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ABSTRACT

A finite element procedure is presented for the analysis of thin shells
of arbitrary geometry. The smoothly curved shell surface is discretized by
an assemblage of flat triangular elements., The element stiffness properties
are derived from assumed displacement functions in the form of truncated
polynomials, and triangular coordinates are used for the derivation. Both
triangular and non-planar quadrilaterals (an assemblage of four triangular
elements) are utilized, and their stiffness properties are compared.

The stiffness properties of the complete assemblage are obtained by
the direct stiffness procedure. The treatment of force and displacement
boundary conditions is discussed and a direct procedure is used to solve
the nodal point equilibrium equations of the assemblage. Practical aspects
of a computer algorithm for the solution of large systems of equations which
are banded, symmetric, positive definite and sparse is discussed; and typical
solution times are recorded.

A five degree of freedom nodal point displacement system is used which
permits substantial mesh refinement in treating shells with intricacies of
geometric detail. The convergence properties with decreasing mesh size for
both element types are studied, and the results of several analyses are

compared with existing solutions.
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CHAPTER 1. INTRODUCTION

1.1 Historical Background

The widespread use of thin shell structures has created a need for
& systematic method of analysis which can adequately account for arbi-
trary geometric form and boundary conditions as well as arbitrary general
types of loading. Classical thin shell theory yields differential equa-
tions of equilibrium or continuity whose complexity depends greatly on
the shell geometry and whose solution is a function of the geometric
position of the boundary and the type of force or displacement quantity
which must be satisfied there. Therefore, classical sclutions are avail-
able only for simple geometric forms whose boundaries coincide with the
parametric curves that describe the shell surface. In this context, the
sphere and the circular cylinder are amenable to classical solutions and
have been studied extensively. However, the complications caused by
geometry and boundary conditions together with variable thickness,
variable material properties, discontinuities in the shell surface (cut-
outs), and general loading disqualify the classical approach as & system-
atic method of analysis for most real problems.

With the aid of the digital computer various numerical procedures
such as finite differences, numerical integration, variational methods
(Galerkin and Kantarovich), have been presented for a certain class of
problems based on shallow-shell theory. These solutions, however, have
been limited to special geometric forms, such as shallow translational
shells, which are subjected to particular loadings and boundary conditions.

A completely general approach for the solution of problems in con-

*
tinuum mechanics was introduced in the late fifties [1] and later became

*
The numbers in brackets refer to the references listed at the end.



known as the finite element method [2). This method was first applied
to the solution of plane stress problems [1, 2] and subsequently was
extended to the analysis of axisymmetric solids and plate bending
problems (3] and to axisymmetric shells [4]. This procedure also has
been used previously in thin shell analysis to a limited extent (5, 6]
and is presently being extended to general three-dimensional solids.

In the above references [5, 6] the analyses were based on the use
of planar elements but were limited in application due to the lack of a
suiteble triangular plate bending element. More recently a general
shell element has been presented (7] which utilizes the conventional
constant strain triangular element (1] ana the fully compatible plate
bending triangular element [8] derived by Clough and Tocher. This
analysis (7] utilized a 5 degree of freedom nodal point displacement
system (three translations and two rotations) and thus provides for an
efficient solution for a given idealization. The solutions provided by
this analysis (7] for smoothly curved shells were considered adequate;
however, for shells having complex membrane straining modes, extremely
fine subdivisions were necessary to achieve the desired accuracy.
Recently an element [9] has been presented which utilizes the same plate
bending element [8] together with a "refined" membrane stiffness. This
analysis resulted in a 9 degree of freedom nodal point displacement
system for the assembled structure and therefore includes strains in
addition to translations and rotations as degrees of freedom. The con-
vergence properties of this element cited in Ref. (9] are good and this
is attributed primarily to the improved membrane stiffness properties.

The solutions presented in Refs. [7] and [9] characterize the two

alternate approaches of the finite element procedure. In the first



approach a relatively simple representation of the stiffness properties
is utilized and the desired accuracy is achieved by mesh refinement
(i.e., increasing the number of subdivisions), while in the second
approach an improved representation of the element stiffness properties
is utilized which generally requires a less refined mesh (i.e., a fewer
number of subdivisions). In evaluating these two approaches for the
analysis of doubly curved shells which have complex geometries, the
geometric idealization resulting from the use of planar elements must

be considered; and in this respect the solution of Ref. [7] offers
distinct advantages, since the 5 degree of freedom nodal point system
permits substantial mesh refinement as compared with the 9 degrees of
freedom of Ref. [9]. 1In addition, the nodal point degrees of freedom [7)
have an immediate and simple interpretation since they consist only of
linear translations and rotations, and in this context it was possible

to extend this solution procedure with only minor modifications for the
analysis of tubular joints [10] in which the intersecting tubular members
were treated simultaneously in the solution.

In this presentation the use of the solution procedure of Ref. [7]
is retained, but is augmented by a quadrilateral element which consists
of an assemblage of four triangular elements. Following the procedure
of Wilson [11] and Felippa [12] the interior degrees of freedom are
eliminated by static condensation using inverse Gaussian elimination.
The subject quadrilateral element provides an improved membrane stiff-
ness since it is able to represent more precisely plane stress beam
type straining modes, and this improved membrane stiffness property has
accounted for the slow convergence as mentioned above for certain sclu-

tions presented in Ref. [7]. It should be noted that this improvement



did not require utilizing additional types of nodal point degrees of
freedom; therefore, the 5 degree of freedom nodal point displacement

system is retained.

1.2 The Finite Element Procedure

The basic concept of the finite element method is the idealization
of the continuum as an assemblage of discrete structural elements. The
stiffness properties of each element are then evaluated and the stiffness
properties of the complete structure are obtained by superposition of the
individual element stiffnesses. This gives a system of linear equations
in terms of nodal point loads and displacements whose solution yields the
unknown nodal point displacements.

The idealization governs the type of element which must be used in
the solution. If, for example, the idealization of the shell were ob-
tained by merely subdividing‘the actual shell surface into a specified
number of regions (elements), then for the most general case, one would
have to deal with doubly curved elements in evaluating the stiffness
properties of the individual elements. On the other hand, it is possible
to use for the idealization an assemblage of planar elements which only
approximate the shell surface. In this case, the element stiffnesses
may be derived from the planar elements which are identical to those
used for plane stress and plate bending problems. Although the use of
planar elements simplifies the evaluation of the element stiffness
properties, the resulting geometric discretization error must be recog-
nized, since the behavior of the discretized shell can only approach
that of the actual shell with decreasing mesh size.

Displacement models have in general proved to be superior to equi-

librium models in evaluating stiffness properties of the individual




elements. In this procedure, the deformation of the element is con-
strained to consist of certain displacement patterns or shapes which
may conveniently be established from truncated polynomials or interpola-
tion functions. In either case, the displacement field in each element
must be finally expressed as a function of nodal point displacements
only; and this must be done in such a way as to maintain inter-element
compatibility, since this condition is necessary to establish a bound
on the strain energy. Therefore, the displacement patterns and the
nodal point degrees of freedom must be chosen judiciously for each
problem considered. In addition to the compatibility requirement, the

displacement functions should include the following:

1) rigid body modes
2) constant strain and curvature states

3) invariance of the element stiffness

The inclusion of rigid body modes 1is necessary for equilibrium
of the nodal forces and moments which correspond to the displacement
nodal degrees of freedom of the element and for the satisfaction of
global equilibrium. In order that the solution converge to the actual
state of strain and curvature, the constant strain and curvature should
be included. This requirement is obvious for structures subjected to
constant strain and curvature states; while for arbitrary states of
strain and curvature, reduction in mesh size will simplify the element
strains and curvatures and in the limit element strains and curvatures
approach a constant value. The invariance property is necessary to
insure that the element stiffness properties remain the same for all

coordinate systems which are used for their derivation.



While the above requirements are sufficient to guarantee convergence
to the true solution with decreasing mesh size [3, 13, 1h, 15], it has
been demonstrated for the rectangular plate bending element (ACM element,
Ref. [8]), in which a twelve term polynomial is used, that complete
compatibility is not achieved and yet the convergence to the correct
displacements is considered adequate. However, if complete compatibility
is not achieved, there exists an uncertainty as to the bound on the strain
energy of the system; and if the solution converges at all, it may do so
from either above or below the true solution.

The use of planar elements, in which the membrane and plate bending
stiffness are derived from displacement patterns of different forms,
cannot insure complete compatibility of the assemblage. In this case,

a geometric incompatibility results since the elements are not coplanar,
and even on physical grounds it is expected that its effect would diminish
with decreasing mesh size. For an analysis of this type, the most critical
test is the performance in the limit (i.e., with decreasing mesh size);
and if the performance is adequate in this respect, then the requirement
on complete compatibility can be justifiably relaxed. 1In the present
analysis, an extensive study of this phenomenon has been made, and it has
been shown that the convergence to the true solution for a wide range of
shell geometries is essentially monotonic with decreasing mesh size. A
more limited study of folded plates in which there is no geometric dis-
cretization error, but in which the above incompatibility is present due
to the large angle of intersection of the individual plates, has indicated
that the present analysis can be used effectively even for this case.

The finite element method may be used only with the aid of high speed

digital computers. The use of displacement models coupled with the direct




stiffness procedure have proved to be the most convenient and versatile
means for the development of general computer programs. The direct
stiffness procedure in its most useful form simply implies that the
stiffness of the individual elements may be established in the base or
common coordinate system on the element stiffness level which permits

the stiffness of the complete assemblage to be obtained by direct super-
position of the individual element stiffnesses. Direct solution pro-
cedures using Gaussian elimination (or special forms of this method such
as triangular decomposition) together with automatic assembly subroutines
make possible the general application of the finite element method, in
which the essential modification for different problems is that of evalu-
ating the element stiffness properties and transformations required for
the direct assembly. Due to the wide applicability of the direct solu-
tion procedure and the overall ease and economy with which it can be
performed, it is rapidly becoming the preferred method for the solution

of one and two dimensional problems.

1.3 Purpose and Scope

The key factors in the finite element analysis are the geometric
idealization and evaluation of the element stiffness properties. In
the present analysis the shell is approximated by a system of flat tri-
angular elements in which the nodes or corners of the triangles lie in
the middle surface of the shell. The use of the triangle enables one
to approximate arbitrary doubly curved shells with minimum error in
the idealization.

Since shell behavior is characterized by both membrane action and
bending action, it is essential to recognize both of these in evaluating

the element stiffness properties. It is appropriate to represent the



membrane action by elements acting in the state of plane stress while
the bending action can be represented by plate bending elements derived
on the basis of the Kirchoff theory of thin plates. The above assump-
tions of plane stress and the Kirchoff theory are "equivalent' to the
assumptions made in the classical theory of thin shells which degenerates
thin shell problems from a three-dimensional problem in elasticity to a
two-dimensional elasticity problem.

The plate bending element used in the analysis is the fully com-
patible element (HCT) after Hsieh, Clough and Tocher {8]; while two
types of plane stress elements are employed--the first being the constant
strain triangle [1] while the second type is a quadrilateral element con-
structed from four HCT elements and four linear strain triangles [12]
with the boundaries constrained to deform linearly. This constraint
eliminates the exterior mid-side nodes of the element, thereby reducing
the connectivity (band width) which must be considered in the direct
solution of the nodal point equilibrium equations.

