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Abstract

Machine Learning-Assisted Simulation and Design for Functional Nanomaterials

by

Bowen Zheng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Grace X. Gu, Chair

Often deemed as a “wonder material”, graphene has exhibited remarkable promises in a
broad range of research fields thanks to its exceptional electronic, thermal, and mechanical
properties. However, issues such as the inevitable existence of defects and the complex mi-
crostructures of graphene-based materials stand as a bottleneck in realizing its full potential
in real-life applications. With the fast growth of big data, machine learning has been widely
applied in many fields such as finance, biology, and healthcare. The advent of machine
learning approaches also offers solutions to learning patterns from complex data in material
design and discovery, reducing the need for expensive, time-consuming, and tedious labora-
tory experiments or numerical simulations. In the present thesis, machine learning-assisted
simulation and design approaches for functional nanomaterials are demonstrated, with a fo-
cus on the graphene family. Molecular dynamics simulations are conducted to numerically
investigate the mechanical behavior of graphene-based materials such as graphene, graphene
oxide and graphene aerogel, and various machine learning techniques including kernel ridge
regression, Gaussian process metamodels, and deep reinforcement learning are used in the
predictive and generative modeling of these materials. Finally, the concept and the promise
of machine learning interatomic potentials in achieving efficient and accurate simulations
for metal-organic framework materials are presented. The research constituting the present
thesis may shed light on some new possibilities of simulating and designing functional nano-
materials, which may further improve the performances of applications such as stretchable
electronics, supercapacitor devices, carbon sequestration technologies, among others.
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Chapter 1

Introduction

1.1 Graphene and graphene-related materials

Graphene, a 2D material consisting of hexagonally packed carbon atoms, has exhibited
remarkable capabilities in a broad range of state-of-the-art research fields thanks to its ex-
ceptional electronic [12, 185, 98], thermal [9, 8], and mechanical [90, 207] properties since
its discovery [123]. Despite being one-atom thick, the monolayer graphene possesses an
exceptional combination of mechanical properties, including an ultrahigh Young’s modulus
of ∼1 TPa and an extreme tensile strength of 130 GPa [90]. These mechanical properties
make graphene not only ideal for the fabrication of ultra-strong fibers [190, 191] and mem-
branes [37, 86], but also an elite candidate for emerging technologies such as stretchable
electronics [84, 76], micro-/nano-electromechanical systems (M-/N-EMS) [109, 16, 144], su-
percapacitor devices [230, 233, 176], among others. In addition, these properties of graphene
can be tuned by means of chemical doping [178, 155] and functionalization [33], making
graphene a favorable material choice for a variety of research purposes.

Graphene oxide (GO), one of the best-known graphene derivatives, also opens up avenues
for a broad spectrum of novel, tunable properties [234, 26] and is widely used in state-of-
the-art applications such as biomedical devices [36, 59, 80], flexible electronics [78, 94], and
functional nanocomposites [73, 194]. GO is composed of a graphene basal plane and oxygen-
containing functional groups such as epoxide (-O-), hydroxyl (-OH), carbonyl (C=O), and
carboxyl (-COOH) groups. The absolute and relative concentrations of these functional
groups can be viewed as the fingerprint of GO, determining multiple important physical
properties and therefore the potential usage of the nanomaterial. The control of oxygen
content, epoxide-to-hydroxyl group ratio, and spatial distribution of functional groups has
enabled rational material design and optimization [184, 101].

Graphene aerogels (GAs), 3D porous assemblies of 2D graphene sheets, inherit many
properties of graphene and manifest a desirable combination of low density and high strength [61,
50]. Notably, GAs with a density lower than that of air have been fabricated by assem-
bling commercial carbon nanotubes and chemically converted graphene sheets [160], which
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may substitute for helium to infill unpowered flight balloons. In addition to being ultra-
lightweight, GAs also possess other excellent material properties such as high specific sur-
face area (due to high porosity) [158, 102, 203], high conductivity [186, 212], and good
thermal stability [95]. As a result, GAs have quickly drawn research attention since their
first fabrication, and have become an enticing candidate for various cutting-edge applications
such as supercapacitors [200, 99, 195], gas sensing [102, 100], energy storage [193, 189], oil
sorption [72], among others.

Despite the attractive properties of these graphene-based materials, there have been
pressing challenges and room for improvement associated with them. First, defects usually
exist in these materials, which can seriously compromise the performances of graphene-based
nano-devices. Second, microstructures of these materials can be highly variable, which can
result in significant property randomness. Third, the complex structure creates a large design
space, which may lead to high potential in performance enhancement via optimization. As
a result, the analysis and design of graphene-based materials is of high research interest and
is valuable to the advancement of various nanotechnologies.

1.2 Machine learning for nanomaterial simulation,

prediction and design

As one of the most important and exciting branches of artificial intelligence (AI), machine
learning (ML) refers to making classifications, predictions or decisions using data and algo-
rithms [77]. In recent years, with the fast growth of big data, ML has been widely applied
in many fields such as finance [177, 1], biology [39, 82], and healthcare [119, 147]. The
advent of ML approaches also offers solutions to learning patterns from complex data in
material design and discovery problems [19, 21, 231, 225], reducing the need for expensive,
time-consuming, and tedious laboratory experiments or numerical simulations.

Much to our interest, ML has witness great success in the research and development of
nanotechnologies and nanomaterials [32, 10, 79], where the applications largely fall in the fol-
lowing categories: prediction, design, and acceleration. For prediction tasks, ML techniques
have been used to detect structural defects and predict various material properties such as
electronic properties, thermal conductivities and biological toxicity. Maksov et al. devel-
oped a deep-learning framework to locate the lattice defects in layered WS2 using scanning
transmission electron microscopy (STEM) data [107]. Wu et al. used various ML algo-
rithms to predict the adsorption, separation, and mechanical stability of defective zirconium
metal–organic frameworks (MOFs) [188]. Fernandez et al. used ML algorithms to predic the
electronic properties of graphene nanoflakes such as the Fermi level and the band gap [52].
Koohi-Moghadam et al. used a multichannel convolutional neural network (CNN) model in
the prediction of disease-associated mutation of metal-binding sites in proteins [88]. Fujii
et al. used linear regression and hierarchical clustering to predict grain boundary thermal
conductivities from local atomic environments [55].
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For design tasks, ML techniques have been used to inverse-design high-performance nano-
materials and nano-devices. Ma et al. used bidirectional neural networks to automatically
design and optimize 3D chiral metamaterials at predesignated wavelengths [105]. Copp et al.
developed a closed-loop data-driven design strategy for DNA-stabilized silver clusters with
specific fluorescence colors [38]. Zeng et al. designed catalytic water-cleaning nanomotors
where ML is used to identified key features for the catalyst performance [202]. Li et al.
used multi-target random forest regressors to inverse-design nanoparticles [93]. Vallone et
al. used an inverse CNN to design multilayered nanoparticles with favorable absorption and
scattering properties [168].

For acceleration tasks, ML techniques have been used to accelerate materials discovery
and simulation. Lu et al. used a target-driven ML method to accelerate the discovery of
stable lead-free hybrid organic-inorganic perovskites [103]. Zhang et al. accelerated the
discovery of high-performing MOFs for methane-storage and carbon-capture applications
using Monte Carlo tree search and recurrent neural networks [211]. Lu et al. achieved rapid
discovery of stable ferroelectric photovoltaic perovskites via a multistep screening scheme
combining high-throughput calculations and ML feature engineering [104]. Additionally,
ML interatomic potentials, which learn to predict the energy and forces of an assembly of
atoms for accurate quantum-based simulation data, have emerged as a tool to accelerate
atomic-scale computer simulations. Successes of ML interatomic potentials have facilitated
numerous simulation-based research, including the prediction of thermal and phonon proper-
ties of graphene [146], the modeling of the bond breaking process of silicon [11], the simulation
of nanoscale amorphous carbon structures [43], among others.

In the following chapters, I will present my PhD research on the ML-assisted simulation
and design for functional nanomaterials, with a focus on graphene-based materials. Chapter
2 will cover the topic of graphene defect engineering, including research on tuning graphene
mechanical anisotropy, graphene defect mitigation, and stress field properties of defective
graphene. Chapter 3 will demonstrate some ML applications for graphene-based materi-
als, including research on graphene defect detection, chemical composition identification for
graphene oxide, and graphene oxide design using deep reinforcement learning. Chapter 4 will
present simulation and ML for graphene aerogels, including research on uncertainty quantifi-
cation and prediction for mechanical properties of graphene aerogels, and structral integrity
of graphene aerogels. Chapter 5 will discuss the possibility of simulation acceleration via
ML approaches, featured by quantum-informed ML force fields for MOFs. Finally, Chapter
6 will provide conclusions and future research directions.
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Chapter 2

Graphene defect engineering

2.1 Tuning graphene mechanical anisotropy

Exceptional mechanical properties of graphene have been extensively studied and bene-
fited various applications. However, the fine-tuning of the degree of graphene mechanical
anisotropy has been rarely discussed. The mechanical anisotropy means that the mechan-
ical properties in one direction differ intrinsically from those in another direction [121].
For graphene, Ni et al. observed the anisotropic mechanical properties using molecular
dynamics (MD) simulation and studied fracture modes and stiffness property in different
directions [121]. Fan et al. studied anisotropic mechanical properties of monolayer graphene
using density functional theory (DFT) method and related the intrinsic anisotropy to the
sp2 hybridization of the hexagonal lattice [49]. Pereira et al. studied the anisotropic thermal
and mechanical properties of phagraphene, a newly theoretically proposed defective graphene
structure consisting of pentagonal, heptagonal and hexagonal rings [133]. Although much re-
search has been conducted on the anisotropy of graphene, a systematic fine-tuning paradigm
for graphene mechanical anisotropy remains unexplored. Hence, a systematic investigation
on graphene mechanical anisotropy can provide insight into designing graphene with tunable
properties, which can potentially circumvent property tradeoffs such as between strength and
ductility. Also, from the perspective of engineering applications, the tunability of graphene
anisotropy has the potential to improve the mechanical integrity of biological composites
and flexible electronics by directing crack propagation and energy dissipation to more duc-
tile materials [67].

Graphene kirigami [14], a defect engineering strategy of graphene inspired by the art of
paper cutting, has shown great potential in tuning the mechanical [14, 150] and thermal [180]
properties of graphene. While one research direction in tuning properties of graphene in-
volves adding a second material to make a nanocomposite [126, 25, 22], graphene kirigami
research can offer property tunability with just cuts. Similar design concept such as graphene
nanomesh [7, 81, 232] has also shown to be successful. Because of the high design free-
dom [140] of defect engineering, it is possible to design particular defect pattern to realize
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the specific requirement of anisotropic property, or to even produce an isotropic graphene.
Here, the potential of fine-tuning the mechanical anisotropy of monolayer graphene is

explored via defect design, from designs consisting of basic elements to more complex pat-
terned graphene kirigami. For basic defect designs, the influences of defect length, obliquity,
offset from the center, and number of parallel defects are discussed. For more complex
defect designs, network-like graphene kirigami and graphene kirigami with parallel interior
and exterior cuts are investigated. MD simulations are conducted to study the mechanical
properties of these proposed defected graphene designs. A novel stress-ratio-versus-strain-
ratio graph is proposed to visualize and rationalize the tuning of mechanical anisotropy of
defected graphene sheets. Through our defect design, all the four quadrants of the 2D ratio
graph are covered, indicating a high capability and versatility of fine-tuning the mechanical
properties of graphene in both directions. More complex designs such as designs involving
curved defects as well as other 2D materials will be covered in future work.

System description and molecular modeling

To explore the potential of fine-tuning anisotropic properties using defect engineering, square-
shaped monolayer graphene is studied to compare fairly the mechanical properties in the
zigzag and armchair directions. A schematic of simulated graphene and loading conditions
is shown in Fig. 2.1(a), where the graphene edge lengths in zigzag and armchair directions
are LZ = 110.3 Å and LA = 112.0 Å. The length of the covalent C–C bond in the initial
configuration is 1.421 Å and after equilibrium the average bond length is 1.399 Å. Tensile
loading is applied uniformly on one side of the graphene with the opposite side fixed.

To investigate the mechanical properties of monolayer graphene with designed defects,
MD simulations are performed using the open-source code LAMMPS [166]. The interactions
of carbon atoms are modeled by the Adaptive Intermolecular Reactive Empirical Bond Order
(AIREBO) potential, which is used to model the bond breaking and reforming involved in the
fracture process of graphene [214, 138]. The AIREBO potential consists of a REBO term
to model short-ranged interaction, and a Lennard-Jones (LJ) term to model long-ranged
interaction, expressed by

E = EREBO + ELJ + Etors (2.1)

where E is the total system energy; EREBO, ELJ, and Etors are energy components cor-
responding to the REBO (short-ranged), LJ (long-ranged), and torsional potentials [157].
The REBO term consists of two cutoff distances in the switching function that controls
the breaking of C-C bonds, which by default are 1.7 Å and 2.0 Å [157]. Here, the smaller
cutoff distance is modified to 1.92 Å to better capture the stress-strain relation of graphene
benchmarked by DFT calculations, which has been used and validated by many previous
studies [183, 62, 172, 210]. The cutoff distance of the LJ term is set as 6.8 Å [150, 137].
The integration time step is set as 1 fs. Periodic boundary conditions are applied to two
in-plane dimensions and a fixed boundary condition is used in the perpendicular out-of-plane
dimension. The in-plane dimensions of the simulation box (∼ 175 Å× ∼ 175 Å) are larger
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Figure 2.1: Model setup and simulation results of pristine graphene. (a) Schematic of pris-
tine graphene and illustration of tensile loading directions. (b) Morphology of monolayer
graphene after running for equilibrium at 300 K. (c) Stress-strain curves and fracture modes
of pristine graphene upon zigzag and armchair loadings.

than the dimensions of graphene sheets (∼ 110 Å× ∼ 110 Å). After the generation of an
ensemble of random velocity at 300 K, the system is running for equilibrium at 300 K in
the isothermal-isobaric (NPT) ensemble with the Nose-Hoover thermostat [70] for 50 ps.
The 3D shape of the graphene sheet after running for equilibrium is shown in Fig. 2.1(b),
where the maximum out-of-plane fluctuation of the rippling is ∼ 2 Å. The loading scenario
is simulated in the canonical (NVT) ensemble at 300 K. Tensile loading is exerted based on
the deformation-control method by assigning displacement at a constant speed to a 3 Å wide
atom stripe at one end, while fixing a 3 Å-wide atom stripe at the other end in all three
dimensions. Strain rate applied in the MD simulation is 109 s−1.

The method to calculate the stress of a loaded graphene sheet is described as follows.
The stress tensor Sα

ij for atom α is firstly calculated by the following equation:

Sα
ij =

1

2
mαvαi v

α
j +

n∑
β=1

rjαβf
i
αβ (2.2)

where i and j take on x, y, or z to generate the six components of the symmetric tensor; mα

and vα are the mass and velocity of atom α; rαβ and fαβ are the distance and force between
atoms α and β. After the calculation of stress tensor on each individual atom, the equivalent
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stress σ of a graphene sheet is calculated based on von Mises stress

σ =

√
1

2
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
yz + σ2

zx)] (2.3)

where

σij =
1

V0

n∑
γ=1

Sγ
ij

where V0 = L2te is the initial volume, and te = 3.35 Å is the equivalent thickness of monolayer
graphene [196]. Fig. 2.1 shows the calculated stress-strain curves of pristine graphene under
the two loading directions. The obtained curve shapes and failure stresses/strains in zigzag
and armchair directions are in good agreement with previous studies [183, 35, 131], which
validates the simulation setup. It is shown that both failure stress and strain in the zigzag
direction (referred to as zigzag/armchair failure stress/strain below) are higher than those
in the armchair direction, while Young’s modulus is slightly lower within a small strain,
revealing the intrinsic anisotropic mechanical property of pristine monolayer graphene. The
fracture modes in Fig. 2.1(c) show that in both directions, fracture initiates on the unloaded
edge. As widely acknowledged, the mechanical behavior of materials can be altered by
introducing certain types of defects. Hence, it is rational to consider the possibility to fine-
tune the anisotropy of graphene through rational design of defects. For example, can we
use defect design to create an isotropic graphene sheet? Can we intensify the anisotropy of
graphene? Can we design graphene that is stronger in one direction but more stretchable in
the other?

Basic defect designs

To start with, the influence of basic defect elements on the mechanical properties and the
potential of tuning anisotropy are investigated. In this section, the influences of defect length,
obliquity, offset from the center, and number of parallel defects are separately discussed.
Defect width is twice the C-C bond length and is a constant.

Centered line defect with variable length

Single centered line defect in the zigzag or the armchair direction (referred to as zigzag or
armchair defect below) is studied first. To illustrate how introducing a single centered line
defect affects the mechanical properties of the graphene sheet, MD simulations are conducted
to study graphene with single centered line defect with a length of half the graphene edge
length, i.e., LD = 0.5LZ for zigzag defect or LD = 0.5LA for armchair defect, of which the
results are presented in Fig. 2.2. Figs. 2.2(a) and (b) demonstrate the deformation and
fracture modes of defected graphene by showing the shapes of unloaded, deformed, and
fractured graphene sheets. For the graphene sheet with zigzag defect shown in Fig. 2.2(a),
upon zigzag loading, the line defect is lengthened and the fracture initiates from along the
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Figure 2.2: Simulation results of graphene design with single centered line defect. Deforma-
tion and fracture modes of graphene sheets with (a) a zigzag and (b) an armchair defect.
Stress-strain curves of graphene sheets with (c) zigzag and (d) armchair defect. The failure
stresses and strains of the pristine monolayer graphene under two loading conditions are
marked in the curve figures for comparison.

defect, different from the defect-free scenario where the fracture initiates on a graphene edge.
Upon the armchair loading, the line defect expands and the fracture initiates at the defect
tip. A graphene sheet with an armchair defect exhibits similar deformation and fracture
modes to those with a zigzag defect, as illustrated in Fig. 2.2(b). If the loading direction is
perpendicular to the line defect, the defect expands and fracture initiates at the tip where
it is the easiest to rupture, and ultimately leading to an early failure. Figs. 2.2(c) and (d)
present the calculated stress-strain curves of defected graphene with the failure stress and
strain of the pristine counterpart for comparison. When the loading and the defect are
parallel, a minor decrease of mechanical behavior is shown compared to pristine graphene,
while the loading and the defect are perpendicular, both failure stress and strain decrease
significantly. It is notable that for graphene with an armchair defect, the armchair direction
becomes the stronger and more stretchable direction, flipping the anisotropy of graphene.

After studying examples of the centered line defect, a parametric study is carried out to
examine the influence of defect length, and the results are summarized in Fig. 2.3. Figs. 2.3(a)
and (b) show the failure stress and strain of graphene with a zigzag defect of various lengths.
Results show that upon the zigzag loading, both failure stress and strain exhibit minor,
unpatterned change with an increasing defect length, suggesting that the zigzag defect has
an insignificant effect on the zigzag mechanical properties. Upon the armchair loading,
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however, failure stress decreases monotonously as the defect length increases. Failure strain
also shows a decreasing tendency, yet the rate of decrease slows down and the failure strain
remains relatively unchanged for defect lengths above 0.3LZ. Figs. 2.3(c) and (d) present the
result of graphene with armchair defect. Upon the zigzag loading (perpendicular to the line
defect), the failure stress and strain decrease in a similar fashion to graphene with zigzag
defect subject to armchair loading. Upon the armchair loading (parallel to the line defect),
the defect length has a relatively insignificant effect, similar to the scenario of zigzag defect
upon zigzag loading. It can be concluded that the defect length weakens the mechanical
properties of graphene sheet only when the line defect is perpendicular to the loading, and
that the effect intensifies as defect length increases. Mechanical property is fairly unchanged
when the line defect and the loading are parallel. A dual relationship between the zigzag and
the armchair directions is observed. Specifically, the scenario of zigzag defect upon armchair
loading produces similar results as the scenario of armchair defect upon zigzag loading; the
scenario of zigzag defect upon zigzag loading produces similar results as the scenario of
armchair defect upon armchair loading.

To quantify the anisotropic property and to rationalize the defect design, the ratios
between the zigzag and the armchair failure stresses σF,Z/σF,A, between the zigzag and the
armchair failure strains ϵF,Z/ϵF,A, are calculated. The calculated results are then mapped
onto a ln(ϵF,Z/ϵF,A)-ln(σF,Z/σF,A) graph (referred to as ratio graph below). The ratio graph,
by definition, can be divided into the following four quadrants: Quadrant 1 (ln(σF,Z/σF,A) > 0
and ln(ϵF,Z/ϵF,A) > 0), where the failure stress and strain are both higher in the zigzag
direction than the armchair direction; Quadrant 2 (ln(σF,Z/σF,A) < 0 and ln(ϵF,Z/ϵF,A) > 0),
where the failure stress is higher in the armchair direction, and the failure strain is higher
in the zigzag direction; Quadrant 3 (ln(σF,Z/σF,A) < 0 and ln(ϵF,Z/ϵF,A) < 0), where the
failure stress and strain are both higher in the armchair direction than zigzag direction;
Quadrant 4 (ln(σF,Z/σF,A) > 0 and ln(ϵF,Z/ϵF,A) < 0), where the failure stress is higher in
the zigzag direction, and the failure strain is higher in the armchair direction. A defect-
containing graphene sheet is defined as “single-isotropic” if one of the values of ln(σF,Z/σF,A)
and ln(ϵF,Z/ϵF,A) equals zero (data point landing on one of the axes of ratio graph), and is
defined to be “double-isotropic” if both values equal zero (data point landing on the origin
of ratio graph). The purpose of the 2D ratio graph is to visualize the anisotropy of defect
designs. By presenting the trajectories or distributions on the ratio graph when one or
more parameters are changed, the technique schematizes how changing these parameters
influences the anisotropic property of graphene. Fig. 2.3(e) shows the evolution on the ratio
graph given an increasing defect length, reaching the following conclusions:

• Pristine graphene lies in Quadrant 1 on the ratio graph.

• As the length of zigzag defect increases, the data point is driven away from the origin
within Quadrant 1, implicating an intensified anisotropy with respect to both failure
stress and strain.
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Figure 2.3: Parametric study of graphene with single centered line defect with respect to
defect length. Influence of defect length on (a) the failure stress and (b) failure strain of
graphene with zigzag defect. Influence of defect length on (c) the failure stress and (d)
failure strain of graphene with armchair defect. Zero defect length corresponds to pristine
graphene. (e) Evolution of data points with increasing defect length on ratio graph. Data
point corresponding to pristine graphene is illustrated with a star symbol.
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• As the length of armchair defect increases, the data point is driven towards Quadrant 3,
implicating a reduced anisotropy with respect to both failure stress and strain at first,
followed by the regain of anisotropy where armchair direction is the stronger direction
in both failure stress and strain.

• When driven toward Quadrant 3, the data point passes the surrounding region of the
origin, suggesting a potential strategy to design a nearly “double-isotropic” graphene.

Centered line defect with variable tilting angle

In this section, graphene with a centered oblique line defect is studied, with a defect tilting
angle θ defined as the angle between the line defect and the zigzag direction. Simulation
results of graphene with a centered oblique line defect with a tilting angle of θ = 30◦ and
60◦ are presented in Fig. 2.4, where the defect length here is LD = 0.5LZ. Figs. 2.4(a)
and (b) show the deformation and fracture modes. For graphene sheet with θ = 30◦ in
Fig. 2.4(a), upon zigzag loading, the line defect is both lengthened and widened, while upon
armchair loading, the widening of the line defect dominates. In both scenarios, fracture
initiates from the defect and close to the defect tip. Graphene sheet with a θ = 60◦ defect in
Fig. 2.4(b) exhibits similar deformation and fracture modes as the one with a θ = 30◦ defect
but in a dual relation: Graphene with a θ = 60◦ defect upon zigzag (armchair) loading has
similar deformation and fracture mode as graphene with a θ = 30◦ defect upon armchair
(zigzag) loading. It is observed that the deformation and fracture modes lie in between the
scenarios where the loading and the defect are parallel and perpendicular, exhibiting both
widening and lengthening phenomena. Figs. 2.4(c) and (d) present the calculated stress-
strain curves. Fig. 2.4(c) shows the stress-strain curves of graphene with θ = 30◦ defect
under two loading conditions with the failure stress and strain of the pristine counterpart as
a comparison. It is shown that the mechanical properties in both directions are weakened,
exhibiting decrease in both failure stress and strain, and zigzag is still the stronger direction.
Fig. 2.4(d) shows the stress-strain curves of graphene with θ = 60◦ defect. Similar to the
scenario of θ = 30◦, both failure stress and strain are lowered by the introduction of an
oblique line defect. However, a larger decrease happens to the zigzag direction and the
armchair direction becomes mechanically stronger, thus flipping the anisotropy. It can be
therefore concluded that an oblique line defect lowers the failure stresses and strains of
graphene in both directions and the effect is equivalent to projecting the oblique line defect
onto zigzag and armchair directions and acting as two orthogonal components.

A systematic parametric study of the defect tilting angle θ is carried out and summarized
below. Figs. 2.5(a) and (b) show the influence on failure stress and strain, respectively. As
the tilting angle increases (line defect rotates from along the zigzag direction to along the
armchair direction), both failure stress and strain decrease upon zigzag loading and increase
upon armchair loading. Within the small tilting angle range, for example, from θ = 0◦ to 30◦,
the rate of decrease upon the zigzag loading is much faster than the rate of strengthening
upon the armchair loading, while within the large tilting angle range, for example, from
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Figure 2.4: Simulation results of graphene design with single centered oblique line defect.
Deformation and fracture modes of graphene sheets with (a) θ = 30◦ and (b) θ = 60◦ defect.
Stress-strain curves of graphene sheets with (c) θ = 30◦ and (d) θ = 60◦ defect. The failure
stresses and strains of the pristine graphene sheet under two loading conditions are marked
in the curve figures for comparison.

θ = 60◦ to 90◦, the rate of decrease upon zigzag loading becomes much slower than the rate of
strengthening upon armchair loading. Above observations can be explained by the fact that
the projection of line defect on the perpendicular direction of the loading LD sin θ increases
fastest when θ is small and the increasing rate decreases as θ grows. In the meantime, the
projection of line defect on the orthogonal direction lengths at an increasing rate. These
relations again incorporate a strong duality between the two chiralities.

Fig. 2.6(a) shows the evolution of data points on the ratio graph given an increasing defect
tilting angle θ. As θ increases, the result is driven from Quadrant 1 towards Quadrant 3,
indicating a reduced anisotropy at first, followed by regaining anisotropy where the armchair
direction is stronger in both failure stress and strain. The evolution of data points on the
ratio graph demonstrates a similar path as the scenario of centered line defect with a variable
length. This evolutionary pattern can be explained by the fact that the higher failure stress
and strain are always in the same direction and the stronger direction is switchable. It is
also noticeable that the evolutionary path on the ratio graph passes the surrounding region
of the origin, implying that the defect design featured by oblique line defect is possible to
produce a double-isotropic graphene sheet.
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Figure 2.5: Parametric study of graphene with a centered oblique line defect with respect to
a variable tilting angle θ. The influence of tilting angle θ on (a) failure stress and (b) failure
strain of defected graphene. Defect angles of θ = 0◦ and θ = 90◦ correspond to line defect
in zigzag and armchair direction, respectively.

Figure 2.6: Evolutionary paths or distribution of data points on the ratio graph. (a) Evo-
lutionary path of data points of graphene with centered oblique line defect when the tilting
angle θ increases. (b) Distribution of data points of graphene with offset line defect with
various offset distances eD. (c) Evolutionary path of data points of graphene with multiple
parallel line defects with increasing defect number ND.
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Line defect with an offset from the center

A single line defect in the zigzag or the armchair direction with an offset from the center
is studied below. It is important to understand how an offset defect affects the mechanical
properties, because for complex patterned designs involving multiple defects, most defects
are offset from the center of the graphene sheet. For the discussion in this section, the offset
is introduced in the armchair direction for the zigzag defect, and is in the zigzag direction
for the armchair defect.

Simulation results of graphene with single offset line defect are presented in Fig. 2.7. As
examples, graphene designs featured by a zigzag offset eD = 0.2LA and an armchair offset
eD = 0.2LZ are studied. The defect length is LD = 0.5LZ for zigzag defect and LD = 0.5LA

for armchair defect. Figs. 2.7(a) and (b) show the deformation and fracture modes. When
the loading and the defect are parallel, the line defect is lengthened and the fracture initiates
from along the line defect. When the loading and the defect are perpendicular, the line defect
widens and the fracture initiates at the defect tip. The deformation and fracture modes of
the two defect graph are connected in a dual manner. Figs. 2.7(c) and (d) present the
calculated stress-strain curves. Fig. 2.7(c) shows the stress-strain curves of graphene with
offset zigzag defect under two loading conditions with the failure stress and strain of the non-
offset counterpart for comparison. In both the zigzag and the armchair directions, mechanical
properties of graphene sheets with an offset defect show a minor decrease compared to the
non-offset counterparts. Fig. 2.7(d) shows the stress-strain curves of graphene with an offset
zigzag defect. Again, no substantial change in stress-strain relation is observed. From
the observation of the two simulation results, the offsetting of line defect in fact has an
insignificant effect on the mechanical properties and fracture modes of defect-containing
graphene sheets.

A parametric study of the offset distance eD is conducted and summarized as below.
Figs. 2.8(a) and (b) show how the failure stress and strain of graphene with a zigzag defect
evolve under various offset distances. Compared to the non-offset design (eD = 0), changes
of the mechanical property with respect to failure stress and strain are insignificant. Similar
to the trends in Figs. 2.3 and 2.6(b), as the eD increases, the mechanical properties in the
zigzag direction has more fluctuations compared to armchair direction. The offset armchair
defect show similar trends as the zigzag counterpart, as presented in Figs. 2.8(c) and (d).

Results of the parametric study are converted to a representation on the ratio graph
as Fig. 2.6(b). No clear evolutionary path is detected as the offset distance increases, and
scenarios of zigzag and armchair defect with various offset distances are clustered within a
relatively small region in Quadrant 1 and Quadrant 3. Therefore, introducing an offset to a
single line defect may not effectively change the anisotropic property of the graphene sheet
and its influence on mechanical properties is rather minor.
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Figure 2.7: Simulation results of graphene design with offset line defect. Deformation and
fracture modes of graphene sheets with (a) zigzag and (b) armchair defect. Stress-strain
curves of graphene sheets with (c) zigzag and (d) armchair defect. The failure stresses and
strains of the non-offset defected graphene sheet under two loading conditions are marked
in the curve figures for comparison.

Parallel uniform line defects

Patterned defect designs usually involve multiple defects. Amongst the most straightforward
multiple-defect designs are parallel line defects. The following simplifications are adopted:
1) Parallel defects are only in the zigzag or the armchair direction. 2) All defects have
the same and a fixed length. 3) Graphene sheets are uniformly divided by parallel defects.
Above simplifications make the number of defects the only design variable. To study how
parallel defects affect the mechanical properties of graphene, MD simulations of graphene
with parallel line defects with a defect number ND = 3 are performed, presented in Fig. 2.9,
where the defect length is fixed as 0.5LZ for zigzag defect and 0.5LA for armchair defect.
Figs. 2.9(a) and (b) demonstrate the deformation and fracture modes. For loading parallel
to the defects, fracture initiates randomly from along one of the defects, while for loading
perpendicular to the defects, the defects widen almost uniformly and fracture also takes
place at one of the defect tips in a random fashion. These deformation and fracture modes
consist with previous designs with single defect. Figs. 2.9(c) and (d) present the calculated
stress-strain curves. Fig. 2.9(c) shows the stress-strain curves of graphene with parallel zigzag
defects with the failure stress and strain of the centered line defect with the same length
(equivalent to parallel zigzag defects with ND = 1) as a comparison. Results show that
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Figure 2.8: Parametric study of graphene with offset line defect with respect to offset distance
eD. The influence of offset distance on (a) the failure stress and (b) failure strain of graphene
with zigzag defect. The influence of offset distance on (c) the failure stress and (d) failure
strain of graphene with armchair defect. (e) Illustration of defect elimination and bond
forming of graphene sheet with armchair defect with eD/LA = 0.4 upon armchair loading.

although the zigzag failure stress and strain are reduced compared to the scenario of single
defect, the armchair failure strain is improved, which overall lowers the level of anisotropy.
Fig. 2.9(d) shows the stress-strain curves of graphene with parallel armchair defects and also
compares the results with the ND = 1 case. It is noteworthy that upon zigzag loading the
graphene design has a lower failure stress but almost an identical failure strain compared to
upon armchair loading, showing the possibility of entering Quadrant 2 on the ratio graph.
Upon loading perpendicular to the defects, the enhancement of failure strain results from
the deformation mode of the simultaneous widening of all three line defects. Upon loading
parallel to the defects, the slightly lowered failure stress and strain may be explained by
the increasing number of defect involved in the deformation process, which may lead to a
higher probability of fracture at a given large strain. In addition, although the line defects
are parallel to the loading direction, the total defect width multiplies with the increase of
defect number, of which the effect is equivalent to a line defect perpendicular to the loading
with an increasing length.
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Figure 2.9: Simulation results of graphene with uniform parallel line defects. Deformation
and fracture modes of graphene sheets with (a) zigzag and (b) armchair defect. Stress-strain
curves of graphene sheets with (c) zigzag and (d) armchair defect. The lengths of zigzag and
armchair defect are 0.5LZ and 0.5LA, respectively. The failure stresses and strains of the
centered line defect with the same length are marked in the curve figures for comparison.

A systematic parametric study of defect number ND is conducted and summarized as
below. Mechanical properties of graphene with parallel uniform zigzag defects of various
defect numbers are presented in Figs. 2.10(a) and (b). As the defect number increase, the
failure stress and strain in zigzag direction decrease slightly. As of the armchair direction,
the failure stress and strain are enhanced, especially the failure strain. The increase of defect
number can allocate the loading strain within these defects, resulting in a reduced widening
on a single line defect. Therefore, the failure strain of the whole graphene sheet is increased.
Although the Young’s modulus of the graphene sheet can slightly decrease with an increasing
number of perpendicular line defects, the softening effect can be compensated by the increase
of failure strain, which explains the increase of overall failure stress. The influence of defect
number on mechanical properties of graphene with parallel armchair defects presented in
Figs. 2.10(c) and (d). Similarly, the failure stress and strain in the armchair direction
decrease slightly, while the failure stress and strain in the zigzag direction increase. It is
noteworthy that the armchair failure strain overtakes zigzag failure strain after ND = 3,
indicating qualitative change of anisotropy and a resultant cross of quadrants on the ratio
graph.

The parametric results are then mapped onto the ratio graph to provide insights to the
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Figure 2.10: Parametric study of graphene with uniform parallel line defects with respect to
defect number ND. The influence of defect number on (a) the failure stress and (b) strain of
graphene with zigzag defects. The influence of defect number on (c) the failure stress and
(d) strain of graphene with armchair defects.

anisotropy-oriented defect design, as illustrated in Fig. 2.6(c). It is shown that as the defect
number increases, the parallel zigzag defect design is driven from Quadrant 1 down towards
Quadrant 4 but does not end up entering, while the parallel armchair defect design immi-
grates from Quadrant 3 to Quadrant 2. It is therefore concluded that the design of parallel
uniform line defects advances the tuning capability of graphene anisotropy by exploiting a
new region on the ratio graph which is inaccessible for designs using single line defects.

Complex patterned defect design

Although the above defect designs with basic elements have exhibited the capability to
fine-tune the mechanical anisotropy of the graphene sheet, a few limitations exist. Firstly,
designs with a single defect has yet to be able to produce data points in Quadrant 4 or
deep into Quadrant 2, Secondly, the fine-tuning of anisotropy using a single defect is sacri-
ficial, where either the failure stress or the failure strain are weakened compared to pristine
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Figure 2.11: Complex defect pattern designs. (a) Network-like graphene kirigami, (b)
graphene kirigami with parallel zigzag interior and exterior cuts, and (c) graphene kirigami
with parallel armchair interior and exterior cuts.

graphene sheet, and no improvement in mechanical property can be obtained. In the fol-
lowing, two specific complex patterned defect designs are proposed: network-like graphene
kirigami and graphene kirigami with parallel interior and exterior cuts, which may lead to
new unexplored anisotropic properties and help overcome the limitations of designs with
basic defects. Fig. 2.11 shows the geometric parameters of these designs. The design of
network-like graphene kirigami is schematized in Fig. 2.11(a), where the set of parameters
addresses the lengths of various cuts as well as the positions relative to the graphene edge.
The purpose of the network-like graphene kirigami is to achieve the entry into Quadrant 4
which is not yet accessible for designs discussed above. Landing in Quadrant 4 requires a
higher zigzag failure stress together with a higher armchair failure strain. The zigzag-oriented
central cut is designed to maintain the zigzag strength and improve the armchair stretchabil-
ity. The designs of graphene kirigami with parallel interior and exterior cuts are illustrated
in Figs. 2.11(b) and (c), corresponding to designs consisting of zigzag and armchair defects,
respectively. The purpose of this design is to produce graphene more stretchable than the
pristine graphene using interior and exterior cuts [137]. Specifically, parallel zigzag defects
are designed to improve the stretchability in the armchair direction, and parallel armchair
defects are designed to improve the stretchability in the zigzag direction. To reduce the
design space, graphene sheet is tri-sectioned by line defects by default, leading to only two
independent parameters being in the system, i.e. the length of the central interior defect L1

and the length of the exterior defect L2. To experimentally realize the complex designs pro-
posed in this study, patterned graphene sheets can be fabricated by a variety of methods such
as etching techniques using thermally activated metallic nanoparticles [20, 41], atomic force
microscopy anodic oxidation [111], and scanning tunneling microscopy lithography [164],
which can produce ultrafine patterns on monolayer and multilayer graphene.

