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Abstract

Although “water‐in‐salt” electrolytes have opened a new pathway to expand the 

electrochemical stability window of aqueous electrolytes, the electrode instability and 

irreversible proton co-insertion caused by aqueous media still hinder the practical application, 

even when using exotic fluorinated salts. In this study, an accessible hybrid electrolyte class 

based on common sodium salts is proposed, and crucially an ethanol-rich media is introduced 

to achieve highly stable Na-ion electrochemistry. Here, ethanol exerts a strong hydrogen-

bonding effect on water, simultaneously expanding the electrochemical stability window of the 

hybridized electrolyte to 2.5 V, restricting degradation activities, reducing transition metal 

dissolution from the cathode material and improving electrolyte-electrode wettability. The 

binary ethanol-water solvent enables the impressive cycling of sodium-ion batteries based on 

perchlorate, chloride, and acetate electrolyte salts. Notably, a Na0.44MnO2 electrode exhibits 

both high capacity (81 mAh g-1) and remarkable long cycle life >1000 cycles at 100 mA g-1 (a 

capacity decay rate per cycle of 0.024%) in a 1 M sodium acetate system. The Na0.44MnO2/Zn 

full cells also show excellent cycling stability and rate capability in a wide temperature range. 

The gained understanding of the hydrogen-bonding interactions in the hybridized electrolyte 

can provide new battery chemistry guidelines in designing promising candidates for developing 

low cost and long lifespan batteries based on other (Li+, K+, Zn2+, Mg2+, and Al3+) systems.

Keywords: hybrid, hydrogen-bonding, rechargeable sodium-ion batteries, Na0.44MnO2, 

electrolyte
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Introduction

Towards a green and sustainable large-scale scale stationary energy storage systems (ESSs), 

aqueous rechargeable sodium-ion batteries (ARSIBs) is considered as one of the promising 

candidates due to safer battery electrolytes and the abundance of low-cost sodium resources.1-

4 However, ARSIBs are prone to suffer from inferior cycling stability, owing to the parasitic 

side reactions associated with the aqueous electrolyte system, such as limited operating voltage 

window (~1.23V) induced by the H2/O2 evolution reactions, dissolution of electrode materials 

and water protons co-insertion into the host electrode, all of which have hampered their 

practical applications.1-2, 4

Recently, a new class of electrolytes, namely “water-in-salt” electrolytes, constituted from 

high-concentration salts, have been explored.5-8 For instance, an electrolyte such as NaCF3SO3 

(9.26 mol kg-1, 9.26 m), can expand the operational voltage window from 1.23 to 2.50 V and 

suppress hydrogen evolution through the formation of solid-electrolyte interphase (SEI) on the 

anode, thereby granting access to high-energy Na-ion batteries. An aqueous Na-ion full battery 

by using Na0.66[Mn0.66Ti0.34]O2 as the cathode, NaTi2(PO4)3 as the anode and 9.26 m NaCF3SO3 

as the electrolyte, can achieve a superior long-term cycle life of >1200 cycles at 1C.5 However, 

the cell still suffered an obvious capacity fading in the initial few cycles with a low capacity of 

~20 mAh g-1 after 100 cycles. Even in 9.2 m saturated NaCF3SO3 electrolyte, the molar ratio 

of water to sodium-ions (6.5) remains high, because of the relatively low solubility of sodium 

salts with fluorinated anions. Hence, there is still a relatively large amount of free water in the 

electrolyte, which may lead to electrode instability. In addition, the high cost of these “water-

in-salt” electrolytes (Table S1) has inevitably hindered their practical applications. 

It is well known that each water molecule consists of one heavier oxygen atom and two 

lighter hydrogen atoms. In liquid water, the hydrogen atoms in a molecule are attracted to the 

oxygen atoms from neighboring water molecules and form hydrogen bonds. The hydrogen 
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bonds between water molecules are constantly breaking and reforming on picosecond time 

scales.9 Since hydrogen-bonding plays an essential role in the physical, chemical, and structural 

properties of liquid water, selectively and significantly strengthen the hydrogen-bonding 

strength of water by introducing a polar protic solvent could be an alternative low-cost 

approach to suppress water activity. Ethanol (dielectric constant ε = 25.10, dipole moment 