The purpose of this thesis is to investigate the convergence prop-
erties of the triangular and quadrilateral elements as related to the
static analysis of thin shell structures. Of particular interest in
this study are the evaluation of the effect of the geometric idealiza-
tion, the improved stiffness properties of the quadrilateral element,
and the 5 degree of freedom nodal point displacement system. The cri-
teria utilized to determine the accuracy of the solution is a direct com-
parison of the finite element solution with existing solutions obtained
by classical shell theory. Direct evaluation, however, of the stiffness

properties of the triangular element versus the quadrilateral element is



possible since identical geometric idealizations may be obtained with
either element in which the effect of the 5 degrees of freedom is

essentially the same.
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CHAPTER 2. THE FINITE ELEMENT IDEALIZATION

The finite element idealization in the analysis of thin shells
consists of the geometric discretization and the displacement field
discretization. The geometric discretization is due to the use of
planar triangular elements, since an assemblage of this type of element
can only approximate the actual smoothly curved surface. In addition,
since the boundaries of these elements are straight, curved shell bound-
aries are also represented approximately.

The displacement field discretization is caused by evaluating the
stiffness properties of the individual elements from an assumed set of
displacement shapes. ©Since the assumed set of displacement shapes must
be relatively simple for efficient evaluation of the element stiffness
properties, they only approximate the actual deformation of the shell.
However, since the displacement shapes are piece-wise continuous, the
actual deformation of the shell can be obtained by decreasing mesh size
provided compatibility is maintained along the element interfaces. This
phenomenon, which is referred to as convergence, is fundamental to any
finite element solution since the comparison of solutions with decreasing
mesh size gives a quantitative measure of the "exactness” of the finite

element solution for a particular shell problem.

2.1 Geometric Discretization

The geometric discretization of & typical shell surface together with
a typical triangular element and a typical quadrilateral element are shown
in Fig. 2.1. The size and shape of the triangles are defined by the co-

ordinates of the nodal points which lie in the middle surface of the shell.



The quadrilateral element is constructed from four triangular elements
in which the exterior nodes (i, j, k, 1) lie in the middle surface of
the shell, while the coordinates of the central interior node "'m" are
taken as the average of the coordinates of the nodes i, j, k, 1. In
general, either type of element may be used in the analysis; and, if
desirable, a combination of these two element types may be utilized.

In this respect, the quadrilateral due to its superior stiffness prop-
erties should be used in regions subjected to complex straining modes
while the triangle may be used effectively in regions of fairly constant
strain states. In addition, the triangle is useful in grading the mesh.

The geometric discretization is often referred to herein as the mesh.

2.2 Displacement Field Discretization for the Triangle

Typical membrane and plate bending elements are shown in Fig. 2.2
together with the displacement functions assumed in evaluating their
stiffness matrices. These displacement functions are given first in
Cartesian Coordinates to facilitate an immediate physical interpretation
while the evaluation of the stiffness matrices is more conveniently
carried out in the triangular coordinates (Chapter 3).

The membrane element has two degrees of freedom at each nodal point,
and the displacements are assumed to vary linearly between nodal points (1].
This results in constant values of the three strain components over the
entire element and this element is referred to as the constant strain
element (CST).

The plate bending element has three degrees of freedom at each nodal
point [8] (two rotations and the normal translation), thus a total of nine

independent displacement functions should be specified. 1In this case,



however, in order to develop displacement functions which maintain full
compatibility along the edges for the plate problem, it was necessary

to divide the plate into three sub-elements and assume nine displace-

ment functions in each sub-element. The resulting 27 displacement shapes
were then reduced to the required nine independent patterns by applying
internal compatibility constraints between the sub-elements. This dis-
cretized displacement field permits the transverse displacement, W, to
vary as cubic functions within the element; and therefore, the three
components of curvature vary linearly over each sub-element. The equiva-
lent displacement field (in triangular coordinates), including the internal
compatibility constraints, expressed directly in terms of the nine degrees

of freedom at the three nodal points is given in Section 3.6, Eqn. 3.Lh.

2.3 Displacement Field Discretization for the Quadrilateral

A typical planar quadrilateral element together with the four triangles
from which it is constructed is shown in Fig. 2.3. Also shown in Fig. 2.3
are the combined membrane and bending degrees of freedom. Each of the
exterior nodes (1, 2, 3, 4) and the interior central node (pt. 5) have
the usual five degrees of freedom which consist of two in-plane displace-
ments, a transverse displacement and two in-plane rotations. The interior
mid-side nodes (6, 7, 8, 9) possess only two degrees of freedom which are
the two in-plane displacements associated with the membrane displacement
functions.

Each of the four triangles (Fig. 2.3) is assigned independent membrane
and bending displacement functions. The bending stiffness for each tri-
angle is derived as described in Section 2.2 above, while the membrane

stiffness for each triangle is derived from quadratic displacement
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functions in which the in-plane displacements of the external interfaces
(1-2, 2-3, 3-4, L-5), Fig. 2.3, are constrained to vary linearly.

The quadratic membrane displacement functions for Triangle 1 together
with the nodal point degrees of freedom are shown in Fig. 2.L4. The use
of the complete quadratic for u(x,y),'v(x,y) requires twelve independent
generalized coordinates (él...glz); and therefore, this element must have
twelve degrees of freedom (two degrees of freedom at each corner node and
at each mid-side node). This element, therefore, has a linear variation
of the three strain components over the entire triangle and is called the
"Linear Strain Triangle" (LST) [12]. The displacement functions for the
subject triangular element (Fig. 2.5) is derived from the LST by setting
ug = (ul + u2)/2 and v, = (vl + v2)/2, (Fig. 2.L4). This eliminates the
degrees of freedom at the mid-side nodes, (i.e., point 0), Fig. 2.4; and
the resulting constrained LST with 10 degrees of freedom is shown in
Fig. 2.5.

The stiffness of the subject quadrilateral element (Fig. 2.3) is then
obtained by superposition of the bending elements (Fig. 2.2) and the con-
strained LST (Fig. 2.5). Since the connectivity of the interior points
(5, 6, 7, 8, 9) of the quadrilateral as related to the direct stiffness
procedure, are local to the quadrilateral element, they may be eliminated
by static condensation (inverse Gaussian elimination), and the resulting
condensed planar quadrilateral element has twenty degrees of freedom
(five at each exterior node).

For simplicity, the above discussion was restricted to planar quadri-
laterals. However, for doubly curved shells, the quadrilateral, in gen-

eral, cannot be planar and modifications of the above procedure are neces-

sary. The development of a general quadrilateral for the analysis of
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doubly curved shells is accomplished by considering this element as a

sub~-structure and is carried out in Section L.kL.

2.4 Advantage of the Discretized Displacement Field of the Quadrilateral

Element

Valuable information has been obtained through the study of the eigen-
values of quadrilateral elements formed from various types and arrange-
ments of triangular elements in evaluating their desirability for prac-
tical application [12]. This is possible since the eigenvalues correspond
to the strain energy of the element as it deforms through the corresponding
eigenvectors. Additional information may be obtained by considering the
strain energy required to excite certain prescribed straining modes; and
in comparing the stiffness properties of different elements, it is desir-
able to use identical modes in the elements being evaluated. In evaluating
the subject elements only the membrane stiffness is considered since only
one type of displacement function is used for the bending stiffness.

In comparing the constant stress element to the constrained quadri-
lateral element, identical geometries are utilized as shown in Figs. 2.6
and 2.7, and this requires forming a quadrilateral from two constant
stress triangles, Fig. 2.7. The straining modes which are of interest
are those of extension, shear, and bending, Figs. 2.6, 2.7 (a, b, c).

These modes are easily established by specifying nodal point displacements
at the four corners of the gquadrilateral; and in the case of the constrained
quadrilateral, Fig. 2.6, the interior nodal point degrees of freedom are
permitted to displace freely. To this end, the interior degrees of freedom
are eliminated by condensation and the strain energy due to arbitrary

displacements of the nodal point system Ty is:
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A(l) = r.Tk(l)r. (2.1)
i i m i
A2l Tele), (2.7)
i i m i
where Agl) = strain energy of constrained quadrilateral element due to
the ith straining mode.
A§2) = strain energy of quadrilateral composed of two constant
strain triangles due to the ith straining mode.
r. = nodal point displacements which result in the ith strain-

ing mode.

k;l), k (2)= membrane stiffness of constrained quadrilateral (condensed)

m

and the quadrilateral composed of constant strain triangles,

respectively.

The nodal point displacements for the extension, shear and bending modes

respectively are (see Fig. 2.3 and Figs. 2.6 and 2.7):

rlT Pouy = ug = .1t s U =y = o, v, = o , i=1,2,3,b
T u w, = .1" u. =u, =0
To 3 - % T » U T ’
T _ - - - -
r3 : ul = u3 = u2 uh 1 )
(2.3)

Utilizing Egns. 2.1, 2.2, and 2.3, the values for Agl) and A§2) are
computed and shown on the corresponding diagrams in Figs. 2.6 and 2.7.

The strain energy for extension and shear are identical for the two
elements indicating that both elements have identical stiffness properties

for these particular deformation modes. This is as expected since OX
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and Gy are constant for the extension mode and Txy is constant for the
shear mode, and the constant strain element can represent these states
exactly. The difference in the stiffness properties of the two elements

is reflected in the bending or beam type straining mode. The strain energy,

Aée), required to produce the bending mode in Fig. 2.7.c is approximately
{
3.5 times greater than Agl), Fig. 2.6.c. This means that for identical

geometric idealizations in structures subjected to this straining mode,

the use of the two elements will result in different values of nodal point
displacements (the values given by the two CST being the lower values).
This phenomenon has been reported by Felippa [12] in the analysis of a
cantilever beam loaded at the free end in which idealizations by the
constant strain triangles were compared to idealizations by linear strain
triangles. The results for the tip deflection for only two sub-divisions
over the depth of the beam using the linear strain triangle were almost
perfect while four and eight sub-divisions over the depth with the constant
strain elements yielded tip deflections which were approximately 15% and 4%
respectively in error. This clearly indicates that the constant strain
element is deficient in representing the beam-type straining mode, and its
use in structures subjected predominantly to this mode will generally re-
quire considerable mesh refinement to achieve convergence.

This beam-type straining mode is of particular importance in certain
shell structures; for example, folded plates or cylinders idealized as
folded plates, since the individual plates are subjected to longitudinal
bending modes in transmitting the loads to the end diaphragms; and in these
cases (see Examples 4 and 6) the use of the subject quadrilateral element

gives significantly better results than the constant stress element.
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In addition to the superior stiffness properties of the quadri-
lateral, it also results in a better representation of stresses and
again this is related to the bending modes. For example, the bending
mode gives a linear variation of (cx) for the element in Fig. 2.6,
while the same mode yields constant compression (cx) in the lower
triangle, Fig. 2.7, while the upper triangle is subjected to a constant
tension (cx). In this respect, the lower triangle gives = good value
for ox along side 1-2 while the upper triangle gives a good value for
o, along side 3-Lk. This procedure for interpreting the "best' stresses
resulting from the use of the constant stress triangle may be used quite
effectively for rectangular regions; however, this procedure is gener-

ally not easily applied to triangles of arbitrary shape.
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CHAPTER 3. EVALUATION OF THE ELEMENT STIFFNESSES

A general procedure for evaluating triangular element stiffnesses
has been presented by Felippa [12] in which triangular coordinates (a
natural coordinate system for triangular regions) are utilized. The
displacement functions are expressed directly in terms of the nodal point
system through the use of interpolation functions, thereby eliminating
the conversion from generalized coordinates to the nodal point system.
In addition, a valuable contribution of this presentation results from
expressing the variation of strain, material properties, and thickness
in terms of nodal point values through the use of appropriate interpola-
tion functions. This greatly simplifies the integration which must be
rerformed as the integration of the interpolation functions and their
products are straightforward and are presented in Ref. [12]. 1In the
present analysis, each element has a constant thickness and the material
properties are linear, isotropic and are considered constant over the
entire element. The following development is based on the procedure of

Ref. [12] and is specialized for the above properties.