As an example, simulation results of the design of network-like graphene kirigami with
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Figure 2.12: Simulation results of the network-like graphene kirigami. (a) Deformation and
fracture modes and (b) stress-strain curves of the exemplar network-like graphene kirigami.

the following geometric parameters

(LZ1, LZ2, LA1, LZ2, DZ1, DZ2, DA1, DA2)

= (0.5LZ, 0.2LZ, 0.3LA, 0.2LA, 0.15LZ, 0.1LZ, 0.2LA, 0.1LA)

are presented in Fig. 2.12. The complex defect design gives rise to a multi-phase failure pat-
tern characterized by a local failure prior to the global failure, as demonstrated in Fig. 2.12(a).
Upon zigzag loading, fracture occurs first at the tip of one of the armchair defects closest to
the unloaded edge, followed by fractures at the tips of many other armchair defects. Upon
armchair loading, a localized failure firstly initiates between the leftmost armchair cut and
the central cut, and then more fractures occur between multiple defects and their closest un-
loaded edges. Fig. 2.12(b) presents the stress-strain curves. Different from previous defect
designs, the network-like graphene kirigami achieved a higher zigzag failure stress together
with a higher armchair failure strain, finally entering Quadrant 4. Due to the high complex-
ity of the design, the design space becomes too vast to be practical to study the influences
of all design parameters and their interplay exhaustively. Fig. 2.13(a) shows the distribution
on the ratio graph of a couple of designs of network-like graphene kirigami. It is observed
that a majority of data points successfully land in Quadrant 4 and some data points are also
distributed in Quadrant 1.

Although the design of network-like graphene kirigami has entered Quadrant 4, the data
points are relatively close to the origin, indicating a weak mechanical anisotropy. Addi-
tionally, entering Quadrant 4 by lowering zigzag failure strain, making it sacrificial. The
design of graphene kirigami with parallel interior and exterior cuts may be more promising
to drive deeper into Quadrant 4 by achieving stretchability superior to the pristine monolayer
graphene.

To illustrate, simulation results of graphene kirigami with zigzag parallel interior and
exterior cuts with the parameter pair (L1, L2) = (0.6LZ, 0.35LZ) are presented in Fig. 2.14.
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Figure 2.13: Distribution or evolutionary paths of data points of complex patterned defect
designs on 2D ratio graph. (a) Distribution of data points of a variety of designs of network-
like graphene kirigami. (b) Evolution of data points of graphene kirigami with parallel
interior and exterior cuts. The attainable region of network-like graphene kirigami design is
marked on the graph to draw comparison.

Figs. 2.14(a) and (b) show the fracture modes. Upon zigzag loading, fracture occurs in
between of one of the exterior cuts and the interior cut. Upon armchair loading, the defor-
mation mode exhibits significant 3D features and the fracture takes place at several spots
Figs. 2.14(c) and (d) present the calculated stress-strain curves. Fig. 2.14(c) shows that
upon zigzag loading, stress-strain curve shape resembles the pristine counterpart and failure
stress and strain are lowered by ∼ 30%. Fig. 2.14(d) shows the stress-strain curves upon
armchair loading together with the zigzag and armchair failure strain εFZ,P and εFA,P of
pristine graphene sheet as a comparison. As can be observed, the armchair failure strain of
the graphene kirigami design is higher than that of pristine counterpart in both directions,
indicating a non-sacrificial nature of the present design. It is also noticed that the stress-
strain curve is less smooth than those previously seen, which can be accounted for by the
low stress level, making the random noise more visible.

A systematic parametric study with respect to the parameter pair (L1, L2) is provided as
below. Because the number of design variables is reduced down to 2, the influence of L1 and
L2 can be presented in 2D graphs, as shown in Fig. 2.15. Simulation results of 8× 8× 2 =
128 instances of graphene kirigami with parallel interior and exterior cuts are conducted,
where L1/LZ (or L1/LA) ∈ [0.30, 0.35, ..., 0.65] and L2/LZ (or L2/LA) ∈ [0.05, 0.10, ..., 0.40].
Figs. 2.15(a) and (b) present the influence of L1 and L2 on failure stress and strain of graphene
kirigami with zigzag parallel defects upon zigzag loading, showing that the two parameters
in fact play a relatively insignificant role. Figs. 2.15(c) and (d) show the results subject to
armchair loading. It can be observed that the failure stress increases with decreasing lengths
of both interior and exterior cuts, while the failure strain increases with increasing lengths of
both interior and exterior cuts. The arrows on the figures point to the increasing direction
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Figure 2.14: Fracture modes and stress-strain curves of graphene kirigami with zigzag par-
allel interior and exterior cuts with parameters (L1, L2) = (0.6LZ, 0.35LZ). Fracture modes
of graphene kirigami upon (a) zigzag and (b) armchair loadings, where spots of fracture
are highlighted with blue circles. (c) Stress-strain curve of graphene kirigami upon zigzag
loading with the failure stress and strain of pristine graphene sheet upon zigzag loading as
a comparison. (d) Stress-strain curve of graphene kirigami upon armchair loading with the
failure strains of pristine graphene sheet upon zigzag and armchair loadings for comparison.

of a mechanical property. According to Fig. 2.15(d), certain combinations of L1 and L2

produce higher failure strain than pristine graphene, making designs with these parameters
non-sacrificial. Figs. 2.15(e) and (f) present the influence of L1 and L2 on graphene kirigami
with armchair parallel defects upon zigzag loading. Similar to the scenario of zigzag defect
upon armchair loading, the failure stress increases with decreasing lengths of both interior
and exterior cuts, while the failure strain increases with increasing lengths of both interior and
exterior cuts. According to Fig. 2.15(f), combinations of high L1 and L2 can produce higher
failure strain than pristine graphene, making the design strategy non-sacrificial. Figs. 2.15(g)
and (h) present the influence on failure stress and strain upon armchair loading, showing that
L1 and L2 in fact play a relatively insignificant role, similar to the scenario of zigzag defects
upon zigzag loading. Again, the design shows a strong duality relation. Combinations of
high L1 and L2 can produce higher failure strain than pristine graphene, making the design
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Figure 2.15: 2D map representations of parametric study of graphene kirigami with interior
and exterior cuts with respect to parameter pair (L1, L2). The influence of L1 and L2

on failure stress and strain of graphene kirigami with zigzag parallel defects upon (a, b)
zigzag and (c, d) armchair loading. The influence of L1 and L2 on failure stress and strain of
graphene kirigami with zigzag parallel defects upon (e, f) zigzag and (g, h) armchair loading.

strategy non-sacrificial.
Given the 2D parametric study results, how graphene kirigami with parallel interior

and exterior cuts can lead to new anisotropy properties can be discussed. According to
Figs. 2.15(c-f), the most drastic failure strain change happens where the central interior
cut is relatively long, data points corresponding to L1/LZ and L1/LA ∈ [0.55, 0.60, 0.65]
are therefore selected to provide more prominent evolutionary paths on the ratio graph.
L2/LZ and L2/LA still use the full results of parametric study, increasing from 0.05 to 0.40,
to illustrate the longest path as has been studied. The evolution of the current graphene
kirigami design on ratio graph is summarized in Fig. 2.13(b), compared with the data point
region obtained by the network-like graphene kirigami design. Results show that for design
of the zigzag interior and exterior defects, data points migrate down from Quadrant 1 to
Quadrant 4 as the length of exterior defects increases, while for the armchair counterparts,
data points move up from Quadrant 3 deep into Quadrant 2. In addition, compared to the
network-like design, the design with parallel interior and exterior defects not only can dive
much deeper into Quadrant 2 and Quadrant 4 but also has a significantly larger attainable
region across the 2D plane.

Concluding remarks

In this section, a defect engineering strategy is adopted to tune the anisotropic property of
monolayer graphene. Mechanical properties of various defect designs, from simple single-
line defect designs to more complex designs with multiple defects, are systematically stud-
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ied using MD simulation. For designs consisting of basic defect elements, the influences
of defect length, obliquity, and offset from the center, number of parallel defects are sep-
arately discussed. For more complex defect designs, network-like graphene kirigami and
graphene kirigami with parallel interior and exterior cuts are investigated. A novel ratio
graph is proposed to visualize and rationalize the tuning of mechanical anisotropy of de-
fected graphene sheet, which has ultimately helped answer the questions like how to make
an isotropic graphene sheet, how to intensify the anisotropy of graphene, and design a de-
fected graphene which is stronger in one direction and more stretchable in the other. Through
our defect designs, all the four quadrants of the 2D ratio graph are covered, indicating a high
capability and versatility of fine-tuning the mechanical properties of graphene in both direc-
tions. This research investigates the tunability of graphene mechanical anisotropy via defect
design, which may shed light on the new possibility of fine-tuning mechanical properties of
other 2D materials [220].

2.2 Graphene defect mitigation

Although previous section has shown that carefully and creatively engineering defects can
lead to unconventional properties, naturally existing defects such as point defects, disloca-
tions and grain boundaries generally have a negative effect on the mechanical properties of
graphene. During the graphene production processes such as mechanical exfoliation [63, 197]
and chemical vapor deposition (CVD) [29, 112], it is common that various structural defects
can be introduced, and the mobility of defects profoundly enriches the roles that these defects
can play. Defect behavior in graphene has received great attention [182]. The realization of
the full potential of graphene often requires a defect-free or a defect-scarce state, because
defects can compromise the theoretically predicted properties, resulting in the deteriorated
operating efficiency of graphene-based applications. Much theoretical and numerical research
has explored the influence of defects on the mechanical properties of graphene, showing that
strength and stiffness losses are generally proportional to the defect size and concentration,
and are also affected by temperature and chirality [175, 68, 4, 48]. Zandiatashbar et al stud-
ied the effect of various types of defects on the strength and stiffness of graphene, showing
that although the mechanical properties of graphene can exhibit a significant drop in the
presence of vacancies, strength and stiffness show little degradation when graphene bears
sp3-type defects [201]. However, these types of defects are intrinsically different from each
other and therefore have a fundamentally different impact on the mechanical properties of
graphene. Is it possible to recover from defect-induced mechanical degradation by counter-
intuitively enlarging the defect (instead of miniaturizing the defect) without changing the
defect type? A positive answer to this question has at least two promises. For one, degra-
dation recovery by enlarging the defect reduces the number of atoms while improving the
performance, which tremendously enhances the efficiency as a result. For another, enlarging
the defect does not involve switching the type of defect and removes material instead of
adding to the material, which makes it possible to modify the defective graphene as it is
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rather than making graphene from scratch again.
In this section, the possibility of recovering from defect-induced mechanical degradation

by enlarging the defect is explored via MD simulations. A centered circular defect is used as
the initial defect. Enlargement modifications are made onto the preexisting circular defect
aiming to achieve degradation recovery. Mechanical properties of interest include failure
stress, failure strain, and mode of fracture initiation. These properties of initial defective
graphene sheets and various modified graphene sheets are calculated and compared against
a pristine graphene sheet to evaluate the recovery effect. Deformation characteristics of ef-
fective recovery are examined to shed light on the counterintuitive recovery mechanism. The
influence of elliptical defects on the mechanical properties of graphene sheets is systemati-
cally studied, which has not been adequately discussed in the literature thus far. Finally,
the degradation recovery potential with respect to various defect sizes is discussed to obtain
an estimation of expected recovery given the information of preexisting defects.

System description and molecular modeling

The graphene sheet in this section has a side length of L ∼ 110 Å and consists of 4966 atoms
when defect-free. A schematic of the pristine graphene sheet is provided in Fig. 2.16(a) with
tensile loading directions illustrated. It has been shown that when the diagonal length of
graphene sheet is over 5 nm, the size effect of the model size can be largely neglected [215].
Based on a deformation-control manner, in-plane tensile loading is applied by assigning
displacement at a constant speed to a 3 Å wide stripe at one end (shaded area in Fig. 2.16(a)),
while a 3 Å wide stripe at the other end is held immobile in all three dimensions. A strain
rate of 109 s−1 is used in all loading scenarios [215]. The defects studied in this section
are circular and elliptical porous defects representing vacancy clusters of various sizes and
shapes. To simplify the problem, defects are located at the center of the graphene sheet.
Graphene sheets with a centered elliptical defect of various sizes and shapes are shown in
Fig. 2.16(b), parametrized by the length of semi-axis in the zigzag direction a and the length
of the semi-axis in armchair direction b. As a special case, the elliptical defect degenerates
to a circular defect when a = b = R, where R is the defect radius.

MD simulations are conducted using LAMMPS and the AIREBO potential. The integra-
tion time step is set as 1 fs. Periodic boundary conditions are used in two in-plane dimensions
and a fixed boundary condition is applied to the perpendicular out-of-plane dimension. An
ensemble of random velocity corresponding to the temperature T = 300 K is firstly generated
throughout the system. Then an equilibrium is realized by running a simulation in the NPT
ensemble with a Nose–Hoover thermostat [70] at the same temperature for 50 ps, where the
maximum out-of-plane fluctuation is ∼ 2 Å. The loading scenario is simulated in the NVT
ensemble at T = 300 K. The stress is calculated by Eq. 2.2.
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Figure 2.16: Schematic of pristine and defective graphene sheets used for MD simulation.
(a) Square pristine graphene sheet and illustration of tensile loading directions. Arrows with
’Z’ and ’A’ represent tensile loading in the zigzag and armchair directions, respectively. (b)
Square graphene sheets with an elliptical defect of various sizes and shapes.

Results and discussion

Firstly, MD simulations are conducted to investigate the mechanical properties of the follow-
ing graphene sheets in the zigzag direction as a set of examples: (a) pristine graphene sheet
as a benchmark, (b) graphene sheet with a circular defect with a radius R = 0.1L as a defec-
tive graphene sheet, and (c) graphene sheet with an elliptical defect with a parameter pair
(a, b) = (0.45L, 0.1L) representing an enlarged circular defect in the zigzag direction only
with the purpose of degradation recovery. The vacancy concentration of the representative
defective graphene with a circular defect is ∼ 3%, which closely resembles graphene in an
experimental setting [179], as well as other simulation studies [68, 204]. Here, the mechanical
properties of interest are failure stress, failure strain, and mode of fracture initiation. The
calculated stress–strain curves of the above three graphene sheets subject to loading in the
zigzag direction are presented in Fig. 2.17(a). Comparing a graphene sheet with a circular
defect with a pristine graphene sheet, failure stress and failure strain are lowered, suggesting
mechanical degradation. However, a graphene sheet with an elliptical defect, despite bear-
ing a larger defect compared to the circular defect, possesses a much higher failure stress
and failure strain, suggesting a profound recovery effect. The mechanical properties of the
above three graphene sheets are summarized below. Failure stress can be recovered from
56.4%σP to 73.6%σP, and failure strain can be recovered from 47.9%εP to 79.3%εP, where
σP = 134.6 GPa and εP = 0.235 are the failure stress and failure strain of a pristine graphene
sheet, respectively. The modes of fracture initiation of the three graphene sheets are pro-
vided in Fig. 2.17(b). For a pristine graphene sheet, fracture initiates at the edge close to
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Figure 2.17: Demonstration of degradation recovery by enlarging the preexisting defect to
an elliptical shape. (a) Calculated stress–strain curves, and (b) unloaded and failure mor-
phologies of a pristine graphene sheet, graphene sheet with a circular defect, and graphene
sheet with an elliptical defect for degradation recovery.

the loaded region; for a graphene sheet with circular defects, fracture occurs in the middle
part of the arc; for graphene with elliptical defects, fracture initiates from along the arc close
to the vertex of the defect where the most dramatic change in curvature happens during the
deformation process. These differences in failure mode may provide valuable insights into
the mechanism of degradation recovery.

To cast light on the mechanism of the degradation recovery via counterintuitive defect
enlargement, the maximum deformation before the fracture is examined. To this end, shapes
of the surrounding areas of circular with a radius R = 0.1L and elliptical defects with
(a, b) = (0.45L, 0.1L) right before failure are shown in Fig. 2.18(a) to present the maximum
deformation with the red arcs representing the defect rims in unloaded conditions. As can
be observed, graphene with a circular defect, though having a lower failure strain, shows a
much more drastic deformation at the defect rim compared to graphene with an elliptical
defect before the onset of fracture, which can be characterized by a change in curvature on
the defect rim. It is hypothesized that enlarging the circular defect to an elliptical shape
reduces the change in curvature when the graphene sheet is loaded to a certain amount of
strain, which leads to a mediated deformation process and a postponed onset of fracture,
and ultimately results in enhanced failure strain. In addition, the failure initiates from the
point on the defect rim having the maximum change in curvature. To test the hypothesis
quantitatively, the curvature at any given stretching strain is formulated as follows. The
lengths of both semi-axes of the elliptical defect are subject to change as the graphene sheet
is stretched, which can be expressed as a(ε) = a0(1+ε) and b(ε) = b0(1−νε). Here, a0 and b0
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are the prescribed lengths of the semi-axes of the elliptical defect in the zigzag and armchair
directions in the unloaded graphene. ν is defined as the ratio of the amount of shrinkage of
the elliptical defect transversely to the loading to the amount of lengthening in the loading
direction, similar to the concept of Poisson’s ratio. ν is assumed to be independent of strain
ε and ranges from 0 to 1. The curvature κ at a certain point on the defect rim (a cos t, b sin t)
at any moment during the loading process can be expressed as

κ(ε, t) = a(ε)b(ε)(a2 sin2 t+ b2 cos2 t)−
3
2

= a0b0(1 + ε)(1− νε)(a20(1 + ε)2 sin2 t+ b20(1− νε)2 cos2 t)−
3
2 (2.4)

The curvature on defect rim in the unloaded state κ0 can be expressed as

κ0(t) = a0b0(a
2
0 sin

2 t+ b20 cos
2 t)−

3
2 (2.5)

Note that the tear-like deformation that results in the failure around the defect in fact
corresponds to a decrease in curvature. Therefore, the sign of the change in curvature is
inversed

∆κ(ε, t) = −[κ(ε, t)− κ0(t)] = a0b0[(a
2
0 sin

2 t+ b20 cos
2 t)−

3
2

− (1 + ε)(1− νε)(a20(1 + ε)2 sin2 t+ b20(1− νε)2 cos2 t)−
3
2 ] (2.6)

The approximation 1− νε ≃ 1 is used. Now Eq. 2.6 becomes

∆κ(ε, t) ≃ a0b0[(a
2
0 sin

2 t+ b20 cos
2 t)−

3
2 − (1 + ε)(a20(1 + ε)2 sin2 t+ b20 cos

2 t)−
3
2 ] (2.7)

Because of the symmetric defect geometry, only the range 0 ≤ t ≤ π/2 is considered. For
the circular and elliptical defects in Fig. 2.18(a), results based on Eq. 2.7 can not only
demonstrate the reduction of the maximum change in curvature by the defect enlargement,
but also predict the location of the onset of failure in both cases. Plugging in Eq. 2.7
a0 = b0 = 0.1L for the circular defect and a0 = 0.45L, b0 = 0.1L for the elliptical defect and
set the stretching strain ε = 0.1, the change in curvature at any point on the rim of the defect
can be obtained, as is shown in Fig. 2.18(b). For the circular defect, the maximum change
in curvature occurs at the vertex on the semi-axis transverse to the loading (t = π/2), while
for the elliptical defect, the location of the maximum change in curvature moves toward
the vertex perpendicular to the loading (t = 0.17 × π/2). These predicted locations are in
good agreement with the initiation of failure presented in Fig. 2.17(b). Additionally, the
maximum change in curvature is substantially lowered by expanding the circular defect to
an elliptical shape. The curves shown in Fig. 2.18(b) also capture the portion of the defect
rim that exhibits tear-like deformation (∆κ > 0), the portion that exhibits contraction-like
deformation (∆κ < 0), and the point on the rim not subject to any change in curvature
(∆κ = 0).

To further validate the proposed degradation recovery mechanism based on the change in
curvature, a graphene sheet with a rectangular defect of the same dimensions in the zigzag
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Figure 2.18: Illustration of proposed recovery mechanism and its validation. (a) Morpholo-
gies of surrounding areas of circular and elliptical defects right before fracture. Red arcs
show the defect rims before the loading. (b) Change in curvature at any point on the rim
of the circular and the elliptical defect, where the arrows point to the maximum changes in
curvature in the two cases. (c) Stress–strain curves of graphene sheets with the elliptical
defect and the rectangular defect of the same dimensions in the zigzag and armchair direc-
tions. (d) Mode of fracture initiation of graphene sheets with the rectangular defect.

and armchair directions as the elliptical defect is simulated. A rectangular defect produces an
even smaller change in curvature compared to an elliptical defect and should therefore have
higher failure strain. Fig. 2.18(c) presents the stress–stress curves of graphene sheets with an
elliptical and rectangular defect, which confirms the hypothesis by showing that the graphene
sheet with a rectangular defect has a higher failure stress and strain. It is also noteworthy
in Fig. 2.18(d) that for a graphene sheet with a rectangular defect, fracture initiates at one
of the vertices where the curvature changes more significantly than at any other point along
the defect, which again supports the proposed mechanism. This observation also adequately
explains the fracture initiation mode of a pristine graphene sheet: fracture initiates at the
edge close to the loaded region where the curvature changes fastest. To further solidify the
proposed theory related to the change in curvature, stress distributions during the failure
process of pristine graphene sheet, graphene sheets with circular and elliptical defects are
supplemented, as is shown in Fig. 2.19. To illustrate the stress concentration more clearly,
stress that is over 80% of the maximum stress σmax of the individual case is colored red.
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Figure 2.19: Stress distributions during the failure process of pristine graphene sheets and
graphene sheets with circular and elliptical defects. To illustrate the stress concentration
more clearly, stress that is over 80% of the maximum stress σmax of the individual case is
colored red.

As can be seen, for graphene with a circular defect, stress over 0.8σmax is distributed in a
more localized fashion compared to graphene with an elliptical defect. This phenomenon
indicates that the latter utilizes a graphene sheet in a more efficient way where atoms are
better involved in the deformation during the loading process, thus having a higher failure
stress and strain. Furthermore, it is notable that fracture initiates in the area with high
stress which is also associated with the maximum change in curvature on the defect rim.
Hence, this observation is consistent with and solidifies the proposed mechanism.

Following the demonstration and reasoning of the degradation recovery capability by
forming an enlarged elliptical defect, the influences of how long the defect is lengthened
in the examined direction and the possible difference between the examined directions are
discussed. In the discussion below, defects are lengthened in either the zigzag or armchair
direction starting from a centered circular defect with a radius R = 0.1L. Figs. 2.20(a) and
(b) show the failure stress when the defect is lengthened in the examined direction with
the perpendicular dimension fixed. As can be seen, both failure stress and failure strain
are enhanced as the length of the elliptical defect in the examined direction increases, and
no fundamental difference is shown between the zigzag and the armchair directions. The
stable growth can be associated with the proposed recovery mechanism, where the change
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Figure 2.20: The influence of 1D lengthening of a circular defect on the mechanical properties
of graphene sheet. (a) Failure stress and (b) failure strain of graphene sheet with a defect of
increasingly lengthened dimension parallel to the loading and unchanged dimension in the
perpendicular direction. The failure stress and strain of a pristine graphene sheet are added
on the figures for comparison, as are marked with dashed-horizontal lines and the letter ’P’.
(c) Evolutionary path of data points on the 2D anisotropy graph as the axis of the elliptical
defect in the examined direction is lengthened, while the axis perpendicular to the examined
direction is fixed.

in curvature is gradually reduced as the dimension of the defect in the examined direction
increases. Because graphene is an intrinsically anisotropic material, it is interesting to look
at the influence of 1D lengthening on the mechanical anisotropy of a graphene sheet by
examining mechanical properties in the zigzag and armchair directions at the same time. A
2D anisotropy graph is proposed to quantify the anisotropic property of the graphene sheet
with respect to both failure stress and failure strain. The evolutionary paths in Fig. 2.20(c)
show that the mechanical anisotropy of graphene sheets can be concretely intensified going
from a circular to an elliptical defect in both the zigzag and the armchair directions.

Having studied the effect of 1D lengthening of a circular defect to an elliptical defect,
the influence of size and shape of elliptical defect on the mechanical properties of graphene
sheet are systematically discussed with 2D variable parameter pair (a, b). Simulation results
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of 8 × 8 × 2 = 128 instances of graphene sheets with elliptical defect in the zigzag and
armchair directions are conducted, where a/L, b/L ∈ [0.10, 0.15, ..., 0.45]. Figs. 2.21(a) and
(b) show the influence of size and shape on failure stress in the zigzag and armchair directions,
and Figs. 2.21(c) and (d) show the influence on failure strain. The recovering effect and
the weakening effect of the defect dimension perpendicular to the examined direction are
illustrated with green and blue arrows pointing to the direction of greater intensity. White
lines represent circular defects where a = b, of which the failure stress and strain as a function
of defect radius R are presented in Figs. 2.21(e) and (f). Observations and corresponding
conclusions based on these figures are provided as below.

• In the zigzag direction, the maximum failure stress and strain are achieved when the
zigzag dimension a is large and the armchair dimension b is small, while in the armchair
direction, failure stress and strain reach their maximum in concord when the armchair
dimension b is large and the zigzag dimension a is small. Therefore, for a graphene
sheet with ellipse-shaped vacancy defect cluster, the defective graphene sheet obtains
its best mechanical properties when the elliptical defect has a long axis in the examined
direction while having a short axis perpendicular to the examined direction. This result
goes against the intuition that a smaller defect produces higher strength and ductility.

• Although an elliptical defect with a long axis in the examined direction and a short
axis in the perpendicular direction strengthens the examined direction best, this con-
figuration weakens the unexamined direction and intensifies the mechanical anisotropy
most, corresponding to the discussion in Fig. 2.20(c).

• According to the parametric results of a circular defect in Figs. 2.21(e) and (f), as
the radius of the circular defect increases, failure stresses in both directions decrease
monotonously, while failure strains change insignificantly. In addition, no recovering
effect is observed with the defect being enlarged. Hence, it can be concluded that
the recovery effect of elliptical defects is contributed by the geometric asymmetry of
defect clusters. Furthermore, this result strengthens the theory of change in curvature
because enlarging the circular defect does not change the curvature therefore no early
or postponed fracture initiation is caused. This suggests a new design strategy of
decoupling failure stress and failure strain.

Having systematically studied the influence of size and shape of an elliptical defect as well
as the degenerated scenario of a circular defect, the potential of recovery from defect-induced
mechanical degradation by circular defects of various sizes is discussed. The failure strains of
pristine graphene in the zigzag and armchair directions are used as a benchmark to normalize
the failure strains of circular and elliptical defects. An evaluation of the recovery potential
of failure stress and strain with a variable radius of circular defects is provided in Fig. 2.22,
where in the examined direction the axis is lengthened to 2 × 0.45L. It is observed that
the recovery potential decreases as the circular defect becomes larger and that the recovery
effect is in general closed when the diameter reaches 0.4L. This is because the maximum
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Figure 2.21: The influence of size and shape of an elliptical defect on the mechanical prop-
erties of graphene sheet. Failure stress maps of graphene sheet with elliptical defects of
various sizes and shapes in the (a) zigzag and (b) armchair directions. Failure strain maps
of a graphene sheet with elliptical defects of various sizes and shapes in the (c) zigzag and
(d) armchair directions. Recovering effect and the weakening effect of the defect dimension
perpendicular to the examined direction are illustrated with green and blue arrows pointing
to the direction of greater intensity. White lines represent circular defects. The influence
of circular defects on (e) failure stress and (f) failure strain of graphene sheet. The failure
stresses and strains of pristine graphene sheet are added on the figures for comparison, as
are marked with dashed-horizontal lines and the letter ’P’.
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Figure 2.22: Evaluation of recovery potential with respect to variable size of a circular defect.
Failure stress in the (a) zigzag and (b) armchair directions. Failure strain in the (c) zigzag
and (d) armchair directions.

geometric asymmetry of the defect is reduced by the size of the defect. Comparing the results
in Fig. 2.22, failure strain has a higher recovery capability than failure stress and the effect
on the zigzag and armchair directions are similar. To investigate the opening of a recovery
effect, the smallest vacancy in graphene is created by removing one atom at the center and
also create a line defect with a length of 0.5L extended from the one-atom vacancy. Fig. 2.23
shows that the 1D enlargement of the one-atom vacancy exhibits a recovery effect, suggesting
that there appears to be no threshold for opening a recovery effect.

To address the issue of strengthening one direction at the expense of weakening the other,
the prescribed circular defect is expanded to a square shape to pursue enhanced mechanical
performance in both the zigzag and armchair directions. The diameter of the circular defect
and the side length of the square defect are both chosen as 0.15L. Stress–strain relations
of the above defective graphene in two directions are presented in Fig. 2.24. As is shown,
by expanding the circular defect to the smallest square defect, the mechanical properties in
both directions can be enhanced.
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Figure 2.23: Graphene sheets containing one-atom vacancy and its corresponding line de-
fect. Geometries of graphene with (a) the one-atom vacancy and (b) the line defect. (c)
Stress–strain relations of above two defective graphene sheets.

Concluding remarks

In this section, the possibility of recovering from defect-induced mechanical degradation by
enlarging the defect is explored via MD simulation. It is shown that the enlargement of
the preexisting defect to an elliptical shape has a counterintuitive potential to recover from
the mechanical degradation that the very defect has caused. The significance of this finding
has two main implications. Firstly, degradation recovery by enlarging the defect reduces
the atoms of the system while improving the performances, which tremendously enhances
the efficiency. Secondly, enlarging the defect does not involve switching the type of defect
and removes material instead of adding, thus increasing the feasibility of modifying and
enhancing the defective graphene as it is. The mechanism of degradation recovery lies in a
reduced change in curvature during deformation, which is further solidified by theoretical
quantification and stress-field analysis. This theory can also predict and pinpoint the location
of the initiation of the fracture—where the curvature changes most significantly during the
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Figure 2.24: Stress–strain relations of graphene with a circular defect (diameter = 0.15L)
and graphene with a square defect (side length = 0.15L) in the (a) zigzag and (b) armchair
directions.

deformation. In addition, the influence of an elliptical defect on the mechanical properties
of a graphene sheet is systematically studied. Finally, the degradation recovery potential
of defects of various sizes is examined, showing that the initial defect that can create the
highest degree of geometric asymmetry has the best potential for degradation recovery. This
research, which investigates the recovery from defect-induced mechanical degradation and the
influence of elliptical defect on the in-plane mechanical properties of a graphene sheet, sheds
light on the new possibility of fine-tuning mechanical properties via defect engineering [218].

2.3 Stress field properties of defective graphene

As defects play a pivotal role in the mechanical properties of graphene, much research has
been underway to understand their specific effects. However, the determination of mechanical
properties of defective graphene such as strength and ductility remains challenging, due to
the indeterminacy of local stress distributions, potentially released out-of-plane behavior, and
multi-defect interactions that are involved when subject to external loads. In this section,
stress field characteristics of defective graphene sheets subject to the unidirectional in-plane
stretch are studied via MD simulation. Stress fields of various defective graphene sheets
are calculated to draw the connection between defect properties and stress distribution, and
ultimately to predict collective mechanical properties such as strength and ductility. The
altered out-of-plane and in-plane behavior of defective graphene sheets are also inspected
and related to stress distribution characteristics. To detail the influence of defect on the
stress field, the role of defects is decoupled by separately studying the effects of size and
shape. With the knowledge of the fundamental relation between defect properties and stress
distribution, the stress field characteristics of graphene sheets with multiple defects are
discussed. An application of stress field optimization via rational defect design is presented.
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Results

In this section, square-shaped graphene sheets with a side length of L ∼ 110 Å are simulated,
consisting of 4966 atoms when defect-free. The unidirectional in-plane stretch is applied in
the zigzag direction based on a deformation-control manner by assigning displacement at
a constant speed to a 3 Å wide stripe at one end, while a 3 Å wide stripe at the other
end is held immobile in all three dimensions. Here, only loading in the zigzag direction is
studied, because our results in the previous sections have pointed to no qualitative difference
between the mechanical properties of zigzag and armchair directions. The applied strain rate
is constant at 109 s–1 in all simulations. To demonstrate how defects impact the mechanical
properties, stress fields of graphene sheets are computed which not only can shed light on
detailed mechanical responses in an atomic resolution but also can be used to derive collective
mechanical properties of the entire graphene sheet.

To begin with, mechanical responses of two defective graphene sheets are studied and
compared against pristine graphene. They are (1) a graphene sheet with a centered line
defect with a length of 0.5L transverse to the stretch and (2) a graphene sheet with a
centered circular defect with a diameter of 0.2L. Stress fields are calculated based on von
Mises stress σV using Eq. 2.3. Stress fields right before the fracture of a pristine graphene
and the two defective graphene sheets above are visualized in Figs. 2.25(a–c). For the
pristine graphene in Fig. 2.25(a), stress is uniformly distributed over the whole graphene
sheet. Almost every point on the graphene sheet is able to reach a high stress level before
failure, suggesting a highly efficient usage of the graphene sheet as a mechanical member
where almost all atoms and bonds are leveraged and contribute to the collective mechanical
properties. For the defective graphene sheet with a line defect transverse to the stretch, a
non-uniform stress field is produced, as shown in Fig. 2.25(b). Upon the stretch the line
defect widens and two defect tips localize high stress. In the meantime, along the line defect
very low stress is hosted and the low-stress regions propagate in the stretching direction far
to the edges of the graphene sheet. It is envisioned that these low-stress regions have little
contribution to the collective mechanical properties because the atoms and bonds within are
unstressed. In addition, a fracture initiates as soon as the stress of one part of the graphene
sheet reaches the bond-breaking stress, which develops and causes a catastrophic failure.
Because the bond-breaking stress in a defective graphene sheet is no higher than the pristine
counterpart, the ultimate stress and strain should be significantly lower than those of the
pristine graphene. Next, a graphene sheet with a circular defect is examined to see how
the stress field varies with different defect properties, of which the resultant stress field is
shown in Fig. 2.25(c). Although an uneven stress distribution is also observed, high stress
is hosted over a larger area in comparison to the case of a line defect, while regions with a
low stress level are significantly smaller, altogether indicating a more uniform stress field.
Unlike the case of the line defect where low-stress regions develop in a spread-out manner and
propagate to the graphene edges, here low-stress regions grow inwardly and diminish before
propagating to the graphene edges. The above stress field properties indicate a better usage
of atoms and bonds in comparison to the graphene sheet with a line defect, and thus, the
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Figure 2.25: Stress fields, stress–strain curves, and distributions of displacement magnitude
of pristine and defective graphene sheets. (a–c) Stress fields, (d) stress–strain curves, and
distributions of (e–g) out-of-plane and (h–j) in-plane displacement magnitude of stretched
pristine graphene, defective graphene with a line defect, and defective graphene with a
circular defect, respectively. Distributions are plotted based on the morphologies right before
the initiation of failure.

collective mechanical properties should be superior, but still, much lower than the pristine
graphene.

To validate the above reasoning on the relation between stress field characteristics and
collective mechanical properties, stress–strain curves of the above three graphene sheets
are plotted in Fig. 2.25(d). The calculation methods of the collective stress σ from MD
simulations are the same as in the previous sections. As shown, the ultimate stress and strain
of the pristine graphene are significantly higher than the two defective graphene sheets, while
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those of the graphene sheet with a circular defect are higher than one with a line defect. The
results of the collective stress–strain relation plus stress fields of the demonstrative examples
lead to the following two preliminary conclusions: (1) Various defects can pose different
influences on the stress field. (2) The more uniformly stress is distributed upon the stretch,
the higher the ultimate stress and strain can reach.

In addition to the ability of defects to alter stress fields, it is interesting to examine
whether defects can induce certain displacement patterns and, if so, how these patterns and
the stress field are related. Previous studies on graphene kirigami have shown outstanding
out-of-plane behavior [14, 150, 137]. However, it remains not well understood how their
out-of-plane patterns are related to the stress distribution. Also, the in-plane displacement
has not been sufficiently discussed, which may potentially lead to a non-traditional Poisson
effect. This section focuses on the potential out-of-plane and in-plane behaviors of defective
graphene sheets and their relations to the stress field when subject to a unidirectional in-
plane stretch.

