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Abstract 
Intelligence tests often use geometric proportional analogies 
to examine the intelligence quotient of humans. Completing 
such a series of geometric figures can be a cognitively 
demanding task, because the solution requires a suitable 
conceptualization of the geometric figures. Furthermore, there 
might exist several, equally correct solutions depending on 
the conceptualization. In this paper, we demonstrate how the 
symbolic analogy model HDTP solves such analogies: HDTP 
uses Gestalt principles and qualitative spatial reasoning to 
compute a psychologically preferred representation of the 
figures, adapts these representations if necessary, and 
constructs a solution based on an analogical mapping. 

Keywords: analogy; geometric proportional analogies; 
re-representation 

Introduction and Motivation 
Analogical reasoning is considered to be fundamental in 
human cognition and human problem solving (Gust et al., 
2008; Hofstadter, 2001). Geometric proportional analogies 
(GPA) are a special form of analogous problems: A GPA 
consists of a serious of four geometric figures A, B, C, and 
D, where the same relation holds between figure A and B as 
between figure C and D. Such analogies are commonly used 
in intelligence tests to measure the intelligence quotient. 
Figure 1 shows an example for a GPA where the figure D is 
missing. One has to establish an analogous mapping 
between figures A and C and analyze the relation between A 
and B, which is afterwards transferred and applied to figure 
C to construct the missing figure D. 

 

 
Figure 1: Example for a geometric proportional analogy 

(GPA) with several possible solutions for figure D. 
 

The difficulty in solving this analogy lies in its ambiguity. 
It is possible to construct several, equally correct solutions 
depending on the conceptualization of the geometric figures. 
We investigated experimentally different solution strategies 
(Schwering et al., 2008). Figure 2 illustrates three preferred 
solutions for the running example: Solution 1 can be 
explained by grouping the black elements in figure A and C. 
Figure B repeats the black elements of figure A in the 
middle. Applying the analogous strategy leads to figure D: 

The black elements of figure C are repeated in the middle. 
The second solution can be explained by grouping the top 
elements in figure A (respectively C) and construct B 
(respectively D) by moving the top elements one unit down 
along the y-axis. Solution 3 can be explained by grouping 
the middle elements and repeating them with flipped colors. 

 

: ::

solution 1:
35% of participants

solution 2:
31% of participants

solution 3:
17% of participants

A B C

:

 
Figure 2: Human subject tests have revealed several 

different solutions for figure D, of which three preferred 
solutions are shown in the picture. 

 
In this paper, we extend earlier work (Schwering et al., 

2007) and present a computational model to analyze and 
detect different plausible solutions to GPAs. We show how 
the analogy model Heuristic-Driven Theory Projection 
(HDTP) uses Gestalt principles and qualitative spatial 
reasoning to detect cognitively preferred representations of 
geometric figures, adapts these representations if necessary, 
and constructs a solution based on an analogical mapping. 

The paper is structured as follows: after this introduction, 
we give an overview of related work on analogy models for 
GPAs. In section three we explain the basics of HDTP and 
show how geometric figures are formally represented in 
HDTP. In section four we give details on the analogy-
making process illustrated with an example. We conclude 
the paper with a discussion and directions for future work. 

Related Work 
Proportional analogies were studied in various domains 
such as the natural-language domain (Indurkhya, 1989, 
1992), the string domain (Hofstadter & Mitchell, 1995), 
analogical spatial arrangement at a table top scale (French, 
2002), and in the domain of geometric figures.  