3.1 Triangular Coordinates for Triangular Elements

The geometry, the triangular coordinates (gl, ;2, %.,), and Cartesian

3
coordinates (x, y, z) of a typical triangle are shown in Figs. 3.1 and
3.2. The position of an arbitrary point "P" (Fig. 3.2) is established

by the ratios of the areas bounded by the dashed lines and the sides of
the triangle to the total area of the triangle. Only two triangular co-
ordinates are necessary; however, all three are used since this simpliifies

the analysis. The triangular coordinates of the arbitrary point "P" are

given in Fig. 3.2. Alsc the triangular coordinates of the corner points



2L

are indicated on this figure together with the homogeneous (zero) coordi-
nates along the sides of the triangle.
Experience has shown that it is more convenient to reference physical

displacements, strains, and stresses to the Cartesian system (x, y, z).

Since these quantities are first expressed in triangular coordinates, the

following transformations are required:

a) Transformation from triangular to Cartesian coordinates

oY) - b ™
1l 1 1 1 Cl
¢ xp = |x X, Xs <:;2L (3.1)
y Yy Yo Y3 C3
“ el —t - &
b) Transformation from Cartesian to triangular coordinates
Y r— - o
Cl x2y3 - X3y2 y2 - y3 x3
{e, = | %y, - Xy Yo - x > (3.2)
G 2R 3¥1 T %173 371 1 :
G3 XY = Xo¥a Y1 = Y2 *2
L o — .
or:
Y - ™ ~ 7
c1 23 1 1 1
1
g3 2A12 b3 a3 Yy
\ — o L J
where A is the area subtended by corners i, j and the origin

iJ

of the Cartesian coordinates.
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¢) Derivatives of triangular coordinates with respect to the Cartesian

coordinates.
acl acl
Sk - P/ Sy - /%
o o
2 . e = (3.4)
% b2/2A dy 32/2A
ol ]

-B%c- = b3/% *5; = 8.3/2]\

In the above, Egn. 3.2 is obtained by inverting Egn. 3.1 and the derivatives

given by expression 3.4 are obtained from Eqn. 3.3. The derivatives of
products of the triangular coordinates may be obtained by the chain rule

of differentiation and expression 3.L.

3.2 Procedure for Evaluating Plane Stress Element Stiffnesses

The strain energy due to straining the element is:

- 1 : 3.5
U = 3 Jf (ax o+ €y Gy + Yy txy)dA ( )
A

or in matrix form:

g
X
_ 1 dA (3.6)
U = 2[ (e, £y ny] 9.
A T
xy

where the stress components (ox, Txy) are shown in Fig. 3.3 and

O'y,
€0 ey, ny are the corresponding strain components. For the state of
plane stress, the stress components are related to the strain components

as:



r - - - r
ox 1 v Ex
E
{ © = v 1 ¢ € (3.7)
y ? 1 - e y
T -
Xy . . 1-v) ny
2
. J e - .
by writing Eqn. 3.7 in the following form:
o = De (3.8)

and by using Eqns. 3.6 and 3.8, we have for the strain energy of the

element:

U = % Jf eTpe aa (3.9)
A

From the discretized displacement field, the strains may be expressed in

terms of the nodal point displacement vector r. as:

_ du v du , ov
fx T & P 5 T8y 3 Yxy T Sy T (3.10)

or in matrix form:

~ ~
£
X
Yy
Je b= [B] (3.11)
y v,
1
Txy
L

or:

£ = Bri (3.12)

26
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where: u is the discretized displacement field in the x- direction,
v is the discretized displacement field in the y- direction,
u, is the nodal point system for displacement in the x- direction,
v. is the nodal point system for displacement in the y- direction,
r. is the total nodal point displacement system.

Using Eqns. 3.9 and 3.12 we obtain the following expression for U in terms

of the nodal point displacement system r,
1T T .
U = 5 T3 Lh/\B DB dA } r, (3.13)

The element stiffness relating nodal point forces to nodal point displace-

ments may be obtained from Eqn. 3.13 by Castigliano's first theorem as:

By = 5?’_3 (3.1L)
6. = | [B¥oBaa|r, (3.19)
1 J 1

A

where B; are the nodal point forces corresponding to r. and the element

stiffness is:

K = fBT DB @A (3.16)

So the evaluation of the plane stress element stiffness k reduces to the

integration of Egn. 3.16.



3.3 Procedure for Evaluating Plate Bending Element Stiffness

The strain energy due to straining (bending) of the element is:

_ 10 \
u = 3 L/‘ (XXMX + XyMy + 2Xxnyy)dA (3.17)
A
or in matrix form:
M
X
1 1/ .T .
e + + = -
18] 5 \/r {xx xy 2xxy} My 2k/~x M dA (3.18)
A M A
Xy

where the moments, Mx’ My, Mxy’ are given in Fig. 3.4 and Xx’ X and Xx‘

are the corresponding curvatures, i.e.,

_d*w 3% 5%

3 K== X = e

X
X ax@ Yoy

no
»
<
Q
>
Q
<
—
(U'S)
-}
O
—

where W is the transverse displacement of the plate element. The conven-

tional relationship between curvatures and moments is:

Y [ = r 3
M 1 v 0 X
X 3 X
(M 3 = ———§3—5~ v 1 0 { xy ) (3.20)
y 12(1-v°) 1oy
2X
M, 0 0 5 Xy
. o e ) . o

or:

M = DX (3.21)
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Using Eqns. 3.18 and 3.21 the strain energy in bending of the plate element

is:

o
1]
VYT

f xTﬁx dA (3.22)
A

Eqn. 3.22 is similar in form to Egn. 3.9 and the evaluation of the plate
bending stiffness follows from the procedure described in Section 3.2.
However, since independent displacement functions are assigned to the
three sub-elements, Fig. 2.2, the integration of Egqn. 3.22 must be per-
formed separately for each sub-element. In addition, the determination

of the curvature matrix X for each sub-triangle in terms of the nodal
point displacement system is complicated due to the internal compatibility
conditions described in Section 2.2. However, curvatures in triangular
coordinates can be obtained for each sub-element directly in terms of the
nodal point displacements r, (Eqn. 3.45) so the element stiffness compu-

tation is given in symbolic form below:

K =f x(l)TBX(l) A +f X(E)T_DX(E) A +f x(3)T5x(3) an  (3.23)
(D) (2) (3)

1.

where X(l) is the curvature matrix in sub-element "i," (see Fig. 3.5),

andb/\ implies that the integration is to be performed only over
A1)

11 T

sub-element "i.



3.4 Derivation of the Constant Strain Triangle (CST) Element Stiffness

The displacement functions for this element expressed in triangular

coordinates are:

¢'fl) u, (3.24)
¢':([‘1) vi (3-25)

The element strains (Egns. 3.11, 3.12) are obtained by appropriate dif-

ferentiation of Egns. 3.24 and 3.25 and with the use of expression 3.L

is given by

Y r—
Ex bl
e b - &
ay ) oA
ny a1
o -

Thus:

]

e, a3 {ri} (3.26)
5 b3
-

v3}T (3.27)

(3.28)
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The integration of Eqn. 3.28 is particularly simple since the element
strains are constant, and by using Eqns. 3.26 and 3.28 the constant

strain element stiffness is given by:

by 81
b . a — -
2 e 1 v b b, b, .
b a 1 2 3
k = Bt |3 3 v 1 a & a
2 1 2 3
ba(1-v©) |. a, b
1 1 l:i a a a b b b
s b 2 ! P 3 1 2 3]
2 2
. a b
n 3 3

(3.29)

3.5 Derivation of the Constrained Linear Strain Triangle Element Stiffness

This element stiffness is most conveniently derived by first estab-
lishing the strain displacement matrix B for the linear strain triangle
(Fig. 2.4), and subsequently applying the constraints u, = (ul + uz)/E
and v. = (v

0 1
functions for the linear strain triangle in triangular coordinates are:

+ vg)/e (see Fig. 2.5) on the matrix B. The displacement

-

\
c,(2¢,-1) c(2¢,-1)
u = c3(2c3-l) {ui} and Vv = ! c3(2c;3-l) | {vi} (3.30)

. < heog ’ beoo

162 152

heoes beots
be.g be.c

\ 371 J \ 371 J

or:

u = ¢?2)ui v = @fg)vi (3.31)
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In performing the integration implied in Egn. 3.16, it is convenient
to express the strains (e¢) in terms of nodal point strains together with
the appropriate interpolation function. For constant thickness, the
stresses and strains vary linearly and the three strain components every-

where in the element may be expressed as follows:

~ ~ [ — - ~
€X Cl C2 C3 . Exi
- o L
l v c1 %2 %3 ! fyi {rl}
Y G G G Y
Xy 1 2 3 xyi
L J L .J \. J
(3.32)
or: £ = ®E €y ri = Bri
where B ] [~ ] — n
£xl Eyl nyl
Exi T | Exe Eyi = Ey? nyi = nyz
_Exs_ Leyﬁ | __ny5_

are evaluated at the three corners of the triangle and the nodal point

displacement vector (Fig. 2.5) is:
= { u., u W, Vo, Vo, Vo Vs Vo3 V }T
ri = ul’ u2, 52 Yoo u7, 6° V12> V22 Vg Yoo V2 Vg

Therefore from Eqn. 3.16:

~ T . T T
k-—fB DB dA fsi ©." DO e, dA (3.33)
A A

Since £, is a matrix of constants, the above integration is reduced to

i
T

evalnatingk/\QED @E. This has been evaluated in Ref. [12] for a general

A
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constitutive law end for this analysis results in the inner matrix (N),
of Eqn. 3.34, Evaluation of the three stress components at the three

corners of the triangle yieids the following IST stiffness matrix:

— a1 - - -
o7 o N, N, B,
Kk = 11 21 N N
gT 5T 12 "11 - By (3.34)
: 21 11 N B 5
33 21 11
BT N B
where:
. B
3b,  -b, -b3 kbz . l+b3
1
Bll = 3 -bl 3b2 —b3 ubl hb3 .
-bl -b2 3b3 . hb2 ubl
(3.35)
3al -8, -a3 4&2 ua3
1
B21 =2 | & 3a2 -8y hal ha3
-8, -8, 3a3 . ha2 hal
BtA 211 E4Av 211 EtA 211
N, =——>5= 121 ;3 N, =—7p" 121 ; N33=21w121
12(1-v") 112 12(1-v-) 112 ‘ 112
(3.36)

The element stiffness for the constrained LST is now obtained by modifying
the B matrix by adding one half of column 4 to columns 1 and 2 and by
adding one half of column 10 to columns 7 and 8. The resulting stiffness

matrix is as follows:

B B, o
- n - 21 3 (3.37)
k T T [ N] - By
. B B
21 11 3 3
21 Byy




3L

where:
L ]
. bl 2b3 b2 -b3 . hb3
Bll = oA bl b2—2b3 —b3 hb3
-b -b 3b Lb Lb
N 1 2 2 2 ;ﬂ
(3.38)
[ -
X al-2a3 8, -a3 ha3
B21 =5x | & a2-2a3 -a3 haB
-8, -a,, 3a3 hae hal

3.6 Derivation of the Plate Bending Element Stiffness

The evaluation of the subject plate bending element stiffness utilizing
Cartesian coordinates has been presented in Ref. (8] and using triangular
coordinates in Ref. [9] based on the work of Felippa [12]. Although the
use of Cartesian coordinates proved useful in establishing displacement
functions which insure a fully compatible element, the development of com-
puter algorithms based on this coordinate system which result in minimal
computational time, requires considerable effort. This difficulty is due
to the fact that the displacement functions are first expressed in terms
of 27 generalized coordinates; and not only must 18 of these generalized
coordinates be eliminated by imposing internal compatibility conditions,
but the remaining 9 independent generalized coordinates must be related to
the nodal point displacement system (Fig. 2.2). Much of this difficulty
is overcome by the use of triangular coordinates since the displacement
functions are expressed directly in terms of the nodal point displacenment
system; however, the internal compatibility requirements are not considered

directly in the displacement functions for each sub-element (Ref. [91).
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More recently Felippa has developed the displacement functions in
triangular coordinates which account for the internal compatibility con-
ditions. This development has considerably simplified the evaluation of
the subject element stiffness and is presented in the following.

