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Abstract

Traumatic Brain Injury (TBI) arises from an external force affecting the brain, leading
to a range of outcomes from mild to severe. Despite continuous scientific advancements,
it continues to pose a persistent threat and remains a significant cause of physical
impairment and mortality.
Various models, including blast-induced TBI (bTBI), have been proposed to simulate
TBI. Laser-induced shockwaves (LIS) us emerging as an effective method. LIS generates
shockwaves via pulsed laser-induced plasma formation, offering a controlled means to
study TBI at the cellular level. Astrocytes, pivotal in maintaining brain function
post-injury, undergo dynamic morphological changes, contributing to the understanding
of injury responses and neurodegenerative diseases.
This study introduces a system combining Laser-Induced Shockwaves (LIS) and
Quantitative Phase Microscopy (QPM) to quantify morphological changes in astrocytes
during and after LIS exposure. QPM, a label-free method, facilitates 3D imaging and
captures real-time cellular dynamics. The integration of LIS and QPM enables the
assessment of astrocyte responses to shear stress caused by LIS, revealing immediate
and sustained morphological transformations.
Analysis post-LIS exposure indicates significant alterations in circularity, volume,
surface area, and other features. Statistical tests affirm of observed trends, providing
insights into astrocyte responses to mechanical forces. The findings contribute to
understanding how mechanical stimuli impact astrocyte morphology, holding promise
for targeted therapeutic strategies in traumatic brain injuries and related neurological
disorders. The integrated LIS and QPM approach serves as a powerful tool for 3D
imaging and quantitative measurement of astrocyte morphological changes, offering
deeper insights into cellular dynamics and potential therapeutic interventions.

Introduction 1

Traumatic Brain Injury (TBI) stands as a critical public health concern, with a notable 2

surge in TBI-related incidents reported by the Centers for Disease Control and 3

Prevention from 2006 to 2014 [1]. This injury occurs when an external force disrupts 4

the normal function of the brain, leading to a spectrum of outcomes, from mild to 5

severe, with consequences ranging from full neurological recovery to mortality. Despite 6

advancements, TBI remains a leading cause of physical impairment and death, 7

particularly among the youth. 8
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Various models have been proposed to simulate TBI. These models can be categorized 9

as acceleration models of TBI, compression models of TBI, repetitive models of mild 10

TBI, and blast models of TBI. There has been an increase in blast-induced TBI (bTBI) 11

caused by improvised explosive devices impacting the brain directly. Different methods 12

of blast models of TBIs have been proposed [2]. One method in particular, laser-induced 13

shockwaves (LIS), has been shown to be an effective way to simulate shockwaves in 14

vivo [3] and in vitro [4]. Laser-Induced Shockwave (LIS) is a phenomenon that occurs 15

when a fluid is irradiated by pulsed laser light, leading to plasma formation and the 16

creation of a cavitation bubble. This bubble’s expansion causes a shockwave, which can 17

be used to damage cells by mechanical force. 18

When an injury occurs to the brain, neuronal cells in the brain interact with each other 19

to maintain the brain’s normal function. Astrocytes, the most numerous cells in the 20

CNS, play a crucial role in maintaining equilibrium between ions, maintaining 21

homeostasis of water and blood flow, recycling neurotransmitters, and supplying the 22

nutrition that cells need to remain healthy [5, 6]. They are imperative to the brain’s 23

normal functioning after CNS injury, regulating leukocyte infiltration, repairing the 24

blood–brain barrier (BBB), protecting neurons, and restricting nerve fiber growth [7]. 25

Astrocytes possess complex morphologies in terms of size, shape, and processes. The 26

base cell structure has a star-like shape, with the soma being in the center and the 27

processes protruding in the outward direction. These processes also display smaller 28

branching processes, which also vary in shape and size [8]. The majority of individual 29

astrocyte processes branch out and do not overlap between neighbors, forming the 30

gliapil, or region where thousands of synapses can be embedded. The thin processes 31

approaching these synapses are believed to be important sites for neuron-astrocyte 32

interactions due to their close proximity [9]. 33

The field of astrocyte morphology is experiencing rapid growth, reflecting a heightened 34

interest and increased research efforts aimed at comprehending the structural 35

characteristics of these cells. The dynamic nature of astrocyte processes in vivo, marked 36

by boundary shifts, adds a layer of complexity to their study. However, analyzing the 37

arrangement of astrocytes poses a challenge due to the asynchronous addition of these 38

cells from embryonic to adult stages and the inherently three-dimensional nature of the 39

system. Potential mechanisms contributing to the formation of astrocyte domains 40

include homotypic repulsion, resulting in limited overlap, and an alternative process 41

involving initial overlap followed by competitive ramification until exclusive territories 42

are established [10]. In vivo, astrocytes within their designated territories maintain a 43

consistent volume fraction and an increase in segment density during the early postnatal 44

weeks. This indicates an amplification in astrocyte branching and a growth in the 45

number of smaller yet thinner astrocyte processes throughout this developmental 46

period [9]. Changes in astrocyte morphology have been directly observed in specific 47

brain regions during different neurodegenerative diseases, such as Parkinson’s disease 48

(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis [11]. 49

The injury and disease response process of astrocytes in the CNS is referred to as 50

astrogliosis. Depending on the severity of the insult and the proximity of the astrocyte 51

to the injury, the degree of cellular hypertrophy is heterogeneous and highly variable 52

among reactive astrocytes. The different forms of morphological heterogeneity of 53

astroglia are also directly correlated with the degree of hypertrophy and the degree of 54

interaction and interdigitation of cell processes [12]. 55

In this study, we introduce a system that enables quantitative phase imaging of 56

astrocyte cells before, during, and after LIS exposure to stimulate TBI at a cellular 57

level. We capture 3D images of the LIS injury and quantitatively measure the changes 58

in the cell membrane and internal cell structure. Quantitative Phase Microscopy (QPM) 59

is an emerging label-free method used to study transparent cells and tissues without 60
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photo-bleaching effects often encountered with conventional fluorescence imaging. This 61

modality uses interferometry and precisely quantifies the optical path length caused by 62

the sample, enabling the ability to image transparent features in cells, measure the 63

movements of their organelles, and quantify the cellular dynamics including membrane 64

motility [13–15]. This system allows for the application of different degrees of shockwave 65

injury while monitoring changes in bulk membranes, cell shape, and real-time damage 66

and recovery of intracellular damage. By integration of LIS and QPM, the system is 67

capable of 3D imaging of LIS injury and quantitatively measures membrane changes, as 68

well as internal cell structure in astrocyte cells in response to shear stress caused by LIS. 69

The examination of how astrocytes react to laser-induced shockwaves (LIS) reveals 70

immediate and sustained morphological transformations, providing insights into the 71

dynamic adaptations of these cells. Following LIS, astrocytes swiftly shift to a more 72

circular shape, accompanied by alterations in volume, surface characteristics, and height 73

features. Subsequent analysis conducted 2 hours post-LIS indicates enduring changes, 74

suggesting continuous cellular adjustments and regulatory processes. Statistical analysis 75

underscores significant alterations in circularity, volume, surface area, and other 76

features, highlighting the dynamic responses to mechanical disturbance. Mann-Kendall 77