The displacement in graphene is quantified as follows. For the graphene configurations in
this work, the zigzag and armchair directions lie along x and y directions, respectively. Thus,
the in-plane stretch is applied in the x direction in the x–y plane. The position vector of an
atom at time t is denoted as (x(t), y(t), z(t)). The out-of-plane and in-plane displacement
magnitude are expressed as |∆z| = |z(t) − z(0)| and |∆y| = |y(t) − y(0)|. The displace-
ment in the stretching direction |∆x| mostly develops with the loading and is therefore not
discussed here. The distributions of out-of-plane and in-plane displacement magnitude be-
fore fracture of the above three graphene sheets are provided in Figs. 2.25(e–g) and (h–j).
For the pristine graphene in Figs. 2.25(e) and (h), the out-of-plane displacement is negligi-
ble over the whole domain while a moderate amount of in-plane displacement is exhibited
along two free graphene edges, suggesting that the pristine graphene subject to an in-plane
stretch can be characterized by totally in-plane lengthening and lateral contraction and is
not featured by out-of-plane behavior. For the graphene with a line defect in Figs. 2.25(f)
and (i), however, substantial out-of-plane displacement is induced along the defect. Regions
with out-of-plane displacement develop inwardly and diminish before reaching the edges of
the graphene sheet. Propagation outwardly or parallel to the stretch can violate the zero
out-of-plane displacement boundary conditions. In addition, the in-plane displacement is
intensified and localized, which develops from the defect and propagates up to the free edges
of the graphene sheet. The propagation of regions with in-plane displacement starts from
relevant segments of the defect rim and ends at unconstrained edges, exhibiting a spread-
out pattern. Viewing segments of the defect rim as the sources of regions with out-of-plane
and in-plane displacement, these segments complement each other. For the graphene sheet
with a circular defect, although out-of-plane and in-plane displacement are also developed
in a similar pattern as the line defect, it is less profound in comparison, as is shown in
Figs. 2.25(g) and (j). Only the vicinities of two ends of the circular defect allow for out-
of-plane displacement, and the in-plane displacement exhibit a lower magnitude. From the
results of defective graphene sheets, it can be concluded that the existence of defects not only
creates an out-of-plane degree of freedom which is absent in the pristine graphene, but also
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intensifies and localizes in-place displacement. Additionally, the displacement features are
co-determined by the defect geometry and boundary conditions. Comparing the above dis-
tributions of stress and displacement in pristine and defective graphene sheets, the relation
between stress field characteristics and out-of-plane and in-plane behavior can be formulated
as follows. Out-of-plane displacement can be induced only if the region has low stress. This
is because high in-plane stress from stretching will eliminate any out-of-plane tendency due
to the equilibrium requirement. High in-plane stress deforms the graphene and gives rise
to in-plane displacement. Regions featured by out-of-plane and in-plane displacement are
complementary in a way that regions with high stress and low stress are. Hence, it can
be concluded that patterned out-of-plane and in-plane displacement is the consequence of
defect-induced nonuniform stress field.

The illustrations above have demonstrated the ability of defects to alter the stress distri-
bution and to induce displacement patterns. To cast light on the core factor governing the
phenomenon, the effect of defect geometry is studied. The defect geometry can be elucidated
by separately discussing the effects of pure size and shape. First, the effect of pure size is
investigated. To this end, rectangular defects of various sizes are studied, aiming to mini-
mize the effect of different defect shapes. The total lengths of the projection of defect on the
direction parallel and perpendicular to the stretching direction are denoted as L∥ and L⊥,
respectively. For a rectangular defect with sides parallel and perpendicular to the stretch,
two side lengths are exactly L∥ and L⊥, as illustrated in Fig. 2.26(a). The effect of defect size
(L∥, L⊥) on the ultimate strength σu can be obtained by MD simulations and visualized on
an L∥-L⊥ map, as shown in Fig. 2.26(b). The major direction of mechanical degradation is
in the positive direction of the L⊥-axis (noted by the arrow), while L∥ has a relatively minor
influence on the ultimate strength when L⊥ ≳ 0.3L. It is noteworthy that when L⊥ < 0.3L,
ultimate stress is enhanced with larger L∥, which may be counterintuitive considering the
defective graphene sheet is strengthened by enlarging the defect. This is because lengthening
the defect along the loading direction elevates the evenness of stress distribution, ultimately
leading to improved mechanical properties. However, this phenomenon is in effect only when
the length transverse to the loading is small, as deliberated in the previous section.

On each black line in Fig. 2.26(b) where defects share the same area, smaller L⊥ indicates
superior mechanical properties. The strengthening effect under small L⊥ even adds to the
dominance of the L⊥ effect. To illustrate, the distributions of stress, out-of-plane and in-plane
displacement magnitude, and stress–strain curves of four rectangular defects sharing the same
area, i.e., (0.1L, 0.8L), (0.2L, 0.4L), (0.4L, 0.2L), and (0.8L, 0.1L), are provided in Fig. 2.27.
For graphene sheets with these rectangular defects, high stress and low stress develop from
edges parallel and perpendicular to the stretch, respectively. The covered area of high-/low-
stress regions is in general proportional to the length of the corresponding edges. As L∥
increases, the stress distribution becomes increasingly even. For example, when the size of
the rectangular defect transits from (0.8L, 0.1L) to (0.1L, 0.8L), low-stress regions diminish
and the high-stress regions expand. It is also notable that high- and low-stress regions are
dichotomized at the vertices of the rectangle. When the rectangular defect is reduced down
to a line defect parallel to the stretch, stress distributed uniformly over almost the whole
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Figure 2.26: Ultimate strengths of graphene sheets centered a rectangular defect with varying
geometric parameter pair (L∥, L⊥). (a) Illustration of the geometric parameter pair (L∥, L⊥).
(b) Ultimate strength σu as a function of (L∥, L⊥), normalized by σu,max = 107.1GPa at
(L∥, L⊥) = (0.8L, 0.1L). Black lines represent defect geometries sharing the same area. The
white line represents square-shaped defects. The arrow indicates the major degradation
direction.

graphene sheet except at the immediate vicinities of the two defect tips. A similar tendency
applies for the distribution displacement magnitude: as the ratio L∥/L⊥ increases, regions
exhibiting out-of-plane displacement shrink while regions exhibiting in-plane displacement
expand in area but are reduced in intensity; when the rectangle degenerates to a line, both
displacement features resemble those of a pristine graphene. Stress–strain curves of above
defective graphene sheets with a rectangular defect as well as one with the line defect are
calculated to show how these defects impact the collective mechanical properties, as presented
in Fig. 2.27(b). It can be easily observed that the more uniformly distributed the stress is
over the graphene sheet, the more superior the mechanical properties are in terms of ultimate
stress and strain. It is noteworthy that the ultimate strength and strain of the graphene with
the line defect are 89% and 85% of the pristine graphene, suggesting a rather low mechanical
degradation. The white line in Fig. 2.26(b) represents square-shaped defects, indicating that
the larger the defect, the weaker the mechanical strength. which can be also interpreted by
the governance of the L⊥ effect.

Comparing the above defective graphene sheets with a rectangular defect in Fig. 2.27
to one with a circular defect in Figs. 2.25(c) and (g), it can be seen that although they
both produce high- and low-stress regions and induce the out-of-plane/in-plane behavior,
the difference can be seen on how the defect shapes these influenced regions. For example,
the high-stress regions of graphene with a rectangular defect are well distributed along the
defect edges and the low-stress regions are formed in a spread-out fashion. A circular de-
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Figure 2.27: Simulation results of defective graphene sheets with rectangular defects of
various L∥/L⊥ but a fixed area. (a) Stress fields and distributions of out-of-plane and in-
plane displacement magnitude and (b) stress–strain curves of the defective graphene sheets
with (0.1L, 0.8L), (0.2L, 0.4L), (0.4L, 0.2L), (0.8L, 0.1L), rectangular defects, and a line
defect parallel to the stretch with a length of 0.5L.

fect produces high-stress regions emitting from a part of the defect rim while having more
localized low-stress regions. In addition, the displacement behavior is more profound when
a rectangular defect is present other than a circular defect. These differences subsequently
give rise to different collective mechanical properties of the defective graphene sheets. To
shed light on the source of these differences, it is crucial to investigate not only the defect
size but also the defect shape.

Having discussed the influence of (L∥, L⊥) on the mechanical properties of defective
graphene sheets, the possible impact caused by different defect shapes is investigated where
the parameter pair (L∥, L⊥) is fixed. To this end, a square-shaped defect, a circular defect,
and a diamond-shaped defect with L∥ = L⊥ = 0.3L are inspected. The original shapes, stress
fields, distributions of out-of-plane and in-plane displacement magnitude, and stress–strain
curves are shown in Figs. 2.28(a–c), (d–f), (g–i), (j–l), and (m), respectively. Stress fields
of the above defective graphene sheets reveal a significant shape-related difference. Among
these defects, the square-shaped defect produces the most even stress field where high stress
is uniformly distributed long two edges parallel to the stretch, while the diamond-shaped
defect is featured by an outstanding stress concentration at the upper and lower vertices.
The effect of the circular defect lies in between the square-shaped defect and the diamond-
shaped defect. Stress–strain curves of these three defective graphene sheets in Fig. 2.28(m)
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Figure 2.28: Influence of defect shape on the mechanical properties of graphene sheets. (a–c)
Initial shapes, (d–f) stress fields, distributions of (g–i) out-of-plane and (j–l) in-plane dis-
placement magnitude, and (m) stress–strain curves of square-shaped, circular, and diamond-
shaped defects.

show that the graphene sheet with a square defect possesses the best mechanical properties
while the graphene sheet with the diamond defect is the weakest. Therefore, similarly, the
square defect has the most profound out-of-plane and in-plane behavior while the diamond
defect does the least, as shown in Figs. 2.28(g–l). Interestingly, although the square-shaped
defect requires the removal of the most number of atoms, it yields the highest failure stress
and strain. This implies that the defect shape is a new factor to consider and opens up
possibilities of defect design. From Figs. 2.28, the following can be observed: (1) High stress
is concentrated at the farthest reach of the defect geometry transverse to the stretching di-
rection, by which high-stress regions can be straightforwardly determined by inspection. (2)
Dichotomizing points on the defect rim of out-of-plane-intense and in-plane-intense regions
also dichotomize the low-stress and above-moderate stress regions, of which the locations are
a function of the defect curve.

An analytical framework is developed as follows to predict the dichotomizing points of
a general plane curve γ(s) = (x(s), y(s)). Slopes of the tangent and the normal lines at a
point (x(s0), y(s0)) are k(s0) = dy/dx|s=s0 and n(s0) = −dx/dy|s=s0 . Projecting the external
loading onto the two directions, The tangential force Ft(S0) and the normal force Fn(S0) are
obtained. It is assumed that the tangential force increases stress by the in-plane stretching



CHAPTER 2. GRAPHENE DEFECT ENGINEERING 44

while the normal force does not contribute to stress at the examined point on the defect
rim (because there is no atom inside the defect to balance the normal component). These
two effects counteract each other. The dominance of the tangential force over the normal
force gives rise to a high stress level, while the dominance of the normal force features a low
stress. If the tangential force and the normal force are equal at certain points on the defect
rim, these points dichotomize the high and low stress regions. This happens where the angle
between the tangential and external tensile loading is π/4. Specifically, in this study where
the stretch is along the x-axis, the requirement is simplified to the following: high stress:
|k| < 1; low stress: |k| > 1; critical slope: |kcr| = 1. In fact, calculating the slope of a
tangent line task for a given plane curve γ(s) = (x(s), y(s)) is a relatively simple task. The
effectiveness of the above methods is tested by some examples.

(1) Rectangular defects. The defect rim of a rectangular defect has slopes of either
k = 0 (edges parallel to the loading) or k = ∞ (edges perpendicular to the loading). Upon
stretching, edges originally parallel to the loading remain parallel, emanating high stress
regions. Edges perpendicular to the stretch widen by a small amount, where it is rational to
assume that no point on the edges has a slope with an absolute value smaller than 1, hence
initiating low stress regions. Dichotomizing points lie right on the four vertices. The above
reasoning is confirmed by various results in Fig. 2.27.

(2) Diamond-shaped defects. Edges of diamond-shaped defects possess slopes of an iden-
tical absolute value |kd|. It is envisioned that if |kd| < 1, all edges contribute to high stress
while low stress only appears at the vicinity of vertices on the x-axis. If |kd| > 1, all edges
contribute to low stress while high stress only appears at the vicinity of vertices on the y-axis
(regions of stress concentration). The above hypothesis is tested by simulating two graphene
sheets with diamond-shaped defects |x| + 3|y| = 0.4L and 3|x| + |y| = 0.4L, respectively.
Edges of the former diamond have a slope of |kd| = ±1/3, while those for the latter have a
slope of |kd| = ±3. Simulation results are shown in Fig. 2.29, which confirm our hypothesis.

(3) Defects with a curved rim. Defects with a curved rim distinguish themselves from
previously discussed rectangular and diamond-shaped defects in that the curvature of the
rim is continuous in the tangential direction. Therefore, the dichotomizing points are to
be determined by solving k(s) = dy/dx = ±1. Circular, elliptical, quadratic polynomial-
shaped, and sine-shaped defects are utilized to test our method, of which the curve equations
and derived dichotomizing points are summarized in Table 2.1. The predictions are tested
by an example of each of the four classes. They are (a) [x/(1 + ϵ)]2 + y2 = (0.15L)2, (b)
[x/(1 + ϵ)]2/(0.2L)2 + y2/(0.1L)2 = 1, (c) y = (4.8/L){(0.25L)2 − [x/(1 + ϵ)]2}, and (d)
y = 0.2L cos{(2π/L)[x/(1 + ϵ)]}, where ϵ is chosen as the strain immediate to the onset of
fracture (0.101, 0.129, 0.0951, and 0.0932, respectively, for the four cases above). Predicted
results are compared against the stress fields from MD simulations, as shown in Fig. 2.30,
where predicted dichotomizing points are marked by red arrows. A good agreement between
predictions and simulation results is reached, showing the validity of the method to address
defects of all shapes.

Having qualitatively and quantitatively studied the influence of a single defect, scenarios
where multiple defects are present can be readily discussed. The above results of a single
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Figure 2.29: Simulation results of graphene sheets with a centered diamond-shaped defect.
Stress distributions of graphene sheets with diamond-shaped defects parametrized by (a)
|x| + 3|y| = 0.4L and (b) 3|x| + |y| = 0.4L. (c) Stress–strain curves of above two defective
graphene sheets.

Table 2.1: Equation and derived dichotomizing points of high/low stress regions of circular,
elliptical, quadratic polynomial-shaped and sine-shaped defects, where the applied strain ε
is included.

Curve type Equation Dichotomizing points

Circle [x/(1 + ϵ)]2 + y2 = R2
(± 1

(1+ε)
√

1+(1+ε)2
R,±

√
1− 1

1+(1+ε)2
R)

Ellipse [x/(1 + ϵ)]2/a2 + y2/b2 = 1 (± a2(1+ε)2√
a2(1+ε)2+b2

,±b
√
1− 1

1+[ b
a(1+ε)

]2
)

Quadratic
polynomial

y = b{a2 − [x/(1 + ϵ)]2} (± (1+ε)2

2b
,±b[a2 − (1+ε)2

4b2
])

Sine y = b cos{ π
2a
[x/(1 + ϵ)]} (±2a(1+ε)

π
sin−1[2a(1+ε)

πb
],±b

√
1− 4a2(1+ε)2

π2b2
)
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Figure 2.30: Comparisons between predicted dichotomizing points and simulation results of
graphene sheets with a (a) circular defect, (b) elliptical defect, (c) quadratic polynomial-
shaped defect, and (d) sine-shaped defect.

defect show that high-stress regions are located at the farthest ends of the defect transverse
to the stretch. When multiple defects are present, this conclusion still holds by applying
the strategy of defect grouping. When defects have overlaps transverse to the stretch, they
can be viewed as a group and the farthest ends of the defect group localize high-stress
regions. In Fig. 2.31(a), stress fields of graphene sheets with two rectangular defects with
overlaps transverse to the stretch are illustrated, one with rectangular defects of different sizes
((0.1L, 0.4L) and (0.1L, 0.6L)) and the other with two identical defects (both (0.1L, 0.4L)).
The geometric centers of two defects are aligned on the center line parallel to the stretch and
trisection of the graphene sheets. As can be seen, high-stress regions reside at the farthest
ends of the defect group transverse to the stretch. For the graphene sheet with defects of
different sizes, the ends of the smaller defect do not concentrate stress, while both ends of the
larger defect do. For the graphene sheet with identical defects, both defects concentrate stress
at their two ends; thus, in this case, high-stress regions are significantly larger, an indicator
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Figure 2.31: Stress fields of graphene sheets with two defects. Graphene sheets with two
(a) rectangular and (b) circular defects aligned on the center line parallel to the stretch.
(c) Graphene sheet with two identical rectangular defects but not aligned on the center line
parallel to the stretch. (d) Graphene sheet with two identical rectangular defects with no
overlap transverse to the stretch.

of a more uniform stress distribution. The same principle applies to circular defects, as is
shown in Fig. 2.31(b), where the diameters are 0.2L and 0.3L for the graphene sheets with
circular defects of different sizes and 0.2L for two identical defects. Also, by this principle, it
is possible that only one end of a defect localizes high stress instead of both ends or no end.
To showcase this, a graphene sheet with two identical defects (both (0.1L, 0.4L)) not aligned
on the center line are simulated. Each defect has an offset of 0.05L from the centerline but
in the opposite directions. The stress field in Fig. 2.31(c) shows that high-stress regions are
located at the two farthest ends of the defect group, which in this case takes on one end from
each of the two defects. When multiple defects have no overlaps transverse to the stretch and
do not form a defect group, each defect affects the stress field independently. Fig. 2.31(d)
presents the case of two identical rectangular defects (both (0.1L, 0.4L)) having no overlaps
transverse to the stretch. As can be seen, both defects produce two high-stress and two low-
stress regions. However, it is noteworthy that, due to the potential overlaps of high-stress
regions by individual defects, some parts of the stress field can be double-strengthened, such
as in between the two defects in Fig. 2.31(d). The stress–strain curves of defective graphene
sheets are provided in Fig. 2.32.

From Fig. 2.31(b), it can be seen that a relatively small modification of defects can
make a profound difference to the stress field, where the stress field is much more uniform
when two identical defects are present. This inspires the optimization of the stress field by
placing defects in the right locations. As a preliminary exploration, mechanical properties
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Figure 2.32: Stress-strain curves of defective graphene sheets with multiple defects in
Fig. 2.31.

of graphene sheets with N identical circular defects aligned on the centerline parallel to the
stretch are studied. The defect diameter is 0.2L and N = 1, 2, 3. Stress fields of graphene
sheets with one, two, and three circular defects are shown in Figs. 2.33(a–c), respectively. It
can be observed that, as the number of defects increases, the stress field becomes more and
more uniform. Corresponding stress–strain curves of these graphene sheets are compared
in Fig. 2.33(d). It is shown that the ultimate strength and strain can be stably enhanced
with the increasing defect number even if more and more atoms are removed from the
graphene sheet. It is worth mentioning that what dominates this strengthening effect is not
a particular parameter such as defect size, shape, number, and alignment. Rather, it is how
a more uniform stress field can be created by defect design. Adding identical defects parallel
to the stretch is one way but not the only way to create a more uniform stress field. Also, this
application has illustrated the potential of enhancing the mechanical properties of graphene
by optimizing defects. This result is found to be consistent with classical mechanics. For
a plate with a row of collinear holes, it is shown by boundary element methods that the
maximum circumferential stress along the central hole decreases with an increasing number
of holes [174]. This indicates a reduced stress concentration around stress raisers and an
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Figure 2.33: Simulation results of graphene sheets with N circular defects aligned in the
stretching direction. Stress distributions for (a) N = 1, (b) N = 2, and (c) N = 3. (d)
Stress–strain curves for N = 1–3.

enhanced collective mechanical property, which is observed in our results. In addition, the
results of classical mechanics also show that as the number of holes increases, the decrease of
the maximum stress slows down and the stress approaches an asymptotic solution [71]. The
same tendency is shown in our simulation with an increasing number of collinear circular
defects. Several important conclusions are the same across a broad range materials, scales,
and numerical methods. Hence, it is envisioned that this enhancing effect can be extended
to other 2D materials.

Discussion

Having studied a broad variety of defects as well as their combinations featured by a wide
spectrum of mechanical properties, up to this point, it is necessary to summarize all the
results and interesting to check if these different defect configurations share any underly-
ing common ground. The mechanical properties of all defective graphene sheets in the
present study are summarized in σu-εf plots in Fig. 2.34, where εf denotes the failure strain.
Fig. 2.34(a) presents the results of graphene sheets with a single defect. Results of mechan-
ical enhancement by increasing defect number in Fig. 2.33 are also included to illustrate the
evolution path starting from a single circular defect to multiple identical collinear defects.
The data point of the pristine graphene is also provided in Fig. 2.34(a) for reference, as is
marked with the star symbol. As can be seen, despite the difference in defect geometry,
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Figure 2.34: σu-εf plots summarizing mechanical properties of all the defects studied.
Graphene sheets with (a) a single defect and (b) multiple defects. The gray area in (b)
represents the distribution of data points in (a).

all results lie within a narrow-banded region, with no exception of the pristine graphene
sheet. This suggests that the variation of defect geometry, though resulting in drastically
different mechanical properties, in general preserves the proportionality of ultimate strength
and failure strain. Graphene sheets with multiple defects are summarized in Fig. 2.34(b).
The gray region represents the banded region in Fig. 2.34(a) which embodies the proportion-
ality. As can be seen, results of various configurations of multiple defects still lie within the
banded region, suggesting that the proportionality is one of the underlying common grounds
of various defective graphene sheets (including the pristine graphene sheet).

Another way of a summary is to plot mechanical properties such as ultimate strength
against parameters, which can help shed light on the relative significance of system pa-
rameters by examining the relevancy and distribution pattern. Here, σu as a function of
L∥ and L⊥for all defect shapes and configurations in the present paper as well as in our
previous work [218, 220] is investigated, as summarized in Fig. 2.35. In Fig. 2.35(a), no
outstanding correlation between L∥ and σu is exhibited and Pearson’s correlation coefficient
r is 0.213, indicating that L∥ may not be a governing factor of mechanical properties of
defective graphene sheets. Contrarily, the banded distribution in Fig. 2.35(b) shows a strong
correlation between L⊥ and σu, with an r value of -0.933. Therefore, L⊥ is a much more
dominant parameter than L∥. In addition, Fig. 2.35(b) is able to give a strong indication on
the relative significance of size effect and shape effect, where the latter can be reflected by
the width of the banded distribution under a certain L⊥ value. It is noteworthy that, at a
given L⊥, rectangular defects possess higher σu than elliptical defects.
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Figure 2.35: Influences of L∥ and L⊥ on the ultimate strength σu of the defective graphene
sheet. σu as a function of (a) L∥ and (b) L⊥. Data points of elliptical and line defects are
from refs [218] and [220].

Conclusion remarks

In this section, stress field characteristics of defective graphene sheet subject to unidirec-
tional in-plane stretch are studied via MD simulation. It is shown that stress distribution
is strongly dependent on defect properties, which ultimately impacts collective mechanical
properties such as strength and ductility. The out-of-plane degree of freedom can be released
by the introduction of defects and the relationship between stress distribution and displace-
ment patterns are revealed. The effect of defect geometry can be decoupled by studying
defect size and shape, where the former determines the area shielded from increasing stress
and consequently produces low-stress regions, while the latter determines local stress con-
centration and governs stress distribution along the defect rim. An analytical approach is
developed to pinpoint the dichotomizing points on the defect rim, which shows good agree-
ment with the results of MD simulations. The strategy of defect grouping is proposed to
analyze the stress field when multiple defects are present in the graphene sheet. Knowing the
relation between defect properties and stress distribution characteristics, the optimization
of mechanical properties can be achieved by rational defect design. In addition, it is shown
that even though the mechanical properties of defective graphene sheets vary with different
defect geometry, the proportionality of ultimate strength and failure strain is in general pre-
served. Finally, the relative significance of the system parameters is discussed. This paper
has systematically discussed the influence of defects on the stress distribution in graphene
sheets, which opens up the tuning approach of the mechanical properties of graphene as well
as other 2D materials via defect engineering. A major contribution of the present work is
the incorporation of variable defect presentations into the feature of the stress field only,
which enables us to evaluate the collective properties and pinpoint regions prone to fracture
of defective graphene a priori [219].
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Chapter 3

Machine learning for graphene-based
materials

3.1 Graphene defect detection

During the growth and processing of graphene the existence of defects is almost inevitable,
which can compromise the expected performances of graphene-based nanodevices. Much
research has been underway to understand the effect of defects on specific graphene proper-
ties [182, 220, 5, 209, 218, 219, 110, 42]. Given the defect information such as size, location,
and density, the properties of a defected graphene can be evaluated. Nevertheless, obtaining
detailed defect information at atomic resolution is a difficult task. Ideally, defects such as
vacancies can be discovered by examining the atomic structure of a graphene sheet. De-
spite some experimental successes using high-resolution transmission electron microscopy
(TEM) [74, 60, 134], it remains technically challenging and involves complex sample prepa-
ration procedures to obtain an image of graphene at an atomic resolution. As a result, a
method to reliably detect unknown graphene defects without using atomic-resolution probes
is appealing.

Compared to elliptical holes and cracks which can be shed light on using traditional
fracture mechanics, randomly distributed atomic vacancies have a much more implicit but
not necessarily less profound impact on the mechanical properties of graphene. Emerging
ML approaches offer solutions for learning patterns from complex data and have been ex-
tensively applied in material design and discovery problems [18, 24, 148, 23, 142, 192, 213,
115]. The power of ML-based approaches can be fully utilized with a rational selection of
features. In this problem, because the defect location is a local feature (instead of a global
feature), data need to be constructed with observations possessing local information. Collec-
tive properties such as strength or strain to failure may not be suitable here, because defects
at different locations can produce the same result, making these defect locations indistin-
guishable [220]. One of the simplest observations with local features is the thermal vibration
at room temperature with all edges of the graphene sheet clamped, which does not require
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specific actuations or precise environment controls. Previous research has investigated the
effect of defects on the vibrational properties of graphene via various technical approaches
such as MD simulation [114, 161, 162], continuum elasticity theory [161, 120, 163], and
Monte Carlo-based finite element method [34]. The local amplitudes of thermal vibrations
can be affected when surrounded by defects, because the absence of atoms changes the local
boundary conditions of mini-oscillators. Experimentally, to obtain a vibration topography
that has a lower resolution than atomic resolution is less taxing than obtaining an image of
atomic structures. Low-amplitude mechanical vibrations of graphene can be readily imaged
using a scanning force microscope [58]or an interferometry [16].

In this section, an ML strategy is proposed to detect unknown defects in single-layer
graphene sheets to overcome the complicated relationship between thermal vibration to-
pographies and defect locations. Trained by tens of thousands of thermal vibration topogra-
phies calculated by MD simulations, the ML model is used to predict defect locations. From
predicting a single-atom vacancy to predicting an unknown number of vacancies with an
arbitrary distribution, a kernel ridge regression (KRR) model addresses problem by progres-
sively building up the model complexity while maintaining the computational cost. Finally,
an optimal model with the best prediction capability can be obtained by an extensive hy-
perparameter tuning.

Methods

Molecular modeling

The thermal vibrations of single-layer graphene sheets are computed by MD simulations
using LAMMPS and the AIREBO potential. Periodic boundary conditions are applied to
two in-plane dimensions, and a fixed boundary condition is used in the orthogonal out-of-
plane dimension. The box size is Dx×Dy×Dz = 70 Å×70 Å×25 Å, where Dx, Dy, Dz are
the lengths of the box in x, y, z directions, respectively. The integration time step is 1 fs.
An ensemble of random velocity at T = 300 K is generated throughout the graphene sheet.
Graphene sheets are firstly relaxed in the NVT ensemble at T = 300 K for 10 ps. Then, the
simulation is run in the NPT ensemble at the same temperature for 30 ps for graphene sheets
to vibrate. The sampling frequency of atom displacement is 20 THz. The size of vacancy-
containing graphene sheets is LZ = 52.1 Å by LA = 44.8 Å, where LZ and LA denote the
zigzag and the armchair dimensions, respectively. The graphene sheet consists of 966 atoms
when defect-free. To enforce the boundary conditions, a 3-atom-wide stripe on each edge
is set fixed by eliminating all degrees of freedom of the associated atoms, while the rest of
the graphene sheet, composed of 38 rows and 19 columns of atoms, is free to vibrate. This
boundary control resembles the experimental setup in Ref. [58], where the graphene sheet
is clamped and suspended to vibrate with no substrate involved. Simulation temperature is
chosen as the room temperature T = 300 K, which requires the least temperature control in
a potential experimental setup and can produce a sufficient vibration intensity. A location
in the graphene sheet is indexed as (i, j), where i and j represent the ith row and the jth
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Figure 3.1: Descriptions of graphene sheets with vacancies and the procedure of data prepara-
tion. (a) Schematic of the defected graphene sheet and vacancy indexing, where a graphene
sheet containing vacancies (6,6), (27,8), and (36,17) is used as an example. (b) Route of
data preparation. (c) 2D energy distribution of graphene sheet with a vacancy (18,11), fixed
atoms on the edges are not included in the contour plot. (d) 1D energy vector compressed
from the 2D energy distribution and its correlation with the original graphene lattice.

column, respectively. A vacancy can be referred to by the index of the location where an
atom is missing. The size and the boundary conditions of graphene sheets, and the strategy
of location indexing are illustrated in Fig. 3.1(a). The easily satisfied loading conditions make
both numerical and experimental approaches promising. For a pristine graphene sheet of
this size and subject to the same boundary conditions, the amplitude of vibration is ∼ 0.3 Å,
which agrees well with quantitative results in Ref. [57].

Data preparation for machine learning

Training and testing data for ML implementations are prepared and organized into the
following three levels: atom level, structure level, and data level. On the atom level, the
time series of the out-of-plane displacement z(t) of each atom is firstly computed. Then,
a fast Fourier transformation is performed on z(t) to obtain the frequency response z(f).
Next, the vibrational energy is calculated by S(f) =

∫∞
0
|z(f)|2df , as a scalar to featurize
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each atom. Onto the structure level, an energy distribution throughout the graphene sheet
is obtained by associating the energies of all atoms with their coordinates. Next, the 2D
energy distribution is compressed to a 1D energy vector for the ML implementation. The
energy vectors are based on atom indices, and the coordination information is suppressed.
Finally, onto the data level, a total of near 20,000 energy vectors are prepared as the ML
data and are assembled into a design matrix. The above procedure of data preparation is
shown in the flowchart in Fig. 3.1(b).

Among all presentations, the 2D energy distribution offers the best visualization. An
example is provided in Fig. 3.1(c), where the graphene sheet hosts a single-atom vacancy
(18, 11). As can be seen, the energy distribution is highly dependent on the location of
vacancy: the vibrational energy tends to localize at defected regions. However, it is notewor-
thy that around the vacancy is not the global energy maximum, but a local maximum. The
existence of vacancies creates additional local energy maxima off the energy distribution of
pristine graphene, as shown in the examples in Fig. 3.2. An energy vector compressed from
the previous 2D energy distribution is illustrated in Fig. 3.1(d), where the atom is indexed
as N = 19(i− 1) + j. The energy vector reveals that one single-atom vacancy can produce
not one but multiple characteristic spikes, which is not the most obvious in the 2D energy
distribution. In addition, energy vectors, though less intuitive compared to energy distribu-
tions, offer another perspective and can be correlated with the original graphene structure.
Considering each hexagonal ring of atoms as a unit, the graphene sheet can be divided into
9 rows of rings (RoRs) (the first and the last rows of atoms excluded). Each RoR is repre-
sented by a hump on the energy vector. Atoms surrounding the vacancy give rise to spikes
on the humps that these atoms are associated with. For example, rows that are marked by
two arrows in Fig. 3.1(d) are affected by the vacancy (18, 11), hosting characteristic spikes.
Atoms next to the fixed boundary exhibit low vibrational energy, as is the case for the first
and the last row of atoms. Nevertheless, a vacancy in these atoms can still stimulate spikes,
of which an example is provided in Fig. 3.3. This enables the ML approach to also predict
vacancies next to the clamped edges.

Results

Atom-based prediction for single-atom vacancy

The prediction of a single-atom vacancy, as the simplest case for the vacancy prediction, is
studied first. The construction of energy vectors (featurized sample points) and label vectors
is based on atom indices. The length of the energy vector is 722 − 1 = 721 because of the
one missing atom. All entries indexed after the missing atom need to be shifted accordingly.
For example, if the 100th location corresponds to a vacancy, the energies of 101st to 722nd
atoms are 100th to 721st entries of the energy vector. Label vectors are one-hot encoded,
the length being the total number of possible atom locations. For example, if the mth
location is a vacancy while others are occupied by atoms, the mth entry is 1 while other
entries are 0’s. Despite that one-hot labels often work well with classification models, in
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Figure 3.2: 2D energy distributions of (a) a pristine graphene sheet and (b) a graphene sheet
with a vacancy (5, 16).

Figure 3.3: Portions of energy vector corresponding to (a) the first row and (b) the last row
of atoms. The graphene sheet here contains a single vacancy at (1,10), which lies on the first
row of atoms.
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this study they become infeasible due to the excessively many classes. For the scenario of a
single-atom vacancy, the number of classes totals 722 (38 rows × 19 columns). For up to 10
vacancies, the number of classes grows to

∑10
r=1C

722
r ≃ 1.01 × 1022, which goes far beyond

realistic. Hence, a regressor is used to map energy vectors to one-hot labels. KRR model is
selected to predict locations of vacancies, which enables us to progressively build up the model
complexity without adding to the computational cost (the kernel trick). Hyperparameters
include polynomial kernel degree p and regularization parameter λ. Algorithmic details of
KRR are provided in Alg. 1.

Algorithm 1 Kernel ridge regression

1: Normalize each energy vector x with its L2 norm, x← x/∥x∥2.
2: Center each energy vector x with the mean of all energy vectors µ = 1

n

∑n
i=1 xi, x ←

x− µ.
3: Objective function J(W ) = ∥XW − Y ∥2 + λ∥W∥2, where X = [x1 · · ·xn]

T is the design
matrix; W is the weight matrix; Y = [y1 · · ·yn]

T is the label matrix.
4: Normal equations (XTX + λI)W = XTY .
5: Write W as a linear transformation of sample points W = XTA, where A is the dual

weight matrix.
6: Objective function rewritten as J(A) = ∥XXTA− Y ∥2 + λ∥XTA∥2.
7: Normal equations rewritten as (XTX + λI)A = Y .
8: The polynomial kernel of degree p is k(q1,q2) = (qT

1 q2 + 1)p.
9: Construct kernel matrix K, ∀i, j,Kij ← k(xi,xj).
10: Solve (K + λI)A = Y for A
11: Predict labels for the design matrix of test data Z = [z1 · · · zn′ ]T (zn′ ’s are normalized,

centered testing energy vectors), Ŷ = [ŷ1 · · · ŷn′ ]T = h(Z) = K ′A, where K ′
ij = k(zi, zj)

Because there are in total 722 possible locations that are candidates to host a single-
atom vacancy, to achieve an effective training process, all these possible locations need to be
visited. Therefore, a total of 722 different configurations need to be simulated to survey all
scenarios of the single-atom vacancy. Structured as the energy vector in Fig. 3.1(d), results
of 23 sets of 722 configurations (722 × 23 = 16606 energy vectors in total) are prepared as
data. The only difference between sets is the seed of random number generator of initial
velocities, which ensures the data free from duplication or being a linear combination of any
other data sets; 22 sets of data are used for training and validation, which, after random
shuffling, are split into 80% for training and 20% for validation. An individual data set is
set aside for testing. It is critical that the test data are not from shuffling and splitting from
a large data set, but completely new, unseen data. A good performance on the test data can
indicate promising extrapolation into future new sample points.

To illustrate, an energy vector from the test set, normalized by its maximum entry value
Smax, is shown in Fig. 3.4(a). The outstanding spike indicates that the vacancy potentially
resides in its vicinity. The predicted label vector ŷ from the energy vector is shown in
Fig. 3.4(b), where v = argminN∈{1,2,...,722} |ŷN−yN | is to be returned as the predicted vacancy
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Figure 3.4: Results of the atom-based ML prediction for a single-atom vacancy. (a) An
example of energy vector from the test data. (b) Predicted label vector. (c) 2D presentation
of the predicted label vector. (d) Validation and testing accuracies as a function of regu-
larization parameter λ. (e) Predicted label vector under a relatively strong regularization
λ = 10−3.

location. To retrieve a better intuition from the prediction, ŷ is converted to 2D, as is shown
in Fig. 3.4(c) where the predicted vacancy location stands out. Prediction accuracies α on
the validation and the test data, as a function of regularization parameter λ, are shown in
Fig. 3.4(d). For λ < 10−5, the validation accuracy is above 95% and the testing accuracy lies
slightly below 95%, indicating a highly effective ML prediction. For a stronger regularization,
for example, λ = 10−3, the validation and the testing accuracies drop down to below 80% and
75%. Fig. 3.4(e) shows the predicted label vector when λ = 10−3. Although the noise level
gets suppressed by a strong regularization, ŷv becomes less preeminent, which explains the
lowered prediction accuracies. Because both the validation and testing accuracies converge
as λ decreases, for this problem the ML model is not subject to high variance-related issues.