A typical plate bending element is shown in Fig. 3.5, in which the
common interior point of the three sub-triangles has the triangular coor- -
dinates %, %, %. The displacement functions (valid only for region 3),
Fig. 3.6, are given by Eqn. 3.hk where the constants . .9 dl...9’
el...9’ fl...9 in this equation are listed in Table 1. The superscripts
for the coefficients of ¢(3) in Eqn. 3.4, and for the coefficients in
Table 1 have been eliminated for the sake of convenience, but it is under-
stood that they correspond to those for Reglon 3, Fig. 3.5. Displacement
functions which are valid in Regions 1 and 2 are obtained by plecing the
superscripts 1 and 2 on all quantities in Egn. 3.44 and the quantities
listed in Table 1 and by replacing these quantities by the values shown
in Figs. 3.7 and 3.8 respectively. This is conveniently accomplished from

Eqn. 3.bLl4 by cyclic permutation on the quantities a; and bi’ since, for

example, for the quantities ay we have:

(1) _ (3) _
a;”l = ey j=2,31

for i =1,2,3; and (3.39)
agg) = a§3) k = 3,1,2

It should be noted that the displacement nodal point system given in Ean.

3.44 is rotated when considering Region 1 and 2 as shown in Figs. 3.7 and

3.8. For example, Wl(3), 6 1(3), 2 (3) are located at point 1 (Fig. 3.5),

X yl

wnile w (1, e ), eyl(l) ana W (2), ¢ (2)

1 X1 , eyl(e) are located at
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points 2 and 3 (Fig. 3.5) respectively. Having established displacement
functions valid for the three regions of the plate bending element, the
contribution of each region (see Eqn. 3.23) is easily evaluated and is
subsequently illustrated for Region 3 (Fig. 3.6).

As in the case of the Linear Strain Triangle, it is convenient to

express the curvatures, X, Ean. 3.22, in terms of nodal point curvatures.
Since the curvature varies linearly over each sub-region, it is appropriate
to use ®£ from Eqn. 3.32 where the Ci in QE are understood to be the tri-
angular coordinates of the particular region being considered. Therefore

for Region 3, we have:

( * - n
(3) (3)
( ) (3) . (3
(3) | . 3 ) )
R - \:tbg:\ X3 [:ri:] o X7 vy =Xry (3.40)
ox(3) ox(3)
L XY ) L i
where:
- - — . . =
X1 (3) Xyl (3) Xxyl
(3) _ ) 3) . ) 3) .
X5 = X0 ; xyi X » s X -y X, V2 (3.41)
| o0 "o | w0
(3) 4 (3) 4 (3) Ll
To evaluate the nodal point curvatures Xxi ’ Xyi ’ Xxyi , Egn. 3. mst

be differentiated appropriately. This is accomplished by the chain rule
and by using expression 3.4. The values for Xx are given by Egn. 3.k5
where the gquantities bij are equal to bibj' The purpose of using the
designation bij ig for establishing Xy’ Xxy since they may be obtained

from Eqn. 3.45 as follows:
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b.. by a,a, for X
replace i y a, j y
and (3.L2)

+ -
replace bij by (aibj ajbi)/e for Xxy
Thus from Egn. 3.45 and by the use of expression 3.42, X(3) is evaluated
and the contribution to the total stiffness from Region 3 is:

)T

T
L(3) ‘f"§3) 5o x3) a - x(3)7 §x(3) (3.43)

i
A

By cyclic permutation of the quantities &, and bi for Regions 1 and 2 and
by noting that the nodal point system for these regions is as shown in
Figs. 3.7 and 3.8, the evaluation of Eqn. 3.23 is easily completed.

In the sbove derivation the nodel point system of displacements, T
is as shown in Fig. 2.2 except that the three transverse displacement com-
ponents are considered positive when directed downward. A right-handed
coordinate system of nodal point displacement may be established by chang-
ing the signs of the rows and columns associated with the three displacement
components in the final element stiffness matrix. Alternately the right-
handed system may be obtained by changing the signs of all rotations, i.e.,

wg‘j) (5 =1,2,3; 1i=2,3,56,8,9) in Eqn. 3.kb.
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Table 1
6u3
u3b3 - b+ up3
HgBy - 8y + kRB
6A3
by = Agbg * MPB
a, - A3a3 + hR3
0
0
0
3(x, - u3)

(95, + 3uyb, + 3A;0 )/6 + 2P,

(9a, + 3ua, * 3r8 )/6 * 2 R, - 2Ry

- 3,

(30, + 6b3 - 3u3b3)/6 - 2P,
(3,9.l + 6:3.3 - 3u3a3)/6 - 2R3
3(1 + wy)

(3bl + 12b, - 3)\2b2)/6 + 2P,
(3al + 12a, - 3A2a2)/6 + 2R,

- 3u,

(- 3p, - 6b3 + 3A b3)/6

(- 3a, - 6a3 * 3 3)/6 - 2R3
3y - A3)

(-~ 9b, - 3A;by - 3u3b3)/6 + 2Py - 2P3

(-9a2 - 3M8, - 3u3a3)/6 *+ 2R, - 2R3
3(1 + 1)
(- 12, - 3b, + 3ulbl)/6 + 2P

(- 12a, - 3a2+’ 3u1al)/6 + 2Ry
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Table 1 - continued

£,0= 2y - )y
£, = (o, + 5oy - b, - 2>\3b3)/6 + (bpy - 2p,)/3
£, = (bay + S8y - Hy8, - 2A;a3)/6 + (bRy - 2R,)/3
fl} = 2}~3 - Hy
£, = (= lby - 5by ¥ Ab) 4 2u305)/6 + (4P - 2p,)/3
£, = (- ba; - Sag + Ajey + 2u3a3)/6 + (bRy - 2R, )/3
f7 = 1 - Al - My
fg = (uyby = A b,)/6 - (2P) + 2P,)/3
f9 = (ulal - Azae)/6 - (2Rl + 2R2)/3

0

as + b

2 402

- (a8, + ble)/li

>
- (age) + b0y )/15

2
- (a3a2 + b3b2)/l3

Li
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FIG. 3.2 TRIANGULAR COORDINATES
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CHAPTER 4. THE ELEMENT ASSEMBLAGE

The stiffness matrix of the complete element assemblage is obtained
most conveniently by the direct stiffness procedure. The two essential
steps in this procedure are the coordinate transformations and the subse-
quent superposition of each element stiffness. The coordinate transforma-
tions are performed by rotating the element coordinates (x, y, z) of each
element stiffness so that the translational and rotational degrees of
freedom of all elements which share a common nodal point are expressed in
the same coordinates. This nodal point coordinate system in which the
nodal forces and displacements of the complete assemblage are expressed
is subsequently referred to as base coordinates. The superposition of
each element stiffness is accomplished by adding its individual terms
into the complete stiffness matrix according to the nodal point numbers

of the element (see Fig. L.1).

4.1 Coordinate Systems

In this analysis two types of nodal point coordinate systems are used.

The first coordinate system (x, y, z) (Fig. 2.1) is referred to as global
coordinates and is a fixed set of Cartesian coordinates, while the second
coordinate system called surface coordinates (El, Ez, £3), Fig. 2.1 is an
orthogonal coordinate system in which £3 is taken normal to the shell
surface at each nodal point. In addition, each triangle is given a sepa-
rate coordinate system (X, ¥, Z) (Fig. 2.1), while each of the four sub-
triangles of the quadrilateral have coordinates (ii, }i, Ei) (Fig. 4.3).

These coordinates are called element coordinates.
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For the quadrilateral element (Figs. 2.1 and L4.2), another coordinate
system (nl, Nos n3) referred to as the n-coordinates is utilized. The
n;-n, plane is the plane which "best fits" the coordinates of the exterior
nodes (1, 2, 3, 4), and is established by minimizing the sum of the squares
of the normal distances from this plane to the exterior nodes. This plane
is established automatically from the coordinates of the exterior nodes,
and the Ny axis is determined from a plane normal to the nl-nP plane which
contains side 1-2 of the quadrilateral. All translational and rotationsl
degrees of freedom of the interior nodes (5, 6, 7, 8, 9) are referred to

this coordinate system.

L.2 Coordinate Transformation

In order to transform the triangular or quadrilateral element stiff-
nesses it is necessary to establish the direction cosine matrices which
transform forces and displacements from the element, surface and n-coordi-
nates. The transformation matrix for the element coordinates is determined
from the coordinates of the three corners of the triangle, while the trans-
formations from surface coordinates to global coordinates is established
by specifying the direction cosines of any two lines lying in the tangent
plane of the shell surface at each nodal point, from which the complete
set of direction cosines is constructed for each nodal point. These two
transformation matrices together with the direction cosines relating
forces and displacement between the global and the n-coordinates constitute
the complete set of transformation matrices required for the solution.

The above transformations from the element, the surface, and the n-

coordinates to global coordinates may be expressed as:



L7

X X X £l X nl
Qy = [T] P§ H Qy = [rg] Pge ; Qy = [1“{] Poo (k.1)
<, P % Pe3 %, Fa3
or.
= -'1: -l; = =
Q Q Tg Pg Q Tn Pn (L.2)

where Q, P, Pg, Pn represent similar force quantities expressed in global
coordinates, element coordinates, surface coordinates and n-coordinates

respectively; and E, TE’ Tn represent the usual direction cosines.

4.3 Transformation and Assemblage of Triangular Elements

The transformation from element coordinates to surface coordinates

is obtained by equating the first two expressions of Eqn. L,2:

0T T =%
Pg = TE TP -—TEP (L.3)

The matrices (T, Tg, Tg) define all the necessary transformations for
force and displacement quantities, provided no constraints are placed on
these quantities. However, in the stiffness matrix defined for each ele-
ment, only two rotational degrees of freedom are considered at each node.
Accordingly, only two rotational degrees of freedom at each nodal point
were utilized in the base system describing the assembled structure.

These two rotational degrees of freedom at each nodal point are referenced
to the surface coordinates &l and 52. The third rotation quantity, about
83, was neglected because for a good mesh representation each triangle
associated with a given node will lie close to the tangent plane of the

node, and hence, the plate bending type rotation about £3 should not



L8

appreciably affect the stiffness of the complete assemblage. The trans-
formation described below (Eqn. 4.4) for the two rotational quantities

is identical to assigning & zero stiffness to the rotation about 7z for

each element, transforming the element stiffness considering three de-

grees of freedom for rotation at each node both for the element and the
assemblage and subsequently setting to zero the rotation about the 53

axis in the assembled stiffness matrix. It was assumed that this treat-

ment of the rotation about £3 would be negligible in the analysis, and results
from numerous examples have verified this assumption. The moment trans-
formation of the two rotational degrees of freedom which are considered

1"ty

for a typical node i is:

Me

1
" = [T;] . (4.k)

T

where Tc is the upper left 2x2 block of EE’ Eqn. L4.3.