Tau-b test results affirm the robustness of the observed trends. The dynamics of surface 78

area imply a cellular response geared towards enhancing chemical interactions, while an 79

increased projected area and area-to-volume ratio indicate a flattening response to LIS. 80

The findings from this research illuminate significant morphological changes in 81

astrocytes in response to LIS, contributing to the growing body of knowledge on how 82

mechanical stimuli impact astrocyte morphology [16,17]. These insights hold promise 83

for further investigations into the underlying mechanisms of astrocyte responses to 84

mechanical forces and the development of targeted therapeutic strategies in the context 85

of traumatic brain injuries and related neurological disorders. The integrated LIS and 86

QPM approach offers a powerful tool for 3D imaging and quantitative measurement of 87

astrocyte morphological changes, providing deeper insights into cellular dynamics and 88

potential therapeutic interventions [16,17]. 89

Materials and methods 90

Cell preparation 91

An established astrocyte type-I (Ast-1) line (clone CRL-2541) was received directly 92

from ATCC. Ast-1 cells were cultured in advanced DMEM media supplemented with 93

2% FBS, 1% glutamax, and 0.2% gentamicin/amphotericin B. Ast-1 cells were plated 94

onto glass-bottom 35mm imaging dishes. Alternatively, imaging dishes were coated by 95

incubating them for 1 hour in a 1:60 dilution of matrigel:DMEM to promote cell 96

adhesion. 97

Laser induced shockwave setup 98

As depicted in Figure 1, for Laser-Induced Shockwaves (LIS) setup, a Q-switched 99

diode-pumped solid-state (DPSS) laser (Flare NX, Coherent). This laser emits pulses 100

with a duration of 1.5 ± 0.2 nanoseconds at a wavelength of 1030 nanometers and can 101

operate at frequencies up to 2000 Hz. To generate laser pulses, the laser is connected to 102

a function generator GFG-8015G (GW Instek), producing a 5-volt square wave to 103

trigger the laser pulse generation. 104

After passing through a 3x beam expander, the laser power is controlled by a half-wave 105

plate plorizer and a polarized beam splitter. The remaining portion of the beam is 106
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reflected by a near-infrared (NIR) mirror and focused onto the cell culture medium from 107

underneath using an oil immersion objective lens (Plan-Apochomat 40x/1.3, Zeiss). 108

The laser power is measured at the back aperture of the objective lens with a thermal 109

sensor S425C (Thorlabs), connected to the Optical Power and Energy Meter Console 110

PM400 (Thorlabs).

Fig 1. Laser-induced shockwave setup.

111

1 Cell segmentation and feature extraction 112

The field of cell biology has evolved significantly since the establishment of cell theory 113

in the 19th century, which recognized the cell as the fundamental unit of life [18]. Light 114

microscopy, in particular, has played a pivotal role in advancing cell biology [19], 115

building upon the pioneering work of Antoni van Leeuwenhoek in the 1670s. Presently, 116

cell biologists have access to a diverse array of advanced microscopic imaging techniques 117

that allow for the visualization of cellular phenomena, surpassing the classical 118

diffraction limit of light. These techniques generate extensive and complex datasets that 119

have outgrown manual management, processing, and analysis. Consequently, the 120

application of computational techniques for these tasks has become indispensable for 121

the advancement of cell biology [20–24]. 122

One of the primary challenges in cell studies is image segmentation, a critical step that 123

involves the precise delineation of cell boundaries. Accurate cell delineation is pivotal 124

for subsequent analyses, regardless of whether they focus on nanoscale details or 125

encompass broader millimeter-scale perspectives [25]. 126

Cell segmentation refers to the process of partitioning an image or series of images into 127

distinct regions that correspond to individual cells. The main objective of cell 128

segmentation is to detect and delineate each cell present in an image for further analysis. 129

This step is crucial in image-based research in the field of biology and biomedicine. It is 130

widely used in various biological and biomedical studies, including cell tracking, cell 131

enumeration, investigation of cell behavior, and other forms of cellular analysis. To 132

perform cell segmentation, it is essential to create an accurate mask that outlines the 133

cell boundaries. Two critical factors are taken into account when developing a cell 134

segmentation method: the ability to identify the borders of each cell correctly and the 135

ability to differentiate between adjacent cells. Various methods have been tested and 136

evaluated, and in the following sections, we will discuss some of these approaches in 137

detail. 138
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1.1 Approaches for cell segmentation procedure 139

Various plugins, such as MorphoLibJ, Stardist, and local thresholding followed by 140

Classic Watershed, were tested for different fields of view (FOV) containing astrocyte 141

cells. The study aimed to evaluate their capabilities in identifying astrocyte cells and 142

accurately masking their borders. These image-processing techniques were combined 143

with the ’regionprops’ function in MATLAB to facilitate the isolation of individual cells 144

for further analysis. Each tested approach was assessed based on its ability to 145

differentiate neighboring astrocyte cells and its effectiveness in generating precise cell 146

masks, particularly with respect to cellular processes. 147

1.1.1 Watershed 148

The watershed algorithm is a popular method for segmenting images in computer vision 149

and image processing. This algorithm works particularly well when identifying objects 150

or regions in an image that have clear boundaries. The algorithm mimics a flooding 151

process, and it interprets pixel intensities as topographical elevations. This idea was 152

first introduced by S. Beucher and C. Lantuéjoul [26]. The process starts by placing 153

markers in the image at the highest and lowest intensity points, and these points guide 154

the flooding process, assigning regions with common markers the same label. The 155

output is a segmented image with clear boundaries shown by watershed lines. The 156

watershed algorithm is used in many areas, including medical imaging for cell 157

segmentation and tumor detection, as well as in geological and satellite image analysis. 158

Program Overview: Fiji/ImageJ has a watershed tool that can be accessed in the 159

binary section. The tool works by treating the input image as a topographic surface 160

with water sources placed at regional minima using the conventional watershed model. 161

As the algorithm floods the relief, it creates dams where the water sources converge. 162

However, this program has limited options for adjustments. 163

1.1.2 MorphoLibJ (Distance Transform Watershed 3D) 164

Program Overview: Distance Transform Watershed 3D is a segmentation tool that is 165

available for free and open-source. It uses a combination of distance transform and 166

watershed segmentation concepts to perform the segmentation. The distance transform 167

feature computes the distance of each voxel to the nearest background voxel. The 168

watershed algorithm utilizes these distance values as the water levels flood the image 169

from local minima until the watershed lines are formed. Users have the option to 170

customize the distance map and the watershed settings, including dynamic and 171

connectivity settings. 172

1.1.3 Stardist 173

Program Overview: Stardist is a deep learning-based image segmentation tool that 174

can be easily installed as a plugin for Fiji/Image J. It employs a fully convolutional 175

neural network to detect and delineate objects using a unique ”star-complex” shape 176

model. This shape model uses a star-convex polygon concept which enhances 177

segmentation accuracy, thanks to the presence of multiple ”arms” in the segmentation 178

shape. Additionally, the model utilizes a probability map to further refine the 179

segmentation, estimating the likelihood of each pixel belonging to the object. Finally, a 180

binary mask is generated that identifies the object pixels, and post-processing 181

parameters such as non-maximum suppression (NMS) settings can be adjusted by users, 182

including probability/score and overlap threshold. 183

Figure 2 presents a sample field of view (FOV) and the outcomes yielded by various 184

methodologies. Despite meticulous parameter tuning to optimize accuracy, none of 185
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these techniques exhibited promising results. In Figure 2(c), the classic watershed 186

plugin result is depicted, wherein the algorithm fails to effectively distinguish between 187

neighboring astrocyte cells. Subsequently, Figure 2(d) showcases the outcome of 188

employing the Stardist plugin. While this algorithm excels in segmenting circular cells, 189

it proves inadequate when confronted with more intricate cellular shapes, often failing 190

to encompass the entire cell as a coherent entity. Finally, in Figure 2(e), an analogous 191

behavior to the classic watershed is observed, with the method falling short in 192

identifying cell boundaries, resulting in the inaccurate segmentation of neighboring cells. 193