1.70) as a polar protic solvent, is fully miscible with water (dielectric constant ε = 80.10, dipole 

moment 1.84).10-11 By hybridizing ethanol with water solvents, there will be a structure 

rearrangement through the breaking of the water hydrogen-bonding network and forming a 

new type of hydrogen bond organization.12-14 This would decrease the interfacial tension of 

ethanol-water cosolvent, which is favorable for better electrode/electrolyte contact. In addition, 

the low freezing point (-114 °C) of ethanol could potentially expand the hybrid electrolyte 

working temperature range.15

Herein, we report a new type of hybrid electrolyte prepared by using binary ethanol-water 

solvents. Such solvents are readily available, cost-effective, and can accommodate various low-

concentration sodium salts, such as chlorides, perchlorates, and acetates, enabling Na-ion 

chemistries with high performance especially excellent cycling stability. In the ethanol-water 

system, ethanol plays an active role in rearranging the network structures of water molecules 

via hydrogen-bonding, thereby enabling intimate electrode-electrolyte contact and suppressing 

the protons co-insertion into the electrode upon cycling and reducing the dissolution of Mn 

from the cathode. An electrolyte consisting of 1 M sodium acetate in 5:1 v/v ethanol-water 

(denoted as 1 M NaAc-Et/Di) system exhibits strong hydrogen-bonding interactions and 

excellent wettability, which allows a Na0.44MnO2 electrode to deliver a high discharge capacity 

of 81 mAh g-1 at 100 mA g-1 with remarkable reversibility. Superior long-term cycle life of 

>1000 cycles (a capacity decay rate per cycle of 0.024%) was also achieved. Furthermore, ex-

situ XRD, SEM, and TEM-EDX studies of the Na0.44MnO2 electrodes demonstrate that a 
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considerable number of protons can co-insert into the lattice of Na0.44MnO2 in 1 M NaAc-Di 

system, finally leading to irreversible phase collapse (MnOOH). In comparison, the crystal 

structure of Na0.44MnO2 is maintained in the Et/Di system, indicating that hydrogen-bonding 

with the water molecules would be an effective way to improve the cycling stability. This 

approach guides a new direction for the development of sodium-ion battery with excellent cycle 

life for green and sustainable large-scale practical applications.

Results and discussion

Cosolvents of ethanol-water are prepared by mixing the two components in different volume 

ratios. For convenience, the various ethanol-water volume ratios used will be denoted as x: y 

Et-Di. To investigate the influence of solvent composition on the surface wettability, contact 

angles of various ethanol-water solvents were measured and presented in Figure 1a. It can be 

found that the presence of ethanol in the solvent system results in a ubiquitous reduction in the 

contact angle when compared to that of Di water (85.9°). The decrease in contact angle 

becomes increasingly pronounced with larger ethanol content. Due to four-coordinations 

involving two donor and two acceptor hydrogen bonds, water exhibits a three-dimensional 

tetrahedral hydrogen-bonding network. Because of the relatively high attraction among water 

molecules through the hydrogen-bonding network, water has high surface tension.16 By the 

introduction of ethanol, new ethanol-water interactions (cross association) occur. The addition 

of ethanol in water breaks the water hydrogen-bonding network, resulting in a decrease of the 

water-water hydrogen bonds. As a result, the interfacial tension of ethanol-water cosolvent is 

decreased, which is consistent with the previous report.17 Overall, the ethanol-water system 

shows a significant improvement in terms of wettability as compared to the Di water system. 

From the results, the 5:1 Et-Di system displays the lowest contact angle (19.2°) among all 

samples. It is predicted that using the 5:1 Et-Di system as electrolyte would allow a better 
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electrode penetration, critical to enhanced electrochemical performances.18 This will be 

verified in later experiments in this paper.

In ethanol-water solvents, ethanol readily forms hydrogen bonds with water molecules.19 To 

verify the existence and evaluate the strength of hydrogen bonds in ethanol-water solvents, a 

combination of spectroscopy techniques such as confocal Raman, Fourier-transformed 

infrared-attenuated total reflectance (FTIR-ATR) and 1H nuclear magnetic resonance (NMR) 

were employed. Figure 1b shows the Raman scattering spectra of Di water and the various 

ethanol-water solvents at different volume ratios from 2700 cm-1 to 4000 cm-1, which is the 

wavenumber range focusing on the vibrational modes of interest (CH2, CH3 and O-H bonds), 

whereas the supplementary lower wavenumber regions are presented in Figure S1. A full 

assignment for each peak is detailed in Table S2. As shown in Figure 1b, Di water exhibits 

symmetric O-H stretching (~3254 cm-1) and asymmetric O-H stretching vibration (~3411 cm-

1) modes that form a broad Raman band owing to the abundant hydrogen-bonding 

environments among the water molecules.13, 19-21 Additionally, a weak shoulder peak located 

around ~3613 cm-1 corresponds to the free O-H of water molecules.19 Upon introduction of 

ethanol to the Di water, the peaks attributed to the symmetric (~2878cm-1) and asymmetric 