Domain-based prediction for multiple vacancies

The atom-based method, despite a high prediction accuracy on the test set, becomes in-
feasible to predict multiple vacancies of an unknown quantity or density. This is because
the length of energy vectors 722 − nV is no longer a constant, where nV is the number of
vacancies. More importantly, the atom-based method still requires counting atoms, which
is not viable without an atomic-resolution probe. To circumvent this issue, an approach
based on domain discretization is proposed, aiming to predict subdomains that contain one
or more vacancies instead of the locations of missing atoms. The domain of free vibrating
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Figure 3.5: Domain discretization of a graphene sheet. (a) Schematic of an NR-by-NR uni-
form domain discretization. (b) 2D energy distributions by 18-by-18 discretization converted
from the atom-based energy vector in Fig. 3.4(a). (c) 1D energy vector compressed from 18-
by-18 discretization in (b). (d) 2D energy distribution of 10-by-10 discretization converted
from the atom-based energy vector in Fig. 3.4(a). (e) 1D energy vector compressed from
10-by-10 energy discretization in (d).

atoms is discretized into NR-by-NR uniform subdomains, as shown in Fig. 3.5(a). Similar to
the indexing strategy of the atom-based method, the index of a subdomain can be expressed
as N∗ = (iR − 1)NR + jR, where iR and jR are the row index and the column index of a
particular subdomain. Furthermore, when the size of the subdomains is substantially small,
an atomic-resolution prediction can be approached. Notably, the domain-based method is
computationally cheaper compared to the atom indexing-based method. For instance, for a
graphene sheet with 722 freely vibrating atoms, the atom-based method renders each sample
point 722− nV features. For domain-based method, the number of features is N2

R (for a 14-
by-14 discretization, the number of features is 142 = 196), thus achieving a dimensionality
reduction by a multiple of 722/NR. Label vectors are one-hot encoded based on subdomains
instead of atom indices, length being N2

R: if the sth and tth subdomains contain a vacancy,
the sth and tth entries of the energy vector are 1’s while the other entries are 0’s. Unlike
the atom-based method, no index shift is involved.

As a sanity check, the same data used for the atom-based method are discretized and
used to test the domain-based method: a good performance on the single-atom vacancy
scenario must be achieved in order to proceed into predicting unknown multiple vacancies. To
illustrate, the atom-based energy vector in Fig. 3.4(a) is converted to a domain-based energy
vector. Figs. 3.5(b) and (c) shows 2D and 1D presentations of the domain-based sample
points with an 18-by-18 discretization, while Figs. 3.5(d) and (e) corresponds to a 10-by-10
discretization. Energy vectors of the domain-based method have less obvious characteristic
spikes compared to the atom-based counterpart, making defected regions almost indiscernible
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Figure 3.6: ML predictions of a single-atom vacancy with domain discretization. (a–c)
Predicted label vectors on an 18-by-18 discretization with kernel degrees 1, 2, and 3, respec-
tively. The margin h is illustrated by the gray areas. (d) 2D presentation of the predicted
label vector of kernel degree 2. (e) Validation and f testing accuracies with kernel degrees
p ∈ {1, 2, 3}, as a function of NR

by an “eyeball” test and potentially adding to the difficulty of prediction.
To quantify the robustness of prediction, a margin is defined as h = minN∗∈V |ŷN∗| −

maxN∗ /∈V |ŷN∗|, where V is the set of indices of vacancy-containing subdomains. A large
margin indicates that the model is less likely to confuse defected subdomains with pris-
tine ones. λ is kept small, set as 10−10. Input with the energy vector in Fig. 3.5(c), the
predicted label vector of model with a linear kernel is shown in Fig. 3.6(a). Although
v = argminN∗∈{1,2,...,N2

R} |ŷN∗ − yN∗| can still correctly return the defected subdomain, the
margin becomes particularly small and |ŷv − yv| becomes large, making predictions less reli-
able. To reduce the bias, polynomial kernels of higher degree are implemented. The predicted
label vectors of quadratic and cubic kernels are shown in Figs. 3.6(b) and (c). The margin is
profoundly enlarged and |ŷv−yv| is sufficiently small for both cases, indicating a reliable pre-
diction and a reduced bias. Little difference is observed between the predicted label vectors
of quadratic and cubic kernels, indicating that a quadratic kernel already suffices to address
the domain-based problem. A 2D presentation of the predicted label vector is provided in
Fig. 3.6(d), as the most intuitive visualization. Validation and testing accuracies with kernel
degrees p ∈ {1, 2, 3}, as a function of NR, are summarized in Figs. 3.6(e) and (f). As can
be seen, quadratic and cubic kernels, which have achieved accuracies over 90% on validation
and over 80% on testing, are superior to a linear kernel. In addition, accuracies increase
with larger NR, i.e., finer discretization, despite some fluctuations in the testing accuracies.
The effects of λ on the validation and the testing accuracies are provided in Fig. 3.7.
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Figure 3.7: Effect of regularization on predicting a single-atom vacancy by the domain-based
method. (a) Validation and (b) testing accuracies as a function of NR and λ.

Having validated the domain-based method with predicting a single-atom vacancy, the
model is used to predict locations of multiple vacancies with an arbitrary distribution. Data
are prepared by the following way. The number of vacancies nv is a random integer from 1
to 10. Specifically, nv ∼ U(1, 10), where U(·) denotes a uniform distribution. The index of
each vacancy is a pair of random integers corresponding to all possible atom locations, i.e.,
iR ∼ U(1, 38) and jR ∼ U(1, 19). This vacancy generation algorithm naturally does not rule
out the existence of vacancy clusters, which free us from the issue of distinguishing between
vacancy clusters and individual single-atom vacancies if the prediction is successful. This
property is especially advantageous when the defect information is unknown a priori in an
experimental setting. A total of 19,438 domain-based energy vectors are prepared by MD
simulation, of which 80%, 10%, and 10% are used as training, validation, and test data,
respectively. Each graphene configuration has a different seed of random number generator
for the vacancy setup. Each simulation case also has a different seed for initial velocities.
Once again, training and validation data are shuffled together and split into two sets, while
the test data are not involved in any shuffling and splitting to be used as new data. Because of
the unknown number of vacancies, returning argminN∗∈{1,2,...,N2

R} |ŷN∗−yN∗| or the indices of
the k smallest |ŷN∗−yN∗| as the predicted subdomain indices is no longer feasible. To this end,
a threshold parameter τ is introduced and the set of indices of predicted defected subdomains
can be obtained as V = {v : ŷv > τ}. λ is set as 10−10. An example of energy vectors from the
test data on an 18-by-18 discretization is shown in Fig. 3.8(a). Multiple spikes are exhibited,
but there is no intuition which of these spikes imply subdomains that contain vacancies. The
predicted label vector by a quadratic kernel and the true label vector are shown in Figs. 3.8(b)
and (c), where a large margin is obtained. Given a threshold τ within the margin, the ML
prediction returns 9 different subdomains that contain at least one vacancy, which are proved
to be correct predictions by the true label vector in Fig. 3.8(c). 2D presentations of the
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Figure 3.8: ML predictions of multiple vacancies with domain discretization. (a) An example
of energy vectors from the test data. (b) Predicted label vector by a quadratic kernel from
the energy vector in (a). (c) True label vector. (d–f) 2D presentations of (a–c), respectively.

input data point, prediction label, and true label are shown in Figs. 3.8(d–f), respectively, to
offer a better intuition. For a sample point on the domain-based method, both 1D and 2D
presentations have lost the ability to implicate locations of vacancies. However, the model can
still discover the vacancies with high accuracy and reliability. Validation accuracies of kernel
degree p ∈ {1, 2, 3}, as a function of NR and threshold τ , are summarized in Figs. 3.9(a–c),
respectively. A linear kernel becomes incapable to predict vacancy locations, of which the
best accuracy is below 40% and is only attainable when subdomain size is sufficiently small
(for example, NR = 18). However, for both quadratic and cubic kernels with an optimal
τ ∗, validation accuracies above 80% can be achieved for NR values ranging from 10 to 18.
As NR increases, validation accuracy increases and τ ∗ can be chosen within a broader range
centered at near 0.4. Testing accuracies of kernel degree p ∈ {1, 2, 3}, as a function of NR and
threshold τ , are shown in Figs. 3.9(d–f), respectively. Trends in general resemble validation
accuracies, but with a lower magnitude overall. Finally, prediction accuracies on validation
and testing with optimal threshold values τ ∗ are summarized in Figs. 3.9(g) and (h). As
NR increases, the validation accuracy approaches 100% and the testing accuracy approaches
90%, suggesting a potent performance of locating multiple unknown vacancies in graphene
sheets. The effects of λ on the validation and the testing accuracies with τ = 0.4 are provided
in Fig. 3.10.
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Figure 3.9: Parametric study and optimal performances of predicting multiple vacancies.
(a–c) Testing accuracies of kernel degree p ∈ {1, 2, 3}, as a function of NR and threshold τ .
(d–f) Validation accuracies of kernel degree p ∈ {1, 2, 3}, as a function of NR and threshold
τ . (g) Validation and (h) testing accuracies as a function of NR with optimal choices of τ ∗.

Discussion

Both the atom-based and the domain-based methods can predict the locations of unknown
vacancies with high accuracy. However, the latter is in general advantageous for multiple
reasons. First, the domain-based method does not require an atomic-resolution probe, while
the atom-based method does. Second, the domain-based method can predict an unknown
number of vacancies, which makes it a more natural way to approach the problem. On the
contrary, the atom-based method can only predict the vacancies of a known number, which
poses an outstanding limit. Last but not least, the domain-based method enjoys cheaper
computational cost and thus a faster training speed, due to the dimensionality reduction by
discretization. Despite the fact that in order to achieve an over 90% prediction accuracy,
the domain-based method requires at least a quadratic kernel while the atom-based method
only needs a linear kernel, the kernel trick ensures that the computational costs of kernels



CHAPTER 3. MACHINE LEARNING FOR GRAPHENE-BASED MATERIALS 64

Figure 3.10: Effect of regularization on predicting multiple vacancies by the domain-based
method. (a) Validation and (b) testing accuracies as a function of NR and λ, with τ = 0.4.

of different degrees are generally equal. These advantages make the domain-based method
more practical than the atom-based method for applications of interest. In an experimental
setting, graphene samples can be fabricated by mechanical exfoliation following Ref. [58],
which are relatively free of contamination such as oxygen-containing functional groups. For
graphene sheets contaminated by foreign functional groups, based on the presented method
these functional groups can be treated as defects and can be potentially distinguished from
atomic vacancies. Also, it is suggested that the contamination layer can be removed by a
high temperature cleaning process in a H2/Ar atmosphere, enabling measurements of the
properties of contamination-free graphene sheets [40].

Concluding remarks

In this section, an ML approach to predict locations of unknown vacancies in graphene is
presented. Thermal vibration properties at room temperature are used to featurize graphene
sheets, which is shown to be effective to reveal the local vacancy information. Two prediction
strategies are developed, an atom-based method which constructs data by atom indices, and
a domain-based method which constructs data by domain discretization. Both strategies
are based on the KRR algorithm, which allows us to progressively build up model complex-
ity while maintaining the computational cost. While the atom-based method is capable of
predicting a single-atom vacancy, the domain-based method can predict an unknown num-
ber of multiple vacancies with high accuracy. Both methods can achieve approximately a
90% prediction accuracy on reserved test data, indicating a good extrapolation into unseen
new graphene configuration. A dimensionality reduction is also achieved by domain dis-
cretization. The proposed ML approach shows a prediction capability beyond analytical and
numerical modeling and can be further enhanced by the improvement in quality and speed
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of data generation. This strategy may also shed light on predicting defects of a broader
variety, for instance, interstitials, dislocations, grain boundaries, among others [216].

3.2 Scalable graphene defect prediction

Previous section demonstrates the prediction of unknown graphene defects using ML. How-
ever, it requires the size of material systems used in training to be identical to the ones they
predict. This limits its application in reality because an identical size of newly encountered
materials is by no means guaranteed. It is thereby hoped that the effectiveness of ML models
be transferable across size and shape to more broadly apply the techniques. In the context
of graphene defect prediction, transferable ML will enable the prediction of differently sized
or shaped graphene sheets trained by data of graphene sheets of a uniform size. In addition,
due to the large size, directly simulating graphene used in actual applications can be rather
computationally expensive, especially when a large amount of training data is demanded.
Transferable ML will allow us to use smaller graphene as training data that are more compu-
tationally tractable. Hence, a transferable ML approach for defect prediction is very much
desired.

In this section, a transferable learning strategy to detect unknown defects in larger
graphene sheets using information obtained from a smaller graphene system is developed.
Trained by tens of thousands of local vibrational energy distributions of smaller graphene
sheets calculated by MD simulations, the ML model is used to predict whether certain loca-
tions on larger graphene sheets are in the vicinity of any defect. From predicting graphene
sheets that contain only one defect to predicting an unknown number of defects with an
arbitrary distribution, a logistic regression model is applied, of which the performance is
quantified by three practical metrics: total accuracy, true positive rate, and true negative
rate. Finally, by adjusting the weights associated with defects and non-defects in the cost
function, this work aims to find a way of improving the prediction accuracy of defects while
maintaining a relatively low false positive rate.

Methods

Molecular modeling

Geometries of defect-containing monolayer graphene sheets used in this study are shown in
Fig. 3.11 (defects highlighted in blue). Two different sizes of graphene sheets are constructed:
smaller ones for training and larger ones for testing. Figs. 3.11(a) and (b) illustrate small
graphene sheets, sized L0

x by L0
y, where L0

x = 43.6 Å, L0
y = 39.2 Å; Figs. 3.11(c) and (d)

illustrate larger graphene sheets, sized Lx by L0
y, where Lx = 58.2 Å, L0

y = 51.8 Å. “A”
and “Z” denote the armchair and zigzag directions of graphene, respectively. On each edge
of the graphene sheet, a width of three atoms is fixed (colored gray), while the rest of
the graphene sheet could vibrate without enforced restriction (colored red). If defect-free,
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Figure 3.11: Schematics of defect-containing graphene sheets. Smaller graphene sheets with
(a) one defect and (b) multiple defects for training. Larger graphene sheets with (c) one
defect and (d) multiple defects for testing. “A” and “Z” denote the armchair and zigzag
directions, respectively. (e) An example of vibration amplitude distributions in a defect-
containing graphene sheet. Distributions at three different time instances are plotted: before
vibration, 15 ps, and 30 ps after the initialization of the NVT ensemble. t denotes the time
passed in the NVT ensemble where the vibrational responses are recorded.

the smaller graphene sheet contained 722 vibrating atoms, while the larger graphene sheet
contained 1250 vibrating atoms. The out-of-plane displacement z of atoms is used to quantify
vibration. In Figs. 3.11(a) and (c), the graphene sheets contained only one defect, of which
the location is uniformly random throughout the vibrating graphene domain; in Figs. 3.11(b)
and (d), the graphene sheets contained multiple defects where the number of defects followed
a uniform distribution from 1 to 10, and the locations are also uniformly random throughout
the vibrating graphene domain.

MD simulations are used to compute the vibration of graphene using LAMMPS and the
AIREBO potential. A timestep of 1 fs is used. Periodic boundary condition is applied to the
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two in-plane dimensions, while the height of the simulation box is fixed. For fixed atoms near
the graphene edges, the atom displacement in all three directions is set to zero. Each atom
in the vibrating region is initiated with a random velocity, and for each individual graphene
sheet the seed of the random number generator is different. This practice ensures that even
if two graphene sheets contained the same number of defects at the same locations (meaning
the two graphene sheets are governed by the same physics) their mechanical responses are not
numerically identical, thus preventing data duplication. Graphene sheets are firstly relaxed
in the NPT ensemble at temperature T = 300 K and pressure p = 0 for 25 picoseconds to
eliminate stress. Then, the graphene sheet is stretched biaxially to 1% strain in the NVT
ensemble at T = 300 K, with a strain rate of 109 s–1. The small tensile pre-strain is applied
to imitate the experimental setup of graphene vibration in [16]. Finally, the pre-strained
graphene sheet is set to vibrate in the NVT ensemble at T = 300 K for 30 picoseconds, during
which the out-of-plane displacement of all vibrating atoms are extracted for subsequent data
processing. The sampling frequency of atom trajectories is 20 THz. Using the graphene
sheet in Fig. 3.11(b) as an example, the distributions of vibration amplitudes 15 ps and
30 ps after the initialization of the NVT ensemble are plotted in Fig. 3.11(e). The initial
graphene configuration is also provided for comparison.

Machine learning

The data preparation procedure for ML is shown in the flowchart in Fig. 3.12. First, one or
multiple query points are assigned on the graphene sheet. Grids are subsequently constructed
surrounding the query point, as illustrated in Fig. 3.12(a). The query point resides at the
center of the center grid. Each grid is sized a-by-b, where a : b = L0

x : L0
y, making the length-

to-height ratio of grids equal to the length-to-height ratio of the smaller graphene sheet.
Because of the fixed ratio, a single variable a is sufficient to depict the grid size. In the
present study, 9-grid (3 by 3) and 25-grid (5 by 5) approaches are considered. The accuracy
comparison of the two approaches will be conducted. Next, the vibration of atoms in these
grids is computed, detailed as follows: The time series of out-of-plane displacement z(t) of
each atom is computed by MD simulations, and an example is provided in Fig. 3.12(b).
Then, a fast Fourier transformation is performed on z(t) to deduce its frequency response
z(f), as shown in Fig. 3.12(c).

The next goal is to associate the vibration of each atom to a scalar. To this end, based
on the frequency response, the energy is calculated as S(f) =

∫∞
0
|z(f)|2df . Afterwards, the

total energy in each grid Sg is computed as Sg =
∑Ng

i=1 Si, where i is the index of atom in
the grid, and Ng is the total number of atoms in the grid. Finally, a feature vector is formed
as (S1

g · · ·SN
g ), where N is the number of grids (N = 9 or 25). Up to this point, each query

point is associated with a feature vector that quantifies vibration properties in the grids.
The label Y is determined by the existence of defects in the center grid: if there is one or
more defects in the center grid, label Y = 1; otherwise Y = 0. It is a natural choice to apply
a logistic regression model to predict binary classes using feature vectors. The loss function
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Figure 3.12: Data preparation procedure for ML. Boxes in red are properties of each indi-
vidual atoms. (a) Illustration of query point and grid construction. (b) Displacement time
series z(t) and (c) the corresponding frequency response z(f) of a vibrating atom in the
graphene sheet.

of logistic regression can be expressed as:

L(Ŷ , Y ) = −Y ln Ŷ − (1− Y ) ln 1− Ŷ (3.1)

where Ŷ is the predicted label. The cost function can be expressed as:

J =
n∑

i=1

L(Ŷi, Yi) (3.2)

where i is the index of one data point, and n is the total number of data points. In this
study, logistic regression is performed using the ML library Scikit-Learn [130].

Results

For the binary classification problem, prediction accuracy is quantified by the following
three metrics: total accuracy (TA), true positive rate (TPR), and true negative rate (TNR),
expressed below:

TA = P(Ŷ = 1|Y = 1)P(Y = 1) + P(Ŷ = 0|Y = 0)P(Y = 0) (3.3)

TPR = P(Ŷ = 1|Y = 1) (3.4)

TNR = P(Ŷ = 0|Y = 0) (3.5)

where Ŷ is the predicted label; P() is the probability notation, and P(·|·) denotes the condi-
tional probability.
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Prediction for single defect

The prediction of single-defect graphene sheets is studied first. The preparation of training
data based on the smaller graphene is detailed as follows: First, the entire vibrating graphene
domain is discretized with an M -by-M mesh, as shown in Fig. 3.13(a). M is an integer
parameter ranging from 7 to 17, giving values of a from 6.23 Å to 2.57 Å. This practice aims
to thoroughly scan the graphene domain during training. The ratio a : b = L0

x : L0
y ensures

that the numbers of grids in the two orthogonal directions (i.e., the armchair and the zigzag
directions) are equal. To prepare unbiased training data for the binary classification model,
the numbers of Y = 1 data and Y = 0 data are equal. Here, the defect-containing grid is
purposefully selected as the center grid and the rest of the grids are constructed around it.
Then, another grid is randomly selected as a center grid, which is bound to be defect-free.
Hence, each graphene provides two sets of training data, and the numbers of Y = 1 data and
Y = 0 data are equal. The total number of one-defect graphene sheets for training is 10,148.
However, not all these graphene sheets are used to construct training data—graphene sheets
that contained a near-edge/-corner defect are excluded due to different lengths of feature
vectors. For the 9- (25-) grid approach, graphene sheets whose defect-containing center grids
that are within one (two) grid(s) to graphene edges are excluded. A total of five types of
near-edge/-corner defects are addressed separately. Data are randomly split into 9:1 for
training and validation. Validation accuracies are based on the average of three different
splits. Fig. 3.13(b) shows validation accuracies (TA, TPR, TNR) as a function of grid size
a. The results of 9-grid and 25-grid approaches are also compared. It is shown that as a
increases, all three accuracy metrics decrease. This suggests that smaller grids give rise to
higher training accuracies. In addition, 9-grid and 25-grid approaches have similar trends
and the 25-grid approach strikes higher accuracy in all three metrics. Hereafter, ML results
will be based on only the 25-grid approach for simplicity. The method of specifying the
query point location x/L0

x and y/L0
y in the feature vectors is also tested, where (x, y) are the

coordinates of the query point. It is shown that adding these two features has little impact
on the accuracies of either 9-grid and 25-grid approaches, as illustrated in Fig. 3.14.

The preparation of test data based on larger graphene sheets differed from the training
data, as is outlined below. The number of larger graphene sheets for ML testing is 875. Each
provided five randomly chosen query points that are at least two grids away from graphene
edges. Because of the random selection, center grids that contained defects are outnumbered
by defect-free center grids, different from the previous training data where the numbers of
defective and defect-free center grids are equal. Test accuracies based on three distinct test
sets are presented in Fig. 3.15. Figs. 3.13(a–c) show TA, TPR, and TNR as a function of the
grid size a, respectively. It is shown that both TA and TNR decrease as a increases. TPR, on
the other hand, increases as a increases, which differs from the trend of TPR in the validation
result. This suggests that for TPR, the ML model is subject to a high-variance issue; this
shows that it is more ideal to choose moderately larger grid sizes for this system. In all, TA,
TPR, and TNR, the results of three test sets show good consistency. Fig. 3.15(d) shows the
average accuracies of test results. TA and TNR appear to coincide. This is because in the
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Figure 3.13: ML results of validation sets for one-defect scenarios. (a) Schematic of dis-
cretized graphene domain for one-defect graphene sheets. The entire vibrating graphene
domain is discretized by an M -by-M mesh (in this case, M = 10, a = 4.37 Å). Defect-
containing grid is highlighted in light blue. (b) Validation accuracies (TA, TPR, TNR) as a
function of the grid size a for 9-grid and 25-grid approaches.

Figure 3.14: Validation accuracies with and without query point locations. (a) 9-grid and
(b) 25-grid approaches.
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Figure 3.15: Test accuracies for one-defect scenarios. (a) TA, (b) TPR, and (c) TNR as a
function of the grid size a based on three test sets. (d) Average accuracies over all three test
sets as a function of a.

test data, label Y = 0 data take on more than 99% of the total data.

Prediction for multiple defects

With the successful implementation of predicting one-defect graphene sheets, more complex
multiple-defect cases are studied. The total number of smaller multiple-defect graphene
sheets for training is 10,108. Same as one-defect scenarios, the vibrating graphene domain
is discretized by an M -by-M mesh. Defect-containing grids that are more than two grids
away from any graphene edge are used as center grids. To equalize Y = 1 data and Y = 0
data, an equal number of defect-free grids are randomly selected as center grids. These data
are randomly split into 9:1 for training and validation. Validation accuracies as a function
of the grid size a are shown in Fig. 3.16.

The preparation of multiple-defect test data based on the larger graphene sheets is out-
lined below. A total of 621 larger graphene sheets are used and each provided five randomly
chosen query points at least two grids away from graphene edges. The prediction of query
points within two grids to graphene edges is shown in Figs. 3.17-3.21. Because of the random
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Figure 3.16: Validation accuracies of multiple-defect graphene sheets.

selection, grids that contain defects are outnumbered by defect-free grids. Figs. 3.22(a–c)
show TA, TPR, and TNR as a function of the grid size a. It is shown that both TA and
TNR decrease as a increases, and that TPR increases as a increases. Compared to one-defect
scenarios, TPR is lower in general but is higher for small grid sizes, indicating less suscepti-
bility to the high-variance-related issue. Fig. 3.22(d) presents the average accuracies of test
results. TA and TNR appear to coincide. This is because in the test data, label Y = 0 data
take on more than 98% of the total data. The above results of one-defect and multiple-defect
scenarios indicate that, trained by local thermal vibration properties of uniformly sized small
graphene sheets, the ML model is able to predict the existence of defects at all locations on
unseen larger graphene sheets.

Weighted cost function

It is desired that the prediction accuracy of a defect in larger graphene sheets can be further
improved, and that the fine-tuning of TPR and TNR is enabled as the prediction of defects
or non-defects is emphasized as needed. A solution to this can be offered by a weighted
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Figure 3.17: Validation and test accuracies of Type 1 near-edge/-corner defects. The length
of feature vectors is 9. (a) Illustration of Type 1 near-edge/-corner defects. (b) Validation
and (c) test accuracies.

Figure 3.18: Validation and test accuracies of Type 2 near-edge/-corner defects. The length
of feature vectors is 12. (a) Illustration of Type 2 near-edge/-corner defects. (b) Validation
and (c) test accuracies.

Figure 3.19: Validation and test accuracies of Type 3 near-edge/-corner defects. The length
of feature vectors is 16. (a) Illustration of Type 3 near-edge/-corner defects. (b) Validation
and (c) test accuracies.
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Figure 3.20: Validation and test accuracies of Type 4 near-edge/-corner defects. The length
of feature vectors is 15. (a) Illustration of Type 4 near-edge/-corner defects. (b) Validation
and (c) test accuracies.

Figure 3.21: Validation and test accuracies of Type 5 near-edge/-corner defects. The length
of feature vectors is 20. (a) Illustration of Type 5 near-edge/-corner defects. (b) Validation
and (c) test accuracies.

version of the cost function, expressed as:

J =
n∑

i=1

wiL(Ŷi, Yi) (3.6)

where

wi =

{
w0, Yi = 0

w1, Yi = 1

By tuning the weights w0 and w1, the significance attached to the correct prediction of defects
and non-defects is changed. Concretely, if w0/w1 < 1, accuracy of defects is emphasized; if
w0/w1 > 1, accuracy of non-defects is emphasized; if w0/w1 = 1, defects and non-defects are
equally emphasized, which is the default for all previous ML results. Here, the prediction
accuracies using a weighted cost function with weight ratios w0/w1 = 0.5, 1, 2 are compared.
Figs. 3.23(a–c) show the average test accuracies of one-defect cases. Figs. 3.23(d–f)show
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Figure 3.22: Test accuracies for multiple-defect scenarios. (a) TA, (b) TPR, and (c) TNR as
a function of the grid size a based on three test sets. (d) Average accuracies over all three
test sets as a function of a.

the average test accuracies of multiple-defect cases. In all cases, TPR increases as w0/w1

decreases, while TNR increases as w0/w1 increases. For all three metrics, there is a tradeoff
between TPR and TNR, giving us the opportunity to emphasize one label over another.
Notably, the weight ratio w0/w1 = 2 gives the highest TA. This is because in both one-defect
and multiple-defect test sets, Y = 0 data outnumber Y = 1 data. By applying weighted
cost function, the ability to improve the prediction accuracy of defects while maintaining a
relatively low false positive rate is achieved.

Discussion

Due to the randomized atom removal process of defect creation, most defects assigned to
graphene sheets are unreconstructed single vacancies. Even though unreconstructed single
vacancies have been observed in experiments [91] and studied in other computational work
as the main defect type [205, 227], graphene displays an incredibly rich restructuring capa-
bility which gives rise to reconstructed vacancy defects, for instance, through a Jahn–Teller
distortion [145]. The proposed ML approach is believed to be applicable to all types of
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Figure 3.23: Accuracies when a weighted cost function is used (weight ratios w0/w1 =
0.5, 1, 2). Average (a) TA, (b) TPR, and (c) TNR of three test sets as a function of grid size
a for one-defect graphene sheets. Average (d) TA, (e) TPR, and (f) TNR of three test sets
as a function of grid size a for multiple-defect graphene sheets.

vacancies, because these vacancies give rise to structural anomalies that can cause changes
to local vibration properties. Additionally, the existence of larger defects is not ruled out,
which arise when removed atoms are next to each other (see Fig. 3.24 for an example).

Concluding remarks

In this section, A transferable learning strategy to detect unknown defects in larger graphene
sheets using information obtained from only a smaller graphene system is presented. Trained
by tens of thousands of local vibrational energy distributions in uniformly sized smaller
graphene sheets from MD simulations, the logistic regression model can predict defects in
unseen larger graphene sheets with satisfactory accuracies for both one-defect and multiple-
defect graphene sheets, quantified by three practical metrics: TA, TPR, and TNR. Through
adjusting the weights associated with defects and non-defects in the cost function, an im-
provement in the prediction accuracy of defects is achieved while maintaining a relatively
low false positive rate. The present research sheds light on scalable graphene defect pre-
diction and opens doors for accelerated data-driven defect detection of a broad range of
two-dimensional materials [222].
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Figure 3.24: An example of graphene sheet that contains a larger defect (circled).

3.3 Chemical composition identification for graphene

oxide

GOs have exhibited alluring potential for state-of-the-art applications such as biomedical
devices and functional nanocomposites. Compared to pure graphene, the mechanical prop-
erties of GO are more challenging to model from a theoretical perspective, mainly because
of the profound but implicit influences of the functional groups within. For example, hy-
droxyl groups cause GOs to behave in a brittle manner [165], while epoxide groups may
potentially increase the ductility via a mechanochemical epoxide-to-ether functional group
transformation [171, 181]. In addition, with the same amount of oxygen atoms, different
epoxide-to-hydroxyl group ratios yield diverse ultimate strengths [154]. Last but not least,
the spatial distribution of functional groups triggers specific mechanochemical reactions un-
der certain loading conditions [181], which in turn affect the properties of the GO sheet.
The correlation between collective properties of GO and the amount and types of functional
groups, however, is not well understood.

ML is a potent method to uncover the hidden structure–property relations and to ac-
celerate new material discovery, which has been applied to study nanomaterials of a broad
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variety, including GO. Motevalli et al. used classification, regression, and causal inference
to understand and predict the causes of defects in GO [117]. Motevalli et al. used mul-
tiple clustering ML models to determine representative structures of GO [118]. Amani et
al. used regression models to estimate the temperature-dependent moduli of GO-reinforced
nanocomposites [2]. However, the potential of ML has not been sufficiently used in predict-
ing the degree and type of oxidation, which is one of the most defining and fundamental
features of GO. The investigation of functionalization can shed light on how GOs can be
optimally used in multiple research and technological fields such as flexible electronics, non-
linear optics, gas storage, and lubrication. Some examples are as follows. First, the probe
of oxygen coverage percentage can help determine if the GO of interest is a semiconduc-
tor or an insulator. Carbon atoms comprising of pure graphene are of sp2 hybridization.
Hydroxyl and epoxide groups are both responsible for the hybridization change from sp2

to sp3. A substantial oxygen coverage renders GO insulating, while a low oxygen coverage
makes it a semiconductor [47]. Second, the degree and type of oxidation can be used to
estimate band gaps, which contain information of optical modulation. The combination of
sp2 and sp3 hybridization can break the symmetry and therefore result in band gaps [83].
Third, the knowledge of functional groups can be used to evaluate the applicability of GOs
in gas storage. The reaction between hydroxyl groups and boronic acids can link GO layers
together, forming a layered structure that provides room for gas storage [17]. Fourth, the
degree and type of oxidation can shed light on the friction coefficient of GO-based lubricant
additives. It is shown that GO containing a high percentage of epoxide groups exhibits a
better lubrication ability than GOs with a high content of hydroxyl groups [65]. The above
applications can be much better realized if one can access the functionalization properties
of GO in quantitative details.

In this section, an ML-based strategy is developed to determine the functionalization
properties of monolayer GO sheets, which are quantified by two nondimensional features:
the oxygen-to-carbon atom ratio and the fraction of epoxide groups. Data are prepared based
on the mechanical responses upon a uniaxial tensile load, computed by MD simulation with
a reactive force field. A gradient boosting ML model, which is built up by forming an en-
semble of weak prediction submodels in a stagewise fashion, is trained and used to predict
the functionalization properties of unknown GO configurations. ML features are extracted
from both stress–strain relations and potential energy-related metrics, which successfully
circumvent the uncertainty from the spatial distribution of functional groups. Physical in-
sights into failure mechanisms associated with different functional groups are provided to
rationalize prediction errors. This study demonstrates the power of ML models in uncov-
ering complex, hidden structure–property relations in GO, offering possibilities for material
discovery of a broader range using data-driven approaches.



CHAPTER 3. MACHINE LEARNING FOR GRAPHENE-BASED MATERIALS 79

Results

Molecular modeling

GOs in the present study are configured by following four sequential steps: (1) construction
of a graphene basal plane; (2) assignment of epoxide groups; (3) assignment of hydroxyl
groups; and (4) decoration of carbonyl and carboxyl groups on graphene basal plane edges.
For the graphene basal plane, square-shaped monolayer graphene sheets with a side length
of L = 3 nm are constructed, consisting of 446 carbon atoms in total and 336 non-edge
atoms. For the epoxide group assignment, each epoxide group resides on two neighboring
nonedge carbon atoms and there are 226 such pairs in total in the graphene basal plane.
Additionally, the sp3 hybridization requires that one carbon atom cannot be associated to
two epoxide groups. Herein, Np pairs are randomly picked from all 226 possibilities and pairs
that violate the sp3 hybridization requirement are removed from selection. For the hydroxyl
group assignment, hydroxyl groups are hosted by non-edge sp2 atoms (not associated to any
epoxide group). Na non-edge carbon atoms that are not associated to epoxide groups are
randomly picked to host hydroxyl groups. The numbers of epoxide and hydroxyl groups
assigned to both sides are roughly equal. Lastly, the edges of the graphene basal plane are
decorated with carbonyl and carboxyl groups, where the numbers of both functional groups
obey a uniform distribution U(0, 20) and the locations are random.

To quantify the degree and type of oxidation independent of the absolute GO sheet size,
the following two non-dimensional features are used to label GO sheets: (1) oxygen-to-carbon
atom ratio φO, the ratio between total number of oxygen and carbon atoms φO = NO/NC

where NO and NC are the total number of oxygen and carbon atoms and (2) fraction of
epoxide group φf, the ratio of the number of epoxide groups to the total number of hydroxyl
and epoxide groups φf = N-O-/N-O- + N-OH, where N-O- and N-OH are the total number of
epoxide and hydroxyl functional groups. φO quantifies the intensity of oxidation, while φf

quantifies the relative concentrations of two distinct functional groups. For example, φf → 0
and φf → 1 indicate hydroxyl-rich and epoxide-rich, respectively.

Mechanical responses of various GO sheets upon uniaxial tensile loads are computed by
reactive MD simulations using LAMMPS. ReaxFF potential, a reactive force field, is utilized
to model the interactions among carbon, hydrogen and oxygen atoms in GO [31]. ReaxFF
potential enables the modeling of both non-bonded interactions such as van der Waals and
Coulomb interactions, and bond breaking and formation. Specifically, potential parameters
developed in Ref. [31] are used, which has been proved viable by various studies on the
physical and chemical behavior of graphene systems [28, 170, 13, 198]. A 3D, full atomistic
model is used. Periodic boundary conditions are applied in all three spatial dimensions.
The size of the simulation box is Dx × Dy × Dz = 70 Å × 70 Å × 25 Å, where Dx, Dy,
Dz are the lengths of the box in x, y, z directions, respectively. GO sheet is centered in
the simulation box. The equations of motion are integrated with a timestep of 0.1 fs using
the Verlet algorithm, which ensures the computational stability. The trajectories, velocities,
forces, and energies of all atoms are recorded every 100 timesteps. To simulate tensile loads
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at room temperature, an ensemble of random velocity corresponding to the temperature
T = 300 K is firstly generated throughout all atoms. Then an equilibrium is realized by
running a simulation in the NPT ensemble at the same temperature for 20,000 timesteps.
The loading scenario is simulated in the NVT ensemble at T = 300 K. The unidirectional
in-plane stretch is applied in the zigzag direction based on a deformation-control manner by
assigning displacement at a constant speed to a 3 Å wide stripe at one end, while a 3 Å wide
stripe at the other end is held immobile in all three dimensions. The strain rate of loading
is 1011 s–1.

The structure of GO in Fig. 3.25(a) immediately after full relaxation at 300 K is shown
in Fig. 3.25(b), indicating that GO upon loading is not flat and shows a zigzag sheet-
like structure. First, to validate the simulation setup, the stress–strain curve of a GO
sheet with a side length of L = 3 nm is recorded and compared against a stress–strain
curve in Ref. [181] with L = 3 nm. To draw a fair comparison with the reported results,
following Ref. [181], the fraction of oxidized carbon atoms of all four GO sheets is set as
0.36 and the epoxide-to-hydroxyl functional group ratio is set as 4 : 1. Also, the same
effective thickness te = 0.75 nm is used to calculate the normal stress component in the
zigzag direction σz [181]. The comparison result is shown in Fig. 3.25(c), which exhibits
a good agreement despite not knowing the exact locations of functional groups and the
difference in size. The von Mises stress σ is used for all stress–strain curves in this section
(Eq. 2.3). Next, the effect of GO size is investigated. MD simulations of GOs with side
lengths of 3, 5, 7, and 10 nm, with fixed generic parameters φO ≃ 0.253 and φf ≃ 0.561 are
performed, and the results are shown in Fig. 3.25(d). As can be seen, despite the difference
in size and the uncertainty in functional group distribution, the results agree well in the
general trend and the ultimate strength, indicating the reliability and reasonable dimensional
scalability of the current simulation settings. Despite larger GO sheets (L = 7 nm and L =
10 nm) have smoother stress–strain curves, L = 3 nm enjoys the advantage of much reduced
computational expenses, which makes this choice of GO size more realistic in the preparation
of a large amount of data. This also poses greater challenges to ML implementation to
overcome the fluctuation issue, which is common in an experimental setting. A successful
prediction with L = 3 nm can indicate good performance with noisy data. In addition,
L = 3 nm creates more variations of functional group distribution compared to L = 2 nm in
the reported results [181], which facilitates the generation of more diverse GO configurations
that benefit the training and extrapolation ability of the ML model. The temperature effect
toward the mechanical responses and the stability of GO is also investigated. Stress–strain
curves of GO with parameters φO ≃ 0.253 and φf ≃ 0.561 under various temperatures (100,
200, 300, 400, and 1000 K) are recorded and are shown in Fig. 3.26(a). The results show that
as the temperature increases, GO is slightly softened and the mechanical properties are not
subject to major changes. Fig. 3.26(b) shows the GO structure immediately after relaxation
at T = 1000 K, which suggests that no thermal instability has occurred. To approximate a
realistic setting, the rest of the MD simulations in this section are performed at 300 K.