Fig 2. Comparison of various cell segmentation approaches on a representative FOV. a)
The original grayscale FOV. b) Application of auto local thresholding and subsequent
post-processing to eliminate small particles. c) Output of the classic watershed method.
d) Segmentation achieved with the Stardist approach. e) Result obtained using the
MorpholibJ algorithm.

Table 1 provides a comprehensive comparison of the performance metrics for Classic 194

Watershed, MorphoLibJ, and Stardist in terms of correctly segmented cell count and 195

neighboring cell count. 196

In the realm of correctly segmented cell count, the evaluation was centered around the 197

precision of boundary detection, emphasizing the accurate segmentation of cells within 198

each image and processes recognition. Classic Watershed and MorphoLibJ demonstrated 199

comparable results, exhibiting a higher count of correctly segmented cells compared to 200

Stardist. However, all three of the programs struggled with catching the majority of the 201

specific processes of the astrocytes, resulting in a low cell count percentage. 202

The other criteria tested was the neighboring cell count category, where the assessment 203
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focused on the precision of segmenting cells within specific astrocyte clusters. Stardist 204

outperformed Classic Watershed and MorphoLibJ by more than twofold in effectively 205

delineating individual astrocytes within clusters of cells. These results suggest that 206

Stardist excels at discerning intricate structures and nuances within closely associated 207

cell groups. 208

The findings underscore the strengths and weaknesses of each method, with Classic 209

Watershed and MorphoLibJ excelling in overall cell segmentation precision, while 210

Stardist stands out for its proficiency in segmenting individual astrocytes within 211

clusters. 212

Method Correctly Segmented Cell % Neighboring Cell %
Classic Watershed 12% 11%
MorphoLibJ 12% 22%
Stardist 6% 55%

Table 1. Comparison of Correctly Segmented Cell % and Neighboring Cell % for
Classic Watershed, MorphoLibJ, and Stardist

1.2 Final cell segmentation procedure 213

After processing the interference cell images for each cell culture dish at various time 214

points into final real height maps, they are loaded as image sequences in ImageJ. At 215

each time point, rectangles are drawn manually around the cells to determine their 216

bounding box. The ’measure’ tool located in the ’analyze’ section is used to measure 217

the position, height, and width of each rectangle. The resulting data is saved as CSV 218

files and loaded in MATLAB to crop the real height map images. The cropped images, 219

each containing one cell at a certain time point are then batch-processed using the 220

following code in ImageJ, to create masks: [language=Java, basicstyle=] run(”Auto Local 221

Threshold”, ”method=Median radius=50 parameter1 = 0parameter2 = 222

0white”); setOption(”BlackBackground”, true); run(”Erode”); run(”Dilate”); This code 223

applies the ”Auto Local Threshold” on images, using the ”Median” method with a 224

50-pixel radius. The process is followed by one round of Erosion to eliminate noise and 225

small particles, and one round of Dilation. When cells within the bounding box are 226

closely packed, the process of isolating the desired cell may lead to generating more 227

than one object in the mask. One solution is to import the masks into MATLAB for 228

further image processing. The ’regionprops’ function is used to identify the object with 229

the highest surface area, which corresponds to the main cell in the image. The other 230

objects are eliminated, resulting in a mask with only one object that corresponds to the 231

desired cell. Figure 3 displays two cells and their respective masks. Each cell has three 232

corresponding images: a grayscale image, a mask image created with ImageJ, and a 233

final processed image generated with MATLAB. 234

1.3 Background correction 235

To eliminate any background interference caused by uneven exposure, a mask generated 236

through ImageJ processing is utilized as a guide for calculating the average background 237

height. The mask includes all particles within the bounding box, and the remaining 238

part of the image represents the background. The calculated average is then subtracted 239

from the entire image, resulting in a background-corrected image shown in Figure 4. 240

Figures 4(a,b) display the resulting masks obtained from ImageJ and processed using 241

MATLAB, respectively. Figures 4(c,d) show the original cell image and the 242

background-corrected image, respectively, along with the height value of a point on the 243

background provided for reference in both images. 244
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Fig 3. Two example cells (a,b) and their respective masks. Each cell has three
corresponding images: (1) a grayscale image, (2) a mask image created with ImageJ,
and (3) a final processed image generated with MATLAB.

Fig 4. (a) The resulting masks obtained from ImageJ, (b) The mask processed using
MATLAB, (c) the original cell image d) the background-corrected image. The height
value of a point on the background is provided for reference in both images. The scale
bar is 20 microns.
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1.4 Feature extraction 245

Several morphological features are measured from the phase and height map images, 246

including dry mass (DM), dry mass surface density (DMSD), surface area (SA), surface 247

area to volume ratio (SAV), surface area to dry mass ratio (SADM), sphericity index, 248

Height variance (HV), Height kurtosis (HK), Height skewness (HS), eccentricity (Ecc), 249

volume divided by area (VoldivArea) and circularity (Cir). All features, except volume 250

divided by area and circularity, are based on the parameters described in [27]. A 251

detailed explanation of the features is described below: 252

• Dry Mass (DM): The dry mass of the cell is proportional to its height profile. 253

The relationship is determined by the refractive increment (α), which is typically 254

constant for the type of cell under investigation. This measurement is crucial in 255

biological research as it helps scientists understand the cellular composition and 256

relative proportions of different components. Dry mass is calculated using the 257

formula: 258

Dry mass =
1

α

∫
(H) (1)

where H is the height of the cell at each point. For astrocytes, α can be estimated 259

as 1.8× 10−4 m3 kg−1. 260

• Dry Mass Surface Density (DMSD): This is the dry mass per unit area. It’s 261

calculated as: 262

Dry Mass Surface Density =
Dry Mass

Cell Area
(2)

• Volume: The volume is calculated by integrating the height profile over the cell 263

area: 264

Volume =

∫
(H · dA) (3)

where dA is the differential area element. The volume of a cell provides insights 265

into its overall size and shape. It is a fundamental parameter for understanding 266

cell biology. 267

• Surface Area from Height Profile (SA): This is derived from the height 268

profile and provides information about the variation in the cell’s surface. 269

• Projected Area (PA): The cell’s projected area is calculated by counting the 270

number of pixels within the cell mask and multiplying it by the pixel size. This 271

provides the two-dimensional surface area. PA is used to assess the cell’s planar 272

size. 273

• Surface Area to Volume Ratio (SAV): This ratio is obtained by dividing the 274

surface area by the volume calculated earlier. The SAV ratio offers insight into 275

the relationship between the surface area of a cell and its internal content, as a 276

higher SAV may indicate a more extensive cell membrane relative to its volume. 277