(~2971 cm-1) stretching modes of CH3 as well as the CH2 stretching mode (~2926cm-1) of 

ethanol start to appear in the ethanol-water spectra.13 As the volume ratio of ethanol to water 

increases, the O-H stretching bands display a distinct reduction in amplitudes, and the shoulder 

peak (~3613 cm-1; free O-H) weakens until its complete disappearance. These results indicate 

that the hydrogen-bonding interactions among water molecules have been significantly 

weakened by increasing ethanol content. Meanwhile, the free O-H species activity has been 

largely suppressed. Moreover, the stretching modes of CH2 and CH3 exhibit redshift towards 

the lower wavenumber (Figure S2), indicating the new formation of hydrogen bonds between 

ethanol and water associates.13, 19, 22-23 
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The effect of hydrogen bonds between ethanol and water molecules was further explored 

using FTIR spectroscopy, as displayed in Figures 1c and S3. Since the O-H stretching bands in 

IR spectra for Di water overlap with that of ethanol (Figure S3), the water (H-O-H) bending 

vibrational band was used instead for evaluating the strength of hydrogen bonds in the various 

ethanol-water systems (Figure 1c).12, 24 As the ethanol concentration increases, the H-O-H 

bending vibrational bands exhibit blueshift behavior towards the higher wavenumber region, 

indicating that the hydrogen bonds of water hydrogens become stronger.12 This is possibly due 

to the strengthened hydrogen-bonding interactions between water hydrogens and ethanol 

oxygens with increasing ethanol content.

To further understand the interplay of hydrogen bonds between ethanol and water and 

confirm the ratios of the different types of protons associated with the CH2, CH3, and O-H 

groups in the binary co-solvents, we performed 1H nuclear magnetic resonance (NMR) 

measurements. Figures 1d and S4 present the 1H chemical shifts for the Di water, ethanol, and 

binary ethanol-water samples. As shown in Figure 1d, the protons associated with the O-H 

group for Di water and ethanol exhibit chemical shift values of 4.77 and 5.86 ppm, respectively. 

The O-H peaks for the ethanol-water mixtures show intermediate values of chemical shift, 

exhibiting a gradual downfield shift behavior towards higher ppm with increasing ethanol 

content. This indicates that the hydrogen atoms on the hydroxyl groups are increasingly 

deshielded as the ethanol concentration is increased, which suggests a corresponding increase 

in strength of the hydrogen bonds formed in ethanol-water solvents. Among all the binary 

solvents investigated, it should be highlighted that the 5:1 Et-Di system depicts the highest 

downfield shift (5.28 ppm). It also exhibits the lowest proton ratio number associated with the 

O-H group (calculated and presented in Figure 1e and Table S3 using the proton ratios of 

hydroxyl with water, CH2, and CH3).25 This demonstrates the strong hydrogen-bonding 
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interaction between the ethanol and water molecules in the 5:1 Et-Di system. As such, the 5:1 

Et-Di system would be subject to further studies in this paper.

Based on the above results, as discussed, the simplified structure models representing the 

water-water molecular interactions and ethanol-water (5:1 Et-Di) molecular association are 

illustrated in Figure 1f and g, respectively. In the Di water system (Figure 1f), the water 

molecules are weakly hydrogen bonded with the presence of free water molecules. On the other 

hand, in the binary ethanol-water system (Figure 1g), due to the existence of ethanol, the water-

water bonds are broken, resulting in a reorganized network structure of water molecules 

through hydrogen-bonding with the hydroxyl group of ethanol. Meanwhile, the protons of free 

water molecules are also hydrogen bonded with ethanol oxygens. Therefore, it is highly 

anticipated that the 5:1 Et-Di system could suppress water protons activity and represent an 

ideal solvent for electrolytes to be used in ARSIBs, potentially enabling electrode stability and 

long-lasting cell cycle life.