The transformation of the element stiffness to base coordinates for
a typical element is accomplished by combining the membrane stiffness
(Eqn. 3.29) and the plate stiffness (Sec. 3.6) so that the five degrees
of freedom at each corner are grouped together in Ean. L.5. 1In the fol-
lowing description, the nodal point displacement system is as given in
Fig. 2.2, except these quantities are rotated to coincide with the element

coordinates, Fig. 2.1.

) r )
By vy
{Bop = [E] 4V, 0 (L.5)
B v
\.63.4 . 3/
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where forces and displacements are (see Fig. 2.2):

r N\ .
Mo A
M-, 6.
yi yi
Bi = < Pii > and Vi = < uy > ;3 for i = 1,2,3
e -
yi Vl
B Wy (4.6)
o \. P
If global coordinates are used for the three linear displacements, then
the appropriate transformation matrix is:
(1)
c
T
o(2)
= c )
T = _ (L4.7)
T
2(3)
c
T

where Tgl), ng), T£3) are transformations of the type of Eqn. 4.L defined
at points 1, 2, and 3 respectively. Then the transformed element stiffness,

k, expressed in base coordinates is given by:
T
k=TkT (L.8)

where K represents the element stiffness expressed in its element coordi-
nates, Eqn. L4.5. It is to be emphasized that the base coordinates defined
here are global coordinates for the translational degrees of freedom,

and that only two rotational degrees of freedom are included (rotation

about the normal being neglected).
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In the finite element analysis of any shell, the stiffness of each
element in the idealization is transformed to the common base coordi-
nate system as shown in Egn. 4.8. The contribution of each element may
then be added directly into the (base coordinate) stiffness matrix K

of the complete structure as indicated in Fig. k.1l1.

L.4 Transformation and Assemblage of Quadrilateral Elements

A typical non-planar quadrilateral representing a shell with negative
Gaussian curvature is shown in Figs. L.2 and 4.3. The non-planar property
of the quadrilateral element for the discretization of doubly curved
shells is accentuated in this particular case by the negative curvature
and the orientation of element. For other orientations or in the case
of positive curvature, the non-planar effect occurs to a lesser extent.
However, with the exception of a limited class of geometries, this ele-
ment is non-planar and must be treated accordingly.

Since this element may be viewed as a sub-structure formed from four
individual triangles, the treatment of the four exterior nodes (1, 2, 3, L)
and the central interior node (5) is as described in Sec. L.3. However,
the interior mid-side nodes require special treatment, since only two
degrees of freedom (membrane) are utilized in evaluating the stiffness
properties of the four sub-triangles. Therefore, if the element is plenar,
only two degrees of freedom need be considered at nodes 6, 7, 8, 9. If,
however, the four sub-triangles have a non-zero juncture angle, one has
to consider three translational degrees of freedom at the interior mid-
side nodes. A consistent approach for treating these nodes involves
transforming the translational degrees of freedom to the ny-no plane as

shown in Fig. L.2, and subsequently constraining the displacements in
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the n3 direction at the interior mid-side nodes to be the average of

the central node and the corresponding exterior node, that is:

d‘n36 ) dn3l * dn35
037 = %32 * %35
938 = %33 * Y35 -9)
%39 = S * Y35

It should be noted that this type of constraint preserves the rigid body
translation modes of the assembled quadrilateral stiffness. This procedure
is illustrated by considering sub-element 1 (Figs. k.2 and L.3) in which
the membrane and bending stiffnesses are again uncoupled in element coordi-
nates. In order to transform this element stiffness, the membrane and

plate stiffnesses are combined and arranged as follows:

C Y Y
- % v u.l
1B ¢ [k] Vs ¢ (4.10)
By V7
-66 Ve
./ .

where Bi and Vi, i =1, 2, 5 are of the type given by Egn. L.6 while Bi

and Vi’ i = 6, 7 are given by:
rm-
P Yy
B, = V. = < ¥ ; i =6 (4,11
By R?i and V., A ; for i , 7 )
0 Wi
\
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A zero has been added to the last element of 31 in Eqn. 4.11 and a
transverse displacement component, wi has been added to Vi to permit
the two in-plane displacements at the mid-side nodes to transform into
three displacement degrees of freedom. It should be emphasized again

that the transversal component W, in Egn. 4.1l is associated with the

i
bending element; thus the rows and columns of k (Egn. 4.10), corresponding
to W6 and W7, consist of zeroes since no bending type stiffness has been
defined at the mid-side nodes.

In order to constrain the displacements dn3i (1 =6, 7, 8, 9) in
Eqn. 4.9 all displacement components in Eqn. L4.10 are transformed from

element coordinates to the n-coordinates. This transformation using the

first and last expressions of Eqn. 4.2 is:
P =7 T =T P (4.12)

where it is understood that T refers to the element being considered,
i.e., sub-triangle 1. While performing this transformation, it is neces-
sary to also transform the rotational degrees of freedom to the base co-
ordinates, which are the surface coordinates for exterior corners (1, 2,
3, 4) and the n-coordinates for the mid-point 5. Thus the transformation
of the translastional components to the n-coordinates and the rotational

components to base coordinates for sub-element 1 is written symbolically

as:

W) - gD (1.13)

where:
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(1)
(- T (4.14)

e wwened

where Tg}) is the 3x3 matrix of Eqn. L4.12 while Tii) (i =1, 2) are 2%z

matrices of the type given by Eqn. k.4 for points 1 and 2 and T£5> is the

upper left 2x2 block of Tgﬁ). Sub-elements 2, 3, L are transformed in a

similar way and assembled as follows:

R =k r (4.15)

where T is the nodal point system of displacements (Figs. L.2 and L.3)

and is arranged as:

_ .16
0= T T T3 Tl Tios Tné Tt Tng rng) (k.16)

where:

r., = (06 .V for i =1, 2, 3, b, 5 (4.17)
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and

dnli

ry = ani ; for i =6, 7, 8, 9 (4.18)

dn3i

and Rn are the corresponding forces and moments. The constraints of

expression L.9 are now imposed on Eqn. L.15 by adding:

1) one-half of col. 28 to cols. 5 and 25

2) one-half of col. 31 to cols. 10 and 25

(4.19)
3) one-half of col. 3k to cols. 15 and 25
L) one-half of col. 37 to cols. 20 and 25
and subsequently by adding:
1) one-half of row 28 to rows 5 and 25
2) one-half of row 31 to rows 10 and 25
(L.20)
3) one-half of row 3L to rows 15 and 25
4) one-half of row 37 to rows 20 and 25
This procedure annuls equations 28, 31, 3k, 37 in Eqn. L.15 and the
modified stiffness is:
R =kr (4.21)
Ba T Qg
where:
;= r , r, Tl (L.22)
o = (Fn1 Tn2 Tp3 Tab Tas Tné Tn7 n8 o/
where Ty T (i =1, 2, 3, 4, 5) are given by Egn. u.;v and
- dnli
Ti T for i =6, 7, 8, 9 (4.23)

dn?i
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4.5 Condensation of the Internal Degrees of Freedom of the Quadrilateral

Since the comnectivity of the internal degrees of freedom are Jocal
to each quadrilateral element, they may be eliminated by superposition
at the element stiffness level, and thus they do not appear in the equi-
librium equations of the complete assemblage. This procedure is easily

illustrated by partitioning Eqn. 4.21 as follows:

\\
\ S T

— pr—— L_ J L—_J
Q rq Rq

(L4.2L4)

Il

where the shaded area represents the coefficients of the internal degrees
of freedom which are contained in the element equilibrium equations of the
external nodes. To uncouple the influence of the internal degrees of free-
dom on the equilibrium equations of the external nodes it is necessary to
reduce the coefficients in the shaded area to zero. This is conveniently

done by inverse Gaussian elimination which gives the following equation:
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7///%/////0 m .

- - | ) U

in which the condensed quedrilateral stiffness which is used to assemble

the equilibrium equations is the shaded upper left 20x20 block of Egn. L.25,

i.e.,
EQ?Q = RQ (4.26)
where:
T ={r.r T T ]T (4.27)
Q nl "n2 n3 nk
where:
r N
%11
8 21
ﬁ1i = ¢ dnli \ : for i =1, 2, 3, L (4.28)
dn2i
Ldn3i

o
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It should be noted that in performing the above condensation the nodal
forces and moments were taken as zero at all interior nodes, so the load
vector ﬁQ in Egqn. L4.25 remains unaltered during the condensation.

Since the translational degrees of freedom in Egn. 4.26 for each
element are referenced to the n-coordinates, they have to be transformed
to the base coordinates before the element stiffness can be superposed
into the complete assemblage. If global coordinates are used as base co-
ordinates, the translational degrees of freedom in Egn. L4.26 are trans-
formed by Tﬂ’ Egn. 4.2, or if surface coordinates are used, expressions

of the form P, =T TTQPU = T Pn must be utilized. Performing this

'3 £ £n

transformation, the quadrilateral stiffness in base coordinates is ex-

pressed as:

which is the desired form for the assemblage.
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FIG. 4.1 DIRECT STIFFNESS FORMULATION OF THE STRUCTURE
STIFFNESS MATRIX.
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CHAPTER 5. SOLUTION OF THE EQUILIBRIUM EQUATIONS

The stiffness matrix K of the complete assemblage relates the nodal

loads K acting on the shell to the corresponding nodal displacements r:

Kr = R (5.1)

The neodal point displacements r and forces R in Egn. 5.1 are arbitrary
since this equation was obtained by superposition of all the elements

in the idealization. Therefore, Egqn. 5.1 must be modified to account
for actual displacement and force boundary conditions. Each nodal
point of the idealization has five degrees of freedom, and the forces
and displacements corresponding to these may be applied in arbitrary
combinations at each nodal point. Displacement boundary conditions

are easily accounted for by striking out the rows and columns of the
degrees of freedom associated with the boundary constraints and by re-
placing the corresponding diagonal terms with a non-zero value. Of
course, if the specified displacement is non-zero, K must be post multi-
plied by this wvalue and the resulting vector must be subtracted from R
before applying the above procedure. It should be emphasized again that
three translational degrees of freedom may be specified at each nodal
point while only two rotational degrees of freedom, which are contained
in the tangent plane at each node, may be specified.

Correspondingly, five force components may be specified at each node--
three linear forces and two moments. These values also may be applied
arbitrarily at each node, and this is accomplished by simply adding
their contribution into R of Egn. 5.1. In general, distributed loads

may be accounted for by determining the nodal point forces and moments
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from consistent load procedures through the use of the assumed displace-
ment functions for each element (see Section 5.3); or alternately, they
may include only linear force components computed from simple tributary
area considerations. 1n general, if no geometric discretization error
exists, the consistent load procedure will yield superior results for
relatively coarse meshes, while the improvement given by the consistent
load procedure will diminish rapidly with decreasing mech size. Due to
the geometric idealization in the present analysis, tne use of linear
forces only based on tributary area considerations has proved to be

generally the most desirable means of representing distributed loads.

5.1 Direct Solution of the Equilibrium Equations

The stiffness matrix K, in which the displacement boundary conditions

are accounted for, may be characterized in general as:

1) symmetric
2) banded
3) positive definite

L) sparsely populated

Algorithms which utilize either iterative methods [16] or direct metnods 7]
for the solution of equations with these properties are well known. Earlier
applications of the finite element procedure were based predominatel; on
jterative methods in which property U was utilized so that the solution

could be obtained while working entirely in the high speed core memor..