It is critical that a specific combination of the oxygen-to-carbon atom ratio and the
epoxide-to-hydroxyl group ratio is not sufficient to reflect a single GO configuration because
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Figure 3.25: Schematic of GO sheets and mechanical responses upon tensile loading. (a)
Schematic of the GO sheet with a side length of L. “a” and “z” refer to the armchair and
zigzag directions of the GO basal plane. (b) Shape of the GO sheet upon full relaxation
at a temperature of 300 K. (c) Comparison between the stress–strain curves of the present
MD simulation and the result in ref. (26) The inset shows the GO structure used in this
simulation case. (d) Stress–strain curves of GO sheets of various sizes with fixed parameters
φO ≃ 0.253 and φf ≃ 0.561.
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Figure 3.26: Thermal effect on the mechanical properties of GO sheets. (a) Stress-strain
curves of GO sheet under various temperatures. (f) GO structure immediately after relax-
ation at T = 1000 K.

the parameter pair does not possess information of locations of functional groups. In fact,
there exists an effectively infinite number of different functional group spatial distributions,
whose effect is non-trivial. The effect of distribution can exist when investigating multiple
randomly generated GO sheets with the same φO and φf. To this end, four GO sheets with
φO ≃ 0.253 and φf ≃ 0.561 but randomly diverse functional group distributions are simu-
lated, of which the structures after relaxation are shown in Figs. 3.27(a–d). The stress–strain
curves of these GO sheets are shown in Fig. 3.27(e), which indicates that the functional group
distribution has a profound effect on the mechanical properties of GO. Although the ultimate
strengths are roughly on the same level, the ductility and curve shape differ dramatically.
This finding implies that one unique combination of φO and φf does not yield one unique
mechanical response. Therefore, to reliably predict φO and φf using mechanical responses
of GO, more useful features need to be used besides the ones extracted from stress–strain
relations.

To this end, the energy-related phenomena are visited. The system potential energy
evolutions of the four GO sheets mentioned above are computed, as shown in Fig. 3.27(f). It is
shown that there are substantial differences in these curves. GO sheets with the same φO and
φf are characterized by distinct starting energy (energy at thermal vibration before subject
to loading), maximum energy increase, and the general curve shape. It can be assumed
that these differences in strain–strain relations and system potential energy evolutions stem
from different functional group distributions. It is envisioned that by extracting features
from both stress–strain curves and potential energy evolutions, a unique (or approximately
unique) combination of φO and φf may be obtained, which makes ML-based prediction
possible. If so, the issue of random functional group spatial distribution can be circumvented.
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Figure 3.27: Mechanical responses of four GO sheets with φO ≃ 0.253 and φf ≃ 0.561 and
random spatial distributions of functional groups. (a–d) Structures of four exemplar GOs.
(e) Stress–strain curves and (f) system potential energy evolutions.

It is worth noting that energy-related quantities can be more challenging to measure in
experiments compared to mechanical stress and strain. To this end, when extracting features
from potential energy curves, the experimental viability needs to be taken into account.

Machine learning

Our ML model implementation using computational tensile test results can be broken down
into the following three phases: (1) sample preparation, (2) feature extraction, and (3)
model training and testing. For sample preparation, 1570 sample instances of mechanical
responses of GO are computed for training and validation, while 100 sample instances are
reserved for testing. The distributions of all 1670 sample points on the N-O--N-OH plane
and the φO-φf plane are shown in Fig. 3.28. While φf naturally ranges from 0 to 1, N-O-

ranges from 0.1 to 0.8. In an experimental setting, N-O- varies from 0.25 to 0.75 [83], which
has been covered by the range of the sample space. Data for training and validation are
randomly shuffled together and then separated into Ntraining = 1470 and Nvalidation = 100
before use, where Ntraining and Nvalidation are the number of training and validation data.
During training, the shuffle-and-split process is repeated 20 times where each time is based
on a different random seed. The aim of this practice is to avoid good results by chance
and to ensure better generalized results. Test data totaling Ntest = 100 are not involved in
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Figure 3.28: Distributions of all 1,670 sample points on (a) the N-O--N-OH plane and (b) the
φO-φf plane. the maximum N-OH = 336 is achieved when N-O- = 0 and all 336 non-edge
atoms are functionalized by hydroxyl groups, resulting in N-OH = 336. The estimation of
maximum N-O- is more complex, because the order of assigning epoxides on pairs affect the
removal due to violating physics. When all 226 potential sites are pre-selected with multiple
arrangements, the maximum N-O- is close to 100. It is noteworthy that both of the extreme
cases above are extremely rare in real GOs. The purpose is to cover all possibilities.

the shuffling with training and validation data, implying that the test data represent future
unseen configurations. A good test accuracy can indicate promising extrapolation ability of
the ML model.

For feature extraction, the features to extract from both stress–strain relations and poten-
tial energy properties comprise of (1) ultimate strength σu, (2) strain at ultimate strength ϵu,
and (3) total potential energy at room-temperature-free vibration UV (the starting energy of
potential energy evolution). In an experimental setting, vibrational energy distributions can
be measured using a scanning force microscope [58] or by interferometry [16], after which the
total potential energy can be computed. From a physical point of view, the above features
can be related to the target properties, namely, the oxygen-to-carbon atom ratio and the
relative concentrations of functional groups, in the following ways. First, ultimate strength
σu is dependent on the sheer amount and types of bond interactions due to functionaliza-
tion. For a pure graphene, the ultimate strength is dictated only by carbon–carbon (C-C)
bonds formed by sp2 carbon atoms. Oxidation not only adds new carbon–oxygen (C-O)
covalent bond interactions but also disturbs the sp2 carbon atom lattice by introducing sp3

hybridization, thus affecting the ultimate strength. Second, strain at ultimate strength ϵu
is impacted by both the amount of hydroxyl and epoxide groups, where the former tends to
result in brittleness and the latter can trigger mechanochemical epoxide-to-ether functional
group transformation to enhance ductility. The coexistence of two functional groups gives
rise to uncertainty. Third, the total potential energy at room-temperature-free vibration UV

is highly related to molecular weight and therefore to oxygen percentage. The general trend
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Figure 3.29: Extracted features as a function of φO and φf. (a) σu, (b) ϵu, and (c) UV as a
function of φO and φf. Data are from the training and the validation sets.

is that the higher the oxygen percentage, the higher the molecular weight, the lower the
potential energy when GO is at rest. In addition, the relative concentrations of functional
groups also play an implicit role in affecting the potential energy. σu, ϵu, and UV as a func-
tion of φO and φf are shown in Fig. 3.29, suggesting that UV is the strongest indicator of
GO functionalization, followed by σu and ϵu.

The procedure of model training and testing is described as follows. For the ith sample
instance, the sample vector can be formulated as xi = [σu,i, εu,i, UV,i]

T ∈ R3 and the label
vector can be formulated as yi = [φO,i, φf,i]

T ∈ R2. A gradient boosting ML model, which is
built by forming an ensemble of weak prediction sub-models in a stage-wise fashion, is used
to map the above features to φO and φf. Tunable hyperparameters include learning rate
(shrinkage factor) α and the number of boosting stage to perform M . Algorithmic details of
the gradient boosting model are provided in Alg. 2. The framework of ML implementation
is summarized in the flow chart shown in Fig. 3.30. The coefficient of determination R2 as
well as the mean squared error (MSE) are used as metrics to quantify the model predictions.
Particularly for the training session, the means of R2 and MSE over 20 random shuffle-
and-splits, denoted as R2

avg and MSEavg, are used as metrics. The hyperparameter tuning
results of φO and φf in the training session are shown in Fig. 3.31. The results provide an
optimal hyperparameter combination α∗ = 0.11 and M∗ = 70, scoring R2

avg = 0.980 and
MSEavg = 0.000488 for φO and R2

avg = 0.906 and MSEavg = 0.00661 for φf. Convergence
with respect to the size of the training data set is shown by plotting R2

avg and MSEavg of
φO and φf on the validation data as a function of the number of training data, as shown in
Figs. 3.32 and 3.33.

After the training process, predictions are performed on the reserved test set using optimal
hyperparameters α∗ and M∗, which yields R2 = 0.978 and MSE = 0.000499 for φO and
R2 = 0.870 and MSE = 0.0103 for φf, slightly inferior to the performance on the validation
set. Prediction results of φO and φf are shown in Fig. 3.34. The differences between the
predicted label and the true label (denoted as dO = φO− φ̂O and df = φf− φ̂f, where φ̂O and
φ̂f are the predicted labels) of all 100 sample points in the test set are plotted against the
true labels, as shown in Figs. 3.34(a) and (b). For φO, the difference between the predicted
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Algorithm 2 Gradient boosting

1: Initialize the algorithm with a constant value ρ. F0 = argmin
ρ

∑n
i=1 L(yi,ρ), where Fm

is the ML model at mth boosting stage of a total of M stages; yi is the label vector of
ith sample point; L is a differentiable loss function of choice, for example, squared-error
loss L(y,F) = ∥y − F∥22/2; n = Ntraining.

2: For m = 1 to M do:
3: Pseudo-residual rim = −[∂L(yi,F(xi))

∂F(xi)
]F(x)=Fm−1(x) for i = 1 · · ·n.

4: Fit a regression tree hm(x) to pseudo-residuals. Train hm(x) using the set (xi, rim),
i = 1 · · ·n.

5: ρm = argmin
ρ

∑n
i=1 L(yi,Fm−1(x) + ρ ◦ hm(xi)).

6: Fm(x) = Fm−1(x) + ρ ◦ hm(x).
7: End For.
8: Output FM(x) as the final trained model.
9: Predict labels of test data ŷi = FM(zi), i = 1 · · ·n′, where n′ = Ntest.

Figure 3.30: Flow-chart presentation of the ML procedure.
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Figure 3.31: Hyperparameter tuning results of gradient boosting. R2
avg as a function of (a)

M and (b) α on validation data.

Figure 3.32: MSEavg of φO and φf on the validation data as a function of Ntraining. Results
of (a) φO and (b) φf. Hyperparameters of gradient boosting in this case are α∗ = 0.11 and
M∗ = 70
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Figure 3.33: R2
avg of φO and φf on the validation data as a function of Ntraining. Hyperpa-

rameters of gradient boosting in this case are α∗ = 0.11 and M∗ = 70

label and the true label for most sample points ranges within ±0.06, and for φf, the difference
for most sample points ranges within ±0.02 (excluding one sample point with a true label
φf = 1.0. For both labels, no dependency of prediction error on the absolute value of true
label is detected. Based on the results of Figs. 3.34(a) and (b), histograms of |dO| and df
are constructed, as shown in Figs. 3.34(c) and (d). For φO, 63% of GO sheets achieved an
error of < 1%, while 99% of GO sheets achieved an error of < 5%. For φf, 58% of GO sheets
achieved an error of < 5%, while 95% of GO sheets achieved an error of < 20%.

Additionally, a KRR model (Alg. 1) is used to make predictions. Tunable hyperparam-
eters include polynomial kernel degree p and regularization parameter λ. The hyperparam-
eter tuning results of φO and φf in the training session are presented in Fig. 3.35. It is
observed that for both φO and φf, R

2
avg and MSEavg are rather insensitive to p and is a

monotonic increasing function of λ. Therefore, an optimal hyperparameter choice is a small
λ plus a moderate p, for example, λ∗ = 10−7 and p∗ = 3, which scores R2

avg = 0.983 and
MSEavg = 0.000405 for φO, and R2

avg = 0.829 and MSEavg = 0.0103 for φf. Using above
hyperparameters λ∗ and p∗ , KRR scores R2 = 0.978 and MSE = 0.000499 for φO, and
R2 = 0.870 and MSE = 0.0103 for φf on the test set. While having achieved a compara-
ble performance predicting φO with respect to gradient boosting, KRR does a worse job in
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Figure 3.34: Evaluation of ML prediction accuracies of φO and φf on the test data. Scatter
plots of (a) dO against φO and (b) df against φf. Histograms of (c) |dO| and (d) |df|. The
data point with a df of ∼ −0.7 is not represented in (d).

predicting φf. Setting λ = 0 and p = 1, KRR degenerates to a multivariate least-squares
regression, which scores R2 = 0.983 and MSE = 0.000380 for φO, and R2 = 0.747 and
MSE = 0.0202 for φf on the test set. Despite a still competent prediction on φO, pre-
diction on φf has deteriorated. This indicates that ML techniques have offered significant
improvement over ordinary regression.

Discussion

One observation regarding the prediction of φO and φf is that the former can be more
accurately predicted with models varying from gradient boosting to multivariate least squares
regression, while the latter is far more demanding. In fact, using only UV, the gradient
boosting model can yield a R2 of ∼ 0.9, as shown in Fig. 3.36. A R2 close to 1 can be
achieved if all features are used for both gradient boosting and KRR models. The rationale
is that φO is directly related to the molecular weight of GO, which poses a major effect on the
potential energy especially when GO is at rest (when UV is extracted). Assisted by features
related to mechanical stress and strain, φO can be accurately pinned down. Meanwhile,
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Figure 3.35: Hyperparameter tuning results of KRR. R2
avg as a function of (a) λ and (b) p

on validation data.

φf contains little molecular weight information. The composition of functional groups does
not have a significant impact on the potential energy as molecular weight, reflected by the
failure to predict φf with only UV. Instead, φf dictates the types of bonding interaction,
making the difference between hydroxyl and epoxide group properties to play a major role
under different φf values. For example, the difference in failure mechanisms of hydroxyl and
epoxide groups begins to take effect. Hydroxyl groups lead to a brittle failure mechanism
where only C-C bonds are broken. Each hydroxyl group attaches to only one carbon atom on
the basal plane, and the failure associated with a hydroxyl group happens only to one of the
C-C bonds in its immediate vicinity. The C-O bonds in hydroxyl groups remain intact at all
times. Conversely, epoxide groups can result in a progressive, ductile failure. Each epoxide
group attaches to two bonded carbon atoms on the basal plane. If stress causes the bond
between these two carbon atoms to break, the two initially bonded carbon atoms can still be
connected by two C-O bonds, transforming the epoxide group to a new ether group. These
two C-O bonds can continue to stretch and bear loads. After the stress reaches the C-O bond
strength, one of the two C-O bonds will break and result in the failure of the local area. It
is possible that the C-O bond strength is never reached. This happens when a catastrophic
failure of the GO sheet has already taken place caused by crack propagation elsewhere. In
addition, the mechanical properties of epoxide groups are sensitive to orientation. If the
two bonded carbon atoms are aligned in the stretching direction, the epoxide group is more
likely to fail; if the two bonded carbon atoms are perpendicular to the stretch, the epoxide
group is less likely to fail. The above mechanisms together with random functional group
spatial distributions increase the problem complexity drastically. One possibility to tackle
the elevated complexity is to train neural networks with entire stress–strain curves as the
input vectors, inspired by Ref. [92].
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Figure 3.36: R2
avg P of φO and φf on the validation data as a function of Ntraining where the

feature is only UV. Results of (a) φO and (b) φf. Hyperparameters of gradient boosting in
this case are α∗ = 0.11 and M∗ = 70.

Concluding remarks

In this section, an ML strategy to determine the functional group contents of monolayer
GO sheets is developed. By constructing a feature space with stress-based and energy-based
mechanical responses computed by reactive MD simulations, the oxygen-to-carbon atom
ratio and the relative concentrations of epoxide and hydroxyl groups in GO are predicted by
gradient boosting. Despite the uncertainty brought by the random, uncontrolled functional
group spatial distributions, the feature selection from both stress–strain relation and system
potential energy enables the model to overcome this issue. The best prediction results
of the reserved test data show that for the oxygen-to-carbon atom ratio, all test samples
have achieved a prediction error of < 5%, while for the fraction of epoxide groups, 95%
of the test samples have achieved a prediction error of < 20%. The difference in prediction
accuracies between the oxygen coverage and the functional group composition is rationalized
by GO molecular mechanisms. The proposed data-driven strategy may also shed light on
the predictive modeling and identification of functionalized two-dimensional materials of a
broad variety [217].
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3.4 Graphene oxide design using deep reinforcement

learning

The total amount and the relative ratio of functional groups dictate the chemical compo-
sition, which plays a central role in influencing the mechanical properties of GO. However,
the mechanical property of a GO cannot be accurately inferred from only its chemical com-
position. Given one specific chemical composition, there can exhibit a range of GO me-
chanical properties, due to the variability in the functional group spatial distribution on the
GBP. Research has shown that the functional group distribution can impact GO properties
such as plasticity and ductility due to the mechanochemical interactions between functional
groups [181]. One mechanical property of interest is toughness, defined as the amount of
energy per unit volume that a material can absorb before rupturing. It quantifies the ability
of a material to absorb energy and plastically deform without fracturing, thus requiring a
balance of strength and ductility. GOs with high toughness are much desired, which can po-
tentially enhance the performances of many GO-based applications such as nanocomposites,
flexible electronics, among others.

Given a specific chemical composition such as the oxygen-to-carbon ratio and the relative
concentrations of functional groups, the goal is to maximize the toughness of GO by altering
only the functional group spatial distribution. The existing literature has not sufficiently
addressed this problem, and presumes that the effect of functional group distribution is sec-
ondary. From the perspective of optimization, it is a challenging task and has the following
difficulties. First, optimizing over functional group distribution is in essence a combinatorial
optimization problem, which can be NP-hard and analytically intractable, especially when
the problem dimension is large. Second, the problem involves complex functional group
interactions that evolve over time. There is little intuition about where to place functional
groups at the beginning such that the GO will benefit in the long run. Third, both GO sim-
ulations and experiments can be expensive. Hence, an effective, data-efficient optimization
strategy is highly valued.

Reinforcement learning (RL), a mathematical formalism for learning-based decision mak-
ing, describes an approach where an agent performs sequential actions based on interactions
with an environment so as to yield the most cumulative rewards25. When integrated with
deep neural networks and advanced computing, the capability of RL is greatly amplified:
Deep neural networks can process high-dimensional input, while RL can choose complex
actions. Deep RL applications are numerous. One of the most famous examples is the
achievement of superhuman performance in the game Go, which is once considered an insur-
mountable task given the complexity of more than 10140 possible solutions. In the context of
materials science, deep RL has been gaining ground in molecule discovery and microstructure
design. Moreover, deep RL also has an advantage in solving difficult combinatorial optimiza-
tion problems. For these problems, many traditional algorithms involve using hand-crafted
heuristics that sequentially construct a solution. Nevertheless, the design of such heuristics
can be a daunting task that requires domain expertise, and can often be suboptimal due
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to the difficult combinatorial nature of the problems. Therefore, the idea to infer heuris-
tics without human intervention is enticing. Deep RL has shown promise to learn efficient
heurists to tackle these problems, and has been used to solve combinatorial optimization
problems such as the Traveling Salesman Problem, the Maximum Cut Problem, and the Bin
Packing Problem.

In this Section, a deep RL framework is developed to design mechanically tough GOs by
optimizing over the functional group distribution. In the deep RL framework, the task of
functional group assignment is formulated as a sequential (Markov) decision process, where
the state is the current functional group distribution on the GBP and the action is to assign a
new functional group. A policy-gradient RL model is employed to maximize GO toughness,
which is calculated by reactive MD simulations. Experiments of four difficulties are designed
to gradually challenge the deep RL model, and each difficulty consists of two experiments
featuring two oxidation levels. The deep RL model should have the following characteristics:
(1) stable generation of mechanically tough GO configurations; (2) good scalability in terms
of functional group density and GBP size; (3) tractable computation given the large design
space.

Results

Molecular modeling

In the present study, a majority of GOs are based on GBPs that comprise a total of 94 carbon
atoms, where 28 functional group-free atoms near two opposite edges are clamped to enforce
displacement, and 66 free-to-move atoms in the middle are active hosts for functional groups
(referred to as the host atoms hereafter, and the number of these atoms are denoted by nc), as
shown in Fig. 3.37(a). Later in more complex experiments a larger GBP that is roughly twice
the size will be used. In the GO model only hydroxyl and epoxide groups are considered,
and less important carbonyl and carboxyl groups on GBP edges are omitted. Fig. 3.37(b)
shows an example GO model and illustrates the molecular structures of hydroxyl and epoxide
groups. Each hydroxyl group resides on only one carbon atom, while each epoxide group
takes on two neighboring carbon atoms. This difference adds to the optimization difficulty
when both functional groups are present on the GBP. In addition, these functional groups
can be attached to either side of the GBP. For the loading condition, the GO sheet is
subjected to uniaxial tensile loading with a constant loading speed in the zigzag direction
of the GBP. The mechanical responses of GOs are computed by reactive MD simulations,
which are favorable in modeling the failure of nanomaterials because they account for bond
breaking and formation.

ReaxFF potential, a reactive force field, is used to model the interactions among carbon,
hydrogen and oxygen atoms in GOs. ReaxFF potential models both non-bonded interac-
tions such as van der Waals and Coulomb interactions, and bond breaking and formation.
Specifically, potential parameters developed in Ref. [31] are used. Periodic boundary condi-
tions are applied in all three spatial dimensions. The size of the simulation box is 58.5 Å
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by 21.4 Å by 15.2 Å for Easy, Medium, and Hard experiments, and is 63.3 Å by 25.6 Å by
15.2 Å for Extra Hard experiments (to be detailed later). The equations of motion are inte-
grated with a timestep of 0.1 fs using the Verlet algorithm, which ensures the computational
stability. The trajectories, velocities, forces, and energies of all atoms are recorded every 10
timesteps. To simulate tensile loading at room temperature, an ensemble of random velocity
corresponding to the temperature 300 K is firstly generated throughout all atoms. Then an
equilibrium is realized by running a simulation in the NPT ensemble with a Nose–Hoover
thermostat at the same temperature for 5000 timesteps. The loading scenario is simulated
in the NVT ensemble at 300 K. The unidirectional in-plane tensile load is applied along the
zigzag direction based on a deformation-control manner until failure. The loading speed is
1000 m · s−1. The components of stress tensor [σ] are calculated by Eqs. 2.2 and 2.3. In this
study, te = 7.76 Å is used, the inter-layer spacing of GOs measured in experiments.

It is observed in simulations that given the same amount of hydroxyl and epoxide groups,
different functional group distributions can result in substantially different stress-strain rela-
tions and failure behaviors. Examples are given in Figs. 3.37(c) and (d). GOs in Figs. 3.37(c)
and (d) have the exact same amount of hydroxyl and epoxide groups, but Fig. 3.37(c) shows
a brittle rupture while Fig. 3.37(d) shows a more ductile failure that involves considerable
new bond formation and configuration change. Fig. 3.37(e) compares the stress-strain curves
of the two GOs above. It is shown that GO in Fig. 3.37(d) is higher in both ultimate stress
and failure strain, suggesting superior mechanical properties. The toughness of a material
can be expressed as u =

∫ ϵf
0
σdϵ, where u is toughness; ϵ is strain; ϵf is the strain upon

failure; σ is stress. By the definition above, the toughness equals the area under the stress-
strain curve. It is calculated that the toughness of GO in Fig. 3.37(d) is 2.1 times that
of GO in Fig. 3.37(c). This amount of difference in toughness suggests that the functional
group distribution potentially has a profound impact on mechanical properties, and that it
is worthwhile to optimize GO mechanical properties over functional group distribution.

Deep reinforcement learning

The optimization problem to solve is given a fixed number of hydroxyl and epoxide groups,
how to distribute these functional groups on the GBP so as to maximize the toughness of
GO. Instead of treating the optimization problem as choosing the best functional group
distribution in one shot, the functional group assigning problem is modeled as a sequential
decision process which RL is used to solve. More specifically, each individual functional
group is assigned to a location on the GBP at each of a sequence of discrete time steps
t = 0, 1, 2, ..., T , where T equals the total number of functional groups. From here on,
functional group distribution is referred to as functional group locations to emphasize the
discreteness of the RL process and not to confuse it with probability distribution. At each
t, the RL agent receives the representation of the environment’s state st ∈ S, where S is the
state space that comprises all possible states. In this case, st is the current functional group
locations at time step t, and S denotes the set of all possible functional group locations on the
GBP. st is constructed as a one-hot encoded vector, of which the length equals the number of
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Figure 3.37: GO schematics and mechanical responses. (a) Schematic of GBP, where red
atoms (66 in total) are hosts for functional groups while gray atoms are functional group-
free atoms on which the tensile loading is exerted. Arrows show the loading direction.
(b) Illustrations of hydroxyl and epoxide groups, where green and blue atoms are oxygen
and hydrogen atoms, respectively. (c) Fracture of a low-toughness GO under tension. (d)
Fracture of a high-toughness GO under tension. (e) Stress-strain curves of GOs in (c) and
(d).

all possible spots for functional groups on the GBP. For example, if only hydroxyl groups are
assigned to only one side of GBP that comprises 66 host atoms (one of the experiments to be
introduced later), the length of st is 66 since there are 66 spots in total for hydroxyl groups.
If both hydroxyl and epoxide groups are assigned, the length of st will increase to account for
all possible spots for epoxide groups. If the ith spot has been assigned a functional group,
the value of the ith entry of st, st[i], is 1; otherwise, st[i] is 0. The number of 1’s in st equals
the number of functional groups that have already been assigned at time step t.

After receiving a state st, the RL agent selects an action at ∈ A(st), where A(st) is the set
of legal actions given state st. In this case, at is to assign a functional group to a functional
group spot on the GBP, and A(st) is the set of all available functional group spots left given
st. at is also a one-hot encoded vector, of which the length equals the number of possible
spots for assigning a specific type of functional groups. In the RL framework, at is different
from st in that at only accounts for one specific type of functional group (either hydroxyl
or epoxide group) while st accounts for both types. If the action is to assign a functional
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Table 3.1: Neural network input and output dimensions for all experiment difficulties. For
Hard and Extra Hard output, the first number refers to the hydroxyl network and the second
number refers to the epoxide network.

Easy Medium Hard Extra Hard
input (st) 66 132 308 570

output (π(·|st)) 66 132 132; 176 240; 330

Table 3.2: Neural network parameters for all experiments.

Easy Medium Hard Extra Hard
low high low high low high low high

hidden layer number 2 2 2 2 2 2 2 2
hidden layer size 200 400 300 600 600 800 800 800

initial learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3 1e-3

group to ith spot among all possible spots, at[i] = 1. Because each action is restricted to the
assignment of one functional group, there will only be one 1 entry in at. At each time step, the
RL agent maps the current state to probability distribution over all actions. This mapping
is called a policy, denoted as πθ, where πθ(at|st) is the probability that the selecting the
action at if the state is st under the policy parameter θ, i.e., πθ(at|st) = P(at|st; θ). Because
of the complex nature of the functional group assignment task, in the present work neural
networks are used to model the policy πθ, where θ is the neural network parameters including
weights and biases. Fully connected neural networks of various sizes and ReLU activations
are used. At the last layer a fully connected layer is used followed by a softmax activation
which outputs the probability distributions of actions, as a way to address the exploration-
versus-exploitation dilemma. The input and output dimensions in different experiments are
summarized in Table 3.1.

Next the probabilities of selecting invalid actions are set zero and the distribution is re-
normalized such that the sum of the probabilities of all legal actions at each time step equals
1. An Adam optimizer is used. Learning rate shrinks by a factor of two every 500 iterations,
but is set no smaller than 5e-5. The sizes and initial learning rates used in all experiments
are summarized in Table 3.2. Weights and biases are initialized from U(−1/

√
din, 1/

√
din),

where U denotes a uniform distribution, and din denotes the dimensionality of the input for
each layer.

In addition, at is strictly enforced by the hybridization condition of host atoms on the
GBP, which requires that one host atom can be only associated with one functional group.
Therefore, after each functional group assignment, one or more actions will become infeasible
for the next time step, and the possibilities of selecting these actions will be set to zero. After
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taking an action at at state st, the agent enters a new state st+1, and this process is called
a state transition. In the context of the present research, after assigning a functional group
to the current GO, a new GO is obtained. State transitioning function f(s, a, ξ) defines
the successor state after selecting action a in a state s and random input ξ. In the present
research the state transitions are deterministic, f(s, a, ξ) = f(s, a). The state transition
process involving policy network and action is illustrated in Fig. 3.38(a). A trajectory is
formulated as T = {s0, a0, s1, a1, ..., sT−1, aT−1, sT}, and GO configurations throughout a
whole example trajectory are shown in Fig. 3.38(b). Notably, these states have the Markov
property, where the future states depend only upon the current state, not on the past states,
i.e., P(st+1|st, st−1, ..., s1, s0) = P(st+1|st). The functional group positions on the GBP serves
as a Markov state which summarizes the functional group assignment history that has led
up to it. Upon entering a new state st+1, the RL agent also receives a numerical reward
rt+1 = r(st) ∈ R. The reward is crafted as:

r(st) =

{
0 t < T

û(st) t = T
(3.7)

where û(st) is standardized toughness given by

û(st) =
u(st)− µu

σu

(3.8)

where µu and σu are the mean and the standard deviation of random GOs. The goal of RL
is to maximize the expected return, where the return is a function of the reward sequence.
However, based on the reward setting above, the agent will only receive a non-zero reward
at the terminal step. This is inspired by the AlphaGo research where the agent only receives
a non-zero reward when the game ends: r = 1 if the agent wins the game; r = −1 if the
agent loses the game [152]. In this study, policy gradient algorithms are used to maximize
the expected return, which directly optimizes a parametrized policy via gradient descent.
Concretely, for a policy πθ(a|s) parametrized by θ, the change of parameter after each episode
(sampling a full trajectory T ) is given by

∆θ =
∂

∂θ

(
T∑
t=1

log πθ(at|st)

)(
T∑
t=1

r(st)

)
(3.9)

The parameter update follows θ ← θ + α∆θ, where α is the current learning rate.
To conduct GO optimization using RL, experiment complexity increases progressively

and four levels of difficulty are designed: Easy, Medium, Hard, and Extra Hard. For Easy
experiments, only hydroxyl groups are assigned to only one side of the GBP. For Medium
experiments, only hydroxyl groups are assigned to the GBP, but they can be assigned to
both sides of the GBP. Medium experiments are more complex than Easy experiments in
that the state space and the action space are doubled in size. For Hard experiments, both
hydroxyl and epoxide groups are assigned to the GBP, and they can be assigned to both
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Figure 3.38: Deep RL state transition and trajectory. (a) Illustration of deep RL policy and
state transition. (b) An example full trajectory.

Table 3.3: Experiment difficulty descriptions.

Difficulty Description
Easy Assigning only hydroxyl groups on only one side of the GBP

Medium Assigning only hydroxyl groups on both sides of the GBP
Hard Assigning hydroxyl and epoxide groups on both sides of the GBP

Extra Hard Assigning hydroxyl and epoxide groups on both sides of a larger GBP

sides of the GBP. The settings of Hard experiments resemble GOs in reality and involve
competition between hydroxyl and epoxide groups. Extra Hard experiments are similar
to Hard experiments but a larger GBP is used, consisting of 120 functional group hosts
compared with 66 in all previous experiments. The descriptions of all experiment difficulties
are summarized in Table 3.3.

In addition, each difficulty consists of two oxidation levels: low and high, where the former
has an oxygen-to-carbon ratio around 15% while the latter doubles that. The Extra Hard
difficulty is used to test the scalability in terms of the GO size, while the different oxidation
levels are for the scalability with respect to the functional group density. In summary, there
are 8 different experiments in total that challenge the deep RL algorithms, and the result of
each experiment is evaluated based on 4 different random seeds. The numbers of hydroxyl
and epoxide groups, and host atoms are summarized in Table 3.4.

In all experiment, illegal actions can be simply stated as assigning a functional group
to an already occupied carbon atom on the GBP. However, as the difficulty increases, the
elimination of illegal actions becomes an increasingly delicate process. For Easy experiments,
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Table 3.4: Summary of the number of hydroxyl groups nh, the number of epoxide groups ne,
and the number of carbon atoms that are hosts for functional groups n for all experiments.

Easy Medium Hard Extra Hard
nh ne nc nh ne nc nh ne nc nh ne nc

low oxidation 10 0 66 10 0 66 5 4 66 9 8 120
high oxidation 20 0 66 20 0 66 10 8 66 18 16 120

Table 3.5: Summary of statistics of random GOs in all experiments (unit: GPa).

Easy Medium Hard Extra Hard
µu σu µu σu µu σu µu σu

low oxidation 7.814 1.299 7.668 1.259 7.120 1.326 8.108 1.340
high oxidation 7.694 1.368 7.245 1.355 6.236 1.249 7.115 1.310

because the lengths of one-hot encoded st and at are the same and equal to the number of
the host atoms, nc. Invalid actions can be eliminated by simply setting at[i] = 0 where
st[i] = 1, i ∈ [0, 1, ..., nc − 1]. For Medium experiments, the lengths of st and at are both
equal to 2nc. If a host atom has been assigned a hydroxyl group regardless of which side of
the GBP the hydroxyl group is on, assigning a hydroxyl group to this host atom from either
side of the GBP is an invalid action. Therefore, the elimination of invalid actions can be
done by setting at[i] = 0 and at[i + nc] = 0 where st[i] = 1, i ∈ [0, 1, ..., nc − 1], and setting
at[i] = 0 and at[i− nc] = 0 where st[i] = 1, i ∈ [nc, nc + 1, ..., 2nc − 1]. For Hard and Extra
Hard experiments where both hydroxyl and epoxide groups are involved, the elimination of
invalid action is more complex. The general approach is to keep track of the atom indices
involved in previously assigned functional groups and determine invalid actions based on
which functional group to assign next. To computed the reward formulated in Eq. 3.7, the
mean µ and σ of random GO configurations need to be calculated. The statistics of 2000
random GOs in all experiments are summarized in Table 3.5.

The algorithm also varies with experiments. For Easy and Medium experiments, only
one policy network πθ is used to map the state to a probability distribution of all legal
actions, i.e, assigning a hydroxyl group to an available spot. However, for Hard and Extra
Hard experiments, two policy networks are needed to assign two types of functional groups.
The networks for hydroxyl groups and epoxide groups are denoted by πh

θ and πe
ρ, where

θ and ρ are respective network parameters. Next, the sequence of assigning hydroxyl and
epoxide groups needs to be decided on. Because a non-zero reward is observed only at the
terminal step, only the network that assigns the last functional group will get its parameters
updated via backpropagation. Therefore, the assignment sequence cannot be a determin-
istic one since both networks need to be improved. To this end, a Bernoulli distribution
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Bernoulli(mh/(mh +me)) is used to sample the index of network used at each step, where
mh and me are the numbers of hydroxyl and epoxide groups left to assign at the current time
step. This approach randomizes the sequence of functional group assignment in each episode
and give both networks an opportunity to update parameters. The pseudo-codes of these
two policy gradient algorithms are summarized in Algs. 3 and 4. Fig. 3.39 shows the deep
RL optimization results for all eight experiments. The numerical value of the return repre-
sents how many standard deviations the design is above the mean of random GOs with the
same amount of functional groups (summarized in Table 3.5). It is shown in Figs. 3.39(a-c)
that the final returns in the Easy, Medium and Hard experiments reach an average return
around 3, suggesting that the RL generated GO functional group distributions have a higher
toughness than roughly 99.87% of all GO configurations. In the Extra Hard experiments, the
model achieves returns above 2, thus beating 97.73% of all GOs (Fig. 3.39(d)). In addition,
all experiments reach a local maximum within only 5000 episodes (no more than 5000 MD
simulations are run for each experiment), which is much smaller than the number of possible
GO configurations. For the Easy difficulty, the low-oxidation and high-oxidation experiments
have C10(66) = 2.1× 1011 and C20(66) = 4.1× 1016 possible functional group arrangements,
and there are even much more arrangement possibilities for more difficult experiments. Last
but not least, good performances in experiments of different oxidation levels and the Extra
hard experiments suggests that out RL design approach is scalable in terms of the functional
group density and the GO size. The distribution histograms of the RL design within first
2000 episodes (to compare with the distribution of 2000 random GOs) and full 5000 episodes
are provided in Fig. 3.40.

