53, 181]. These factors result in a biochemical signaling processes
between the endothelial cells and the VICs, promoting VIC differentiation into a calcific
phenotype [51].
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(a) Typical calcification initiation. (b) Partial arc pattern.

(c) Mature arc pattern.

Figure 4.1: Prevalent calcification patterns on the aortic valve. Note calcification is typically
found on the aortic side of the leaflet as shown in blue [161, 70]..

4.2 Multiscale modeling

We make use of the same model specified in Sec. 3.2 with the exception of pre-defined calcified
elements. These elements follow the patterns depicted in Fig. 4.1 and the macro scale meshes
are shown in Fig. 4.2. Only the topmost layer of elements in the fibrosa are calcified. The
calcification-free RVEs are exactly as in Sec. 3.2, with parameters as given in Table 3.2. The
material for the calcified RVEs is identical to the fibrosa but with µ = 1 GPa, based on
fully-developed bone tissue [135]. Furthermore, the bulk parameter K was scaled to 22 GPa
to improve conditioning and guarantee convergence of the nonlinear equation solving.
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(a) Early-stage calcified nodules. (b) Partial arc pattern.

(c) Mature “arc” pattern.

Figure 4.2: Macro-scale leaflet meshes with calcified regions highlighted.

4.3 Results

Early-stage nodules

Fig. 4.3 shows the deformed shape at the five steps of the loading protocol outlined in Ta-
ble 3.1, similar to Fig 3.9 but with calcified nodules present. We maintain quasi-incompressible
behavior as in the calcification-free model. The strain plotted is in a Cartesian system and
a mapping to the CRT coordinates (via (3.8) is required to recover circumferential strain.
Note the kinking of deformation in the belly region at high pressures.

VICAR

In Fig. 4.4 we see the VIC aspect ratio (VICAR) measured as in Fig. 3.10 with the presence
of calcified nodules (Fig. 4.2a). Note that the calculation excludes VICs in the calcified
regions. The “apparent” VICAR (Fig. 4.4a) in the belly region of the leaflet is slightly
smaller than the healthy case (significant only at 60 and 90 mmHg). The actual VICAR is,
however, higher (significant) than the healthy case (Fig. 4.4b).

Partial arc pattern

Fig. 4.5 shows the deformed shape at the five steps of the loading protocol outlined in
Table 3.1, similar to Fig 3.9 but with a partial arc calcification pattern. We maintain quasi-
incompressible behavior as in the calcification-free model.
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Figure 4.3: Leaflet deformation under load defined in Table 3.1 with nodule pattern.The
strain plotted is in a Cartesian system and not the circumferential strain.

VICAR

In Fig. 4.6 we see the VIC aspect ratio (VICAR) measured as in Fig. 3.10 with the presence of
calcified nodules (Fig. 4.2b). Note that the calculation excludes VICs in the calcified regions.
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(b) Actual VICAR.

Figure 4.4: VICAR for early stage calcified nodules.

The “apparent” VICAR (Fig. 4.6a) along the belly is slightly smaller than the healthy case
(significant only at 60/90 mmHg). The actual VICAR is, however, higher (significant) than
the healthy case (Fig. 4.6b).

Mature arc pattern

Fig. 4.7 shows the deformed shape at the five steps of the loading protocol outlined in
Table 3.1, similar to Fig 3.9 but with a mature arc pattern. We maintain quasi-incompressible
behavior as in the calcification-free model.

VICAR

In Fig. 4.8 we see the VICAR measured as in Fig. 3.10 with the presence of a mature
calcified arc pattern (Fig. 4.2c). The “apparent” VICAR (Fig. 4.8a) along the belly is
noticeably smaller than the healthy case (significant). The actual VICAR is, unlike the
nodules, slightly lower (significant) than the healthy case (Fig. 4.8b).

4.4 Discussion

Early-stage nodules

Although not clear from Fig. 4.3, the average Almansi circumferential, strain in the belly
region of the calcified leaflet is on average ∼ 20% larger than the healthy leaflet (Table 4.1).
Conversely, the radial strain is on average ∼ 17% of the healthy model.
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Figure 4.5: Leaflet deformation under loading defined in Table 3.1 with partial arc pattern.
Note the calcified regions on the surface. The strain plotted is in a Cartesian system and
not the circumferential strain.