• Surface Area to Dry Mass Ratio: Similar to the above, this ratio is found by 278

dividing the surface area by the dry mass and provides insight into the relationship 279

between the surface area of a cell and its internal content. The Surface Area to 280

Dry Mass Ratio reflects the distribution of dry mass across the cell’s surface area. 281

• Sphericity Index: The sphericity index measures how closely the cell 282

approximates a perfect sphere. It is calculated using the formula: 283

Sphericity = π1/2 (6H)2/3

Surface Area
(4)
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A perfect sphere has a sphericity value of 1. Sphericity is essential for 284

understanding cell shape and deviations from a spherical structure, as cells with a 285

higher sphericity index tend to be more spherical in shape. 286

• Height Variance (HV): Height Variance (HV) is a parameter that measures the 287

spread of height values within the cell. It provides insights into how varied the 288

heights of different regions within the cell are. HV can be calculated as the 289

variance of the height values over the cell area using the following formula: 290

HV =
1

n− 1

n∑
i=1

(Hi − µH)
2 (5)

Where: - HV is the Height Variance. - n is the number of data points (height 291

values). - Hi represents the individual height value. - µH is the mean of the height 292

values. Higher HV values indicate greater height variation within the cell, 293

potentially reflecting structural complexities or cellular processes. 294

• Height Kurtosis (HK): Height Kurtosis (HK) is a parameter that measures 295

whether the distribution of heights within the cell (height distribution) is more 296

peaked or flat compared to a normal distribution. It quantifies the shape of the 297

height distribution. HK can be calculated using the formula for kurtosis: 298

HK =
n∑

i=1

(
Hi − µH

σH

)4

(6)

Where: - HK is the Height Kurtosis. - n is the number of data points (height 299

values). - Hi represents the individual height value. - µH is the mean of the height 300

values. - σH is the standard deviation of the height values. Deviations from a 301

normal distribution can indicate irregularities in cell structure. 302

• Height Skewness (HS): Height Skewness (HS) is a parameter that quantifies 303

the asymmetry of the height distribution within the cell. It describes whether the 304

distribution is skewed to the left or right. HS can be calculated using the formula 305

for skewness: 306

HS =
n∑

i=1

(
Hi − µH

σH

)3

(7)

Where: - n is the number of data points (height values). - Hi represents the 307

individual height value. - µH is the mean of the height values. - σH is the standard 308

deviation of the height values. Changes in HS may suggest structural alterations. 309

• Cell Eccentricity: Eccentricity quantifies how much the cell’s shape deviates 310

from a perfect circle. It is determined by finding the maximum and minimum 311

radii (rmax and rmin) of the cell’s boundary and applying the formula: 312

Eccentricity =
rmax − rmin

rmax + rmin
(8)

Deviations from a circular shape can provide information about cellular processes 313

or structural changes. 314

• Projected Area to Volume Ratio (PAV): This ratio quantifies cell flatness. 315

It is calculated by dividing the projected area (2D area) by the volume of the cell 316

(3D measurement). This allows researchers to assess whether cells are more planar 317

or three-dimensional in shape. 318
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• Circularity: Determined using the circularity feature in MATLAB’s ’regionprops’ 319

function. It evaluates the similarity of the cell’s shape to that of a perfect circle. 320

This measure ranges from 0 to 1, with 1 representing a perfect circle. Higher 321

circularity values indicate a closer resemblance to a circular shape. Deviations 322

from circularity can suggest alterations in cell structure. 323

• Perimeter (Perim) Perimeter (perim) is a feature that represents the total 324

length of the outer boundary of a cell. It provides information about the cell’s 325

extent and boundary complexity. Changes in the perimeter may indicate 326

variations in cell size or irregularities in cell shape. 327

• Perimeter-to-Area Ratio (PerimDivArea) PerimDivArea is a feature 328

calculated by dividing the perimeter of a cell by its area. This ratio offers insight 329

into the cell’s boundary irregularity relative to its overall size. Higher values may 330

suggest a more complex and convoluted cell boundary compared to its size. 331

• Complexity Score: Computed as the ratio of the difference between the area of 332

the cell’s convex hull and the cell area to the cell area itself. A lower score 333

signifies a smoother and less intricate cell shape. 334

These features collectively contribute to our understanding of cell biology, enabling 335

researchers to assess the effects of various conditions, treatments, or genetic 336

manipulations on cellular structure and function. 337

Table 2 shows the corresponding feature values for each image along with a grayscale 338

image of a cell at two different time points and their corresponding final masks, 339

represented in Figure 5. 340

Fig 5. (a,b) Two grayscale images of a cell in two different time points: before LIS and
2 hours after LIS. (1,2) The corresponding final masks.
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Parameter 2 hours after LIS Before LIS
circ 0.44407 0.21979
volume 2061.7792 µm3 1779.61 µm3

PA 508.4975 µm2 802.13 µm2

drymass 11.4543 p gr 9.8867 p gr
SA 14729.0367 µm2 19845.6655 µm2

SAV 7.1438 1/µm 11.1517 1/µm
SDM 1285.8926 µm2 pgr 2007.3048 µm2 pgr
PAV 0.24663 1/µm 0.45073 1/µm
Sphericity 0.00083486 µm1/3 0.00041451 µm1/3

HV 9.8839 µm2 1.7837 µm2

KT 65.4439 1/µm4 3895.9334 1/µm4

SK 32.9157 1/µm3 370.8449 1/µm3

Ecc 0.26292 0.44856
perim 361.4214 µm 643.1615 µm
perimdivarea 0.71076 1/µm 0.80182 1/µm
complexityscore 0.19663 0.42817

Table 2. Comparison of Features for Cell Shown in Figure 5, Before and 2 Hours After
LIS

2 Experiments with the QPM’s current setup 341

2.1 Experiments protocol 342

2.1.1 AST Cell Preparation 343

An established astrocyte type-I (Ast-1) line (clone CRL-2541) was received directly 344

from ATCC. Ast-1 cells were cultured in advanced DMEM media supplemented with 345

2% FBS, 1% glutamax, and 0.2% gentamicin/amphotericin B. Ast-1 cells were plated 346

onto glass-bottom 35mm imaging dishes. Alternatively, imaging dishes were coated by 347

incubating them for 1 hour in a 1:60 dilution of matrigel:DMEM to promote cell 348

adhesion. 349

2.1.2 Control group 350

Astrocyte cells were maintained and observed within a temperature-controlled chamber 351

designed specifically for the Quantitative Phase Microscope setup. The chamber’s 352

environmental conditions, including the composition of the air, were precisely controlled 353

using an Ibidi gas mixer, which ensured a stable and controlled atmosphere. The key 354

parameters that were regulated included the humidity level, which was maintained at a 355

constant 80 percent, and the carbon dioxide (CO2) concentration, which was set at 5%. 356