Algorithm 3 Policy gradient for Easy and Medium experiments

Require: nh > 0, ne = 0 ▷ only hydroxyl groups
1: initialize πθ

2: while TRUE do
3: initialize zero s0 vector and empty list L
4: T ← nh

5: for t = 0, ..., T − 1 do
6: obtain action distribution πθ(·|st) ▷ feed st to policy network
7: set invalid action probabilities to zero
8: re-scale action distribution πθ(·|st)
9: at ← πθ(·|st).sample() ▷ sample an action from action distribution
10: append tuple (at, πθ (·|st)) to L
11: st+1 ← st + at ▷ update state with action
12: end for
13: collect terminal reward r(sT ) ▷ run MD simulation

14: ∆θ = ∂
∂θ

(∑T−1
t=0 log πθ(at|st)

)
r(sT )

15: θ ← θ − α∆θ
16: end while
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Algorithm 4 Policy gradient for Hard and Extra Hard experiments

Require: nh > 0, ne > 0 ▷ both hydroxyl and epoxide groups
1: initialize πh

θ and πe
ρ

2: while TRUE do
3: initialize zero s0 vector and empty lists Lh and Le

4: mh ← nh, me ← ne

5: t← 0
6: while mh +me > 0 do
7: inet ← Bernoulli(mh/(mh +me)).sample() ▷ choose a neural network
8: if inet == 1 then
9: π ← πh

θ , mh ← mh − 1
10: else
11: π ← πe

ρ, me ← me − 1
12: end if
13: obtain action distribution π(·|st) ▷ feed st to policy network
14: set invalid action probabilities to zero
15: re-scale action distribution π(·|st)
16: at ← πθ(·|st).sample() ▷ sample an action from action distribution
17: if inet == 1 then
18: append tuple (st, π (·|st), t) to Lh

19: else
20: append tuple (at, π (·|st), t) to Le

21: end if
22: st+1 ← st + at

23: t← t+ 1
24: end while
25: ifinal ← inet ▷ retrieve the network that assigned the final functional group
26: collect terminal reward r(sT ) ▷ run MD simulation
27: if ifinal == 1 then
28: ∆θ = ∂

∂θ

(∑
t∈Lh

log πh
θ (at|st)

)
r(sT )

29: θ ← θ − α∆θ
30: else
31: ∆ρ = ∂

∂ρ

(∑
t∈Le

log πe
ρ(at|st)

)
r(sT )

32: ρ← ρ− α∆ρ
33: end if
34: end while

Discussion

Finally, to gain insights from the perspective of microstructure, the molecular structure and
detailed failure behavior are compared between a random GO and an RL-designed GO. The
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Figure 3.39: Deep RL performances on various experiments. (a) Easy, (b) Medium, (c)
Hard, and (d) Extra Hard experiments.

two GO examples are drawn from the Hard, high-oxidation experiment, and the compar-
ison between the two GOs under different strains is shown in Fig. 3.41. From the initial
configurations, it is observed that the functional group distribution designed by RL tends
to be more spread out than the random GO. Nevertheless, there is little intuition regarding
how to design the specific functional group arrangement to achieve a high toughness. As the
strain increases, the random GO fractures along a clearly defined path, while the fracture
of RL designed GO initiates from multiple spots and forms a network-like structure that
involves substantial new bond formation. This phenomenon suggests that the RL designed
GO has more atoms contributing to energy absorption, which ultimately leads to a higher
toughness (11.88 GPa versus 4.96 GPa for the random GO). To gain more physical insights
as for what makes a GO tough, analysis is conducted to locate functional group sites that are
more frequently occupied for high-toughness GOs. Concretely, the count of functional group
appearances on every possible functional group site for high-toughness GOs for all levels of
difficulty is calculated, and the results are shown in Fig. 3.42. It is shown that functional
groups on high-toughness GOs seem to more likely distribute near the edges and not at the
center. The observation can be interpreted as the following: functional groups generally have
a negative effect on the GO toughness, and distributing them away from the center can help
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Figure 3.40: Toughness distributions for random and RL-designed GOs. (a-c) Easy, low
oxidation experiment. (d-f) Easy, high oxidation experiment. (g-i) Medium, low oxidation
experiment. (j-l) Medium, high oxidation experiment. (m-o) Hard, low oxidation experi-
ment. (p-r) Hard, high oxidation experiment. (s-u) Extra Hard, low oxidation experiment.
(v-x) Extra Hard, high oxidation experiment.
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Figure 3.41: Rupturing comparison between a random GO and an RL-designed GO. Exam-
ples are from the Hard, high-oxidation experiment.

alleviate this effect. This is supported by the toughness results of random GO configurations,
where high oxidation always has a lower mean toughness than low oxidation. However, it
is shown that highly occupied functional group sites are not located only near the edges,
and some sites inside the GBP also have a high occupancy. This may be explained by the
involvement of other more complex mechanisms such as the interaction between functional
groups, which emphasizes the necessity of using the RL-based design approach to solve this
challenging problem.

The RL framework is on-policy, where the RL agent needs to sample a new trajectory
for each episode. In this problem setting, an MD simulation will be called to run at the
terminal step of each trajectory to generate the reward according to Eq. 3.7, and this is
where the most computation is spent. Future work includes developing a surrogate model
that takes the state as the input, and outputs the reward to alleviate the computation of MD
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Figure 3.42: Functional group count distributions for high-toughness GOs. Functional group
count distributions for GOs (a) 1.5 and (b) 2 standard deviations above the mean for the Easy
difficulty. Functional group count distributions for GOs (c) 1.5 and (d) 2 standard deviations
above the mean for the Medium difficulty. Functional group count distributions for GOs (e)
1.5 and (f) 2 standard deviations above the mean for the Hard difficulty. Functional group
count distributions for GOs (g) 1.5 and (h) 2 standard deviations above the mean for the
Extra Hard difficulty.
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simulations during RL rollouts. Another issue arises from the present double policy network
design. During each episode, only one network can get improved while the other network
remains unchanged, which is not particularly a data-efficient algorithm design. In addition,
when the numbers of two types of functional groups are imbalanced, the policy network of
the minority functional group type may update very slowly. Future work includes designing
a better policy network architecture to resolve or mitigate the two issues above.

For heterogeneous or disordered nanoscale systems, the arrangement of defects or func-
tional groups has a major impact on the material properties when the system is small.
However, as the system size increases, the effect of individual defect of functional group be-
comes smaller. It is expected that the potential of optimizing over functional group locations
will become less significant. In the future work, the effect of functional group location on the
mechanical properties of GOs as a function of the system size and its RL-based optimization
capability will be investigated. Another limitation of the present study is that the thermo-
dynamics of designed GOs is not taken into account, meaning the output GO configurations
may not be thermally stable. Still, the present deep RL design approach can be of value in
the following ways. First, the approach can be used as an effective layer of materials screen-
ing. For example, 100 deep RL designs can be generated and a thermodynamic criterion
is applied to select both mechanically superior and thermally stable candidates. Second,
the reward in the RL algorithm can be modified to favor thermally stable graphene oxides.
Concretely, the binding energy per oxygen in the reward can be included

EB =
EGO − Eg − nhEh

ne + nh

(3.10)

where EGO, Eg, and Eh are the total energies of the GO structure, pure graphene, and
hydroxyl groups, respectively. Third, the RL approach can be used to efficiently establish
an upper bound for GO mechanical properties, given the chemical composition and the size.

Concluding remarks

In summary, a deep RL framework is developed to design GOs with high toughness by opti-
mizing over the functional group distribution. The design task is formulated as a sequential
decision process, where the state is the current functional group distribution on the GBP
and the action is to assign a new functional group. A policy-gradient RL model is employed
to maximize the toughness of GO, which is calculated by reactive MD simulations. Eight
experiments with increasing difficulty are devised to gradually challenge the deep RL model.
It is shown that in the first six experiments the model can stably generate functional group
distributions that achieve a toughness three standard deviations above the mean of random
GOs, suggesting that the RL generated GOs have a higher toughness than 98.87% of all
GOs. In the final two most difficult experiments, the model achieves two standard devia-
tions above the mean of random GOs, thus beating 97.73% of all GOs. In addition, the RL
approach reaches an optimized functional group distribution within only 5,000 rollouts, while
the easiest experiment has C10(66) = 2.1×1011 possibilities. Finally, it is shown that the RL
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design approach is scalable in terms of the functional group density and the GO size. The
present research showcases the impact of functional group distribution on GO properties,
and illustrates the effectiveness and data efficiency of deep RL in optimizing it [221].
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Chapter 4

Simulation and machine learning for
graphene aerogel

As a 3D extension of graphene, graphene aerogels (GAs) are well known for their exceptional
combination of high strength, lightweightness, and high porosity. For the mechanical prop-
erties of GAs, both experimental and computational studies have been conducted. Experi-
mentally, Zhu et al conducted compression tests and measured the compressive stress–strain
curves of 3D periodic GA microlattices [229]. Cheng et al showed that a 75.0 mg GA cylinder
with a bulk density of 56.2 mg·cm−3 could support at least 26000 times its own weight [30].
Zhang et al reported that GA–polydimethylsiloxane composites can sustain a compressive
strain up to 80% and a tensile strain up to 90% [208]. Computationally, Qin et al conducted
MD simulations to study the mechanics of porous 3D graphene assemblies, and showed that
the mechanical properties decrease with density faster than those of polymer foams [139].
Patil et al systematically investigated the fracture behavior [129] and the shock wave re-
sponse [128] using MD simulations, and showed that GAs can be a promising material for
shock wave and energy absorption applications.

4.1 Uncertainty quantification and prediction for

mechanical properties

Although recent studies on the mechanics of GAs have been fruitful, the observed high
stochasticity of the mechanical properties of GAs remains unaddressed. For example, under
a specific material density, GAs show a wide range of Young’s modulus and tensile strength.
This phenomenon is not particularly surprising, because the microstructures of GAs can
be highly random and are difficult to control during the condensation process in both ex-
periments and simulations. Nevertheless, previous studies either have not obtained enough
data points under one density, or have largely grappled with this issue by averaging the
test results. An understanding and quantitative modeling of the uncertainties in mechanical
properties of GAs is crucial for the broader applications of GAs. In addition, MD simula-
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tions of GAs can be expensive, mostly because of the time-consuming assembling procedure,
which consists of a number of annealing cycles (meanwhile the mechanical testing portion is
relatively fast). Therefore, an interpolation method to predict properties of GAs that have
not been simulated is much desired.

In this section, Gaussian process metamodels are developed to not only predict important
mechanical properties of GAs but also quantify their uncertainties. GAs are firstly assembled
and condensed via annealing cycles in the MD simulation, and subsequently subject GAs
to a quasi-static uniaxial tensile load to deduce mechanical properties such as the Young’s
modulus and the ultimate tensile strength. A total of 270 GAs with a range of densities
are simulated. Different from previous literature where the mechanical properties of GAs
are treated as a function of the density, the density, the Young’s modulus and the ultimate
tensile strength are considered as functions of the size of the inclusions, which dictates the GA
microstructure and thus mechanical properties in a complex fashion. Using the properties of
the simulated GAs as the training data, Gaussian process metamodels are developed which
not only predict the properties of unseen GAs but also establish statistically valid confidence
intervals centered around the predictions.

Molecular modeling

The starting point for GA fabrication in MD simulations comprises of 100 functional group-
free square-shaped graphene flakes and 100 spherical inclusions, which mimic the effect of
water clusters in freeze-casting porous graphene materials [189], as shown in Fig. 4.1(a).
The side lengths of the graphene flakes L are sampled by a log-normal distribution to avoid
negative values (illustrated in Fig. 4.1(b)), of which the probability density function is

p(L) =
1

LσL

√
2π

e(−(logL−µ)2/2σ2
L (4.1)

where

σL =

√
log (

Lstd

L̄2
+ 1)

and

µ = log L̄− σ2
L

2

are functions related to the mean value L̄ = 12 Å and the standard deviation Lstd = 4.8 Å.
The size of the spherical inclusions is constant, quantified by an effective radius Reff. Reff

is given by Reff = 21/6σ, where σ, the only simulation parameter that is variable in this
study, encodes the equilibrium distance between two inclusions and between an inclusion
and a carbon atom. It has been shown in the published results [139] that the density of GAs
decreases as the spherical inclusions enlarge. The spatial distributions of both graphene
flakes and inclusions are uniformly random over a cubic simulation box. The orientations of
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graphene flakes are also random, dictated by the following 3D rotation tensor

R = Rz(γ)Ry(β)Rx(α) =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cos β 0 sin β
0 1 0

− sin β 0 cos β

1 0 0
0 cosα − sinα
0 sinα cosα


(4.2)

where γ, β, and α are independently and identically distributed from 0 to π. The initial
density of the material system is 2 mg·cm−3, and the initial volume of the simulation box

is 6.80 × 107 Å
3
. These graphene flakes are subsequently fused into a 3D GA structure.

MD simulations are performed using LAMMPS and the Extreme Science and Engineering
Discovery Environment (XSEDE) computing resources. The total system energy is given
by:

Etotal = EC-C + EC-inc + Einc-inc (4.3)

where EC-C, EC-inc, and Einc-inc denote the total energies of interactions between carbon
atoms, between carbon atoms and inclusions, and between inclusions, respectively. EC-C is
modeled by an AIREBO potential (Eq. 2.1). EC-inc and Einc-inc are modeled by the standard
12/6 LJ potential, expressed as:

EC-inc = Einc-inc =
∑
i

∑
j>i

4ϵ[(
σ

rij
)12 − (

σ

rij
)6]Ξ (4.4)

where rij is the distance between particles i and j; ϵ is the depth of the potential well,
which relates to the stiffness of the inclusion; σ is the distance at which the particle-particle
potential energy is zero, where Reff = 21/6σ is the effective radius of the inclusion; Ξ is the
cutoff function: Ξ = 1 for rij < rc, and Ξ = 1 for rij ≥ rc, where rc is the cutoff distance.
In this work, ϵ = 0.625eV [139]; σ ranges from 2 Å to 10 Å; rc = σ+ 3 Å. The mass of each
spherical inclusion is set as 1 g/mol. A timestep of 1 fs is used. Periodic boundary conditions
are applied to all three dimensions. All carbon atoms and inclusions are initiated with a
random velocity corresponding to the temperature T = 300 K, and for each individual GA
the seed of the random number generator is different. This guarantees that the formation
trajectories of GAs are randomly different. The stress tensor is calculated by Eq. 2.2.

The condensation of the material system is realized by a number of designed annealing
cycles. Each cycle consists of four stages: (a) in the NPT ensemble where the temperature
is maintained at T = 300K and the pressure P increases linearly from 1 atm to 1000 atm;
(b) in the NVT ensemble where the temperature T increases linearly from 300 K to 2000
K; (c) in the NVT ensemble where the temperature is held at T = 2000K; (d) in the NVT
ensemble where the temperature T decreases linearly from 2000 K to 300 K. The duration
of each stage is 25 ps. The setting of one entire annealing cycle is illustrated in Fig. 4.1(c),
and the true recorded temperature and pressure in multiple cycles are shown in Fig. 4.2. All
volume change takes place in the first stage where the system volume is uncontrolled, while
in the subsequent three stages, the system volume remains constant. The system volume
V as a function of experienced annealing cycle number is shown in Fig. 4.1(d). As the
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Figure 4.1: Construction of GAs in the MD simulation. (a) Initial stage of the material
system. (b) Probability distribution of the graphene flake side length L. (c) Targeted tem-
perature and pressure under NPT and NVT ensembles within one annealing cycle. (d)
Number of C–C bonds per atom NC−C and system volume V as functions of the annealing
cycle number. (e) An example of material system configurations immediately after 8 anneal-
ing cycles. (f) Final configuration of a GA after spherical inclusions are removed.

annealing cycles go on, the system volume decreases, suggesting the material is condensed
during the process. During annealing cycles, new C–C bonds are formed across initially
disconnected graphene flakes. The number of C–C bonds per atom NC−C is used to quantify
the structural integrity of the GAs. After eight annealing cycles, NC−C converges to 1.45,
close to the value 1.5 for an infinitely large graphene sheet, as is shown in Fig. 4.1(d). This
suggests that initially disconnected graphene flakes are now well integrated and will only
improve marginally as more annealing cycles are simulated. Hence, and for the sake of
efficiency, all GAs in this study are prepared with eight annealing cycles. An example of the
closely packed GA structure and spherical inclusions after eight annealing cycles is shown
in Fig. 4.1(e). Next, the inclusions are deleted from the system, and the 3D GA is relaxed
in the NVT ensemble at T = 300K for another 25 ps to produce the final GA structure, as
illustrated in Fig. 4.1(f). The final GA, with a density of g·cm−3, is structurally stable.

For the mechanical testing, a uniaxial tensile load is applied to the prepared GAs in
a quasi-static, incremental manner. At each step, the simulation box is deformed for a
1% uniaxial strain in x direction in the NPT ensemble with T = 300K and P = 1 atm
applied to the two unloaded y and z directions. Each strain increment is followed by an
energy minimization and equilibration in the NVT ensemble with T = 300K. An example
stress–strain curve, along with GA shapes corresponding to several critical points on the
curve, are shown in Fig. 4.3. The stress–strain curve exhibits a clearly defined linear part,
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Figure 4.2: Temperature and pressure evolution during 8 annealing cycles.

followed by multiple peaks and a catastrophic failure. This suggests that the GA undergoes a
progressive failure upon uniaxial tensile loading. The failure strain is close to 0.9, consistent
with the result in Ref. [208], and is much enhanced compared to that of 2D graphene sheets
(0.2–0.3). However, the Young’s modulus (29.5 GPa) and the ultimate tensile stress (17.5
GPa) are much reduced compared to the defect-free graphene sheets (with a Young’s modulus
of 1000 GPa and an ultimate tensile strength of 130 GPa [90]). Different from anisotropic
2D graphene sheets, GAs are in principle isotropic due to the assembly of a large amount
of randomly distributed graphene flakes. Therefore, the Young’s modulus and the tensile
strength in the loading direction are used to represent the Young’s modulus and the tensile
strength of the GA material. The stress–strain curve of one GA subject to cyclic loading is
provided in Fig. 4.4, where the first cycle exhibits some elastic hysteresis while the subsequent
cycles do not.

Results and discussion

To investigate the stochastic nature of GA mechanical properties, a total of 270 GAs are
simulated. Nine values of σ ∈ [2, 3, . . . , 10] Å (equivalent to Reff ∈ 21/6 [2, 3, . . . , 10] Å)
are used to generate GA structures, where each σ (or Reff) value generates 30 random
configurations. GA density ρ as a function of Reff is illustrated in Fig. 4.5. It is shown
that ρ decreases as Reff increases, in good agreement with previously reported results [139].
To investigate the statistics of the bond breaking behavior of GAs, the fractions of broken
bonds of the GA model where Reff = 21/6 × 5 Å = 4.45 Å are computed based on 30
data points. The mean and the standard deviation of the fraction is 0.39% and 0.23%,
suggesting that the catastrophic failure of GAs is related to a small number of broken bonds
at critical locations. Fig. 4.6 shows scatter plots of the Young’s modulus E and the ultimate
tensile stress σu against ρ for all 270 GAs, where both E and σu increase as ρ increases.
In addition, the variation E is relatively small for small ρ, but increases as ρ increases.
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Figure 4.3: Stress–strain curve and deformation/fracture modes of one example GA. (a)
Stress–strain curve of the GA under a uniaxial tensile load. σxx and εxx denote the stress
and the strain in the loading direction. GA molecular configurations at critical points on
the stress–strain curve are provided. The density of the GA in this example is 0.924 g·cm−3.
(b) Illustrations of local deformation and fracture modes of the GA.

However, the variation of σu is comparatively larger and independent of ρ. This shows
that the randomness of the GA microstructure has different influencing mechanisms on the
stiffness and the strength. One hypothesis is that the strength of GAs is more responsive to
the progressive failure mode, which is rather unrelated to the density but highly dependent
on the microstructure. The results are further clustered by Reff, where the data points
originating from different Reff are colored differently. It is observed that between clusters
there is significant overlapping in both horizontal and vertical directions, indicating that
both density and mechanical properties are random given one Reff value. Even though some
data points on Fig. 4.6(b) have achieved roughly 25 times as strong as mild steel with a
density 10% that of mild steel, this observed randomness poses substantial difficulty and
uncertainty for engineers to effectively design and use GAs.

Previous works in literature treat mechanical properties of GAs, such as the Young’s
modulus and the ultimate tensile strength, as functions of the density [139, 129], just like
in Fig. 4.6. However, in the present simulations the density is not a variable that can be
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Figure 4.4: Stress-strain curve of one GA subject to cyclic loading with 3 cycles. The density
of the GA in this example is 0.920 g·cm−3.

controlled, and the mechanical properties can vary widely given one specific density value.
Instead, the density ρ, Young’s modulus E, and ultimate tensile strength σu are considered
as functions of Reff, the only parameter in this study that dictates the GA microstructure
and, thus, mechanical properties. To this end, ρ, E, and σu are plotted against Reff, as
shown in Fig. 4.7. Now the results are transformed from nine heavily overlapped clusters to
1D distributions at nine different locations. This allows to fit the properties under each Reff

to a statistical distribution such as the Gaussian distribution, which establishes confidence
intervals. More importantly, this presentation of the data offers an opportunity to interpolate
and predict properties of unsurveyed Reff given noise. This is particularly valuable in that
the MD simulations of GA are rather computationally expensive and simulating GAs given
more densely distributed Reff are very time-consuming.

Here, a metamodel approach is proposed which employs a non-parametric regression
method called Gaussian process regression (GPR), a probabilistic interpolation approach
that integrates observed samples and prior distribution and covariances [3, 15]. In recent
years, GPR has been widely applied in materials design and discovery problems [44, 122].
GPR predicts the value of a function at a target point by computing a weighted average of the
known values of the function (the training data) in a statistically principled way. The weights
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Figure 4.5: GA density as a function of the effective radius of inclusions.

Figure 4.6: Scatter plots of the Young’s modulus and the ultimate stress against the density
of all 270 GAs. Plots of (a) the Young’s modulus and (b) the ultimate tensile stress.
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Figure 4.7: Scatter plots of the GA density, Young’s modulus, and ultimate tensile stress
against the effective radius of the inclusions. Plots of (a) the density, (b) the Young’s
modulus, and (c) the ultimate tensile stress.

are determined by a covariance function (or a kernel) that specifies the covariance between
pairs of random variables. Concretely, given a training set D = {(xi, yi) |i = 1, . . . , n},
where xi denotes an input vector of a dimension D and yi denotes a scalar output, a noise-
free covariance function can be written as:

cov(yp, yq) = cov(f(xp, f(xq)) = k(xp,xq) (4.5)

where k (·, ·) denotes a kernel function, or in matrix form:

cov(y) = K(X,X) (4.6)

where y is an output vector; X is a D × n design matrix aggregated by n input vectors; K
is an n×n kernel matrix. In this study, the linear combination of two radial-basis functions
is used as the covariance function, given by:

k(xp,xq) = s21 exp−
∥xp − xq∥2

2l21
+ s22 exp−

∥xp − xq∥2

2l22
(4.7)

where s21 and s22 are scaling parameters known as the process variances; l21 and l22 are length-
scale parameters; ∥·∥ denotes the L2 norm. From the expression, the covariance between two
data points depends only on their Euclidean distance and not on their absolute values. For
noisy cases (as is fit to describe the simulation results in this study), the kernel matrix K is
regularized by the ”nugget”, a positive value τ 2i (i = 1, . . . , n) added to the main diagonal
of K. This corresponds to a probabilistic model with an additive white noise of variance τ 2i
below

yi = f(xi) + εi (4.8)

where εi ∼ N (0, τ 2i ). Here, the shorthand representation of a probability distribution is
used, where N (µ, σ2) denotes a normal distribution, N , with mean, µ, and variance, σ2.
The covariance function now becomes

cov(yp, yq) = k(xp,xq) + τ 2p δpq (4.9)
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where δpq is the Kronecker delta which equals 1 if p = q and 0 otherwise, or in matrix form

cov(y) = K(X,X) + ΛI (4.10)

where Λ = diag (τ 21 , τ
2
2 , . . . , τ

2
n) and I is the n×n identity matrix. The ’nugget’ regularization

improves the condition number of the covariance matrix by increasing the eigenvalues by τ 2i .
Additionally, it causes the GPR to smoothen the data and become non-interpolating. In this
study, τ 2i takes on the variance of the training data under each Reff. The parameters of the
covariance function in Eq. 4.9 are optimized during fitting by maximizing the log marginal
likelihood below

log p(y|X) = −1

2
yT (K + ΛI)−1y − 1

2
log |K + ΛI| − n

2
log 2π (4.11)

To obtain predictions at an unseen point of interest x∗, the predictive distribution can be
calculated by weighting all possible predictions by their calculated posterior distribution as
follows

p(f∗|x∗, X,y) =

∫
p(f∗|x∗,w)p(w|X,y)dw (4.12)

where f∗ is the predicted function value at target x∗, and w is the weight vector. For GPR,
the joint distribution of the training data and the function values at the locations of interest
under the prior can be written as[

y
f∗

]
∼ N

(
0,

[
K(X,X) + ΛI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
(4.13)

where f∗ is the predicted function vector at target design matrix X∗. The key predictive
equations for GPR is

f∗|x∗, X,y ∼ N (f̄∗, cov(f∗)) (4.14)

where
f̄∗ = E[f∗|x∗, X,y] = K(X∗, X)(K(X,X) + ΛI)−1y (4.15)

is the mean of the predicted function vectors, which is considered as the GPR prediction,
and

cov(f∗) = K(X∗, X∗)−K(X∗, X)(K(X,X) + ΛI)−1K(X,X∗) (4.16)

is the predicted covariance matrix. The vector of the predicted variance σ2
∗ can be obtained

from the diagonal of cov (f∗)
σ2

∗ = diag(cov(f∗)) (4.17)

Finally, the 95% confidence interval can then be established as
[
f∗ − 1.96σ∗, f∗ + 1.96σ∗

]
.

The GPR results of the present study are shown in Fig. 4.8, where the GPR predicted
means are plotted in solid lines and 95% confidence intervals are illustrated in shaded areas.
Red dots and error bars are results from Fig. 4.7 that are used as the training data. The
significance of this result is that given an Reff value, the most probable ρ, E, and σu of the
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Figure 4.8: GPR prediction results of GA properties. Observations, GPR predictions and
95% confidence intervals of (a) the density, (b) the Young’s modulus, and (c) the ultimate
tensile stress.

unsimulated GA can be predicted. Inversely, given target ρ, E, and σu, the Reff value that
gives the best chance to achieve the goal can be known. It is observed in Fig. 4.8 that one can
be more confident about ρ compared to E and σu. This is expected because Reff intuitively
has a more direct impact on the structural properties than on the mechanical properties.
In addition, for all three properties, the 95% confidence intervals are tighter in the middle
compared to both ends. This observation indicates that there are more uncertainties if the
GPR approach is used to do extrapolations compared to interpolations. Notably, this is
common in all metamodel approaches, because intrinsically there are more ”informative”
data points available to do interpolations compared to extrapolations. From a quantitative
perspective, the kernel becomes small fast (in this study, exponentially) as the target is
farther away from the known data points, as indicated by Eq. 4.7. One can change the
kernel to take different forms in practice, and they all will present a decaying phenomenon
as the target is farther away. The difference would be how fast the kernel decays. The
recommendation is that, one can still use GPR to make predictions for extrapolations that
are not too far away from the center of the data, but one should be aware of the level of
uncertainties.

Concluding remarks

A bottom-up atomistic simulation model and a statistical metamodel are constructed to
investigate the uncertain mechanical properties of GAs. Using MD simulations, GAs are
firstly assembled from randomly distributed graphene flakes and spherical inclusions via an-
nealing cycles, and are subsequently subject to a quasi-static uniaxial tensile load to deduce
mechanical properties. Results show that given a specific density, the Young’s modulus and
the ultimate tensile strength of GAs can vary substantially. Different from most previous
literature where the mechanical properties of GAs are treated as a function of the density,
the density, the Young’s modulus and the ultimate tensile strength are considered as func-
tions of the size of the inclusions, which dictates the GA microstructure and thus mechanical
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properties in a complex fashion. Using the properties of the simulated GAs as the train-
ing data, Gaussian process metamodels are built which not only predict the properties of
unseen GAs but also establish statistically valid confidence intervals centered around the
predictions. This metamodel approach is particularly beneficial when the data acquisition
requires expensive experiments or computation, which is the case for the GA simulations.
The present research quantifies the uncertain mechanical properties of GAs, which may shed
light on the statistical analysis of novel nanomaterials of a broad variety [223].

4.2 Structral integrity of graphene aerogels

MD simulations have been favored by researchers due to their capability in shedding light
on detailed mechanical responses of GAs that are beyond the experimental capabilities.
However, there have been some shortcomings in previous MD simulation works. First, the
properties of GAs have not been extensively studied in response to changes in simulation
variables. Previous studies have only examined very few parameters (mainly the radius
of inclusions), while many other parameters such as the inclusion-to-flake ratio, the total
number of particles in the simulation, and the annealing properties can have a great impact
on the GA properties. Second, the structural integrity of GAs in MD simulations has not
been studied against changes in the variables. Number of bonds per atom has been used as a
metric to quantify how well graphene flakes are connected inside a GA structure. However,
it has not been investigated how this metric changes in response to changes of simulation
parameters. Third, there has been a deviation of an order of magnitude between densities
in MD simulations and experiments. GAs with a density below 10 mg·cm−3 have been
fabricated in experiments, while the lowest density studied in MD simulations is around
100 mg·cm−3. Lastly, there has been rarely reported research that directly compares MD
simulation results with experimental data.

In this section, above challenges will be address and the limitations of MD simulations
in modeling GAs will be discussed. First, various mechanical properties as a function of a
broad set of simulation parameters are studied. Second, the structural integrity of GAs is
quantified and evaluated as simulation parameters change. Additionally, the reason why the
density of GAs in MD simulations cannot reach the low values obtained experimentally is
discussed. Finally, the findings are compared with experimental results to discuss both the
capabilities and the limitations of the simulation technique.

Results and discussion

Molecular modeling

Similar to the previous section, a GA structure is formed by condensing an initially sparse
and disconnected system into an integrated structure. The initial system for GA preparation
is a cubic box, consisting of graphene flakes and spherical inclusions, as shown in Fig. 4.9(a).
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The periodic boundary condition is applied in all three dimensions to approximate an in-
finitely large system. The numbers of graphene flakes and inclusions are denoted by Nflake

and Ninc. The initial density is set as low as 1 mg·cm−3 to minimize the probability of over-
lapping atoms. Graphene flakes are square-shaped with a side length L, while the inclusions
are modeled as spheres with an effective radius Reff, as illustrated in Fig. 4.9(b). Reff is
mathematically defined as Reff = 21/6σ, where σ is a parameter of the LJ potential that
models the equilibrium spacing between two particles. Because Reff and σ are proportional,
here, “the effect of Reff” and “the effect of σ” are used interchangeably. In section, the
value of L within one simulation system follows various distributions, which has not been
studied in previous work. the distribution of L is considered a variable and its effect on the
mechanical and structural properties of GAs is studied. One distribution that L follows is
the log-normal distribution, of which the probability density function is described in Eq. 4.1.
L̄ = 12 Å and Lstd = 4.8 Å are used. By default, L follows the log-normal distribution. L is
also modeled with half normal distributions, of which the probability density function is

p(L) =

√
2

π

1

σhn

exp

[
−1

2

(
L− µhn

σhn

)2
]
, for L ≤ µhn (4.18)

where µhn and σhn are the location and the scale parameters. In this study, µhn is set as the
largest L that is sampled by the log-normal distribution to favor larger graphene flakes. σhn

is a variable that controls the “width” of the half bell curve: larger σhn gives a wider half
bell curve.

Next, a number of designed annealing cycles are applied to condense the material system
and to connect graphene flakes into an integrated structure. The total number of annealing
cycles is denoted by Ncycles and the current number of annealing cycles is denoted by Ncycle.
Each annealing cycle consists of four stages and each has time duration tp = 50 ps: (a) in the
NPT ensemble, the pressure increases linearly from 1 atm to 1000 atm and the temperature is
maintained at 300 K; (b) in the NVT ensemble, the temperature increases linearly from 300
K to the annealing temperature TA; (c) in the NVT ensemble, the temperature is held at TA;
(d) in the NVT ensemble, the temperature decreases linearly from TA to 300 K. The annealing
cycle design is similar to the previous section. However, here the annealing temperature TA

is considered a variable. Because the temperature affects the level of movements of graphene
flakes, it dictates the probability of graphene flakes, encountering each other and forming
bonds, thus affecting the final GA structure. The annealing cycle design described above is
illustrated in Fig. 4.9(c).

During the annealing process, the system volume decreases sharply in the first cycle and
it gradually decreases in subsequent cycles, as shown in Fig. 4.9(d). After many annealing
cycles, a compact system with interconnected graphene flakes and inclusions can be obtained,
as shown in Fig. 4.9(e). Inclusions resemble water clusters in experiments which will be
removed from the system during a drying process. Deleting the inclusions and followed by
another NVT process for 50 ps, the final stable GA structure in the simulation is obtained,
as shown in Fig. 4.9(f). The final relaxation is intended to eliminate the initial stress after
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Figure 4.9: Construction of GA structures in the MD simulation. (a) Initial material system
where Nflake = 500 and Ninc = 1000. (b) Dimensions of the graphene flake and the spherical
inclusion. (c) Pressure and temperature profiles during one annealing cycle. (d) log(Lbox)
as a function of Ncycle, where Lbox denotes the side length of the cubic simulation box.
(e) Condensed material system after 10 annealing cycles. (f) Final GA structure after the
removal of inclusions.

annealing cycles. Stress–strain curves with and without the relaxation process are shown
in Figs. 4.10 and 4.11, where the latter introduces an initial stress. MD simulations are
conducted in a similar fashion as the previous section.

Mechanical properties of graphene aerogels

After the in silico fabrication of the GA structure described in the previous section, uniaxial
tensile and compressive loads are applied to calculate the mechanical properties of the GA.
Loads are applied in a quasi-static, incremental manner. At each step, the simulation box is
deformed for a 1% uniaxial strain in the x direction in the NPT ensemble with a temperature
of 300 K and a pressure of 1 atm maintained in the two unloaded y and z directions. Each
strain increment is followed by an energy minimization and equilibration process in the NVT
ensemble at 300 K. Under these loading conditions, a range of mechanical properties of GAs
including density ρ, tensile strength σu, tensile failure strain εu (defined as the strain at the
maximum tensile stress), tensile and compressive moduli Et and Ec can be computed. This
section is dedicated to systematically investigating how these mechanical properties change
in response to changes of an extensive set of simulation variables, and more variables will be
covered. In the following, the effects of various simulation variables are studied, including
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Figure 4.10: Stress-strain curves where Nflake = 200, Ninc = 500, σ = 5.0 Å, Ncycles = 10,
and TA = 2000 K. Stress-strain curves under (a) tension and (b) compression.

Figure 4.11: Stress-strain curves without the relaxation process after annealing cycles where
Nflake = 200, Ninc = 500, σ = 5.0 Å, Ncycles = 10, and TA = 2000 K. Stress-strain curves
under (a) tension and (b) compression.

the effective radius of inclusions Reff (or σ), inclusion-to-flake ratio R = Ninc/Nflake, the total
number of particles Ntotal = Ninc+Nflake, the annealing temperature TA, and the distribution
of the side length of graphene flake L. When a parameter is not studied as a variable, the
following values will be used as default: Nflake = 200, R = 1.0, σ = 5.0 Å, Ncycles = 10, and
TA = 2000 K, and L follow the log-normal distribution described in Eq. 4.1, unless otherwise
specified.

To start with, the effect of effective radius of inclusions Reff (or equivalently, σ) on the
mechanical properties of GAs is studied. Intuitively, larger inclusions result in a higher
porosity because these inclusions tend to push the graphene flakes away from each other,
as illustrated in Fig. 4.12(a). Here, various mechanical properties of GA as a function of σ
are calculated. Each data point on these graphs is based on 5 different random seeds and
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Figure 4.12: Mechanical properties of GA as a function of σ, proportional to the effective
radius of inclusions. (a) Illustration of the effect of σ. (b) Density ρ, (c) tensile strength σu,
(d) tensile failure strain εu, (e) tensile and (f) compressive moduli Et and Ec of GA as a
function of σ.

the error bar represents one standard deviation. Fig. 4.12(b) shows that as σ increases, the
density ρ decreases. This is consistent with the previous section. Fig. 4.12(c) shows that
as σ increases, the tensile strength σu decreases. However, this result presents larger error
bars compared to the density results. This is because the failure of the GA structure has a
stronger dependency on local structural details, and different random seeds give rise to diverse
GA structures despite similar densities. The similar applies to the tensile failure strain εu,
which also depends strongly on the local structure. However, the trend is opposite to the
tensile strength, as shown in Fig. 4.12(d) – as σ increases, the failure strain εu increases.
This suggests that GAs with a more loosely interconnected microstructure exhibit higher
ductility compared with those with a tightly packed microstructure. The moduli under
tension and compression are also calculated. Both tensile and compressive moduli Et and Ec

decrease as σ increases, and GAs are stiffer under tension than under compression, as shown
in Figs. 4.12(e) and (f). The effect of another LJ parameter ϵ, which represents the depth
of the potential well is also studied. It is shown in Fig. 4.13 that the mechanical properties
of GAs are not strongly dependent on ϵ.