Taking a closer look at the microscale response of the VICs in Fig 4.4b, we note that
indeed the average VIC experiences a larger (significant) aspect ratio than the healthy case.
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(b) Actual VICAR.

Figure 4.6: VICAR for partial arc pattern.

Load [mmHg] 1 mmHg 2 mmHg 4 mmHg 60 mmHg 90 mmHg

Circumf Strain Ratio 0.96 1.19 1.32 1.26 1.21
Radial Strain Ratio -0.39 0.14 0.31 0.42 0.41

Table 4.1: Average ratio of calcific nodule leaflet to healthy circumferential Almansi strain
in belly region.

Interestingly, we observe little difference in the “apparent” VICAR in Fig 4.4a. In fact, we
only see a slight (significant) decrease in the VICAR at 60 mmHg.

Note the increased circumferential strain (VICAR) due to the presence of calcified nod-
ules. Previous studies indicate that the increased circumferential strain results in calcification
growth [3, 70]. Thus, one would expect the nodules would grow into more mature patterns
with the increased circumferential strain.

Partial arc pattern

The partial arc serves as both a different “mature” pattern example, and as a midway stage
between the nodule and the full arc. We see a disturbed deformed state via the kink in
the belly region, where there is a large discontinuity in stiffness from the calcified region
(Fig. 4.5). Indeed, calcified valves exhibit abnormal (and inefficient) dynamics, such as in
stenosis or regurgitation. Furthermore, the larger VICAR indicates further progression of
the calcification.
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Figure 4.7: Leaflet deformation under load defined in Table 3.1 with arc pattern. Note the
calcified regions on the surface. The strain plotted is in a Cartesian system and not the
circumferential strain.

Mature arc pattern

It is clear from Fig. 4.7 that the calcified leaflet experiences significantly lower strain. In
fact, we see an average ∼ 43% reduction in the circumferential strain, and an inversion of the
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(b) Actual VICAR.

Figure 4.8: VICAR for arc along edge.

radial strain for low (<60mmHg) pressures. One can argue that the decreased circumferential
pattern limits the development of further calcification, resulting in a natural “saturation” of
the calcification.

Taking a closer look at the microscale response of the VICs in Fig 4.8 we note that indeed
the average VIC experiences a decreased aspect ratio (i.e., relative to the VIC ellipsoid
principal axes), for both the “apparent” (significant) and actual (significant for 1-4 mmHg)
calculations.

4.5 Conclusion

In this chapter we utilized the multiscale AV leaflet model developed in the prequel to study
three calcification topologies: early-stage nodules, a partial arc and a mature arc pattern.
In the former, we saw the presence of the nodules led to a larger circumferential strain and
VIC aspect ratio that presumably drives further calcification growth in a positive-feedback
loop manner. Furthermore, we noticed that the “apparent” aspect ratio, as measured by
slicing a section of the tissue and observing the 2D aspect ratio of the cell cross-section, did
not necessarily exhibit the true aspect ratio.

In the latter cases, we observed disturbed biomechanics of the leaflet that presumably
results in stenoic behavior. The lower aspect ratio is consistent with a natural “saturation”
of the calcification typical of mature calcified valves.
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Limitations

We wrap up the study with a brief discussion on the main limitations of our approach.
First, our model follows the experiments of Huang [79] by using a static loading with fixed
boundary conditions around the leaflet. Ideally, a followup study should be performed with
dynamic and cyclic loading using appropriate boundary conditions of the in vivo AV leaflet.

Second, the stochastic nature of the patterns was not captured by three predefined and
symmetric patterns. Further elaboration is required to look at slight variations of the pat-
terns with asymmetry. We note that our main goal was to take a look at the overall behavior
uncovered in Chapter 3 with calcifications present rather than study the behavior and evo-
lution of the calcification.
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Chapter 5

Closure

Summary and conclusions

Aortic valve disease is a public health concern with few and limited treatment options.
Over the last few decades, researchers have applied the tools of biomechanical analysis and
computational modeling in an effort to understand the elusive nature of aortic valve function,
in health and disease. Despite much progress, traditional single-scale modeling approaches
have not provided answers to some of the most important questions.