In the more recent years, however, direct solutions based on Gaussian
elimination (or special forms of it such as triangular decomposition)

have become the preferred solution procedure due to their overall economy



and ease of applicability. A direct method (triangular decomposition )
was used to obtain the results presented herein; therefore, a brief
discussion of this method and of the above proverties related to it is
pertinent.

The fundamental concept of the Gaussian elimination procedure is to
perform overations on K to reduce it to triangular form, after which
the unknown displacements are found by back substitution procedures.
The three most widely used f{orms of this procedure result in reducing

kagn. %.1 to the following forms:

Ur = R (5.3)
DL'r = R (5.k)
ILr = R (5.5)

where U is an upper triangular matrix and while L and L are lower tri-
angular matrices and D is a diagonal matrix. To obtain Egn. 2.3 the
coefficients below the diagonal in the ith column are reduced Lo zero
by adding appropriate combinations of the ith row. This procedure
begins with column 1 and is continued until the triangular form is
achieved. It should be noted that while performing these operations
on K that the corresponding operations have to be performed on the load
vector R, and the modified load vector R in Eqn. 5.3 is used for the
back substitution. The procedures used to obtain Expressions 5.4 and
5.5 are referred to as triangular decomposition in which the matrix K
is split into upper and lower triangular matrices without performing

operations on the vector K, and these two forms are the most widely

L)
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used in practical computer algorithms. This is due primarily to two
reasons. Firct, in the decomposed form, Eagns. 5.4 and 5.9 may be used
to solve for as many arbitrary load vectors as desired by simply repeat-
ing the back substitution. Second, this is the most desirable form for

improving the solution, if necessary, because of inaccuracies caused by

)

rounding errors in the solution (see Fox, Ref. "1&]). Examination of

the computational effort required to perform the solution of' large systems
of equations by either of the procedures given in Egns. 5.3, 5.4, and 5.7
has shown that all three procedures involve ecsentially the same amount
of additions, multiplications, etc., while Eqn. 5.5 reguires one sguare

root operation for each equation. Although the procedure used in this

analysis is that of Egn. 5.5, usually referred to as Cholesky's method,
the special properties in Expression 5.2, which are discussed below, apply
equally well to all three procedures.

The f{irst three properties are very significant as related o the
direct solution of large systems of equations. Symmetry permits a reduc-
tion of approximately one half in the number of calculations, and alsc
reduces the amount of storage required since symmetry is preserved in
the solution. The banding property permits one to consider only the
coefficients contained within the band width since it is also preserved
during the solution. The positive definite property insures stability
of the solution [19]; hence, the solution may be obtained without pivoting.
These properties thus enable one to cbtain a direct solution by keeping
only a small portion of the stiffness matrix in high speed memory at any
time, while sequentially retrieving and storing additional information

by means of relatively slow input-output devices such as tapes and disks.



The portion of the stiffness matrix required to be in core at any time
during the solution determines how large the band width can be. The
minimum storage required is m(m + 1)/2 where 'm” is the half band width,
and this requires retrieving and storing information in blocks of 'm’
nunmbers. For a 3PK core, the maximum half pand width permitted by
practical programs is approximately 180. 1f larger blocks of informa-
tion are to be used for input-cutput, then the band widith must be reduced.

A typical mesh (8x12) of triangular elements suitable for analysis of a
cylindrical shell, for example, and a schematic diagram of the assemblea
stiffness matrix are shown in Fig. 5.1. Since each node has five degreec
of freedom, the total number of unknowns, n, is 585, The half pand width,
m, is 50. To obtain the half band width the entire array of elemsnts is
scanned and the maximum difference between the numbers of any two nodes
associated with a particular triangle is recorded. The half band widtn
is then given by one plus this number multiplied by Iive.

For comparison purposes, a corresponding mesh (8x12) of guadrilateral
elements is shown in Fig. 5.2. As has been mentioned previously, the
interior nodal point degrees of freedom of the quadrilateral element Co
not appear in the equilibrium equations; therefore, the total numper of
equations for both mesh representations are the same for this case. The
half band width, however, given by the mesh of quadrilaterals is 95 com-
pared with 50 for the mesh of triangular elements.

The shaded zones in the stiffness matrices (Figs. 5.1 and 5,2) indi-
cate the maximum horizontal spread of the non-zero coefficients. It is
interesting to note that if this mesh were supdivided to 16x2L4 subdivi-
sions, each shaded area would retain the same width while the hall vand

widths would be increased to 90 and 95 respectively. Unfortunately,
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this type of sparseness does not permit a reduction in computational
effort. This property is, however, very useful in assembling K and is
described in Section 5.2. The number of multiplications required to
decompose the structure stiffness matrix is approximately nm2/2. The
number of additions are also approximately nm?/2.

Typical times, in seconds, required for the decomposition (including
the time required for transfer of information to and from core) and the

back substitution for problems which have been run on the IBM 7094 are:

Mesh M N Decomposition Back Substitution

Lx 5 30 150 5 3

8x12 50 585 37 18

12x18 70 1235 159 inn

16x22 90 1955 34O 77
(irregular) 100 2180 430 93

The algorithm used to solve these equations is written in FORTRAN IV,
using disk storage for the back substitutions. Of practical importance

is the asymptotic time for the decomposition as measured per multiplica-
tion (i.e., mgn/E). This value is approximately l«LOxILO_6 and compares
favorably with the corresponding value of 30><10"6 as reported in Ref., [17]
for the time required to perform the corresponding operation utilizing MAP
as the programming language. The efficient decomposition times for the
subject program are attributed to the use of the discrete block structure
described in the following section. The discrete block structure permitted
the innermost do-loop of the algorithm to be free of integer arithmetic,
which is usually required, for example, if a one dimensional array is used

to store K, and in addition transfer of information in large blocks proved

to be very efficient.




¢.2 Practical Aspects of Computer Algorithms for the Finite Element

Procedure

The general computer application of the finite element procedure may

be subdivided as follows:

1) Computation of element stiffness
2) Formation of the stiffness matrix of the complete assemblage
3) Solution of the equilibrium equations

4}  Computation of element stresses and moments

As stated earlier, the efficient use of a direct solution procedure for
large systems of equations is made possible oy storing only part of the
stiffness matrix K in high speed core at any given stage during the sclu-
tion. This causes certain problems which couple steps 1, ¢, 3 and which
deserve special attention in the computer program. To illustrate this,
the subject computer algorithm for solving the equilibrium equations is
considered. This algorithm was constructed so that data to and from the
external storage devices would be transferred in large blocks of infor-
mation. To this end, blocks 1 and 2 in Fig. 5.3 reside in core simul-
taneously and this requires a maximum space of m? numbers. The procedure
then consists of first decomposing blocks 1 and 2, after which block 1 is
output on tape. Block 2 remains in core since it is required in decompos-
ing block 3. After block 3 has been input and decomposed, block 2 1is
output on tape, while block 3 remains in core. Block L is input and the
above procedure is continued until all blocks have been treated.

The coupling between the above steps 1, 2, 3, is illustrated in

Fig. 5.3, by considering the contribution of a typical element on K.
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As shown, this element contributes to blocks 1 and 2 and also to blocks 3
and 4. The significance of this is that in assembling the individual
blocks all the contributions of a given element stiffness cannot be ac-
counted for at the same time; and therefore, its remaining contributions
must be stored, otherwise the element stiffness will have to be computed
again. Neither alternative is desirable since the remaining contributions
must be stored in a way so as to have the capability of random access,
while recomputing element stiffnesses requires excessive computer times
which may be avoided. This problem has previously been overcome by dimen-
sioning an array of 2m2 numbers, by permitting a certain number of element
stiffnesses to reside in core while forming the individual blocks; and by
the use of random access disk files. The present computer program accounts
for this problem by taking advantage of the sparseness property of K in
that only the non-zero elements are stored while forming the individual
blocks. This procedure does not decrease the maximun permissible band
width, and all the contributions of a given element may be accounted for
at the same time.

The execution of step b is not coupled with the first three steps
since this requires only the nodal point displacements, the element geom-
etry, material properties and the assumed displacement function which

were used for the evaluation of the element stiffness properties.

5.3 Computation of Consistent Loading and Element Stresses and Moments

In the application of the finite element procedure, all forces
acting on the shell must be expressed as nodal point forces in the equi-
librium equations of the complete assemblage (Ean. 5.1). As mentioned

earlier in this chapter, distributed loadings may be treated by simple




tributary area considerations or they may be determined by consistent
load procedures. In the latter procedure the nodal forces are determined
by requiring the energy of these forces going through the corresponding
nodal displacements to be equivalent to the energy of the distributed
loads going through the displacements over the element which result from
the nodal point displacements. By using the principle of virtual dis-

placements, this is expressed for planar elements as:

RiT dri = LL/‘P(x,y) M(x,y)dA} dri (5.6)
A
where:
R, is the consistent load vector,
dri is the nodal point system of virtual displacements,
P(x,y) is the distributed loading,
M(x,y) are the displacement functions expressed in terms of the

nodal point system of virtual displacements.

The nodal point system of virtual displacements in Egn. 5.6 corresponds to
the nodal point system of displacements used for the derivation of the
element stiffness.

The evaluation of Egn. 5.6 has been carried out for various plane
stress/strain elements in Ref. [12] and has been described for the plate
bending element in Ref. [9]. 1In the present program consistent nodal
point loads have been used for the triangular elements only. In general,
these element nodal point loads are linear forces resulting from the
membrane displacements and the transverse displacements of the plate

bending element and nodal point moments resulting from the rotational



70

deformation of the plate element. The nodal point loads were first estab-
lished in element coordinates and then transformed into the base coordi-
nates. The inclusion of nodal point moments for the meshes described in
Chapter 6 did not yield significant improvement in the results and in
certain cases (for example, the dome supported on rollers, Fig. 6.2) the
use of nodal point moments resulted in undesirable perturbations of the
displacement patterns in the vicinity of the supported edge. However,
the results from all the cases investigated by the use of nodal point
loads determined from either consistent load procedures (by using only
the linear forces) or tributary area considerations were satisfactory
and, in general, only small differences in the results were observed. 1In
all the analyses performed with the quadrilateral element the nodal point
loads were linear forces only, which were determined by tributary area
considerations and were applied only at the exterior nodes of the gquadri-
laterals (all the interior nodes were considered to have zero loads ).

The solution of the equilibrium equations yields the displacement
components of the nodal points of the finite element system. The element
stresses and moments are then easily determined from the assumed displace~
ment functions, and this is accomplished by transforming the nodal point
displacements into element coordinates and then utilizing expressions of
the form of Egqns. 3.26 and 3.32 for the membrane element strains and
Ean. 3.45 for the plate curvatures. Having obtained the element strains
and curvatures, the element stresses and moments are obtained from Egns.
3.7 and 3.20 respectively. It should be noted, however, that the displace-
ment components of the interior points of the quadrilateral must first be

recovered and this is accomplished by Ean. L.25.