Next, the effect of the inclusion-to-flake ratio R is studied, which has not been researched
in previous studies. Intuitively, the higher the inclusion-to-graphene ratio, the lower the
GA density, since inclusions (which will eventually be removed from the system) occupy
larger and larger volume, as illustrated in Fig. 4.14(a). This effect should be similar to the
effect radius of inclusion, but via a different mechanism. The results are summarized in
Figs. 4.14(b)–(f), where each data point is based on 5 random seeds. The trends resemble
those with σ as the variable, where ρ, σu, Et, and Ec decrease and εu increases as R increases.
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Figure 4.13: Mechanical properties of GA as a function of the LJ parameter ϵ. (a) Density
ρ, (b) tensile strength σu, (c) tensile failure strain εu, (d) tensile and (e) compressive moduli
Et and Ec of GA as a function of ϵ.

However, the error bars are larger, indicating that adding more inclusions introduces more
uncertainty compared with increasing σ. The result also hints that to achieve a low-density
GA, one can use a large σ together with a high R. The caveat is that too many inclusions
together with a large σ can result in disconnected graphene flakes after the annealing cycles,
as shown in Fig. 4.15. Additionally, it is shown that increasing the number of annealing
cycles does not resolve the issue, as shown in Fig. 4.16. A remedy for this issue is to increase
the annealing temperature, hoping to increase the possibility of graphene flakes bumping into
each other and forming bonds. The temperature effect on the GA structure will be presented
in a later section. It is worth noting that fracture-related properties such as σu and εu are
sensitive to local GA structures, which varies across different random seeds. Consequently,
these results bear larger error bars as shown in Figs. 4.12 and 4.14. In contrast, fracture-
independent properties such as ρ, Et, and Ec bear smaller error bars.

Next, the effect of the total number of particles is studied, and the results are summarized
in Fig. 4.17. The inclusion-to-flake ratio is fixed at R = 2.0 and various Nflake values are used
to achieve material systems of different sizes, as illustrated in Fig. 4.17(a). In the present
simulations, the periodic boundary conditions are applied in all three spatial dimensions,
which approximate an infinitely large system by repeating the unit cell. However, it is more
realistic and ideal to use a relatively large repeating unit cell to add to the structural diversity
and to reduce randomness. The mechanical properties as a function of the total number of
particles is less intuitive compared with the previous two variable choices. Again, ρ, σu, εu,
Et, and Ec are evaluated as a function of Nflake. The results are shown in Figs. 4.17(b–f),
where all the mechanical properties of interest decrease as Nflake increases. In addition, for
all properties, the error bars become smaller as the number of particles increases. This
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Figure 4.14: Mechanical properties of GA as a function of the inclusion-to-flake ratio R. (a)
Illustration of the effect of R. (b) Density ρ, (c) tensile strength σu, (d) tensile failure strain
εu, (e) tensile and (f) compressive moduli Et and Ec of GA as a function of R.

suggests that using more particles approaches a homogenized material system which is less
sensitive to local randomness. This effect is observed, especially for the tensile failure strain
εu, which mostly depends on local structures. Nevertheless, the computational cost grows
exponentially with the increase of number of particles in the simulation.

Of high interest is how the various mechanical properties change as a function of density
ρ, which are properties without variables of simulation artifacts and can relate better to the
real material. tensile strength σu, tensile failure strain εu, tensile and compressive moduli
Et and Ec are plotted as functions of density ρ with all simulation results to observe the
general trends, as shown in Fig. 4.18. The tensile strength and moduli increase as the density
increases, which agrees with the intuition, as shown in Figs. 4.18(a), (c) and (d). In contrast,
as shown in Fig. 4.18(b), the tensile failure strain decreases as the density increases, which
agrees with the previous results.

Structural integrity of graphene aerogels

The application of annealing cycles does not guarantee that a well-connected GA structure
can be formed. In this section, many failed GA structures are observed where graphene
flakes are not properly interconnected even after more than 10 annealing cycles, as shown
in Figs. 4.15 and 4.16. This aspect of MD simulations of GAs has not been discussed in the
literature, and this may explain why the ultra-low density of real GAs has been difficult to
be achieved in MD simulations. This section aims to shed light on this aspect.

Previous work used the number of bonds per atom Nbond/atom to quantify the connec-
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Figure 4.15: Disconnected GA structure. The structure when (a) unloaded and (b) under
tension. (c) Stress-strain relation of the GA under tension.

tivity of graphene flakes. For an infinitely large planar graphene sheet, Nbond/atom equals
1.5. Therefore, a value close to 1.5 should indicate a good interconnection between graphene
flakes, thus resulting in a well-formed GA structure. However, previous studies only calcu-
lated Nbond/atom to illustrate that graphene flakes have been sufficiently interconnected by
showing the plateau of Nbond/atom with increasing Ncycle. In this work, Nbond/atom is further
evaluated as a function of simulation parameters, as it can serve as an important indicator
of the structural properties of GAs and whether a GA can be formed through annealing
cycles. Nbond/atom is calculated and plotted as a function of Ncycle under different simulation
conditions (bonds are considered to form if the distance between two carbon atoms is less
than 1.7 Å), as shown in Fig. 4.19. Fig. 4.19(a) shows the effect of σ (or equivalently, Reff).
Error bars are calculated based on 5 different random seeds. The results show that as σ in-
creases from 3.0 Å to 13.0 Å, Nbond/atom after 10 cycles decreases from over 1.46 to around
1.40, suggesting that a high σ leads to low connectivity. Nevertheless, for simulations, where
σ = 13.0 Å, all 5 random seeds can still generate valid GA structures, an example provided
in Fig. 4.20. Fig. 4.19(b) shows the effect of the inclusion-to-flake ratio R on Nbond/atom. R
varies from 0.5 to 5.5, while other parameters are fixed. Error bars are calculated based on
5 different random seeds. The results show that as R increases from 0.5 to 5.5, Nbond/atom
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Figure 4.16: GA structure where Nflake = 200, R = 5.0, σ = 15.0 Å, and TA = 2000 K under
various numbers of annealing cycles. Initial structure and the structure under tension of
GAs prepared with (a) 10, (b) 20, and (c) 50 annealing cycles. Nbond/atom for (a-c) are 1.384,
1.386, 1.389, respectively.
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Figure 4.17: Mechanical properties of GA as a function of Nflake. (a) Illustration of the effect
of Nflake. (b) Density ρ, (c) tensile strength σu, (d) tensile failure strain εu, (e) tensile and
(f) compressive moduli Et and Ec of GA as a function of Nflake.

decreases from over 1.46 to around 1.42, suggesting that a high R leads to low connectiv-
ity. For simulations, where R, all 5 random seeds can still generate valid GA structures, an
example provided in Fig. 4.21.

However, combining a high σ and a high R can cause very low Nbond/atom values, as shown
in Fig. 4.19(c), where σ = 13.0 Å and R increases from 1.0 to 7.0. Nbond/atom decreases from
slightly below 1.42 to around 1.37. At R = 2.0 (where Nbond/atom after 10 cycles is about
1.40), the GA structure fails to form properly where graphene flakes cannot sufficiently
interconnect, as shown in Fig. 4.15. This structure has a density of 146 mg·cm−3, which
is slightly higher than the lowest density mentioned in previous simulation studies but it is
still about more than 10 times denser than the lightest GAs fabricated in experiments. Even
though simulation techniques can be fine-tuned to achieve a lower density, this result sheds
light on one of the biggest limitations of MD simulation in modeling GAs. This is because
the pore size in experiments is an order of magnitude larger than the pore size in the unit
cell of the MD simulations. But increasing the MD simulation scale to match the pore size
in experiments is infeasible due to high computational cost.

One possible solution is increasing the number of annealing cycles Ncycles. In theory, the
more annealing cycles the material system experiences, the higher the possibility of graphene
flakes encountering each other and forming bonds. Nevertheless, it is found that only in-
creasing Ncycles shows a minimal effect on Nbond/atom. As an example, GA structures with
Nflake = 200, R = 5.0, σ = 15.0 Å and Ncycles = 10, 20, 50 are calculated. Nbond/atom values
after these annealing cycles are 1.384, 1.386, and 1.389, respectively. The GA structure after
50 annealing cycles is not properly formed, and GA structures under the three cases are pro-
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Figure 4.18: Mechanical properties of GA as a function of density ρ for all well-formed GAs.
(a) Tensile strength σu, (b) tensile failure strain εu, (c) tensile and (d) compressive moduli
Et and Ec of GA as a function of ρ.

vided in Fig. 4.16. Another solution is to increase the annealing temperature TA. In theory,
a higher temperature will lead to intensified atom movements, which will further increase
the possibility of graphene flake encounters and therefore result in new bond formation. The
dependency of Nbond/atom on TA is shown in Fig. 4.19(d), where GAs are constructed by the
following set of parameters: Nflake = 400, R = 3.0, σ = 15.0 Å, Ncycles = 10, and TA = 1000,
2000, 3000, and 4000 K. As TA increases from 1000 K to 3000 K, Nbond/atom after 10 an-
nealing cycles increases from ∼ 1.38 to ∼ 1.40, a more significant improvement compared to
increasing Ncycles. However, Nbond/atom at 4000 K is smaller than at 3000 K. This is because
the high temperature has caused some of the bonds to break and GA to begin to become
thermally unstable (i.e., the inability to maintain structural integrity and functionality at
an elevated temperature), thus resulting in a smaller Nbond/atom. An illustration of such
effect is provided in Fig. 4.22. This temperature agrees with the melting point of graphite
which ranges from 4000 to 5000 K [149] and that of freestanding graphene monolayers which
ranges from 4000 K to 6000 K [56]. Therefore, the annealing temperature can be moderately
increased to improve the structural integrity of GA structures.
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Figure 4.19: GA connectivity property in response to changes in various simulation param-
eters. Nbond/atom versus Ncycle plots (a) under various σ with Nflake = 200 and R = 1.0, (b)
under various inclusion-to-flake ratios R with Nflake = 200 and σ = 5.0 Å, (c) under various
R with Nflake = 200 and σ = 15.0 Å, and (d) under various annealing temperature TA with
Nflake = 200, R = 1.0, and σ = 5.0 Å.

Figure 4.20: GA structure where Nflake = 200, R = 1.0, σ = 13.0 Å, and TA = 2000 K. The
structure when (a) unloaded and (b) subject to tension.
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Figure 4.21: GA structure where Nflake = 200, R = 5.5, σ = 5.0 Å, and TA = 2000 K. The
structure when (a) unloaded and (b) subject to tension.

Figure 4.22: GA structure formed with annealing temperature TA = 4000 K where bond
breakings and thermally unstable behavior are observed. Problematic geometries are circled.
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Figure 4.23: Mechanical properties of GA under different probability distributions of the
graphene flake side length L. (a) Probability densities of the log-normal distribution, and
half-normal distributions with σhn = 3.0 Å and 8.0 Å. (b) Density ρ, (c) tensile strength σu,
(d) tensile failure strain εu, (e) tensile and (f) compressive moduli Et and Ec of GA as a
function of σ under three L distributions.

Effect of flake size distribution

Another opportunity to improve the connectivity of GAs is to use a different flake size distri-
bution compared to the log-normal distribution, which has not been covered in the previous
research. To examine whether larger graphene flakes will help improve the interconnection
of graphene flakes, half-normal distributions (expressed in Eq. 4.18) are considered with the
center set as the largest L value sampled by the log-normal distribution to bias towards
larger graphene flakes. The σhn of the half normal distribution is a variable and σhn = 3.0 Å
and 8.0 Å are used. σhn = 3.0 Å favors larger flakes more than σhn = 8.0 Å. The proba-
bility densities of all distributions for the graphene flake size in this work are compared in
Fig. 4.23(a).

Next, ρ, σu, εu, Et, and Ec of GAs originating from the three distributions are evaluated,
as shown in Figs. 4.23(b)–(f). The results for log-normal distributions plotted here are the
same as those shown in Fig. 4.12. To compare fairly, Nflake = 200, R = 1.0 are also used
for the two half-normal distribution cases. Fig. 4.23(b) shows that for σ <∼ 6.0 Å, half-
normal distributions produce higher ρ; for σ >∼ 6.0 Å, three distributions do not show
significant distinctions. Similar trends can be observed for tensile strength σu and moduli
Et and Ec, as shown in Figs. 4.23(c), (e) and (f). However, for tensile failure strain εu, half-
normal distributions are less sensitive to σ compared with the log-normal distribution, as
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Figure 4.24: GA connectivity property under different distributions of graphene flake side
length L. Nbond/atom versus Ncycle plots with (a) σ = 5.0 Å and (b) σ = 11.0 Å.

shown in Fig. 4.23(d), suggesting that using larger graphene flakes may help reduce property
randomness.

Next, the connectivity properties of GAs are studied under different flake size distribu-
tions. Nbond/atom as a function of Ncycle under σ = 5.0 Å and 11.0 Å is shown in Fig. 4.24.
The results show that as graphene flakes get more dominated by larger ones, Nbond/atom

increases. This suggests that using larger graphene flakes may help improve the structural
integrity of GAs. The results of σ = 3.0, 7.0, 9.0, 13.0 Å are provided in Fig. 4.25.

Comparison between simulations and experiments

The simulation findings are compared with experimental results. The GAs were experimen-
tally synthesized and characterized in previous work [96]. The density of GA was tuned
by loading with MOF nanoparticles using the chemical reduction method and supercritical
drying. By adjusting the MOF/GO mass ratio of the precursors, MOF/GA composites of
different densities were obtained. Fig. 4.26 shows experimental data for mechanical prop-
erties of GA including tensile strength σu, tensile failure strain εu, tensile and compressive
moduli Et and Ec as a function of density ρ. In comparison to the simulation results shown in
Fig. 4.18, the general trends for strength and moduli are similar and matching. Specifically,
σu, Et and Ec increase as ρ increases, as shown in Figs. 4.26(a), (c) and (d). However, the
experimental results for strain εu show the opposite trends to the simulations, and the values
are more than 10 times lower. This suggests that MD simulations cannot effectively capture
the failure behavior of the GA, possibly due to the difference in microstructures and the
defect properties. The images of GAs undergoing a catastrophic failure during the tensile
test are provided in Fig. 4.27. The comparison above between simulations and experiments
indicates that MD simulations can overall capture the main trends of the mechanical prop-
erties of GA. The main limitation is that the density of the simulated GAs is much higher
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Figure 4.25: GA connectivity property under different distributions of graphene flake side
length L. Nbond/atom versus Ncycle plots with (a) σ = 3.0 Å, (b) σ = 7.0 Å, (c) σ = 9.0 Å,
and (d) σ = 13.0 Å

than the experimental GA samples, meaning that the values cannot be directly compared
but only the trends. Additionally, it is worth noting that based on various synthesis recipes,
the mechanical properties of the synthesized GA samples vary substantially, making it very
difficult to prepare ideal GA samples to compare with simulated GA structures.

Concluding remarks

In this section, various mechanical properties and the structural integrity of GA as a function
of a wide range of simulation parameters are studied. Its contributions to the GA simulation
research field are as follows. First, more parameters are covered compared to previous studies.
For example, the effects of both LJ parameters ϵ and σ are discussed, while previous studies
only considered σ. Second, the graphene size is additionally modeled with parametrized half
normal distributions on top of the previous log-normal distribution. Third, thanks to the
supercomputer resources, larger material systems up to 1500 graphene flakes are simulated
in comparison with the literature [139, 129, 128] and illustrate the size effect on the GA
properties. Lastly, the structural integrity and connectivity quality of GA structures are
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Figure 4.26: Experimental data of mechanical properties of GA as a function of density ρ.
(a) Tensile strength σu, (b) tensile failure strain εu, (c) tensile and (d) compressive moduli
Et and Ec of GA as a function of ρ.

quantified, which has not been previously discussed in the literature. The results show that
smaller and less inclusions during the in silico GA preparation are conducive to strength
and stiffness but may lead to brittleness. It is also observed that simulating larger material
systems reduces the randomness in property calculations. For the structural integrity aspect,
it is shown that overly large or overly many inclusions may lead to disconnected GA struc-
tures, and that moderately increasing the annealing temperature helps alleviate this issue.
Different distributions of graphene flake size are also studied, and larger flakes may improve
the structural integrity and reduce the property randomness. In the present simulations, the
lowest density achieved is still about 10 times higher than the experimental value. This can
be explained by the difference in the pore size between the simulation and the experiment,
and bridging or narrowing the gap requires building larger-scale simulation models. Finally,
the findings are compared with the experimental results to showcase both the power and the
limitation of the simulation technique. It is shown that the general trends for strength and
moduli are similar, while the trend for failure strain is different, possibly due to difference in
microstructures and the defect properties. This work may deepen the understanding of GA
simulations, accelerate materials’ design cycles, offer value to experimentalists in materials
synthesis, and shed light on the improvement of computational approaches for GA as well
as other novel nanomaterials [224].
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Figure 4.27: Images of GA showing catastrophic failure during tensile test. Compression
tests were performed on dynamic mechanical analysis (DMA, TA Instrument Q800). A
preload of 10 mN was applied on the GA samples to assure full contact. The samples
were compressed to 80% strain with a loading rate of 10% strain/min. Tension tests were
performed on universal testing machines (Instron) with a loading rate of 10% strain/min.
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Chapter 5

Simulation acceleration via machine
learning force fields

For curbing the global temperature increase [108], effective approaches for carbon capture are
needed. By utilizing amine-based liquid sorbents, current methods suffer from a high-energy
cost for the thermal desorption step that is responsible for of the total operating costs [151].
The use of solid sorbent materials for carbon capture has been proposed as an alternative
to amine-based liquid sorbents due to their lower desorption energy requirement, which can
potentially boost the commercial viability of point-source carbon capture. Including zeolites,
MOFs, covalent-organic frameworks, zeolitic imidazolate frameworks, and porous polymer
networks, solid sorbents are nanoporous materials that contain cages, channels, andor slits
capable of capturing gas molecules. The MOF class has received particular attention due
to their chemical diversity and potentially unlimited structural variations [228, 116, 159].
Generally, MOFs are built by combining two types of building blocks, namely, metal ions with
organic linkers, to generate structures with pores ranging from a few to tens of angstroms.
The absolute (adsorption capacity) and relative (adsorption selectivity) metrics can be tuned
by leveraging the chemical and geometric structural aspects independently [167].

Thanks to the ever-improving computing power [125], high-throughput screening for su-
perior MOFs for carbon capture has been made possible by the availability of open databases
of Crystallographic Information Files (CIF) [116, 106, 51], ranging from 105 to 106 material
candidates in total. Most existing in silico studies have focused on atomistic simulations that
approximate the interatomic interactions using the LJ and Coulomb potentials. Although
this particular choice of molecular model is adequate for CO2’s physisorption in MOFs, it
neglects the effect of chemisorption (i.e., bond formation with the adsorbate molecule as
shown in Fig. 5.1(a)) which is of particular interest for MOFs containing coordinatively un-
saturated metal sites, also known as open metal sites [66, 87]. The effect of chemisorption on
an open metal site manifests itself more prominently at lower pressures, precisely where the
desorption step happens and, therefore, is of utmost importance for the cost of regeneration
energy.

The chemical specificity of chemisorption at open metal sites has been a constant chal-
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Figure 5.1: Atomistic simulations of CO2 in Mg-MOF-74. (a) Illustration of one CO2

molecule chemically adsorbed at an open metal site in Mg-MOF-74. (b) Comparisons of
existing QC and classical atomistic simulations. (c) Scheme of the QMLFF-based simula-
tion approach.
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lenge for atomistic simulations based on nonspecific classical force fields, such as UFF and
DREIDING [45]. Recent attempts to overcome this challenge have mainly resorted to elec-
tronic structure methods, such as DFT, Hartree-Fock, and second order Møller-Plesset
(MP2) perturbation theory, which allowed the study of CO2’s chemisorption on specific
materials [127, 135, 6] through the sophisticated decomposition of the electronic interaction
energy from quantum chemistry (QC) calculations into classical potentials such as Morse [89]
and Buckingham [46, 27, 113], the creation of reparametrized polarizable potentials, and the
realization of first-principles Monte Carlo simulations [53]. Nevertheless, despite presenting
improved accuracy when compared with classical force fields, these approaches are still com-
putationally too expensive and/or heavily dependent on human intervention (due to the lack
of transferability), which makes them less attractive. Therefore, these two existing categories
of QC and classical simulations, pose a trade-off between accuracy and efficiency. Particu-
larly, to obtain the entropy contribution in a simulated system precisely, it requires both the
accuracy of QC and the extensive sampling of classical simulations, which is challenging.

5.1 Machine learning force fields for metal-organic

frameworks

The emerging ML force fields or potentials strive to obtain the best of both worlds, as
illustrated in Fig. 5.1(b). Provided with accurate QC simulation data, ML potentials can
have optimized parameters of their flexible non-analytical function forms such as a deep
neural network, i.e., the constraint of a physics-based functional form is relieved. In practice,
one can fine-tune the neural network architecture freely according to the materials system
complexity to achieve an optimal performance. After proper training, an ML potential can
inherit the accurate nature of the quantum-based method and can be used in efficient classical
simulations. Previous efforts in classical MD simulations with ML force fields have been
encouraging, including the prediction of thermal and phonon properties of graphene [146],
extensive modeling of the bond breaking process of silicon [11], accurate simulations of
nanoscale amorphous carbon structures [43], among others.

In this section, ML force fields are developed using the QC simulation data to solve the
challenging chemisorption of CO2 in Mg-MOF-74 (Fig. 5.1(a)). The pipeline of the ML
potential development and implementation used in this study is presented in Fig. 5.1(c).
Quantum-informed ML force fields (QMLFF) are developed using the DeePMD-kit pack-
age [173] as a template, which enables flexibly adjusting the neural network architecture
according to the problem complexity and to conveniently interface with the training data
obtained from QC simulations. After the training, QMLFF-based all-atom MD simulation is
performed to investigate physico-chemical phenomena (namely, chemisorption and diffusion)
of CO2 in Mg-MOF-74.
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Results

Machine learning force field

First, DFT-based calculations are conducted to optimize the Mg-MOF-74 structure, using
the CP2K software package [75]. Starting from the DFT-optimized structure, QC-based
molecular dynamics (QC-MD) simulations in the NVT ensemble are conducted and the
trajectory for the ML training are generated. DFT calculations follow the protocol in pre-
vious similar studies [153]: Perdew, Burke, and Ernzerhof (PBE) exchange functional [132],
DFT-D3 corrections for the van der Waals interaction [85], Gaussian plane-wave pseudopo-
tentials [69], and DZVP basis sets for carbon, oxygen, hydrogen, and magnesium atoms [169].
Consistent with previous DFT studies [124] for a unit cell (containing 162 atoms) of Mg-
MOF-74 in the hexagonal coordinate system, cell lengths along the a, b, and c axes are
la = lb = 26.152 Å and lc = 6.996 Å, correspondingly. These values are slightly larger than
experimental ones: la = lb = 25.921 Å and lc = 6.863 Å [141]. For one CO2 molecule bound
on a Mg site, the DFT calculation yields the bond length l = 2.38 Å for the Mg · · ·OCO2

bond. This value is consistent with ones obtained from previous DFT studies [199]. It
is further verified that the low-cost PM6 method [156] with Grimme’s D3 correction for
correlation [64] can yield consistent results with the ones from the PBE-based DFT cal-
culations. For example, the bond length for CO2 adsorbed at a Mg site is 2.23 ± 0.11 Å
from this low-cost QC (PM6+D3) calculation, similar to the above result from the PBE+D3
level DFT calculation. Therefore, for the computationally challenging QC-MD (ground-
state DFT-MD) simulations, the PM6+D3 method is applied to simulate the Mg-MOF-74
with various numbers of CO2 molecules in the NVT ensemble. Notably, the choice of the
computationally efficient PM6+D3 method is for the purpose of proof-of-concept and the
application of other high-accuracy DFT functionals can achieve even better outcomes albeit
computationally challenging. From the MD trajectory (TA = 300 K), the chemisorption of
CO2 on a Mg site in Mg-MOF-74 is observed with a mean Mg · · ·OCO2 bond distance of
2.23 ± 0.11 Å and a mean tilting angle (∠Mg · · ·OCO2 − CCO2) of 118.62 ± 10.62◦. These
simulation trajectories along with force and energy information are used for the training of a
deep-learning potential for MD simulations. The temperature in QC-MD simulations is kept
constant (at both 300 and 600 K) using a velocity-rescaling thermostat, and the time step is
1 fs. The trajectories of simulations at 600 K (yielding a good sampling of CO2 everywhere
inside the MOF channels) along with the force on each atom and the energy information are
used for the training of ML potentials.

Then the Deep Potential-Smooth Edition (DeepPot-SE) model is applied to generate
the interatomic ML potential. DeepPot-SE is a good candidate for the present system
mainly thanks to the following advantages: 1) The only inputs are chemical species and
atom coordinates. 2) The model is size extensive, i.e., the ML potential can be used for
systems of different sizes. 3) The designed descriptor preserves translational, rotational, and
permutational symmetries. 4) The model is continuously differentiable at the cutoff radius.
5) The model is interfaced with TensorFlow and LAMMPS via the DeePMD-kit package,
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which makes the model training and deployment convenient. The DeepPot-SE model maps
the atom configuration to the total energy via the following steps: Trajectory coordinates
R, local environment coordinates Ri (which preserves the translational symmetry and is
predefined by the cutoff distance), local energies Ei, and the total system energy E. This
is based on the general assumption of the neural-network type ML potential that the total
energy equals the sum of atomic contributions, i.e., E =

∑
i Ei. What makes DeepPot-SE

different from other models is the designed mapping from the local environment coordinates
Ri to the local energy Ei, which consists of the following procedures in sequence. First, Ri

is mapped to the generalized coordinate matrix R̃
i
, which is continuously differentiable at

the cutoff radius. Second, R̃
i
is fed into an embedding network to output a local embedding

matrix Gi. Third, Gi is transformed into a feature matrix (descriptor) that preserves the
rotation and permutation symmetries. lastly, Gi is mapped to Ei by a fitting network.
Fig. 5.1(c) illustrates the above training procedure, and the theoretical details of DeepPot-
SE can be found in Ref. [206].

Both the embedding and the fitting networks are fully-connected, and the sizes are dic-
tated by vectors nembed and nfit. The dimension of these vectors equals the number of hidden
layers and the integer value of each entry denotes the size of each hidden layer. Network
parameters w are updated by the Adam stochastic gradient descent method, which optimises
the following loss function:

L(pϵ, pf , pξ) =
1

|B|
∑
l∈B

pϵ|El − Ew
l |2 + pf |Fl −Fw

l |2 + pξ|Ξl − Ξw
l |2 (5.1)

where B denotes the minibatch; |B| is the batch size; l denotes the index of the training
data; E, F , Ξ denote the energy, the force, and the virial, respectively; pϵ, pf , pξ are tunable
prefactors. The training data in this study do not contain the virial component. Therefore
pξ is set as 0. The decaying learning rate α(t) is expressed as

α(t) = α0d
t
td (5.2)

where d is the decay rate; td is the decay steps. The prefactor is structured as

p∗ = pstart∗
α(t)

α0

+ plimit
∗ (1− α(t)

α0

) (5.3)

where the subscript * takes on ϵ, f and ξ. A range of learning rates and various learning rate
decaying mechanisms are explored to improve training. All ML hyperparameters used in this
study are summarized in Table 5.1. At each frame, atom types, atom coordinates, atomic
forces, system potential energy, and simulation box size are used in training. In the present
training, the units of time, length, energy, force, pressure are ps, Å, eV, eV / Å, bar, respec-

tively. The rooted mean squared error (RMSE), expressed as RMSE =
√∑N

i=1(ŷi − yi)2/N ,

is minimized during training, where ŷi and yi are the predicted property and the ground
truth of ith sample; N is the total number of the samples.
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Table 5.1: Hyperparameters for ML potential training.

rcut nembed nfit α0 d td |B|
6.0 Å [25, 50, 100] [240, 240, 240] 0.001 0.95 5000 100
pstartϵ plimit

ϵ pstartf plimit
f pstartξ plimit

ξ

0.0005 0.0005 1000 1 0 0

Figure 5.2: Training and verification of QMLFF with the trajectory from the QC MD
simulation of Mg-MOF-74 with one CO2 at 600 K that guarantees proper sampling for CO2

both on and off the Mg sites. (a) Energy and (b) forces as a function of the training step.
Time series of (c) Mg–OCO2 bond length and (d) tilting angle Mg–OCO2–CCO2 from the
QMLFF-based MD simulation (blue) and from the DFT-based MD simulation (green) at
300 K. The starting time for results from the DFT based MD simulation is shifted from
0 ns to 1.02 ns for clarity. The red horizontal lines represent the mean values from DFT
calculations (at 0 K), and the shaded areas indicated one standard deviation from the mean.

The learning curves for the rooted mean squared error (RMSE) of energy and force as a
function of the training step are shown in Figs. 5.2(a) and (b), respectively, up to 1 million
training steps. The RMSEs of both the energy and the forces have reached a plateau toward
the end of the training (for both the training and the validation data), indicating that the
ML potential has been sufficiently trained.

To validate the obtained QMLFF, MD simulations are run in the NVT ensemble at 300
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K for 1 ns to verify the structural stability of Mg-MOF-74 and calculated the Mg · · ·OCO2

bond length (Fig. 5.2(c)) and the tilting angle ∠Mg · · ·OCO2 − CCO2 (Fig. 5.2(d)). where
the subscript “CO2” denotes atoms belonging to the CO2 molecule. The time series of the
bond length and the tilting angle are shown in Figs. 5.2(c) and (d). Most time-dependent
bonds and angles fall within one standard deviation of the ones obtained in QC calculations,
suggesting that the ML potential can produce reasonable MOF-CO2 structures. Fig. 5.2(c)
appears to have many “spikes” that are larger than 3 Å. These events occur under the
following two circumstances: (1) when the CO2 is in the process of hopping from one Mg
site to another (consistent with the CO2 hoping dynamics found in experiment34); (2) when
the CO2 switches its oxygen atoms bound to the Mg site, both of which yielded a longer-
than usual Mg · · ·O distance. From the frequency of those events (Fig. 5.2(c)), the average
residence time for the CO2 on a Mg site is about 30 ps. To verify these results, a 135 ps
DFT-based MD simulation is performed and the similar time dependencies is obtained (green
lines in Figs. 5.2(c) and (d)). When comparing the efficiency of these two MD simulation
methods, the QMLFF-based method is about 1000 times faster than the DFT-based method.

Additionally, DFT calculation using the nudged-elastic-band (NEB) method for adsorp-
tion energies of CO2 in various locations inside Mg-MOF-74 is conducted. For each DFT-
optimized CO2-MOF complex, the QMLFF potential is used to predict the CO2 adsorption
energy. Overall, results from these two methods are comparable, as shown in Fig. 5.3.

DFT-MD data at 600 K are used for the main training because a higher temperature
provides better sampling for CO2 both on and off the Mg sites, so that the ML potential can
be trained with more different configurations. An ML potential with DFT-MD data at 300
K are also trained. In the comparison of structural feature prediction for CO2 on the Mg
sites (Figs. 5.2 and 5.4), ML potentials trained with 600 K and 300 K data seem to present a
minimal difference, which is expected. But it is anticipated that ML potential trained with
600 K data will result in more accurate calculations of free energy landscape and diffusion
coefficients to be studied in the following.

Free energy landscape of CO2 in Mg-MOF-74

Generally, the QC simulation is more accurate for calculating enthalpy than the classical
one, while the classical simulation (benefiting from a long simulation trajectory) is more
efficient for calculating entropy than the QC one. It is still challenging to obtain accurate
binding free energy (with contributions from both enthalpy and entropy) from either QC
or classical simulation. With the above QMLFF, unbiased MD simulations of Mg-MOF-74
with one CO2 in the NVT ensemble are performed. A high temperature of 600 K is used to
speed up the statistical sampling.

For the free energy landscape calculation, 25 trajectories at 600 K starting from different
random seeds are generated and put together. Each trajectory has a length of 1 ns and a total
of 100,000 frames. It is noteworthy that the QMLFF-based simulations are highly efficient
(see Table 5.2). Trajectories of a total length of 25 ns are gathered to compute the density
distribution n of CO2 (namely positions of the C atom in CO2) in Mg-MOF-74 that is further
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Figure 5.3: Adsorption energies of CO2 when it moves from the channel center (r = 0 Å) to
a Mg-site (r ∼ 5.4 Å). The reference energy is chosen when CO2 is at the center of a MOF
channel.

Table 5.2: Cost of computation in this study

task cores used
(no GPU)

run-time
for each
simulation

number of simu-
lations needed

simulation time

DFT
(PM6+D3)

16 <1 day 2 ∼ ps

ML training 32 ∼1.5 days 2 NA
MD 16 ∼1 day 31 ∼ tens of ns

used to obtain the free energy landscape E using the equation E = Eref–kBT ln(n/nref), where
E is the free energy; kB is the Boltzmann constant; T is the temperature; and the subscript
“ref” denotes the reference at the channel center. The plots for density distributions on the
x–y plane and the θ–z plane are shown in Fig. 5.5.

The free energy landscape on the x–y plane plotted against the Mg-MOF-74 framework
is shown in Fig. 5.6(a). The lowest free energy areas are located near the Mg sites, while the
center of the MOF channel has the highest free energy. The free energy landscape indicates
that energetically it is very difficult for a bound CO2 to escape the Mg site along the radial
direction. The free energy landscape is also ploted on the θ-z plane, as shown in Fig. 5.6(b).
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Figure 5.4: ML potential training and verification with DFT trajectories of Mg-MOF-74 and
one CO2 at 300 K as the training data. RMSEs of (a) energy and (b) forces as a function
of the training step. Time series of (c) Mg-OCO2 bond length and (d) the tilting angle Mg-
OCO2-CCO2 .

Figure 5.5: Probability-of-density distributions of CO2 inside one Mg-MOF-74 channel.
Probability density distributions in (a) the x-y plane and (b) the θ-z plane.
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Figure 5.6: Free energy landscape of CO2 inside one Mg-MOF-74 channel. (a) Free energy
landscape on the x–y plane. The position of the Mg-MOF-74 framework is also plotted
for reference. (b) Free energy landscape on the θ-z plane. (c) 1D free energy sliced along
y = 0 Å from (a). 1D free energy sliced along (d) z = 2.8 Å and (e) θ = 301◦ from (b). All
plots use the same color bar scale.

Each low free energy area corresponds to one Mg site. Compared with Fig. 5.6(a), it can be
discerned that it is easier for a bound CO2 to break free from one Mg site tangentially than
radially.

More quantitatively, three 1D free energy changes are shown in Figs. 5.6(c-e), by slicing
along y = 0 Å of Fig. 5.6(a) and along z = 2.8 Å and θ = 301◦ of Fig. 5.6(b), respectively.
These slices pass a few local minima originating from Mg sites in both free energy landscapes
(Figs. 5.6(a) and (b)). Fig. 5.6(c) shows that the binding free energy for CO2 from the center
of a channel to a Mg site is about -0.33 eV (or -31.8 kJ/mol). However, when hopping in
the θ direction between two neighboring Mg sites, the free energy barrier (measured from
the valley-to-peak in Fig. 5.6(d)) is only about 0.20 eV (or 19.3 kJ/mol). Additionally, if
the CO2 moves along the z direction from one Mg site to another neighboring one, the free
energy barrier (Fig. 5.6(e)) is further reduced to 0.15 eV (or 14.5 kJ/mol). These results
suggest that it is much easier for a bound CO2 (on a Mg site) to diffuse along the channel
surface (in either z or θ direction) than to reach the channel center radially. For comparison,
A 30 ns classical-force-field (UFF+DDEC) based MD simulation is performed at 600 K. For
the classical force field the interaction energies between non-bonded atoms are computed
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through a combination of LJ and Coulomb potentials.

Uij(rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+

1

4πϵ

qiqj
rij

(5.4)

where i and j are interacting atoms, rij is the distance between atoms i and j. εij is
the well depth and σij the distance at which the intermolecular potential between the two
particles is zero.qi and qj are the partial charges form atoms i and j calculated using the
DDEC method [97]. LJ parameters for the MOF atoms are taken from UFF [143], and the
parameters for CO2 are taken from the TraPPE [136] force field. The LJ parameters between
atoms of different types are calculated using the Lorentz–Berthelot mixing rules. Atomic
charges are calculated using the DDEC method. The cutoff for LJ and charge–charge short-
range interactions used is 12.8 Å with the LJ potential shifted to zero at the cutoff, the Ewald
sum technique is applied to compute the long-range electrostatic interactions with a relative
precision of 10–6, and a supercell of 2× 2× 4 is used to ensure that the box size is twice the
cutoff radius. The free energy landscape (Fig. 5.7) shows a much weaker adsorption of CO2

inside Mg-MOF-74 than the one shown in Fig. 5.6, i.e., no chemisorption. Therefore, the
classical force field cannot properly describe the interaction between CO2 and Mg-MOF-74.

In addition, the free energy landscapes is sliced along x = 0 Å and along θ = 270◦,
passing benzene rings in the MOF (see Figs. 5.8(a) and (b)). Results show that benzene
rings (considered as secondary binding sites for CO2 in Mg-MOF-74) also yield a binding
free energy of -0.22 eV (or -21.2 kJ/mol) (Fig. 5.8(a)), not as strong as that for the Mg sites.
Note that the free energy barrier for CO2 to hop between neighboring benzene rings is very
small (∼ 0.11 eV or 10.6 kJ/mol, Fig. 5.8(b)).