These controlled conditions were essential to replicate the natural environment of these 357

cells and minimize possible stress or alterations in their behavior. 358

During the observation period, the astrocyte cells were subjected to a time-lapse 359

imaging protocol. Every 20 minutes, the cells were imaged and this process continued 360

for a total duration of two hours. We ensured that there was no interference or 361

disruption to the cells’ normal activity or behavior. This stringent approach allowed us 362

to capture and analyze the astrocyte cells’ activities and interactions in their 363

near-native state, providing valuable insights into their functions and responses under 364

controlled conditions. In total, 84 cells from 4 separate dishes underwent analysis and 365

subsequent processing for cell segmentation and feature extraction. 366
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2.1.3 Laser-induced shockwave group 367

The astrocyte cells were kept under similar conditions as the control group, except for 368

being exposed to a laser-induced shockwave. This experiment involved a continuous 369

imaging process, which started 20 minutes before the shockwave and lasted for 2 hours 370

afterwards. The resulting quantitative phase images were analyzed to detect and 371

measure various aspects of cell morphology. 372

To evaluate the effect of the shockwave on the cells, we focused on their morphology 373

before and 10 minutes, and 2 hours after the shockwave. By doing so, we could identify 374

any rapid or gradual changes or responses induced by the shockwave. This approach 375

allowed us to gain a deeper understanding of how cells react and adapt to sudden 376

environmental changes under these unique experimental conditions. A total of 204 cells 377

collected from four dishes were subjected to analysis. 378

2.2 Image processing 379

For cell selection, both the cells that survived the shockwave and the cells fully within 380

the field of view (FOV) were manually chosen using ImageJ. The detection of black and 381

white masks for each individual cell was achieved by applying local thresholding with 382

the median method in ImageJ. These masks were then imported into MATLAB for 383

further image processing. The remaining image processing tasks were performed using 384

MATLAB. 385

The cells were categorized based on their distance from the center of the shockwave, 386

specifically into two groups: those located within 300 microns and those located beyond 387

300 microns. 388

Different morphological characteristics were examined for each group, including flatness, 389

roundness, volume, volume divided by area, and circularity. The volume of a cell is 390

determined by summing the thickness values. This measure provides information about 391

the overall size and three-dimensional structure of the cell, which can be valuable in 392

understanding cellular morphology and changes resulting from the shockwave impact. 393

The area is calculated by counting the number of pixels within the cell mask and 394

multiplying it by the pixel size. This provides a quantitative measurement of the cell’s 395

two-dimensional surface area. It helps assess the cell’s coverage and can be used in 396

conjunction with other features to analyze cell shape and compactness. Roundness is 397

defined as 4 times pi multiplied by the ratio of the volume to the square of the surface 398

area. This measure describes the degree to which the cell approximates a perfect sphere. 399

It provides insights into the cell’s overall shape and can be useful in characterizing 400

changes in cell morphology induced by the shockwave. Flatness is calculated by dividing 401

the maximum Feret diameter (the longest distance between any two points on the cell’s 402

boundary) by the minimum Feret diameter (the shortest distance between any two 403

points on the cell’s boundary). This measurement quantifies the degree of elongation or 404

flattening of the cell. It helps assess the cell’s shape and can indicate deformations 405

caused by the shockwave. Circularity is determined using the circularity feature in 406

MATLAB’s regionprops function. It evaluates the similarity of the cell’s shape to that 407

of a perfect circle. This measure ranges from 0 to 1, with 1 representing a perfect circle. 408

Circular cells will have higher circularity values, while irregularly shaped cells will have 409

lower values. It helps assess the cell’s symmetry and can indicate any distortion or 410

alteration resulting from the shockwave impact. 411

3 Statistical analysis 412

The statistical tests conducted to assess the changes in astrocyte cell parameters within 413

the control and LIS group were performed through MATLAB, using the Wilcoxon 414
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signed-rank test, a non-parametric test suitable for paired data. Since the 415

measurements were obtained from the same set of cells during the imaging period, the 416

data are inherently dependent on each other. The Wilcoxon signed-rank test is 417

well-suited for such paired comparisons, providing a robust analysis that does not 418

assume a normal distribution of the data. This method accounts for the paired nature 419

of the observations, making it appropriate for detecting subtle changes in the astrocyte 420

cell parameters over time. 421

The Mann-Kendall Tau-b test [28] was also performed for data trend analysis. This is a 422

non-parametric statistical method employed for the detection of monotonic trends in 423

time series data. It specifically assesses the presence of an upward or downward trend 424

over time without assuming any underlying distribution of the data. The Taub statistic 425

represents the magnitude of the trend, and the p-value indicates the statistical 426

significance of that trend. 427

3.1 Control group 428

In the control group, astrocyte cells were subjected to two hours of imaging, and the 429

average value for each feature for the total of 125 cells, is summarized in Table 3. 430

Various parameters were measured to assess any potential changes during this imaging 431

period. 432

After two hours of imaging, a comparison of feature values was conducted, as presented 433

in Table 4. The test statistics, p-values, and the determination of significant differences 434

were reported for each feature. Despite this analysis, no statistically significant changes 435

were observed in any of the features within the control group. The lack of statistical 436

significance suggests that the astrocyte cells’ morphology and characteristics remained 437

stable during the experimental timeframe. 438

In conclusion, the data from the control group indicate that, no significant changes 439

occurred in the astrocyte cells after two hours of imaging. This stability in cellular 440

features provides a baseline for comparison with experimental groups, allowing for a 441

more accurate assessment of any observed effects or changes due to LIS. 442

Parameters Average Value (n=84)

Circularity 0.24813
Volume 3054.7392 µm3

Projected Area 1125.4119 µm2

Dry Mass 16.9708 p gr
Surface Area 29107.4126 µm2

Surface Area to Volume Ratio 9.6821 1/µm
Surface Area to Dry Mass Ratio 1742.7744 p gr/µm2

Projected Area to Volume Ratio 0.37841 1/µm
Sphericity 0.00024686 µm1/3

Height Variance 4.4972 µm2

Height Kurtosis 4375.1226 1/µm4

Height Skewness 879.4492 1/µm3

Eccentricity 0.28863
Perimeter 833.5168 µm
Perimeter to Area Ratio 0.74369 1/µm
Complexity Score 0.38273

Table 3. AST1 Cells Various Features Average Values
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Parameters P-Value Sig. Mean Diff.