The stress and moment quantities which are of interest in shell
analysis are those shown in the lower part of Fig. S.4. The computation
of the element stresses and moments as described in the above paragraph
result in these values being referenced to the element coordinates, X, 7y,
(Fig. 5.4), and it is generally necessary to transform these quantities to
a specified coordinate system for ease of interpretation and to obtain
average values for nodal point stresses and moments. The procedure used
herein is to transform the stresses and moments at each node of each
triangle to the surface coordinates defined at these points. This is

tt e 1t

illustrated for point "i" of a typical triangle in Fig. 5.4 in which the
element coordinate X is projected onto the 51-52 plane defined at point "i."
The angle w is then determined and the element stresses and moments at
point "i" are transformed (approximately) to the &l—£2 plane by using this
angle. Since the assumed displacement functions cannot insure local stress
equilibrium across the element interfaces, it is desirable to use averaged
values in determining nodal point stresses and moments. The adopted pro-
cedure in determining the nodal point values is to average the nodal point
stresses and moments of all triangles intersecting a given point for the
quadrilateral element. This procedure is also utilized for nodal point
moments when using a mesh of triangles; however, in this case it is de-

sirable when possible to use the procedure described in Section 2.4 for

determining membrane stress components when plane stress bending modes are

present.
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CHAPTER 6. RESULTS OF ANALYSIS

The versatility and the accuracy which can be obtained by this finite
element analysis of thin shells is demonstrated by comparing results from
this particular analysis with results obtained by using the classical
solution procedures (Examples 1, 2, 3, 4, 5, 6) and numerical solutions
(Examples 7 and 8) of the equations based on shallow shell theory. The
rate of convergence (i.e., improved accuracy with decreasing mesh size)
is presented for several cases, since this property may be used to deter-
mine the adequacy of the element stiffnesses used in the analysis. Kesults
given by both the quadrilateral and the triangle are compared to establish
the relative convergence properties of these two elements. The geometric
idealization is considered important in the analysis since it is necessary
that the behavior of the idealized shell approach that of the actual shell
with decreasing mesh size. Of additional importance is the evaluation of
the approximation resulting from the use of the 5 degree of freedom nodal
point displacement system.

Obviously all the approximations of the finite element idealization
cannot be evaluated separately in a single analysis. It is possible,
however, to select particular examples which accentuate one or more of
these approximations, and thus a relative evaluation of the individual
approximations made in the analysis is possible. Each of the eight ex-
amples presented hereafter serve the purpose of demonstrating the effect
of one or more of the approximations of the finite element idealization.

The improved membrane stiffness properties of the quadrilateral over
the triangle is evident when one considers the cantilever beam (Section 6.1).

Because the predominant straining modes in this example are those of



7

bending (Figs. 2.6.c and 2.7.c), and since the difference in the stiffness
properties of the constant strain triangle and the quadrilateral is re-
flected only in these modes, & direct comparison of these two types of
elements is possible. It should be noted that the effects of the geometric
idealization and the 5 degrees of freedom are eliminated in this example
since the structure is planar.

The spherical dome (Section 6.2), subjected to & state of membrane
stresses (kxample 2) which are constant everywhere in the shell, is useful
in determining the effect of the geometric idealization. This is possible
since there is no error resulting from the discretized displacement field
since both membrane elements used are able to represent the constant stress
state exactly. Moreover, due to the axisymmetric condition the error re-
sulting from the use of the 5 degrees of freedom is annulled because the
rotation about the normal is zero in the actual shell. The spherical dome
with clamped boundaries (Example 3) is useful in determining the accuracy
with which hoop stresses and bending moments with steep gradients may be
predicted. Of particular interest in this case is the comparison of the
bending moments since the classical solution for this example represents
the most accurate bending theory available [20].

The circular cylinders of Section 6.3 (Example 4) are useful in
establishing the overall convergence properties of the finite element
solution. In this example, it is not possible to isolate the effects of
the discretized geometry and the 5 degrees of freedom; however, a direct
evaluation of the improved stiffness properties of the quadrilateral
element over the triangular element is possible since identical geometric

jdealizations are obtained with both element types in which the effect of
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the 5 degrees of freedom is essentially the same. The results of this
analysis are instructive in that the slow convergence given by the constant
stress triangular element is offset by the use of the quadrilateral element
(due primarily to the improved representation of bending deformation modes ).
Because these results, with decreasing mesh size, compare favorably with
the classical solution, the combined effects of the geometric idealization
and the 5 degrees of freedom are seen to result in negligible errors. The
purpose of Example 5, a typical interior circular cylinder, is to illustrate
that although bending deformation modes are present (see Fig. 6.13), the
convergence properties of the constant stress triangle are adequate. This
is attributed to the fact that the effect of the gradient of these modes is
less severe than those of Example L4 (i.e., for R = 25' and 12.5').

The results from the above .examples indicate that the combined errors
of the geometric idealization and the 5 degrees of freedom disappear with
decreasing mesh size. It is of interest to separate these effects, and
this can be done by considering the folded plate of Example 6. In this
example, no geometric idealization error is present so the discrepancies
in the solutions with decreasing mesh size are due to the discretized
displacement field and the five degrees of freedom. As expected, the use
of the constant stress element results in slow convergence (see Figs. 6.15,
6.16, 6.17) since the individual plates are subjected to bending deformation
modes, while the convergence of the quadrilateral is adequate (Figs. 6.15,
6.16, and 6.17). This example shows that the 5 degree of freedom system
performed well for a case with large juncture angles between individual

elements.
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The translational shells of Example 7 point out that slight changes
in the longitudinal profile (see Fig. 6.18) cause appreciable changes in
the distribution of stress and in the deformation of the three cases of
positive, negative, and zero Gaussian curvature. The results of this
example indicate that the finite element idealization is adequate in
treating problems whose behavior is sensitive to slight changes in the
geometry. The conoid of Example 8 represents a structure subjected to a
complex state of stress and moment in which the convergence of the tri-

angle and the guadrilateral is about the same.

6.1 Cantilever Beam (Example 1)

This beam is loaded at the free end with vertical shear forces dis-
tributed parabolically over the depth resulting in a total vertical force
of 4O kips. The geometry, material properties, and the finite element
idealizations are shown in Fig. 6.1. The results for the meshes of constant
strain triangles and the linear strain triangles were taken from Ref., [12],
and the results for the mesh of quadrilaterals were obtained by the subject
program.

The tip deflection and the longitudinal stress (Gx at x = 12", y = 6")
are given in Table 2 for the meshes considered. Also shown in Table 2 are
the half band width, m, the total number of degrees of freedom, n, and the
relative computational effort based on the number of multiplications re-
quired to decompose K for each mesh. The two meshes of constant stress
triangles (4 and 8 subdivisions over the depth) yield values for the tip
deflections which are approximately 15% and 4% in error. The two meshes
of quadrilaterals (2 and 4 subdivisions over the depth) give corresponding

errors of approximately 6.5% and 1.5%, while the results of the meshes of



linear strain triangles (2 and 4 subdivisions over the depth) are almost
exact as related to the tolerances of the errors specified for the other
two element types.

The remarkable accuracy given by the linear strain triangle is
attributed to the fact that it is able to represent exactly the deformation
modes resulting from pure bending while these modes may only be approximated
by the guadrilateral because all of its exterior boundaries are constrained
to deform linearly. The convergence of the quadrilateral element appears
adequate, however, and this element requires much less computational effort
in decomposing K than the linear strain triangle for a given number of sub-
divisions; for example, & mesh of quadrilaterals (8x32) would require about
one-third of the computational effort regquired for mesh C2, Table 2, due to

the presence of the mid-side nodes of the linear strain triangle.

6.2 Spherical Dome (Examples 2 and 3)

The second case considered is the spherical dome subjected to an
external pressure loading shown in Fig. 6.2. Because of its axial symmetry,
it was possible to treat a single segment of the shell in the finite element
idealization. Two mesh layouts were considered in which a 30° segment was
utilized and the element nodes were located on parallel arcs at meridional
angle intervals of 5° and 2.5° respectively. The coarse mesh resulting
from the use of 5° intervals is shown in Fig. 6.2.

Two cases were considered for this shell. Example 2 was supported on
rollers at the boundary so as to maintain a membrane state of stress, while
Example 3 was clamped at the edge. Results for the normal displacement
and the hoop stress for Example 2 are shown in Fig. 6.3. These results

were obtained by using the coarse mesh (Fig. 6.2). Results were obtained
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for this case also by using the fine mesh consisting of 1l arcs over the
full 35 degree meridional angle; and the resulting displacement, W, was
correct to three significant figures at all nodes, and stresses were well
within one per cent of the theoretical values. The meridional moment and
hoop stresses determined for the clamped case (Example 3) are shown in

Fig. 6.4 and compared with "exact'results for this case taken from Ref. [20].
The slight deviation of the  finite element results noted near the clamped
edge could have been reduced by refining the mesh in this region. For both
examples, a mesh of triangles was used and the nodal point loads consisted
of linear forces computed from tributary area considerations. Results from
a mesh of combinations of triangles and quadrilaterals (constructed from the
subdivisions of the coarse mesh) have been obtained for the membrane case

which agreed well with those shown in Fig. 6.3.

6.3 Circular Cylinders with Free Edges (Example L)

The second form of shell considered is a circular cylinder, loaded by
its own dead weight, supported by diaphragms at the ends, and free along
the longitudinal edges. Because of its double symmetry only one-quarter
of this shell needed to be considered in the analysis, as shown in Fig. 6.5.
The end diaphragm was assumed to be infinitely rigid in its own plane and
infinitely flexible out of that plane.

Three geometries were used in this analysis which were formed by
varying the radius and the maximum subtended angle «, while all other
dimensions and material properties were held constant. The three transverse
profiles and & typical Ux5 mesh are shown in Fig. 6.5. All of the meshes

considered were obtained by dividing the half-span (L = 25') into equal
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subdivisions, and by dividing the curved arc (n=0ton= a) into equal
subdivisions.

Results for the vertical displacements (dz) across the mid-section
for the three geometries are shown in Figs. 6.6, 6.7, 6.8 and are com-
pared to the "exact" results computed by numerical evaluation of the
Donnel-Jenkins shell equation [21]. For each case analyses were made by
utilizing different mesh sizes in which both triangles and quadrilaterals
were used to observe the rate of convergence of the two element types.
For a given idealization, the mesh of triangles and quadrilaterals are
arranged as shown in Figs. 5.1 and 5.2, so the total number of nodal point
degrees of freedom are the same for both element representations. For the
cylinder with a radius of 50', the convergence (Fig. 6.6) of the triangular
element is reasonably good, while the convergence of the triangle is much
poorer for radii of 25' and 12.5' (Figs. 6.7 and 6.8). The corresponding
results obtained by the quadrilateral element (Figs. 6.6, 6.7, and 6.8)
indicate a marked improvement, and this improvement is accentuated for the
latter two geometries. Since identical geometric idealizations are utilized
in these analyses, the improved convergence is attributed to the better
stiffness properties of the quadrilateral element, primarily in representing
bending deformation modes (Fig. 2.6.c). This may be explained in part by
considering the longitudinal stress distribution across the central section
of the three profiles (Fig. 6.9). In each case, the longitudinal stress has
a maximum value at the free edge and diminishes rapidly to zero; therefore,
the elements located near the free edge are subjected in part to bending

deformation modes.
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Comparison of the convergence of the longitudinal stress at the
central section as given by the triangle and the quadrilateral is shown
in Fig. 6.10. Significant improvement is gained by using the quadrilateral
in that the accuracy given by the 8x12 mesh of quadrilaterals is very close
to that of a 16x22 mesh of triangles. It should be noted that the longi-
tudinal stresses from the mesh of triangles were determined by considering
the longitudinal stresses given by each triangle to be representative of
the stress along the side of the triangle which is parallel to the longi-
tudinal axis of the cylinder (see Section 2.4). The stresses from the mesh
of quadrilaterals were taken as the average nodal point stresses of all
elements intersecting a given nodal point. In addition, three components
of bending moments are shown in Fig. 6.11 determined from a 16x22 mesh of
triangles.