In (1962), Evans developed a heuristic program to solve 
GPAs. Before the actual mapping process, the program 
computes meaningful components consisting of several line 
segments in each figure. Evan’s analogy machine 
determines the relation between A-B, computed a mapping 
between A-C based on rotation, scaling, or mirroring, and 
selected an appropriate solution from a list of possible 
solutions. In contrast to our approach, the representation and 
the mapping phase are sequentially separated from each 
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other. While we use structural criteria, Evans uses 
mathematical similarity to detect a suitable mapping 
between figure A and C. O’Hara & Indurkhya (1992; 1993) 
worked on an algebraic analogy model which is able to 
adapt the representation of line drawing figures during the 
analogy-making process. Dastani et al. developed a formal 
language for this algebraic model to describe elements in 
geometric figures and compute automatically a structural, 
Gestalt-based representation (Dastani & Scha, 2003). This 
approach accounts also for context effects, i.e. figure C has 
an effect on the conceptualization of figure A (Dastani & 
Indurkhya, 2001). Both ideas strongly influence our work. 
We reuse many ideas developed for this algebraic model 
and apply them to our logic-based framework.  

Mullally, O’Donoghue et al. (2006; 2005) investigated 
GPAs in the context of maps. They used structural 
commonalities to detect similar configurations in maps and 
to automatically classify geographic features. Due to the 
limitation to maps, they did not support the complex spatial 
analysis required for our GPAs. Tomai, Forbus et al. (2004) 
extended the Structure Mapping Engine to compute spatial 
relations between geometric figures and solve GPAs. 
However, this approach does not include re-representation 
and requires a set of possible solutions to select from. 
Davies and Goel investigate the role of visual analogies in 
problem solving (Davies et al., 2008). In this approach, they 
don’t focus on GPAs and their special structure. 

HDTP as Computational Model for GPA 
We describe the basics of HDTP shortly and explain how 
HDTP is used as a computational model for GPAs. For 
further details we refer to (Schwering et al., 2009) 
concerning the syntactic principles of HDTP and 
(Krumnack et al., 2008) regarding re-representation. 

The Analogy Model HDTP 
HDTP is a symbolic analogy model where the source and 
the target domain are formalized as first-order logic 
theories. HDTP distinguishes between domain knowledge 
(facts and laws holding for the source or the target domain) 
and background knowledge, which is true across domains. 

 

 
Figure 3: HDTP as computational model for GPA. 

Figure 3 shows a rough overview of the architecture: 
Knowledge about the geometric figures is captured by 
domain knowledge, while general principles of perception 
are captured in the background knowledge. An analogy is 
established by aligning elements of the source with 
analogous elements of the target domain. In the mapping 
phase, the source and the target are compared for structural 
commonalities. HDTP uses anti-unification to identify 
common patterns in the source and target domain. Anti-
Unification is the process of comparing two formulae and 
identifying the most specific generalization subsuming both 
formulae. 

 

 
Figure 4: Anti-unification compares two formulae and 

creates the least general generalization. 
 
We use anti-unification to compare the source theory with 

the target theory and construct a common, general theory 
which subsumes possibly many common structures of the 
source and the target domain. Figure 4 gives examples for 
anti-unification: formulae are generalized to an anti-instance 
where different constants or function symbols are replaced 
by a variable. In (a) and (b), first-order anti-unification is 
sufficient. The formulae in (c) differ in the function 
symbols: While first-order anti-unification fails to detect 
structural commonalities, higher-order anti-unification 
generalizes function symbols to a variable and retains the 
structural commonality. 

The generalized theory with its substitutions specifies the 
analogical relation between source and target. Additional 
information about the source domain (in the case of GPAs, 
this information is how to construct figure B from A) is 
transferred to the target domain and applied to figure C to 
construct figure D. 

Formalization of Unstructured Geometric Figures 
HDTP starts with an unstructured description of the input 
geometric figures: all primitive objects are captured and 
described by their properties. 

 

o5

o3

o1

Primitive Elements:

o6

o4

o2

Figure A:

 
Figure 5: Examples for some primitive elements. 

 
Figure 5 shows primitive elements as used in our GPAs. 

These primitive elements are described by their shape 
(circle, square, triangle), their color (black, white, grey), and 
their position in a grid. It is possible to extend the 
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description by other properties such as size or rotation 
angle. Table 1 shows the formalization of the left bottom 
object in figure A of our running GPA example (Figure 1). 
The description of the complete analogy, i.e. figure A, B, 
and C, is a list of all primitive objects identified uniquely 
and described by listing their properties. 