Manganese-based oxides have been widely employed as active materials for energy storage 

due to its high capacity and rate performance.26-36 In particular, Na0.44MnO2 (NMO) with a 

stable tunnel structure is attractive due to its unique large tunnels suitable for sodium 

insertion/extraction.33, 37-40 Therefore, NMO has been chosen as the model cathode material to 

evaluate the efficacy of the Et/Di system in enhancing the cell cycling stability for this 

study.The NMO was prepared via an optimized polyvinylpyrrolidone (PVP)-assisted sol-gel 

synthesis method.35 The crystal structure of the as-synthesized NMO was characterized by X-

ray powder diffraction (XRD). As shown in Figure 2a, the diffraction peaks of the NMO sample 

can be well-indexed to the orthorhombic Na0.44MnO2 phase (PDF: 04-018-3147) with Pbam 

space group, which is in good agreement with a previous report.34 Based on the Rietveld 

structure refinement, the lattice parameters of NMO are found to be a = 9.0897(6) Å, b = 

26.427(2) Å, c = 2.8250(2) Å, with a lattice volume of 678.60(8) Å3. The structure parameter 
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is summarized in Table S4. The crystal structure of Na0.44MnO2 is shown in the inset of Figure 

2a. Three sodium sites can be found within the NMO tunnel-shaped framework formed by the 

corner-sharing (MnO5) and edge-sharing (MnO6) polyhedrons. One sodium site (Na 1) is 

located in the O-shaped tunnels, whereas two sodium sites (Na 2 and Na 3) are situated in the 

larger S-shaped tunnels.26, 29, 33, 38, 41-43 Scanning electron microscopy (SEM) imaging (Figure 

2b) further shows the uniformly yielded NMO plates with lengths of 3.0–5.0 μm and widths of 

1.5–4.0 μm. In addition, the high-resolution transmission electron microscopy (HRTEM) 

image of NMO plates (Figure 2c) exhibits lattice fringe spacings of 0.45 nm, corresponding to 

the (200) plane of Na0.44MnO2, consistent with the XRD analyses.

To verify the hypothesis of modifying hydrogen-bonding interactions in ethanol-water 

enabling the suppression of water protons activity, 5:1 Et-Di, and De-ionized water systems 

were used as electrolytes to test three-electrodes cells with NMO, platinum foil and saturated 

silver/silver chloride (Ag/AgCl) as positive, counter and reference electrodes, respectively. 1 

M sodium acetate (NaAc) was fully dissolved in varied ethanol-water mixtures to yield 

homogeneous electrolytes. Cycling voltammetry (CV) measurement was applied to evaluate 

the electrochemical window of 1 M NaAc-Di and -Et/Di electrolytes by using Ti mesh and Pt 

counter electrodes in three electrodes configuration. As shown in Figure 3a, the 1 M NaAc-

Et/Di provides a wider electrochemical window than that of 1 M NaAc-Di electrolyte. The 

overall electrochemical stability window of 1 M NaAc-Et/Di electrolyte is ~2.5 V, which is 

larger than that of 1 M NaAc-Di electrolyte (~1.8 V). Ionic conductivity of 1 M NaAc-Et/Di 

electrolyte was further measured. The 1 M NaAc-Et/Di electrolyte shows an ionic conductivity 

of 6.01 mS cm-1. It is 2-11 times higher than those of previously reported ionic liquid-based 

electrolytes for Na batteries, such as 1 M NaClO4 in butylmethylpyrrolidinium-

bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid electrolyte (1.00 mS cm-1), and 

comparable to those of previously reported conventional organic electrolytes for Na batteries 
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(e.g., 1 M NaClO4 in ethylene carbonate/dimethyl carbonate (EC: DMC, 30:70 wt%) has an 

ionic conductivity of ~5.00 mS cm-1).44-48 Then, based on the salt solubility, two more sodium-

based salts sodium chloride (0.1 M NaCl), sodium perchlorate (1 M NaClO4) were also fully 

dissolved to yield a series of electrolytes. The electrochemical performances of NMOs cycled 

in the various electrolytes were evaluated by galvanostatic charge-discharge (GCD) 

measurements (Figure S5), and their capacity retentions were recorded in Table S5. As 

expected, NMOs have shown superior cycling stability in Et/Di system as compared to that of 

the Di water system, regardless of the identity of the dissolved salt component. Specifically, 

the NMO cycled in 1 M NaAc-Et/Di electrolyte exhibited the best cycling performance with 

high capacity retention up to 99.0 % after 100 cycles. 

Inspired by this observation, a series of electrochemical measurements were further 

conducted on NMO cycled in 1 M NaAc-Di and -Et/Di electrolytes to gain insight into the 

electrode kinetics. Cyclic voltammetry (CV) measurement was first performed at a scan rate of 

0.1 mV s-1 between -0.4 V to 0.7 V vs. Ag/AgCl. Figures S6 and 3b depict the CV curves of 

NMO cycled in 1 M NaAc-Di and -Et/Di electrolytes, respectively. Seven pairs of redox peaks 

were found in both systems, corresponding to the de/insertion processes of sodium-ions at the 

various sites (Na 1, Na 2, and Na 3), as summarized in Table S6.38, 42 Notably, in the first 

cathodic scan, the redox peaks of NMO cycled in 1 M NaAc-Di are weaker and broader (Figure 