Circularity 0.71459 No 0.0066564
Volume 0.87245 No -5.8727 µm3

Projected Area 0.71959 No -1.9396 µm2

Dry Mass 0.87245 No -0.032626 p gr
Surface Area 0.92538 No 316.3684 µm2

Surface Area to Volume Ratio 0.56207 No 0.49498 1/µm
Surface Area to Dry Mass Ratio 0.56207 No 89.0972 µm2/p gr
Projected Area to Volume Ratio 0.78559 No 0.017124 1/µm
Sphericity 0.96087 No 3.8919e-07 µm1/3

Height Variance 0.057451 No 0.4453 µm2

Height Kurtosis 0.43512 No 572.6861 1/µm4

Height Skewness 0.9183 No -164.8099 1/µm3

Eccentricity 0.2167 No -0.015709
Perimeter 0.99644 No -10.0189 µm
Perimeter to Area Ratio 0.23904 No -0.01669 1/µm
Complexity Score 0.10076 No -0.017269

Table 4. Significance Test Results for the Control Group in 2 Hours

4 Laser-Induced Shockwaves (LIS) group 443

The investigation of astrocyte responses to laser-induced shockwaves (LIS) has revealed 444

profound morphological alterations, providing intricate insights into the dynamic cellular 445

adaptations. Analyzing various morphological features immediately after LIS and 2 446

hours post-LIS has elucidated the immediate responses and the persistence of changes, 447

offering a comprehensive understanding of astrocytic behavior under mechanical stress. 448

The morphological changes observed in astrocytes following LIS reveal immediate 449

adaptive responses and persistent alterations. The cells exhibit a rapid transition to a 450

more circular shape, as evidenced by increased circularity. Simultaneously, an increase 451

in volume and changes in surface characteristics, including surface area (SA) and 452

surface area to volume ratio (SAV), signify dynamic adaptations aimed at withstanding 453

the mechanical stress induced by LIS. 454

Height characteristics, such as height variance and non-uniformity, suggest rapid 455

cytoskeletal rearrangements and structural adaptations. Furthermore, alterations in 456

sphericity indicate a shift towards a more spherical cell shape, potentially enhancing cell 457

stability. 458

A 2-hour post-LIS analysis reveals sustained changes in surface area related parameters, 459

volume, and height characteristics, indicating ongoing cellular adjustments. The 460

persistence of these alterations suggests a prolonged cellular response, possibly involving 461

regulatory processes aimed at restoring homeostasis Table 6. 462

In Table 7, the statistical parameters provide a detailed insight into the morphological 463

changes in astrocytes 1 minute before Laser-Induced Shockwave (LIS) compared to 2 464

hours after LIS. Notably, several features exhibit significant alterations during this time 465

frame, shedding light on the dynamic responses of astrocytes to the mechanical 466

perturbation induced by the shockwave. 467

Among the noteworthy changes, the circularity of astrocytes increases significantly 468

(p-value = 0.0001094), indicating a shift toward a more rounded cell shape. 469

Concurrently, there is a considerable decrease in both cell volume (p-value = 0.034178) 470

and dry mass (p-value = 0.034178), suggesting potential cellular contraction or changes 471

in density. The increase in sphericity (p-value = 0.024559) further supports a trend 472

toward a more spherical cellular morphology, indicative of a response to mechanical 473
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stress or injury. 474

Examining the outer characteristics of the astrocytes, both perimeter (p-value = 475

0.001608) and perimeter-to-area ratio (p-value = 0.0019983) significantly decrease. This 476

reduction implies a more compact cell structure or altered cell-cell interactions. 477

Additionally, the increase in kurtosis (p-value = 0.011555) suggests changes in the 478

height distribution within the cell, indicating potential alterations in cellular structure 479

or response to the shockwave. 480

The observed morphological adaptations may be integral to the cellular response 481

mechanism, influencing cellular mechanics, cell-cell interactions, and potentially 482

contributing to the overall functionality of astrocytes. Understanding these changes is 483

crucial for deciphering the nuanced ways in which astrocytes respond to mechanical 484

stress, and it opens avenues for further investigations into the underlying cellular 485

processes driving these morphological alterations. The Mann-Kendall Tau-b test results 486

(Table 9) underscore the presence of significant trends in various morphological features, 487

consolidating the robustness of the observed changes. Key variables, such as volume and 488

surface area features, and height variance, manifest noteworthy trends, emphasizing the 489

biological significance of these alterations. Figure 6 represents the average values of 490

surface area, surface area to volume ratio, volume, and projected area to volume ratio at 491

different time points, measured in minutes after LIS. The fitted line in the figure was 492

obtained using the fitlm function in MATLAB to fit a linear regression model. Upon 493

analyzing Figure 6 and Table 9, we can observe a significant increase in surface area and 494

surface area divided by volume. This peculiar trend may indicate a cellular response 495

aimed at enhancing chemical interactions with the surrounding environment. 496

Additionally, it is noticeable that the projected area and projected area to volume ratio 497

are also showing a significant increase over time, suggesting that the cells are getting 498

flatter in response to LIS. These dynamics highlight the complexity of the cellular 499

response to LIS, emphasizing the need for further investigation into the underlying 500

biological mechanisms driving these morphological changes. 501

The observed morphological changes in astrocytes in response to LIS hold profound 502

biological significance. The shift towards a more circular cell shape, reduced volume, 503

and alterations in surface characteristics may indicate an orchestrated effort to enhance 504

cell stability and mitigate the impact of mechanical stress. The simultaneous changes in 505

height characteristics, such as increased variance and non-uniformity, suggest dynamic 506

cytoskeletal rearrangements and structural adaptations to the shockwave. 507

Furthermore, the persistence of these morphological adaptations over time underscores 508

the resilience and regulatory capacity of astrocytes. The maintained alterations in 509

sphericity, eccentricity, and boundary features may reflect the ongoing role of astrocytes 510

in responding to and mitigating mechanical perturbations, emphasizing their dynamic 511

nature and ability to adapt to external stimuli. 512

Table 8 provides insights into the significant changes in cellular morphological features 513

at various time points following LIS, compared to the state 1 minute before LIS. The 514

highlighted cells (in red) indicate significant alterations in the respective features. The 515

consistent significance in circularity and sphericity throughout the observed time points 516

suggests a sustained change in cell circularity, indicating potential alterations in cell 517

shape stability and dynamics. Features associated with the ratio of area to volume of 518

the cells like SAV and PAV, or height distributions, such as variance, kurtosis, and 519

skewness, exhibit significant changes post-LIS. However, after the 100 to 120-minute 520

mark, no further significant changes are observed when compared to the pre-LIS 521

measurements. This observation underscores the plasticity of the cells; despite 522

undergoing substantial morphological changes and stress, they demonstrate recovery. 523

However, the sustained significance in certain features underscores their potential role in 524

cellular adaptation and functional implications during and after LIS-induced stress. 525
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In summary, the expanded analysis of astrocyte responses to LIS reveals a multifaceted 526

and dynamic cellular adaptation to mechanical stress. The initial acute responses are 527

followed by sustained alterations, suggesting a complex interplay of protective 528

mechanisms and cellular remodeling. The interconnectedness of morphological features, 529

temporal dynamics, and functional implications underscore the intricate nature of 530

astrocyte responses and pave the way for further exploration into the molecular 531

mechanisms governing these adaptations. This expanded interpretation enhances our 532

understanding of astrocyte biology in the context of mechanical perturbations and lays 533

the groundwork for future investigations into the broader implications for central 534

nervous system dynamics. 535

Parameters P-Value Sig. Mean Diff.