Of importance in this example is the demonstration of monotonic con-
vergence for both element types as reflected in Fig. 6.6, 6.7, and 6.8,
and the considerable improvement in the convergence given by the quadri-
lateral element. Also as demonstrated by this example, the overly-stiff
properties of the constant stress triangle result in defornation patterns
which are essentially of the correct form but whose magnitudes differ
appreciably from the "exact" values for coarse meshes, and this property

is accentuated for the smaller radii (Figs. 6.7 and 6.8). Of additional

interest is the convergence of the longitudinal stress components (Fig. 6.10).

The upper plot of Fig. 6.10 shows that the convergence of this stress com-
ponent is similar to the convergence of vertical displacement (Fig. 6.7)
with the relative error in the stress component being somewhat greater for

coarse meshes. The convergence of the longitudinal stress components is



significantly improved by the use of quadrilaterals (Fig. 6.10). This is
due partially to the improved representation of stress given by this
element, but primarily to its superior stiffness properties which permit

more accurate nodal point displacements for a given idealization.

6.4 Typical Interior Cylinder (Example 5)

This example represents a typical interior unit of a cylindrical roof
constructed from a series of repeated cylindrical shells which are con-
sidered to be connected monolithically along the longitudinel edges. The
longitudinal edges cf the typical interior cylinder are assumed to be lines
of symmetry in which the rotation about the longitudinal axis and the hori-
zontal displacement are zero. The loading, geometry, material propérties
(except v = 0.3 for this case), end support conditions, and the section
analyzed are as shown in Fig. 6.5, and the circular profile has a radius
of 25' {a = 40°). Triangles were used in this analysis and a plot of ver-
tical displacements for two mesh layouts (8x12 and 12x18) is shown in Fig.
6.12. In addition, plots of transverse moment and longitudinal stress given
by the 12x18 mesh can be found in Fig. 6.12 and 6.13. The accuracy of these
results are considered acceptable. The transverse moment at the longitudinal
edge exhibits the greatest error; however, this is due to the steep moment
gradient near this edge and may be improved by a local refinement in the

mesh.

6.5 North Light Folded Plate Model (Example 6)

The geometry and material properties for this example are shown in
Fig. 6.14. The shell is supported on end diaphragms and is loaded by line
loads along the fold lines. From considerations of symmetry, one quarter

of the shell was used in the analysis, and a typical 6x8 mesh of
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quadrilaterals is shown in Fig. 6.1Lk. In utilizing the 5 degree of freedom
system for this example, "tangent planes' were constructed at the fold lines
(Fig. 6.14) so that the plates from either side would intersect this plane
at equal angles, thus constraining the plate bending rotations normal to
this plane at the fold lines. The tangent planes of the interior nodes of
course are the planes of the individual plates.

Three meshes (3xk, €x8, 12x16) utilizing both triangles and quadri-
laterals were used in the analysis and are compared with the "elasticity"
method of Ref. [22]. The convergence of the vertical displacements, the
longitudinal stresses and the transverse bending moments are shown in
Figs. 6.15, 6.16, 6.17. The meshes of triangles result in slow convergence
since the individual plates are subjected to longitudinal bending (Fig. 6.16),
which accentuate the bending deformation mode (Fig. 2.6.c). Again this case
illustrates that the convergence of the longitudinal stresses is similar to
that of the nodal point displacements. The overall performance of the 5
degree of freedom nodal point displacement system using the quadrilateral
element is very good for this case, and even the 6X8 mesh yields acceptable
results. The only departure from the correct form is the transverse bend-
ing moment across the interior plate a-e (Fig. 6.17) with the maximum dis-
crepancy occuring at point a (approximately 13% deviation for the 12x16

mesh of quadrilaterals).

6.6 Translational Shells (Example 7)

In this example, three different forms of shells are considered and
compared: a parabolic cylinder (PC), an elliptic paraboloid (EP, positive
Gaussian curvature), and a hyperbolic paraboloid (HP, negative Gaussian

curvature) as shown in Fig. 6.18. Each shell has the same transverse



parabolic profile and is supported at the ends by a diaphragm normal to the
shell surface, while the longitudinal edges are free. The loading of each
shell is due to its own dead weight.

Certain results of the finite element analyses are presented in Fig.
6.19 using meshes of triangles in comparison with the numerical analysis
results presented in Ref. [23]. Uniform rectangular mesh layouts in the
horizontal plane were used in the analyses with dimensions as shown on
Fig. 6.18. The finite element results for the parabolic cylinder are seen
to check well with those given in the reference. The agreement of the
longitudinal stresses for the hyperbolic paraboloid also is seen to be
excellent, although the vertical displacements and transverse moments for
this shell show some slight deviations. This discrepancy is not significant,
however, inasmuch as the values are so small.

The greatest discrepancies are found in the case of the elliptic parab-
oloid, and this analysis was repeated using Lx6 and 8x12 meshes of quadri-
laterals. These results are shown in Fig. 6.20. The two meshes yield
almost identical results for the vertical displacement and these values
are only slightly greater than those of the 12x18 mesh of triangles. The
longitudinal stresses given by the 8x12 mesh of quadrilaterals are almost
jdentical to those in Fig. 6.19, while the bending moments are in better
agreement with those of Ref. [23]. All of the above discrepancies are not
severe, and may be explained in part by the fact that a slightly different
structure was considered in Ref. [23]. The shallow shell theory used in
that analysis required that the longitudinal profile be assumed in the
form of a circular arc while the finite element analysis took account of

the true parabolic profile.
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6.7 Conoid (Example 8)

The conoidal shell, shown in Fig. 6.21, is supported on all four
sides by diaphragms normal to the shell surface, and is subjected to an
external pressure load. Only half the shell was treated in the analysis,
due to symmetry, using a uniform 12x18 rectangular mesh of triangles
(referred to the horizontal plant) and an 8x12 mesh of quadrilaterals.

The-normal displacement components and transverse moments  compubed
by the finite element procedure are shown in Fig. 6.22, while two in-plane
stress components are shown in Fig. 6.23. Also shown are some results
derived from shallow shell theory which were presented in Ref. [2L],

The two finite element analyses show good agreement in the normal
displacement component and the stress component. The deviations in the
upper plot of Fig. 6.23 are explained by the fact that the stresses from

the mesh of triangles were plotted at the mid-point of the sides of the

triangles lying along line (x = D/L) as explained in Section 2.L., Signifi
cant differences in the larger values of the bending moment are apparent
and the values given by the mesh of triangles are considered more accurate
due to the smaller subdivisions given by the 12x18 mesh.

The general form of the finite element results and those of Ref. [2L]
are in agreement, but significant differences in magnitude are evident. In
this case, it is believed that the finite element results are the more
reliable because this shell has a significantly greater rise than would be

permitted by shallow shell theory.
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CONCLUSIONS

The finite element solution described herein demonstrates the versa-
tility and the accuracy given by the finite element procedure in the
analysis of thin shells. The usual characteristics of the finite element
procedure are preserved in this solution in that it is applicable to
arbitrary geometries, support conditions, and loadings, which are typi-
cally present in practical applications., Shells with variable thickness
and material properties may be treated in the analysis by specifying
appropriate values for each element in the assemblage; and, with minor
modifications in evaluating the element stiffnesses, orthotropic material
properties may be considered. In addition, elastic support conditions
can be treated by specifying their stiffness properties.

The examples presented showed that the approximations of this solu-
tion disappeared with decreasing mesh size, and this solution gave excel~-
lent approximations to the "exact" solutions for the dome, the circular
cylinders, and the folded plate. In general, the finite element analysis
agreed quite well with the "less exact” solution based on shallow shell
theory, and the discrepancies in the last example (the conoid) are attri-
buted to the approximations of the shallow shell theory.

The convergence with decreasing mesh size was essentially monotonic
and the geometric idealization represented the actual shell adequately in
each example. The 5 degree of freedom nodal point system appeared to have
little, if any, adverse effects on the solution for smoothly curved shells,
and the results of the folded plate with large juncture angles illustrated
more profoundly the secondary nature of this approximation. The repre-

sentation of distributed loadings by either tributary area considerations
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or by consistent load procedures, in which only the linear forces were
used, was considered adequate for the solution. The most critical approxi-
mation in the analysis was the discretized displacement field for the eval-
uation of the element stiffness properties, and there was a marked improve-
ment in convergence given by the quadrilateral element as compared to the
triangular element. This improvement is chiefly attributed to the improved
representation of beam-type bending deformation modes of the quadrilateral;
however, it should be noted that the plate bending stiffness of the quadri-
lateral is alsc superior since four triangular elements are used for the
quadrilateral while only two triangles would be used to represent the same
region.

Of particular interest in this analysis is the accuracy to which
stresses and moments can be predicted. In general it has been demonstrated
that with decreasing mesh size, these values approach the accuracy of the
nodal point displacements. It should be noted, however, that a given mesh
may yield displacements to the desired accuracy while yielding stresses
and moments which have not reached the desired accuracy. This behavior may
be expected since the solution is based on a displacement model, and usually
occurs only in regions subjected to very steep stress and moment gradients.
The accuracy of the stresses and moments in these regions may be improved
by refining the basic mesh or by local refinement in the regions where
these stresses and moments occur.

The potential of this solution procedure is not fully realized in the
solutions presented herein since it was desirable to evaluate the procedure
by comparison with existing solutions, and in this respect the examples

were necessarily limited to relatively simple geometric forms. It is
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equally applicable, however, in treating more complex geometries which
occur in actual practice, and the 5 degree of freedom nodal point system
permits substantial mesh refinement allowing intricacies of geometric
detail to be corisidered in the analysis.

The finite element solution presented herein permits the analysis
of shells subjected to static loadings in which the response of the shell
is considered to be linear and elastic. This solution may, however, be

extended to include the following:

1) Dynamic loadings
?) Geometric non-linearities

3) Material non-linearities

A treatment of dynamic loadings for shells has been presented in Ref. (9]
in which a combination of the direct eigenvalue approach and the modified
Rayleigh-Ritz technique were utilized in the analysis. A similar treatment
of dynamic loadings using the present analysis procedure is also possible.
A general procedure for treating geometric and material non-linearities has
been developed in Ref. [12]. This development is based on the incremental
procedure by utilizing the instantaneous stiffness which consists of the
conventional stiffness augmented by the "geometric" or "initial stress”
stiffness. |

A problem of practical importence in shell analysis is that of sta-
bility. Two approaches for treating the stability problem are possible.
In the first approach the conventional stiffness (KC) is referenced to the
initial geometry and the geometric stiffness (Kg) is constructed from the

stresses resulting from the applied loads (as determined by the conventional
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stiffness). This yields the following equation for determining the

critical buckling load (A):

[K + AK ]ér =0
c g

In the above equation A is a single parameter characterizing the given
static loading and dér are virtual displacements referenced from the
initial geometry. Since KC and Kg are considered constant in the above
equation the determination of the critical buckling load A follows from
a classical eigenvalue analysis. The second approach for the stability
problem consists of a finite deformation analysis based on the incremental
procedure. In this procedure Kc and Kg are no longer constant and they
must be evaluated after each step in the analysis by utilizing the deformed
geometry. - The critical load is determined in this procedure by observing
the load-displacement characteristics of the struc¢ture. The advantages
given by the second approach lie in the fact that the deformed geometry
based on observed tests appears to have significant influence on the
critical load, and, moreover, material non-linearities may be included in
the analysis.

~In addition to the above extensions which are possible with the present
finite element procedure, the development of doubly curved shell elements

which enable a better geometric discretization of the shell is a matter

for ‘further research.
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