S6), as compared to that of NMO cycled in 1 M NaAc-Et/Di (Figure 3b). This is mainly due to 

the partial sodium-ions (Na+) leakage through the substitution of protons (H+) in the Di water 

system.49 From the second cycle onward, the CV profiles of NMO cycled in 1 M NaAc-Di 

show a significant reduction of current intensity, especially for redox peak III and peaks (V-

VII) that correspond to the Na 3 and Na 2 sites, respectively.38, 42 In general, sodium-ions 

located at Na 2 and Na 3 sites sharing the S-shaped tunnel would experience higher electrostatic 

repulsion than that of the sodium-ions located at Na 1 site in the O-shaped tunnel.42 Therefore, 
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11

due to the proton-rich environment, it is postulated that the Di system could have favored the 

co-intercalation of protons into the NMO structure, inducing a higher electrostatic repulsion in 

S-shaped tunnel, hindering further sodium-ions insertion process, resulting in the poor cycling 

stability. In stark contrast, the NMO cycled in 1 M NaAc-Et/Di exhibits overlapping CV curves, 

indicating its highly reversible sodium de/insertion process (Figure 3b). This can be attributed 

to the suppressed water protons co-insertion. Due to the hydrogen-bond interaction of ethanol 

and water, the water activity has been successfully suppressed.

Figures 3c and d compare the galvanostatic discharge-charge profiles of NMOs tested in 

both 1 M NaAc-Di and 1 M NaAc-Et/Di, respectively. As shown in Figure 3c, the NMO cycled 

in 1 M NaAc-Di can deliver an initial discharge capacity of 71.6 mAh g-1 at 100 mA g-1. 

Subsequently, it can only maintain a capacity of 55.4 mAh g-1 after five cycles, with an 

irreversible capacity loss of 22.6 %. In contrast, the discharge capacity of NMO cycled in 1 M 

NaAc-Et/Di is higher than of those cycled in 1 M NaAc-Di (Figure 3d). More strikingly, the 

NMO cycled in 1 M NaAc-Et/Di can maintain a capacity of 76.8 mAh g-1 after five cycles 

without any capacity loss, which is in good agreement with the excellent reversibility indicated 

from the overlapping curves as shown in previous CV results. Moreover, similar phenomena 

can be found for NMOs tested in 0.1 M NaCl and 1 M NaClO4 in both electrolyte systems 

(Figures S7 and S8), demonstrating the excellent sodium diffusion kinetics of NMO cycled in 

Et/Di system. This may be ascribed to the intrinsic hydrogen-bonding interaction between the 

water protons and ethanol oxygen in the Et/Di system, which can effectively suppress the water 

protons activity.

To understand the variation of manganese oxidation state, we performed synchrotron X-ray 

absorption near edge structures (XANES) measurement. Figure 3e shows the normalized Mn 

K-edge profiles of the first fully discharged NMO electrodes as well as the pristine NMO 

electrode and commercial reference powders. The Mn K-edge of the NMO pristine electrode 
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12

resembles the characteristic absorption edge close to the MnO2 (Mn4+) reference powder, which 

indicates an average manganese valence state close to +4. On discharge, the Mn K-edge of the 

NMOs shift towards the lower energy as core-level binding energy changes with respect to the 

atomic valence states, indicating a reduction in the manganese valence state.50 Interestingly, 

NMOs cycled in the two different electrolytes exhibit an apparent difference in the Mn 

oxidation state. The Mn K-edge of the fully discharged NMO in 1 M NaAc-Et/Di almost 

resembles the characteristic Mn K-edge of the Mn2O3 (Mn3+) reference powder, indicating an 

average manganese valence state close to +3. On the other hand, the Mn K-edge of the fully 

discharged NMO in 1 M NaAc-Di exhibits an absorption edge between the characteristic Mn 

K-edges of MnO (Mn2+) and Mn2O3 (Mn3+) reference powders, indicating the mixed of +2 and 

+3 valence states. The presence of the Mn2+ species is indicative of the disproportionation 

reaction of the trivalent Mn species (Mn3+
s → Mn4+

s+ Mn2+
aq),30-31, 51 which could lead to Mn 

dissolution, resulting in the loss of active material.42 Therefore, this could be the possible 

reason for the drastic capacity fading observed in the NMO when cycled in 1 M NaAc-Di 

electrolyte as opposed to a high capacity retention of NMO cycled in 1 M NaAc-Et/Di. 