Circularity 0.00056679 Yes 0.029897
Volume 1.51E-08 Yes -352.0049 µm3

Projected Area 1.27E-10 Yes -167.5746 µm2

Dry Mass 1.51E-08 Yes 1.9556 p gr
Surface Area 2.62E-10 Yes -3708.6028 µm2

Surface Area to Volume Ratio 9.60E-17 Yes -2.0859 1/µm
Surface Area to Dry Mass Ratio 9.60E-17 Yes -375.4581 µm2/p gr
Projected Area to Volume Ratio 2.20E-29 Yes -0.088707 1/µm
Sphericity 4.83E-23 Yes 0.00019486 µm1/3

Height Variance 8.99E-26 Yes 2.1892 µm2

Height Kurtosis 3.47E-23 Yes -3588.9706 1/µm4

Height Skewness 5.91E-07 Yes -580.7853 1/µm3

Eccentricity 0.050085 No 0.0094032
Perimeter 3.87E-07 Yes -128.5676 µm
Perimeter to Area Ratio 0.23904 No -0.01669 1/µm
Complexity Score 0.10076 No -0.014833

Table 5. Statistical Parameters for the cells 1 Min Before LIS Vs. 10 Min After LIS

Parameters P-Value Sig. Mean Diff

Circularity 0.41917 No 0.010624
Volume 5.80E-12 Yes -398.7118 µm3

Projected Area 6.72E-05 Yes 114.8401 µm2

Dry Mass 5.80E-12 Yes -2.2151 p gr
Surface Area 6.97E-07 Yes 2445.7871 µm2

Surface Area to Volume Ratio 5.61E-21 Yes 2.8767 1/µm
Surface Area to Dry Mass Ratio 5.61E-21 Yes 517.8092 µm2/p gr
Area to Volume Ratio 1.52E-25 Yes 0.092696 1/µm
Sphericity 2.35E-21 Yes -0.00016332 µm1/3

Height Variance 2.18E-17 Yes -1.9532 µm2

Height Kurtosis 8.76E-18 Yes 7017.1477 1/µm4

Height Skewness 0.001124 Yes 538.0122 1/µm3

Eccentricity 0.035607 Yes -0.015711
Perimeter 0.074821 No 47.807 µm
Perimeter to Area Ratio 5.31E-05 Yes -0.035515 1/µm
Complexity Score 0.0015005 Yes -0.032056

Table 6. Statistical parameters for the cells 10 min after LIS Vs. 2 Hr after LIS
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Parameters P-Value Sig. Mean Diff

Circularity 0.0001094 Yes 0.040521
Volume 0.034178 Yes -46.707 µm3

Projected Area 0.082363 No -52.7344 µm2

Dry Mass 0.034178 Yes -0.25948 p gr
Surface Area 0.0026958 Yes -1262.8157 µm2

Surface Area to Volume Ratio 0.21533 No 0.79084 1/µm
Surface Area to Dry Mass Ratio 0.21533 No 142.3511 µm2/p gr
Area to Volume Ratio 0.33316 No 0.0039881 1/µm
Sphericity 0.024559 Yes 3.1541e-05 µm1/3

Height Variance 0.057276 No 0.23605 µm2

Height Kurtosis 0.011555 Yes 3428.1771 1/µm4

Height Skewness 0.85525 No -42.7731 1/µm3

Eccentricity 0.59318 No -0.0063078
Perimeter 0.001608 Yes -80.7606 µm
Perimeter to Area Ratio 0.0019983 Yes -0.028057 1/µm
Complexity Score 1.86E-06 Yes -0.046889

Table 7. Statistical Parameters for the cells 1 Min Before LIS Vs. 2 Hr After LIS

Parameters/Time after LIS 1” 10” 20” 40” 60” 80” 100” 120”

Circularity 1 1 1 1 1 1 1 1
Volume 0 1 1 1 0 0 1 1
Projected Area 1 1 1 1 1 1 1 0
Dry Mass 0 1 1 1 0 0 1 1
Surface Area 1 1 1 1 1 1 1 1
Surface Area to Volume Ratio 1 1 1 1 1 1 0 0
Surface Area to Dry Mass Ratio 1 1 1 1 1 1 0 0
Area to Volume Ratio 1 1 1 1 1 1 0 0
Sphericity 1 1 1 1 1 1 1 1
Height Variance 1 1 1 1 1 1 0 0
Height Kurtosis 1 1 1 1 1 0 0 1
Height Skewness 1 1 1 1 1 1 1 0
Eccentricity 0 0 0 0 0 0 0 0
Perimeter 1 1 1 1 1 1 1 1
Perimeter to Area Ratio 0 0 0 0 0 1 1 1
Complexity Score 0 0 0 1 1 1 1 1

Table 8. Significance table of changes for each feature at various time points (in
minutes) compared to 1 min before LIS
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Parameters Tau-b P-Value Trend

Circularity 0.3333 0.4524 No significant trend detected
Volume -1 0.0085 Significant trend detected
Projected Area 1 0.0085 Significant trend detected
Dry Mass -1 0.0085 Significant trend detected
Surface Area 1 0.0085 Significant trend detected
Surface Area to Volume Ratio 1 0.0085 Significant trend detected
Surface Area to Dry Mass Ratio 1 0.0085 Significant trend detected
Area to Volume Ratio 1 0.0085 Significant trend detected
Sphericity -1 0.0085 Significant trend detected
Height Variance -1 0.0085 Significant trend detected
Height Kurtosis 1 0.0085 Significant trend detected
Height Skewness 0.4667 0.2597 No significant trend detected
Eccentricity -0.4667 0.2597 No significant trend detected
Perimeter 0.6 0.1329 No significant trend detected
Perimeter to Area Ratio -0.7333 0.0603 No significant trend detected
Complexity Score -0.8667 0.0242 Significant trend detected

Table 9. Mann-Kendall Tau-b Test Results. This test shows whether there is
significant trend for a feature over the period of 20 minutes to 2 hours after LIS.

Fig 6. Time Trend Analysis for the mean value of various features. The time points
show the time after LIS in minutes.
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5 Discussion 536

The ability to extract features such as cell area, dry mass, and volume from quantitative 537

phase images is crucial in cell biology [29]. These features offer quantitative and 538

reproducible metrics for understanding various cellular characteristics, opening doors to 539

a plethora of applications. The analysis of these features can serve as the foundation for 540

comprehending cellular injuries, cell behavior, cell cycle progression, and responses to 541

external stimuli or drugs. 542

These methods are highly relevant and useful in the study of various diseases like 543

Traumatic Brain Injury (TBI), Huntington’s disease, and other neurodegenerative 544

disorders. These methods help researchers extract precise cellular features, which in 545

turn enable them to gain critical insights. For example, in the case of TBI, these 546

techniques assist in assessing the extent of axonal injury, measuring the morphological 547

changes in neurons and astrocytes, and keeping track of repair processes. Similarly, in 548

the case of Huntington’s disease, which is characterized by protein aggregations within 549

neurons, these methods help quantify changes in neuronal morphology caused by these 550

aggregations. [29]. 551

While the methods discussed in this chapter are highly effective for many aspects of cell 552

biology research, there are challenges in the context of cell segmentation, particularly 553

when dealing with astrocytes. Astrocytes play a vital role in the central nervous system 554

and exhibit dynamic morphological changes in response to various stimuli [30]. 555

Accurate quantification of astrocyte reactivity necessitates precise cell segmentation and 556

the identification of features distinguishing reactive from non-reactive cells. Astrocyte 557

cell segmentation presents two significant challenges. The first is creating a mask that 558

distinctly separates cell borders, and the second is defining the borders of cell clusters. 559