Diffusion of CO2 in Mg-MOF-74

Next, the CO2 diffusion phenomenon inside the Mg-MOF-74 channel is investigated. Specif-
ically, the diffusion in z and θ directions are studied, corresponding to the axial and the
angular movement, respectively. MD simulations are carried out in the NVT ensemble at
different temperatures (300 K and 600 K) using the same ML potential to examine the dif-
ference in the CO2 diffusion phenomenon, because the escaping of CO2 from a Mg site is a
thermally activated process.

The time dependency of z and θ are shown in Figs. 5.9(a-d). At 300 K, the CO2 molecule
underwent the stick-slip type of diffusion in both z and θ directions (Figs. 5.9(a) and (b)).
The stick state corresponds to the bond forming between CO2 and a Mg site, while each slip
state signifies a bond breaking. In each slip event, CO2 diffuses along the z direction by a
fixed distance of d = 6.996 Å (the size of one unit cell in the z direction) or diffuses along
the θ direction by a fixed angle of 60◦. The CO2 diffusion is much faster at 600 K than at
300 K (Figs. 5.9(c) and (d)). This suggests that thermal fluctuation at a high temperature
will facilitate CO2’s hopping from one free energy minimum to another. The residence time
for CO2 on a Mg site (in a stick state) can last up to 1-2 ns before slipping quickly to a
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Figure 5.7: Free energy landscape generated from the 30-ns MD simulation at 600 K using
the classical force fields (UFF+DDEC). The NVT ensemble is used and Mg-MOF-74 is
kept rigid during the simulation. The binding free energy of CO2 from the channel center
to a Mg-site is -0.14 eV, which is about two times smaller (i.e. weaker binding) than the
one obtained from the QMLFF-based MD simulation. No chemisorption is observed in the
classical-force-field-based MD simulation.

Figure 5.8: 1D free energy plot passing benzene rings obtained from the QMLFF-based MD
simulation. 1D free energy plots sliced (a) along x = 0 Å on the x-y plane free energy
landscape (Fig. 5.6(a)), and (b) along θ = 270◦ on the θ-z plane free energy landscape
(Fig. 5.6(b)).
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Figure 5.9: Diffusion phenomenon of one CO2 molecule inside the Mg-MOF-74 channel. (a)
z coordinate and (b) θ coordinate of the CO2 molecule as functions of time. (c) ⟨∆z2⟩ and
⟨∆θ2⟩ as functions of ∆t.

neighboring Mg site. In contrast, at 600 K the stick state only occurred occasionally, yielding
a much faster diffusion.

With the time series shown in Figs. 5.9(a-d), the diffusion coefficients of CO2 in Mg-
MOF-74, Dz and Dθ in z and θ directions respectively, can be calculated by taking the slope
of the mean-squared displacement of CO2 at large time intervals ∆t, concretely

Dz = lim
∆t→∞

⟨∆z2⟩
2∆t

= lim
∆t→∞

⟨(zt − zt−∆t)
2⟩

2∆t
(5.5)
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Dθ = lim
∆t→∞

⟨∆θ2⟩
2∆t

= lim
∆t→∞

⟨(θt − θt−∆t)
2⟩

2∆t
(5.6)

where ⟨·⟩ denotes the time average. ⟨∆z2⟩ and ⟨∆θ2⟩ are plotted as functions of ∆t in
Figs. 5.9(c) and (d), which show a strong linear relation. By linear-fitting the data points
Dz = 1.0 × 10−9 m2/s and Dθ = 8.3 deg2/s for 300 K, Dz = 3.4 × 10−8 m2/s and Dθ =
285 deg2/s for 600 K are obtained. Notably, Dz at 300 K is very close to but smaller
than the available experimental result 5.8 ×10−9m2/s for CO2 in Zn-MOF-74 [54], which is
reasonable given the fact that the adsorption of CO2 on a Zn site is weaker than on a Mg
site.

The observed stick-slip events of CO2 diffusion in Mg-MOF-74 are thermally activated
after overcoming free-energy barriers, which can be described by the Arrhenius-type equa-
tion,

D = D0e
−∆E/kBT (5.7)

where D and D0 are the diffusion coefficient and the prefactor respectively, and ∆E is the
activation free-energy (barrier). Thus, with simulation results for two temperatures (300
K and 600 K) above, the activation free-energy ∆E can be estimated using the following
equation,

∆E = (
1

kBT1

− 1

kBT2

) · ln(D2/D1) (5.8)

where T1 and T2 are 300 K and 600 K, respectively; D1 and D2 are the diffusion coefficients
at 300 K and 600 K, respectively. For both the longitudinal and the angular diffusion,
D2/D1 ∼ 34. Therefore, the calculated free-energy barrier ∆E for the longitudinal or the
angular motion is 0.18 eV, which is in excellent agreement with the result of the free-energy
landscape shown in Fig. 5.6. For comparison, Fig. 5.6(d) and (e) show that the free-energy
barriers are 0.17 and 0.16 eV for the angular and longitudinal motions, respectively.

It is worth mentioning that MD simulations (T = 300 K) with classical force fields
(Figs. 5.10(a) and (b)) predicted much faster diffusion for CO2 in Mg-MOF-74 due to the
lack of CO2 chemisorption on the Mg sites. As shown in Fig. 5.10(c), Dz = 9.5× 10−9 m2/s
for CO2’s diffusion along the z direction in Mg-MOF-74, which is about an order of mag-
nitude higher than the QMLFF-based result (Fig. 5.9(e)). Furthermore, Dθ = 208 deg2/s
(Fig. 5.10(d)), which is about 50 times larger than the QMLFF-based result (Fig. 5.9(f)).
These results highlight the necessity of applying the QMLFF method to model the CO2

diffusion in MOFs with open metal sites.

Discussion

Generally, many physical quantities such as the free energy and the diffusion coefficient
require extensive and accurate statistical samplings in atomistic simulations, which is pro-
hibitive for the ab initio simulation due to the long waiting time and enormous computing
resources. Although many statistical sampling methods (such as the umbrella sampling and
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Figure 5.10: Diffusion of CO2 inside Mg-MOF-74 channel from the 10-ns MD simulation
with classical force fields (UFF+DDEC). (a) Diffusion along the z direction; (b) Diffusion
along the θ direction; (c) ⟨∆z2⟩ and (d) ⟨∆θ2⟩ as functions of ∆t.

free energy perturbation) have been developed for classical atomistic simulations, the avail-
able classical force fields are generally not accurate. Typically, the classical simulation is fair
for the physisorption of CO2 in a solid sorbent but fails to describe the chemisorption. To
overcome this difficulty, an approach that permits a highly efficient classical simulation using
ML potentials (or QMLFF) trained according to data from QC simulations is developed. To
my best knowledge, the free energy landscape for CO2 inside the Mg-MOF-74 as well as
CO2’s diffusion coefficients have not be obtained in previous simulations with a quantum-
level accuracy. Particularly, the predicted diffusion coefficient for CO2 in Mg-MOF-74 is
reasonable when compared with limited experimental results.

One interesting application of the present method is to use ML potentials in Monte
Carlo simulations to obtain CO2 adsorption in MOFs at each temperature and pressure. It
is believed that ML potentials capable of accurate energy prediction can be used in grand
canonical Monte Carlo simulations to yield accurate isotherms for gas adsorption. Addition-
ally, the present approach can be extended to study the CO2 hydrolysis in MOFs with open
metal sites [187], where simulations can be conducted in a similar fashion given high-fidelity
trajectories as the training data for the ML potential.
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The present simulation results can be further improved with following customized pro-
cedures. Within the present ML framework, the same set of hyperparameters is used for
the training of various ML potentials. It is possible to fine-tune the step-dependent weights
associated with the energy and the forces, depending on their respective importance in a
simulation. Additionally, one can tweak the architectures of the embedding net and the
fitting net, which potentially can improve the expressiveness of the ML model. Last but not
least, one can feed a large amount of DFT training data (thus an enhanced sampling of CO2

at all possible locations in Mg-MOF-74) to the ML model to improve the accuracy.

Concluding remarks

In this section, it is demonstrated that atomistic MD simulations with the quantum-informed
ML potentials can yield results not only comparable to those directly from QC simulations
but also close to experimentally measured ones. The present approach can be applied for
any chemisorption of small gas molecules (such as CO2, N2 and H2O) in a MOF with open-
metal sites. More importantly, this QMLFF-based approach (free from human intervention)
can be automated on high-performance clusters or supercomputers for in silico screening of
∼1 million MOFs. Broadly, it is expected that this low-cost and high-accuracy approach
can greatly facilitate the in silico modeling for the chemisorption and diffusion of a small
molecule in any solid sorbents [226].
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Chapter 6

Summary and future directions

In the present thesis, ML-assisted simulation and design approaches for functional nanomate-
rials are demonstrated, with a focus on the graphene family. MD simulations are conducted to
numerically investigate the mechanical behavior of graphene-based materials such as defect-
containing graphene, GOs and GAs, and various ML techniques including KRR, Gaussian
process metamodels, and deep RL are used in the predictive and generative modeling of these
materials. Finally, the concept and the promise of ML interatomic potentials in achieving
efficient and accurate simulations for MOF materials are presented. The research constitut-
ing the present thesis may shed light on some new possibilities of simulating and designing
functional nanomaterials, which may further improve the performances of applications such
as stretchable electronics, supercapacitor devices, carbon sequestration technologies, among
others.

In the following a few future directions are proposed based on the present research. To
begin with, the interpretability and explainability of ML model for materials research are still
in question. Although ML has demonstrate great power in predicting material properties
and designing new nanomaterials, it is no longer satisfactory for ML to be only a black
box solution, which is unfortunately often the case for complex ML models such as deep
neural networks (in comparison, a decision tree model is more explainable). Instead, it is
hoped that ML can provide human experts with more insights that can lead to scientific
discoveries. One future direction is to not only develop effective ML models to predict and
design nanomaterials but also try to understand why the models can work so well.

Another direction is to further improve the databases for nanomaterials. Despite the
rapid growth in recent years, databases for many useful information are still in their infancy
or non-existent. One example is trained ML interatomic potentials, which are very valuable
for materials simulations but are scattered throughout the Internet. To address this issue,
one research direction can be using natural language processing (NLP)-based information
extraction for properties of interest, through which we can explore large, unstructured text-
based data to create and populate databases for nanomaterials.



154

Bibliography

[1] Shamima Ahmed et al. “Artificial intelligence and machine learning in finance: A
bibliometric review”. In: Research in International Business and Finance 61 (2022),
p. 101646.

[2] Mohammad Amin Amani et al. “A machine learning-based model for the estimation
of the temperature-dependent moduli of graphene oxide reinforced nanocomposites
and its application in a thermally affected buckling analysis”. In: Engineering with
Computers 37 (2021), pp. 2245–2255.

[3] Bruce Ankenman, Barry L Nelson, and Jeremy Staum. “Stochastic kriging for simu-
lation metamodeling”. In: 2008 Winter Simulation Conference. IEEE. 2008, pp. 362–
370.

[4] R Ansari, S Ajori, and B Motevalli. “Mechanical properties of defective single-layered
graphene sheets via molecular dynamics simulation”. In: Superlattices and Microstruc-
tures 51.2 (2012), pp. 274–289.

[5] Paulo T Araujo, Mauricio Terrones, and Mildred S Dresselhaus. “Defects and impu-
rities in graphene-like materials”. In: Materials Today 15.3 (2012), pp. 98–109.

[6] Mehrdad Asgari et al. “An experimental and computational study of CO 2 adsorption
in the sodalite-type M-BTT (M= Cr, Mn, Fe, Cu) metal–organic frameworks featuring
open metal sites”. In: Chemical Science 9.20 (2018), pp. 4579–4588.

[7] Jingwei Bai et al. “Graphene nanomesh”. In: Nature Nanotechnology 5.3 (2010),
pp. 190–194.

[8] Alexander A Balandin. “Thermal properties of graphene and nanostructured carbon
materials”. In: Nature materials 10.8 (2011), pp. 569–581.

[9] Alexander A Balandin et al. “Superior thermal conductivity of single-layer graphene”.
In: Nano Letters 8.3 (2008), pp. 902–907.

[10] Emmanuel Anuoluwa Bamidele et al. “Discovery and prediction capabilities in metal-
based nanomaterials: An overview of the application of machine learning techniques
and some recent advances”. In: Advanced Engineering Informatics 52 (2022), p. 101593.
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[87] Ülkü Kökçam-Demir et al. “Coordinatively unsaturated metal sites (open metal sites)
in metal–organic frameworks: design and applications”. In: Chemical Society Reviews
49.9 (2020), pp. 2751–2798.



BIBLIOGRAPHY 160

[88] Mohamad Koohi-Moghadam et al. “Predicting disease-associated mutation of metal-
binding sites in proteins using a deep learning approach”. In: Nature Machine Intel-
ligence 1.12 (2019), pp. 561–567.

[89] Ambarish R Kulkarni and David S Sholl. “Screening of copper open metal site MOFs
for olefin/paraffin separations using DFT-derived force fields”. In: The Journal of
Physical Chemistry C 120.40 (2016), pp. 23044–23054.

[90] Changgu Lee et al. “Measurement of the elastic properties and intrinsic strength of
monolayer graphene”. In: Science 321.5887 (2008), pp. 385–388.

[91] Ossi Lehtinen et al. “Non-invasive transmission electron microscopy of vacancy defects
in graphene produced by ion irradiation”. In: Nanoscale 6.12 (2014), pp. 6569–6576.

[92] Charles Lewis et al. “Use of machine learning with temporal photoluminescence sig-
nals from cdte quantum dots for temperature measurement in microfluidic devices”.
In: ACS Applied Nano Materials 3.5 (2020), pp. 4045–4053.

[93] Sichao Li and Amanda S Barnard. “Inverse Design of Nanoparticles Using Multi-
Target Machine Learning”. In: Advanced Theory and Simulations 5.2 (2022), p. 2100414.

[94] Xing Li et al. “Self-supporting activated carbon/carbon nanotube/reduced graphene
oxide flexible electrode for high performance supercapacitor”. In: Carbon 129 (2018),
pp. 236–244.

[95] Zheng Li et al. “Superstructured assembly of nanocarbons: fullerenes, nanotubes, and
graphene”. In: Chemical Reviews 115.15 (2015), pp. 7046–7117.

[96] Zhou Li et al. “Synthesis and characterization of UiO-66-NH2 incorporated graphene
aerogel composites and their utilization for absorption of organic liquids”. In: Carbon
201 (2023), pp. 561–567.

[97] Nidia Gabaldon Limas and Thomas A Manz. “Introducing DDEC6 atomic population
analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin
moments, bond orders, and more”. In: RSC Advances 8.5 (2018), pp. 2678–2707.

[98] Bo Liu and Kun Zhou. “Recent progress on graphene-analogous 2D nanomaterials:
Properties, modeling and applications”. In: Progress in Materials Science 100 (2019),
pp. 99–169.

[99] Ruili Liu et al. “An interface-induced Co-assembly approach towards ordered meso-
porous carbon/graphene aerogel for high-performance supercapacitors”. In: Advanced
Functional Materials 25.4 (2015), pp. 526–533.

[100] Xin Liu et al. “3D graphene aerogel-supported SnO 2 nanoparticles for efficient de-
tection of NO 2”. In: Rsc Advances 4.43 (2014), pp. 22601–22605.

[101] Kian Ping Loh et al. “Graphene oxide as a chemically tunable platform for optical
applications”. In: Nature Chemistry 2.12 (2010), pp. 1015–1024.

[102] Hu Long et al. “High surface area MoS2/graphene hybrid aerogel for ultrasensitive
NO2 detection”. In: Advanced Functional Materials 26.28 (2016), pp. 5158–5165.



BIBLIOGRAPHY 161

[103] Shuaihua Lu et al. “Accelerated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning”. In: Nature Communications 9.1 (2018), p. 3405.

[104] Shuaihua Lu et al. “Rapid discovery of ferroelectric photovoltaic perovskites and
material descriptors via machine learning”. In: Small Methods 3.11 (2019), p. 1900360.

[105] Wei Ma, Feng Cheng, and Yongmin Liu. “Deep-learning-enabled on-demand design
of chiral metamaterials”. In: ACS Nano 12.6 (2018), pp. 6326–6334.

[106] Sauradeep Majumdar et al. “Diversifying databases of metal organic frameworks for
high-throughput computational screening”. In: ACS Applied Materials & Interfaces
13.51 (2021), pp. 61004–61014.

[107] Artem Maksov et al. “Deep learning analysis of defect and phase evolution during
electron beam-induced transformations in WS2”. In: npj Computational Materials 5.1
(2019), p. 12.

[108] Michael E Mann, Raymond S Bradley, and Malcolm K Hughes. “Global-scale temper-
ature patterns and climate forcing over the past six centuries”. In: Nature 392.6678
(1998), pp. 779–787.

[109] Cristina Martin-Olmos et al. “Graphene MEMS: AFM probe performance improve-
ment”. In: ACS Nano 7.5 (2013), pp. 4164–4170.

[110] A Hamed Mashhadzadeh et al. “Theoretical studies on the mechanical and elec-
tronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene
nanobud”. In: Applied Surface Science 476 (2019), pp. 36–48.

[111] Satoru Masubuchi et al. “Fabrication of graphene nanoribbon by local anodic oxi-
dation lithography using atomic force microscope”. In: Applied Physics Letters 94.8
(2009).

[112] Cecilia Mattevi, Hokwon Kim, and Manish Chhowalla. “A review of chemical vapour
deposition of graphene on copper”. In: Journal of Materials Chemistry 21.10 (2011),
pp. 3324–3334.

[113] Rocio Mercado et al. “Force field development from periodic density functional theory
calculations for gas separation applications using metal–organic frameworks”. In: The
Journal of Physical Chemistry C 120.23 (2016), pp. 12590–12604.

[114] M Mirakhory, MM Khatibi, and S Sadeghzadeh. “Vibration analysis of defected and
pristine triangular single-layer graphene nanosheets”. In: Current Applied Physics
18.11 (2018), pp. 1327–1337.

[115] Yousef Mohammadi et al. “Intelligent machine learning: tailor-making macromolecules”.
In: Polymers 11.4 (2019), p. 579.

[116] Seyed Mohamad Moosavi et al. “Understanding the diversity of the metal-organic
framework ecosystem”. In: Nature Communications 11.1 (2020), pp. 1–10.



BIBLIOGRAPHY 162

[117] Benyamin Motevalli, Baichuan Sun, and Amanda S Barnard. “Understanding and
predicting the cause of defects in graphene oxide nanostructures using machine learn-
ing”. In: The Journal of Physical Chemistry C 124.13 (2020), pp. 7404–7413.

[118] Benyamin Motevalli et al. “The representative structure of graphene oxide nanoflakes
from machine learning”. In: Nano Futures 3.4 (2019), p. 045001.

[119] Brianna Mueller et al. “Artificial intelligence and machine learning in emergency
medicine: a narrative review”. In: Acute Medicine & Surgery 9.1 (2022), e740.

[120] SF Asbaghian Namin and R Pilafkan. “Vibration analysis of defective graphene
sheets using nonlocal elasticity theory”. In: Physica E: Low-Dimensional Systems
and Nanostructures 93 (2017), pp. 257–264.

[121] Zhonghua Ni et al. “Anisotropic mechanical properties of graphene sheets from molec-
ular dynamics”. In: Physica B: Condensed Matter 405.5 (2010), pp. 1301–1306.

[122] Marcus M Noack et al. “Autonomous materials discovery driven by Gaussian pro-
cess regression with inhomogeneous measurement noise and anisotropic kernels”. In:
Scientific Reports 10.1 (2020), p. 17663.

[123] Kostya S Novoselov et al. “Electric field effect in atomically thin carbon films”. In:
Science 306.5696 (2004), pp. 666–669.

[124] Aline de Oliveira, Guilherme Ferreira de Lima, and Heitor Avelino De Abreu. “Struc-
tural and electronic properties of M-MOF-74 (M= Mg, Co or Mn)”. In: Chemical
Physics Letters 691 (2018), pp. 283–290.

[125] Daniele Ongari, Leopold Talirz, and Berend Smit. “Too many materials and too many
applications: An experimental problem waiting for a computational solution”. In: ACS
Central Science 6.11 (2020), pp. 1890–1900.

[126] Dimitrios G Papageorgiou, Ian A Kinloch, and Robert J Young. “Mechanical prop-
erties of graphene and graphene-based nanocomposites”. In: Progress in Materials
Science 90 (2017), pp. 75–127.

[127] Joonho Park et al. “Tuning metal–organic frameworks with open-metal sites and its
origin for enhancing CO2 affinity by metal substitution”. In: The Journal of Physical
Chemistry Letters 3.7 (2012), pp. 826–829.

[128] Sandeep P Patil, Ambarish Kulkarni, and Bernd Markert. “Shockwave response of
graphene aerogels: An all-atom simulation study”. In: Computational Materials Sci-
ence 189 (2021), p. 110252.

[129] Sandeep P Patil, Parag Shendye, and Bernd Markert. “Molecular investigation of
mechanical properties and fracture behavior of graphene aerogel”. In: The Journal of
Physical Chemistry B 124.28 (2020), pp. 6132–6139.

[130] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.



BIBLIOGRAPHY 163

[131] Qing-Xiang Pei, Yong-Wei Zhang, and Vivek B Shenoy. “Mechanical properties of
methyl functionalized graphene: a molecular dynamics study”. In: Nanotechnology
21.11 (2010), p. 115709.

[132] John P Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized gradient ap-
proximation made simple”. In: Physical Review Letters 77.18 (1996), p. 3865.

[133] Luiz Felipe C Pereira et al. “Anisotropic thermal conductivity and mechanical prop-
erties of phagraphene: a molecular dynamics study”. In: RSC Advances 6.63 (2016),
pp. 57773–57779.

[134] Jinglei Ping and Michael S Fuhrer. “Layer number and stacking sequence imaging
of few-layer graphene by transmission electron microscopy”. In: Nano Letters 12.9
(2012), pp. 4635–4641.

[135] Roberta Poloni et al. “Understanding trends in CO2 adsorption in metal–organic
frameworks with open-metal sites”. In: The Journal of Physical Chemistry Letters
5.5 (2014), pp. 861–865.

[136] Jeffrey J Potoff and J Ilja Siepmann. “Vapor–liquid equilibria of mixtures containing
alkanes, carbon dioxide, and nitrogen”. In: AIChE Journal 47.7 (2001), pp. 1676–
1682.

[137] Zenan Qi, David K Campbell, and Harold S Park. “Atomistic simulations of tension-
induced large deformation and stretchability in graphene kirigami”. In: Physical Re-
view B 90.24 (2014), p. 245437.

[138] Zenan Qi et al. “A molecular simulation analysis of producing monatomic carbon
chains by stretching ultranarrow graphene nanoribbons”. In: Nanotechnology 21.26
(2010), p. 265702.

[139] Zhao Qin et al. “The mechanics and design of a lightweight three-dimensional graphene
assembly”. In: Science Advances 3.1 (2017), e1601536.

[140] Ling Qiu, Dan Li, and Hui-Ming Cheng. “Structural control of graphene-based ma-
terials for unprecedented performance”. In: ACS Nano 12.6 (2018), pp. 5085–5092.

[141] Wendy L Queen et al. “Site-specific CO2 adsorption and zero thermal expansion in an
anisotropic pore network”. In: The Journal of Physical Chemistry C 115.50 (2011),
pp. 24915–24919.

[142] Paul Raccuglia et al. “Machine-learning-assisted materials discovery using failed ex-
periments”. In: Nature 533.7601 (2016), pp. 73–76.
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[164] Levente Tapasztó et al. “Tailoring the atomic structure of graphene nanoribbons by
scanning tunnelling microscope lithography”. In: Nature Nanotechnology 3.7 (2008),
pp. 397–401.

[165] Mahdi Tavakol et al. “Mechanical properties of graphene oxide: The impact of func-
tional groups”. In: Applied Surface Science 525 (2020), p. 146554.

[166] Aidan P Thompson et al. “LAMMPS-a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales”. In: Computer Physics
Communications 271 (2022), p. 108171.

[167] Christopher A Trickett et al. “The chemistry of metal–organic frameworks for CO2
capture, regeneration and conversion”. In: Nature Reviews Materials 2.8 (2017), pp. 1–
16.

[168] Alex Vallone, Nooshin M Estakhri, and NasimMohammadi Estakhri. “Region-specified
inverse design of absorption and scattering in nanoparticles by using machine learn-
ing”. In: Journal of Physics: Photonics 5.2 (2023), p. 024002.

[169] Joost VandeVondele and Jürg Hutter. “Gaussian basis sets for accurate calculations
on molecular systems in gas and condensed phases”. In: The Journal of Chemical
Physics 127.11 (2007).

[170] Aniruddh Vashisth et al. “ReaxFF simulations of laser-induced graphene (LIG) forma-
tion for multifunctional polymer nanocomposites”. In: ACS Applied Nano Materials
3.2 (2020), pp. 1881–1890.

[171] Akarsh Verma and Avinash Parashar. “Molecular dynamics based simulations to
study failure morphology of hydroxyl and epoxide functionalised graphene”. In: Com-
putational Materials Science 143 (2018), pp. 15–26.

[172] Changguo Wang et al. “Graphene wrinkling: formation, evolution and collapse”. In:
Nanoscale 5.10 (2013), pp. 4454–4461.



BIBLIOGRAPHY 166

[173] Han Wang et al. “DeePMD-kit: A deep learning package for many-body potential en-
ergy representation and molecular dynamics”. In: Computer Physics Communications
228 (2018), pp. 178–184.

[174] Jianlin Wang, Steven L Crouch, and Sofia G Mogilevskaya. “A complex boundary in-
tegral method for multiple circular holes in an infinite plane”. In: Engineering Analysis
with Boundary Elements 27.8 (2003), pp. 789–802.

[175] MC Wang et al. “Effect of defects on fracture strength of graphene sheets”. In: Com-
putational Materials Science 54 (2012), pp. 236–239.

[176] Yan Wang et al. “Supercapacitor devices based on graphene materials”. In: The Jour-
nal of Physical Chemistry C 113.30 (2009), pp. 13103–13107.

[177] Thierry Warin and Aleksandar Stojkov. “Machine learning in finance: a metadata-
based systematic review of the literature”. In: Journal of Risk and Financial Man-
agement 14.7 (2021), p. 302.

[178] TO Wehling et al. “Molecular doping of graphene”. In: Nano Letters 8.1 (2008),
pp. 173–177.

[179] TO Wehling et al. “Resonant scattering by realistic impurities in graphene”. In: Phys-
ical Review Letters 105.5 (2010), p. 056802.

[180] Ning Wei et al. “Thermal conductivity of graphene kirigami: Ultralow and strain
robustness”. In: Carbon 104 (2016), pp. 203–213.

[181] XiaodingWei et al. “Plasticity and ductility in graphene oxide through a mechanochem-
ically induced damage tolerance mechanism”. In: Nature Communications 6.1 (2015),
p. 8029.

[182] Yujie Wei and Ronggui Yang. “Nanomechanics of graphene”. In: National Science
Review 6.2 (2019), pp. 324–348.

[183] Yujie Wei et al. “The nature of strength enhancement and weakening by pentagon–
heptagon defects in graphene”. In: Nature Materials 11.9 (2012), pp. 759–763.

[184] Zhongqing Wei et al. “Nanoscale tunable reduction of graphene oxide for graphene
electronics”. In: Science 328.5984 (2010), pp. 1373–1376.

[185] Freddie Withers, Marc Dubois, and Alexander K Savchenko. “Electron properties
of fluorinated single-layer graphene transistors”. In: Physical Review B 82.7 (2010),
p. 073403.

[186] Marcus A Worsley et al. “Synthesis of graphene aerogel with high electrical con-
ductivity”. In: Journal of the American Chemical Society 132.40 (2010), pp. 14067–
14069.

[187] Ashley M Wright et al. “A structural mimic of carbonic anhydrase in a metal-organic
framework”. In: Chem 4.12 (2018), pp. 2894–2901.



BIBLIOGRAPHY 167

[188] Ying Wu, Haipeng Duan, and Hongxia Xi. “Machine learning-driven insights into
defects of zirconium metal–organic frameworks for enhanced ethane–ethylene separa-
tion”. In: Chemistry of Materials 32.7 (2020), pp. 2986–2997.

[189] Xiao Xie et al. “Large-range control of the microstructures and properties of three-
dimensional porous graphene”. In: Scientific Reports 3.1 (2013), p. 2117.

[190] Zhen Xu and Chao Gao. “Graphene fiber: a new trend in carbon fibers”. In: Materials
Today 18.9 (2015), pp. 480–492.

[191] Zhen Xu et al. “Ultrastrong fibers assembled from giant graphene oxide sheets”. In:
Advanced Materials 25.2 (2013), pp. 188–193.

[192] Charles Yang et al. “Prediction of composite microstructure stress-strain curves using
convolutional neural networks”. In: Materials & Design 189 (2020), p. 108509.

[193] Jing Yang et al. “Cellulose/graphene aerogel supported phase change composites with
high thermal conductivity and good shape stability for thermal energy storage”. In:
Carbon 98 (2016), pp. 50–57.

[194] Xiaoming Yang et al. “Well-dispersed chitosan/graphene oxide nanocomposites”. In:
ACS Applied Materials & Interfaces 2.6 (2010), pp. 1707–1713.

[195] Yu Yang et al. “Flexible supercapacitors based on polyaniline arrays coated graphene
aerogel electrodes”. In: Nanoscale Research Letters 12 (2017), pp. 1–9.

[196] Oleg V Yazyev and Steven G Louie. “Topological defects in graphene: Dislocations
and grain boundaries”. In: Physical Review B 81.19 (2010), p. 195420.

[197] Min Yi and Zhigang Shen. “A review on mechanical exfoliation for the scalable pro-
duction of graphene”. In: Journal of Materials Chemistry A 3.22 (2015), pp. 11700–
11715.

[198] Kichul Yoon, Alireza Ostadhossein, and Adri CT Van Duin. “Atomistic-scale simu-
lations of the chemomechanical behavior of graphene under nanoprojectile impact”.
In: Carbon 99 (2016), pp. 58–64.

[199] Jiamei Yu and Perla B Balbuena. “Water effects on postcombustion CO2 capture in
Mg-MOF-74”. In: The Journal of Physical Chemistry C 117.7 (2013), pp. 3383–3388.

[200] Zenan Yu et al. “Functionalized graphene aerogel composites for high-performance
asymmetric supercapacitors”. In: Nano Energy 11 (2015), pp. 611–620.

[201] Ardavan Zandiatashbar et al. “Effect of defects on the intrinsic strength and stiffness
of graphene”. In: Nature Communications 5.1 (2014), p. 3186.

[202] Minxiang Zeng et al. “Accelerated design of catalytic water-cleaning nanomotors via
machine learning”. In: ACS Applied Materials & Interfaces 11.43 (2019), pp. 40099–
40106.

[203] Erhui Zhang et al. “Polypyrrole nanospheres@ graphene aerogel with high specific sur-
face area, compressibility, and proper water wettability prepared in dimethylformamide-
dependent environment”. In: Polymer 185 (2019), p. 121974.



BIBLIOGRAPHY 168

[204] Hengji Zhang, Geunsik Lee, and Kyeongjae Cho. “Thermal transport in graphene
and effects of vacancy defects”. In: Physical Review B 84.11 (2011), p. 115460.

[205] Ji Zhang, Tarek Ragab, and Cemal Basaran. “Influence of vacancy defects on the
damage mechanics of graphene nanoribbons”. In: International Journal of Damage
Mechanics 26.1 (2017), pp. 29–49.

[206] Linfeng Zhang et al. “End-to-end symmetry preserving inter-atomic potential energy
model for finite and extended systems”. In: Advances in Neural Information Process-
ing Systems 31 (2018).

[207] Peng Zhang et al. “Fracture toughness of graphene”. In: Nature Communications 5.1
(2014), p. 3782.

[208] Qiangqiang Zhang et al. “Mechanically robust honeycomb graphene aerogel multi-
functional polymer composites”. In: Carbon 93 (2015), pp. 659–670.

[209] Teng Zhang, Xiaoyan Li, and Huajian Gao. “Fracture of graphene: a review”. In:
International Journal of Fracture 196 (2015), pp. 1–31.

[210] Teng Zhang et al. “Flaw insensitive fracture in nanocrystalline graphene”. In: Nano
Letters 12.9 (2012), pp. 4605–4610.

[211] Xiangyu Zhang, Kexin Zhang, and Yongjin Lee. “Machine learning enabled tailor-
made design of application-specific metal–organic frameworks”. In: ACS Applied Ma-
terials & Interfaces 12.1 (2019), pp. 734–743.

[212] Xuetong Zhang et al. “Mechanically strong and highly conductive graphene aerogel
and its use as electrodes for electrochemical power sources”. In: Journal of Materials
Chemistry 21.18 (2011), pp. 6494–6497.

[213] Zhizhou Zhang and Grace X Gu. “Finite-Element-Based Deep-Learning Model for
Deformation Behavior of Digital Materials”. In: Advanced Theory and Simulations
3.7 (2020), p. 2000031.

[214] Huijuan Zhao and Narayana R Aluru. “Temperature and strain-rate dependent frac-
ture strength of graphene”. In: Journal of Applied Physics 108.6 (2010).

[215] Huijuan Zhao, K Min, and Narayana R Aluru. “Size and chirality dependent elastic
properties of graphene nanoribbons under uniaxial tension”. In: Nano Letters 9.8
(2009), pp. 3012–3015.

[216] Bowen Zheng and Grace X Gu. “Machine learning-based detection of graphene defects
with atomic precision”. In: Nano-Micro Letters 12 (2020), pp. 1–13.

[217] Bowen Zheng and Grace X Gu. “Prediction of graphene oxide functionalization using
gradient boosting: implications for material chemical composition identification”. In:
ACS Applied Nano Materials 4.3 (2021), pp. 3167–3174.

[218] Bowen Zheng and Grace X Gu. “Recovery from mechanical degradation of graphene
by defect enlargement”. In: Nanotechnology 31.8 (2019), p. 085707.



BIBLIOGRAPHY 169

[219] Bowen Zheng and Grace X Gu. “Stress field characteristics and collective mechanical
properties of defective graphene”. In: The Journal of Physical Chemistry C 124.13
(2020), pp. 7421–7431.

[220] Bowen Zheng and Grace X Gu. “Tuning the graphene mechanical anisotropy via
defect engineering”. In: Carbon 155 (2019), pp. 697–705.

[221] Bowen Zheng, Zeyu Zheng, and Grace X Gu. “Designing mechanically tough graphene
oxide materials using deep reinforcement learning”. In: npj Computational Materials
8.1 (2022), p. 225.

[222] Bowen Zheng, Zeyu Zheng, and Grace X Gu. “Scalable graphene defect prediction
using transferable learning”. In: Nanomaterials 11.9 (2021), p. 2341.

[223] Bowen Zheng, Zeyu Zheng, and Grace X Gu. “Uncertainty quantification and predic-
tion for mechanical properties of graphene aerogels via Gaussian process metamodels”.
In: Nano Futures 5.4 (2021), p. 045004.

[224] Bowen Zheng et al. “Investigation of mechanical properties and structural integrity
of graphene aerogels via molecular dynamics simulations”. In: Physical Chemistry
Chemical Physics 25.33 (2023), pp. 21897–21907.

[225] Bowen Zheng et al. “Machine learning and experiments: A synergy for the develop-
ment of functional materials”. In: MRS Bulletin 48.2 (2023), pp. 142–152.

[226] Bowen Zheng et al. “Quantum Informed Machine-Learning Potentials for Molecular
Dynamics Simulations of CO2’s Chemisorption and Diffusion in Mg-MOF-74”. In:
ACS Nano 17.6 (2023), pp. 5579–5587.

[227] Jin-Hui Zhong et al. “Quantitative correlation between defect density and heteroge-
neous electron transfer rate of single layer graphene”. In: Journal of the American
Chemical Society 136.47 (2014), pp. 16609–16617.

[228] Hong-Cai Zhou, Jeffrey R Long, and Omar M Yaghi. “Introduction to metal–organic
frameworks”. In: Chemical Reviews 112.2 (2012), pp. 673–674.

[229] Cheng Zhu et al. “Highly compressible 3D periodic graphene aerogel microlattices”.
In: Nature Communications 6.1 (2015), p. 6962.

[230] Jingyi Zhu et al. “Defect-engineered graphene for high-energy-and high-power-density
supercapacitor devices”. In: Advanced Materials 28.33 (2016), pp. 7185–7192.

[231] Linggang Zhu, Jian Zhou, and Zhimei Sun. “Materials data toward machine learning:
advances and challenges”. In: The Journal of Physical Chemistry Letters 13.18 (2022),
pp. 3965–3977.

[232] Shuze Zhu, Yinjun Huang, and Teng Li. “Extremely compliant and highly stretchable
patterned graphene”. In: Applied Physics Letters 104.17 (2014).

[233] Yanwu Zhu et al. “Carbon-based supercapacitors produced by activation of graphene”.
In: Science 332.6037 (2011), pp. 1537–1541.



BIBLIOGRAPHY 170

[234] Yanwu Zhu et al. “Graphene and graphene oxide: synthesis, properties, and applica-
tions”. In: Advanced Materials 22.35 (2010), pp. 3906–3924.