The rate capabilities of NMOs cycled in 1 M NaAc-Di and -Et/Di were further studied at 

various current densities, as shown in Figure 3f. Notably, NMO cycled in 1 M NaAc-Et/Di 

exhibits much better rate capability: 90.8 mAh g-1 (50 mA g-1), 81.0 mAh g-1 (100 mA g-1), 67.6 

mAh g-1 (200 mA g-1) and 42.2 mAh g-1 (500 mA g-1). Moreover, when the current density 

returns to 50 mA g-1, the capacity recovers well to a high value of 91.6 mAh g-1, which is much 

higher than those cycled in 1 M NaAc-Di (41.6 mAh g-1), indicating its excellent reversibility. 

The long-term cycling stability of NMO plates cycled in different electrolytes are further 

examined. As shown in Figure 3g, the NMO electrode cycled in 1 M NaAc-Et/Di displays a 

high initial capacity of 76 mAh g-1 at 100 mA g-1. After 100 cycles, the NMO electrode retains 

a high reversible capacity of 75 mAh g−1 with a capacity retention of 99 %, which is > 2 times 
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higher than that in 1 M NaAc-Di (48%). Unexpectedly, the cycling stability is also superior to 

that of the “water-in-salt” 9.26 m NaCF3SO3 and 17 m NaClO4 electrolytes (capacity retention 

of 27.4% and 25.6%, respectively). Moreover, even after 1000 cycles, the NMO cycled in 1 M 

NaAc-Et/Di exhibit excellent cycling stability with a capacity decay rate per cycle of 0.024% 

at 100 mA g-1, which is much lower than that of NMO electrode cycled in 1 M NaAc-Di 

(0.087%). This can be ascribed to the reduced water protons activity induced by the intrinsic 

hydrogen-bonding between the ethanol oxygen and water protons in Et/Di system. Moreover, 

the 1 M NaAc in Et/Di electrolyte provides superior wetting characteristics. As displayed in 

Figure S9, due to the presence of ethanol, the contact angle of 1 M NaAc in Et/Di electrolyte 

on stainless steel is only 22.4°, much lower than that of 1 M NaAc in Di electrolyte (83.3°) and 

also lower than that of “water-in-salt” 9.26 m NaCF3SO3 (79.4°) and 17 m NaClO4 electrolytes 

(101.1°), demonstrating the hydrophilic property of 1 M NaAc in Et/Di electrolyte, which can 

effectively facilitate the electrolyte penetration into the electrode and thus improve the 

electrochemical performance. Therefore, good wettability, excellent rate capability, and long-

term cycling performance make the Et/Di system a promising electrolyte candidate for 

applicable ARSIBs.

To shed light on the charge storage mechanism of NMOs cycled in the Et/Di and Di systems, 

XRD, SEM, and TEM-EDS mapping measurements were conducted after different cycles. In 

comparison to the pristine morphology, NMO plates exhibit partial fragmentation with a rough 

surface after five cycles when cycled in the Di system, as shown in Figure 4a. As discussed 

above in the XANES section, the disproportionation of Mn3+ leads to the formation of soluble 

Mn2+ species. Thus, NMO suffers a significant capacity loss in the initial cycles due to the 

dissolution of electrochemical active NMO in Di system. By contrast, the NMO plate structure 

remains a smooth surface after cycled in the Et/Di system (Figure 4b), indicating that the 

introduction of ethanol in the electrolyte plays a critical role in stabilizing the NMO electrode 
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structure. Ex-situ XRD characterizations were further performed to explore the storage 

mechanism of NMO cycled in both Et/Di and Di systems (Figures 4e and S10). As shown in 

Figure S10, the NMO still maintains the Na0.44MnO2 (PDF 04-018-3147) phase with Pbam 

space group when cycled in Di system after 100 cycles, Notably, compared with the pristine 

electrode, a broad new diffraction peak located at around 26° appears after 200 cycles, which 

can be indexed to MnOOH (PDF 04-010-4788), demonstrating an irreversible de/insertion of 

sodium-ions in NMO upon cycling. When cycled after 500 cycles, the product remains a mixed 

phase. Eventually, the NMO totally transformed to MnOOH after 1000 cycles, as demonstrated 

by the XRD pattern in Figures S10 and 4e. In contrast, all the diffraction peaks of NMO cycled 

in Et/Di system after 1000 cycles are still consistent with that of the pristine electrode 

Na0.44MnO2 (PDF 04-018-3147), indicating the excellent structure stability of NMO in Et/Di 

system. Based on the results, it is proposed that the NMO cycled in the Et/Di system undergoes 

reversible desodiation/sodiation processes as described below: 