Recent findings in the laboratory have uncovered the significance of valvular interstitial
cells in healthy and diseased aortic valves. These findings underscore the importance of
not only modeling the cellular scale, but coupling it to the well-studied organ-scale biome-
chanics. In the preceding work, we developed a fully coupled multiscale model of aortic
valve tissue that simultaneously combines organ-scale and cellular-scale biomechanics in a
computationally tractable manner.

In Chapter 2 we presented the continuum mechanics framework and a method to consis-
tently model aortic valve tissue. We demonstrated the significance of modeling the normal
distribution of fibers in the microstructure (in corroboration of the findings of Billiar and
Sacks [16]). We further demonstrated the need for appropriate prestressing of the AV com-
posite to achieve consistent trilayer mechanical behavior.

As we argued in Chapter 1, multiscale modeling is necessary for understanding AV behav-
ior. In Chapter 3 we demonstrated the feasibility of using computational homogenization,
or FE2, for modeling the multiscale behavior of aortic valve tissue. The method provides
the first feasible way of achieving a fully coupled multiscale analysis for aortic valves. We
focused on the cellular aspect ratio as a metric for mechanotransduction and noticed that
the “apparent” aspect ratio, as measured experimentally by slicing a section of the tissue
and observing the 2D aspect ratio of the cell cross-section, did not necessarily exhibit the
true aspect ratio.

Finally, in Chapter 4 we utilized the multiscale model to study three calcification topolo-
gies: early-stage nodules, a partial arc and a mature arc pattern. In the former, we saw
the presence of the nodules led to a larger circumferential strain and VIC aspect ratio that
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presumably drives further calcification growth in a positive-feedback loop manner. In the
latter cases, we observed disturbed biomechanics of the leaflet that presumably results in
stenoic behavior. The lower aspect ratio is consistent with a natural “saturation” of the
calcification typical of mature calcified valves.

Limitations

Our goal here was to introduce (and validate) a multiscale model of aortic valve tissue. We
highlight several simplifications we made along the way:

1. Geometry : We used a greatly simplified geometry that also did not account for the
aortic root and sinus.

2. Boundary condition: We used boundary conditions in Chapters 3 and 4 that were
consistent with in vitro experiments but not necessarily representative of the in vivo
aortic valve.

3. Prestressing : The prestressing introduced in Chapter 2 was left out of the following
chapters.

4. Physic: We only looked at static loading of the valve. To better model physiological
in vivo conditions, we need to include dynamics and fluid-structure interaction.

5. Cell : Our model of the cell was rather simple and used simple RVE boundary condi-
tions.

6. Computation: Although computationally tractable, the approach is still computation-
ally expensive and requires significant computing resources.

Future work

By addressing the simplifications just described, we define several next steps for study. In
addition, the following problems are of great interest and challenge.

Patient-specific geometries

Idealized geometry is just that: ideal. More realistic geometries of actual diseased valves
derived through medical imagery, can provide more useful insight on the function of the
diseased valve. Moreover, such models can be used to study treatment options.
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Calcification growth models

Calcification growth models a la Arzani and Mofrad [3] and Halevi et al [70]. have proven a
useful tool for understanding disease progression. Simple strain-based rules are a first step,
but more sophisticated chemical models are more interesting, particularly when driven at
the cellular scale (see below).

Sophisticated RVE models

The motivation for multiscale models is to understand how the valvular interstitial cells in-
teract with valve function. Computational modeling allows us to simulate in vivo behavior
where we can “observe” VIC function. To obtain interesting results, more sophisticated
mechanotransduction models are needed at the RVE. Examples include focal adhesions,
mechanochemical driven calcification growth, extracellular matrix remodeling, and poroe-
lasticity.

Fluid-structure interaction

The significance of the hemodynamics in valve function and disease demands incorporating a
(non-Newtonian) fluid interacting with the tissue, a la Weinberg and Mofrad [172]. Further-
more, an extension of the computational homogenization technique to the fluid can provide
some novel insights.
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