To address these challenges, we adjusted parameters, including thresholding parameters 560

in ImageJ. While results were generally acceptable for most cells, there is room for 561

improvement. For instance, in Figure 3, the final mask for cell ’a’ accurately delineates 562

cell borders, but for cell ’b’, the neighboring cell on the bottom right remains unmasked. 563

Additionally, the developed algorithm necessitates manual outlining of cell bounding 564

boxes, which enhances accuracy but is time-consuming. A combination of thresholding 565

the entire image using ImageJ, followed by a watershed algorithm and particle detection 566

with ’regionprops’ in MATLAB, was employed to automate bounding box outlining. 567

However, the watershed algorithm often led to poor border masking of astrocytes. 568

Regarding feature extraction, our results show promise in extracting various features 569

from cells. For example, comparing the cell before a shockwave (Figure 5(a)) with the 570

cell two hours after the shockwave (Figure 5(b)), as presented in Table 2, reveals 571

changes in eccentricity and circularity, indicative of elongation. However, astrocyte 572

reactivity is more complex, requiring the development of features capable of capturing 573

intricate morphological changes. 574

A potential future step involves the development of features that account for the 575

quantity of astrocyte processes, such as fractal analysis. Fractal analysis quantifies the 576

self-similarity and complexity of structures. Applying this technique to astrocyte cell 577

morphology may offer valuable insights into their reactivity. The fractal dimension and 578

other fractal parameters can measure the intricacy of astrocyte processes and detect 579

reactivity by observing changes in these features over time. This approach transcends 580

basic shape and size measurements, providing a more detailed and dynamic view of 581

astrocyte behavior. 582

Deep learning and machine learning techniques have shown promise in addressing cell 583

detection and feature extraction challenges [31,32]. These methods have the advantage 584

of being able to adapt to data patterns, reducing the need for complex handcrafted 585

algorithms [31]. However, there are several hurdles associated with these techniques. 586

One major challenge is the requirement for extensive and diverse training data. Deep 587
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learning models rely on large amounts of labeled data to learn and generalize effectively. 588

Obtaining such datasets can be time-consuming and resource-intensive. Another 589

challenge is the fine-tuning of model parameters and architecture. Finding the optimal 590

configuration for a deep learning model can be a complex and iterative process. It often 591

requires experimentation and computational resources to train and evaluate different 592

models. Interpretability is also a concern when using deep learning techniques. These 593

models often function as black boxes, making it difficult to understand the reasoning 594

behind their decisions. This lack of interpretability can be problematic, especially in 595

critical applications where explanations are necessary. Furthermore, deep learning 596

methods are not one-size-fits-all and may require customization for specific tasks and 597

datasets. Different cell detection and feature extraction tasks may have unique 598

requirements and characteristics that need to be considered when designing and training 599

deep learning models [31]. 600

Despite these challenges, deep learning and machine learning techniques have shown 601

promising results in various domains, including computational biology and medical 602

imaging [31,32]. With further advancements and experience, it is expected that these 603

techniques will continue to evolve and become more accessible for addressing cell biology 604

challenges. 605

This study aims to explore the morphological changes occurring in astrocyte cells in 606

response to laser-induced shockwaves, providing valuable insights into the dynamics of 607

cellular responses to mechanical stimuli. The motivation behind this research lies in 608

comprehending the microscopic consequences of traumatic events, particularly traumatic 609

brain injury (TBI), at the cellular level. Focusing on astrocytes, the most abundant cells 610

in the central nervous system, we simulate TBI conditions in vitro by subjecting cells to 611

controlled shear stress through laser-induced shockwaves. For accurate measurement of 612

morphological alterations, we utilize quantitative phase microscopy (QPM). Our specific 613

interest in astrocyte cells stems from their propensity to undergo astrogliosis, a 614

triggered response to injury, with previous studies establishing morphological changes 615

associated with this process. This research framework provides a coherent exploration of 616

how astrocyte cells adapt morphologically to mechanical stress, shedding light on 617

potential implications for understanding cellular responses to traumatic brain injuries. 618

The experimental setup, involving a control group and a laser-induced shockwave group, 619

ensures a systematic exploration of the effects of shockwaves on astrocyte morphology. 620

For the control group, environmental conditions, such as humidity and CO2 levels, were 621

controlled in order to minimize external factors that could influence cell behavior. 622

Image processing techniques, including phase unwrapping and cell segmentation, and 623

feature extraction contribute to the precision of data analysis. Utilizing the QPM 624

images of astrocyte cells comprehensive characteristics of astrocytes were measured, 625

including an average height profile and average of parameters, such as dry mass, volume, 626

and circularity, provide a comprehensive view of astrocyte morphology. 627

The experiments’ protocol, including the control and laser-induced shockwave groups, 628

ensures a systematic and controlled approach to studying astrocyte responses. The use 629

of time-lapse imaging and careful monitoring of environmental conditions enhances the 630

reliability of the data. The results from the control group indicate stability in astrocyte 631

morphology over the two-hour imaging period. This provides a crucial baseline for 632

comparing with the laser-induced shockwave group, where dynamic and sustained 633

changes are observed. 634

The investigation into astrocyte responses to laser-induced shockwaves (LIS) uncovers
immediate and sustained morphological changes, providing insights into dynamic
cellular adaptations. Following LIS, astrocytes rapidly transition to a more circular
shape, accompanied by changes in volume, surface characteristics, and height features.
A 2-hour post-LIS analysis reveals persistent alterations, suggesting ongoing cellular
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adjustments and regulatory processes. Statistical analysis highlights significant changes
in circularity, volume, surface area, and other features, emphasizing dynamic responses
to mechanical perturbation. Mann-Kendall Tau-b test results confirm the robustness of
observed trends. Surface area dynamics suggest a cellular response to enhance chemical
interactions, while increased projected area and area-to-volume ratio indicate flattening
in response to LIS. Overall, these morphological changes signify astrocytes’ multifaceted
and adaptive nature, enhancing our understanding of their responses to mechanical
stress and paving the way for further exploration into molecular mechanisms and
broader implications for the central nervous system. Biologically, these findings indicate
a remarkable plasticity in astrocytes, actively adapting to mechanical stressors. The
sustained changes in various features suggest intricate molecular and cellular
mechanisms at play. Further investigations into mechanotransduction pathways are
crucial to unravel the underlying processes driving these observed adaptations.

Conclusion

In conclusion, the methods discussed in this paper empower researchers with powerful
tools to extract valuable features from quantitative phase images, enhancing our
understanding of cellular behavior. Moreover, for astrocyte cells and similar cases where
reactivity plays a crucial role, exploring novel features can open new avenues for
quantifying complex cellular responses. Laser-induced shockwaves induce dynamic and
lasting morphological changes in astrocytes, shedding light on the intricate cellular
responses to mechanical stimuli.
Overall, the scientific rigor, systematic approach, and thorough analysis presented
contribute to the advancement of knowledge in the field of astrocyte biology and cellular
responses to mechanical stimuli. The findings have implications for traumatic brain
injuries and provide a foundation for future research in this critical area of neuroscience.
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