(1)Na0.44MnO2 +xNa + +xe ― ↔Na0.44 + 𝑥MnO2

In the Di system, sodium-ions and water protons are co-intercalated into the NMO structure 

during the discharge process. However, the existence of protons could induce electrostatic 

repulsion with sodium-ions in the NMO lattice,42 which hinders sodium-ions insertion. The 

details of the reactions can be formulated as follows:

(2)Na0.44MnO2 +xNa + +xe ― ↔Na0.44 + 𝑥MnO2

(3)Na0.44MnO2 +yH + +ye ― →Na0.44H𝑦MnO2

Ex-situ TEM, selected area electron diffraction (SAED), and TEM-EDS analysis provide 

further proof for the storage mechanism of NMO cycled in both Et/Di and Di system after 1000 

cycles. SEM and enlarged TEM images (Figures S11 and 4c) reveal that the product of NMO 

cycled in Di system after 1000 cycles is composed of distributed nanorods with widths of 100 

nm and lengths of ~1 μm. The diffraction spots in the SAED pattern (Figure S12a) can be 
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indexed to the (-111) and (002) planes of MnOOH. High-resolution TEM (HRTEM) image 

taken on the nanorod shows well-resolved lattice fringes with an interplanar distance of 0.34 

nm (inset in Figure 4c), corresponding to the (-111) crystal plane of manganese oxohydroxide 

(MnOOH), which is consistent with the XRD result. The corresponding TEM-EDS mapping 

(Figure S13) reveals the existence of Mn and O elements in the newly formed nanorods, 

whereas traces of Na have almost disappeared, further confirming the formation of manganese 

oxohydroxide after long-term cycling. As discussed above, the fragmentation is caused by the 

dissolution of Mn2+ species formed during the disproportionation reaction of Mn3+ when water 

protons and sodium-ions co-insert into the structure. As a result, the irreversible protons 

insertion causes a steady accumulation of manganese oxohydroxide, leading to poor 

electrochemical performance. By contrast, as shown in Figure 4d, the TEM image of NMO 

cycled in the Et/Di system reveals that the plate morphology is still well-maintained. SAED 

pattern in Figure S12b reveals that the plates are single-crystalline structure with the orientation 

along the [001] direction. HR-TEM image (inset of Figure 4d) displays a lattice spacing of 0.45 

nm, corresponding to the (200) plane of Na0.44MnO2. The TEM-EDS elemental mapping 

images of NMO cycled in the Et/Di system further demonstrate the uniform distribution of Mn, 

O, and especially Na elements in the cycled NMO (Figure 4f). 

In addition, the Et/Di hybrid electrolyte can be applied in a wide temperature range. As 

demonstrated, the Na0.44MnO2/Zn full cells in 1 M NaAc-Et/Di electrolyte were assembled and 

cycled between 0.65 and 1.75 V at 25 °C and 0 °C, as shown in Figure 5. It delivers a high 

discharge capacity of 93 mAh g-1 on the 2nd cycle at 25 °C, corresponding to a high energy 

density of 102 Wh kg-1 (Figure 5a). It also exhibits excellent cycling stability with a high 

capacity retention of 99.8% after 50 cycles at 100 mA g-1 (Figure 5b). Moreover, the full cell 

displays good rate capability (Figure 5c). As the current density increases to 500 mA g-1, the 

discharge capacity of the NMO remains at 42.7 mAh g-1. When the current density returns to 
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100 mA g-1, the discharge capacity recovers to 90.2 mAh g-1, demonstrating its good rate 

capability. When further tested at 0 °C, the full cell retains a discharge capacity of 44.5 mAh 

g-1 after 50 cycles with a capacity retention of 94% at 50 mA g-1 (Figure 5d). Compared with 

the recently reported sodium-ion batteries (Figure 5e), the full cell exhibits impressive energy 

density (102 Wh kg-1).5, 52-58

Herein, we discuss the reason accounting for the much higher cycling stability and rate 

capability of NMO cycled in the Et/Di system. The ions storage and structural evolution of 

NMO cycled in Et/Di and Di systems are displayed schematically in Scheme 1. Owing to the 

hydrogen-bonding interactions in Et/Di system, most of the proton atoms in water molecules 

are strongly bonded with the hydroxyl oxygens in ethanol (Scheme 1a). In contrast, abundant 

water molecules exist in Di system, providing a proton-rich environment (Scheme 1b). During 

the sodiation process, not only the Na ions, protons can co-insert into the tunnels of the NMO 

electrode. Then, NMO suffers the dissolution of Mn2+ induced by disproportionation reaction 

and irreversible phase transformation to MnOOH (Scheme 1b). This explains the rapid capacity 

fading and poor cycling stability of NMO in Di water system. In contrast, in Et/Di system, 

water protons activity has been effectively suppressed by the existing hydrogen bonds with 

ethanol oxygens (Scheme 1a). Therefore, Na ions can reversibly de/insert into the NMO 

structure, resulting in much higher cycling stability and rate capability.

Conclusions

In summary, we reported a novel type of ethanol-water system for hybrid electrolyte 

formulations. Coupled with different low concentrated sodium-based salts, such green and low-

cost electrolytes enable Na-ion chemistry with superior electrochemical performances, 

especially in terms of cycling stability. Benefiting from the formation of hydrogen-bonding 

interactions, the introduction of ethanol improves surface wettability, suppresses water protons 
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activities, and reduces transition metal dissolution from the cathode, facilitating highly 

reversible sodium-ion de/intercalation processes in a wide temperature range. This hybrid 

electrolyte enables Na0.44MnO2 electrodes to achieve a high capacity of 81 mAh g-1 and 

excellent cycling stability with a capacity decay rate per cycle of 0.024% at 100 mA g-1 for 

1000 cycles, four times better than that in the water-based electrolyte. Additionally, compared 

with the irreversible phase transformation from Na0.44MnO2 to MnOOH when cycled in the 

water-based electrolyte, the Na0.44MnO2 still maintains its original phase when cycled in the 

ethanol-water system, further confirming its structural stability. Overall, we have demonstrated 

the strategy of hydrogen bonded hybridization creates novel electrolyte systems that enable 

vastly improved electrochemical performances and may open doors for greener electrolytes in 

aqueous rechargeable sodium-ion batteries and others.
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Figure 1. The bulk properties of the ethanol-water system with different concentrations. (a) 

Contact angles comparison, (b) confocal Raman and (c) Fourier transform infrared red-

attenuated total reflectance (FTIR-ATR) spectra of water and ethanol-water solvents, (d) 

chemical shifts for 1H nuclei in Di water, ethanol and ethanol-water solvents, (e) integrated 

proton ratio number of protons in the different hydrogen atoms environment (CH2, CH3, OH) 

of ethanol-water solvents and schematics of (f) water and (g) ethanol-water intermolecular 

interactions.
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Figure 2. Structural characterizations of Na0.44MnO2. (a) High-resolution synchrotron-based 

XRD powder diffraction of Na0.44MnO2 plates with its corresponding unit cell (inset of a), (b) 

SEM image, and (c) high-resolution TEM (HRTEM) image of NMO plates.
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Figure 3. Electrochemical performances of the Na0.44MnO2 plates in different electrolytes. (a) 

Electrochemical stability of 1 M NaAc in Et/Di and 1 M NaAc in Di electrolytes. Cyclic 

voltammetry profiles of NMO cycled in (b) 1 M NaAc-Et/Di, typical galvanostatic charge-

discharge profiles (1st, 2nd and 5th cycles) of NMO cycled in (c) 1 M NaAc-Di and (d) 1 M 

NaAc-Et/Di, (e) XANES curves of NMOs in pristine and full discharge states, (f) rate 

capability comparison and (g) long term cycling performances of NMOs at 100 mA g-1.
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Figure 4. Postmortem characterizations of cycled Na0.44MnO2 electrodes. (a, b) SEM images 

of NMO electrodes cycled in 1 M NaAc in Di, and 1 M NaAc in Et/Di after 5cycles, 

respectively, (c, d) TEM and HRTEM (inset) images of NMO cycled in 1 M NaAc in Di, and 

1 M NaAc in Et/Di after 1000 cycles, respectively, (e) XRD patterns of pristine and cycled 

electrodes, and (f) TEM-EDS elemental mappings of NMO cycled in 1 M NaAc in Et/Di after 

1000 cycles. 
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Figure 5. Electrochemical performances of Na0.44MnO2/Zn full cells in 1 M NaAc in Et/Di 

electrolyte. a) Charge-discharge profiles at 100 mA g-1, b) cycling stability of full cell at 100 

mA g-1 at 25 °C, c) rate capability, and d) cycling stability of full cell at 0 °C. The cells were 

cycled within the voltage range of 0.65 to 1.75 V. e) Comparison of capacity and energy density 

reported for aqueous sodium-ion batteries. (Energy densities are calculated based on the 

cathode from the reported papers)5, 52-58
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Scheme 1. Schematics illustration of ions storage in (a) ethanol-water and (b) water systems. 

The lighter coloring of H2O molecules in the ethanol-water system (scheme 1a) represents the 

suppressed water protons activity as compared to that in the water system (scheme 1b).
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