 
Table 1: Formal description of the left bottom object in 

figure A of the GPA shown in Figure 1. 
object(o1,[ 
  shape(circle), 
  position(p(1,1)), 
  color(white) 
]). 

Formalization of Structural Patters 
When the human sensory system observes a geometric 
figure, it transforms the unstructured information into a 
structured representation of a pattern or a set of objects. In 
order to solve a GPA, the observer has to understand the 
visual information, make sense of the overall pattern she 
sees. She identifies common structures between figure A 
and C to establish a mapping between those elements 
playing the same role in A and C. 

Human perception tends to follow a set of Gestalt 
principles of organization (Wertheimer, 1912). A model for 
computational cognition of GPAs requires the ability to 
detect the same structural patterns as humans do. If we 
restrict the pattern detection strategies to the above 
mentioned perceptual properties (shape, position, color), the 
amount of possible structural patterns has a manageable 
complexity. HDTP captures general rules for pattern 
detection and human perception in the background 
knowledge, which is general knowledge and not limited to a 
particular GPA. 

 
Gestalt Perception. Our experiment (Schwering et al., 
2008) has shown that many solutions can be explained by 
Gestalt principles. We identified several dominant pattern 
detection strategies: 
• Grouping based on similarity. People tend to group 

objects which share one or several common properties, 
e.g. grouping of black elements as in the GPA example. 

• Repeated groups of objects are perceived as iterations of 
one group, e.g. the three left circles in figure A in the 
running example are perceived as one group repeated two 
times. 

• Grouping based on proximity. People tend to organize 
spatially close elements or elements on one (typically 
horizontal or vertical) axis into units.  

• Grouping based on spatial commonalities. Objects with a 
special position are grouped together, e.g. in the running 
example people tend to group the top or the middle 
elements. In this case, spatial nearness as well as common 
spatial attributes play a role. 

Several grouping strategies leading to the same result - in 
the running example grouping black and grouping top 

elements result in the same set of objects - usually increase 
the degree of preference. 

 
Table 2: Grouping based on similarity (common color). 
group(g1,List):-  
filter(figA,color,black,List). 
 

List = [o5,o6]. 
 
group(g2,List):-  
filter(figA,color,¬black,List). 
 

List = [o1,o2,o3,o4] 
 
Table 2 shows a formalization of grouping strategies as 

they are found in the HDTP background knowledge: First, a 
group of elements filtered with respect to the property black 
and then the complement group of non-black objects is 
formed (we could use white color as equally good grouping 
criteria). 

 
Qualitative Spatial Relations. Qualitative spatial relations 
play an important role for the analysis of geometric 
analogies (Tomai et al., 2004). The absolute position of 
elements as well as the position relative to other elements in 
the geometric figure are very important for some pattern 
detection strategies. 

 

 
Figure 6: (a) shows the applied spatial calculus, (b) 

illustrates elements being distinguished by their relative 
position, and (c) illustrates points with a particular position. 

 
For our analysis we apply a single cross calculus 

distinguishing the relations of above, below, right and left as 
shown in Figure 6a. This allows us to distinguish elements 
by their relative position (Figure 6b), which is important for 
groupings based on position. Transformations between 
figure A and B often operate on coordinates of points with a 
relative position as shown in Figure 6c. Depending on the 
geometric figure, outstanding points or elements are 
computed either on a vertical axis (as shown in the figure), a 
horizontal axis, or in 2 dimensions. The middle element 
does not necessarily have the same coordinates as the 
middle point.  

 
Table 3: Gestalt grouping based on position. 

group(gTop,List):- 
filter(figA,position,top,List). 
 

List = [o5,o6] 
 
Table 3 shows a formal description of a grouping of 

elements based on the top position. All other groupings are 
formalized analogously. 
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Formalization of Structural Patters in Figure A and C. 
The most preferred solution in our example is a grouping of 
black elements and moving these elements to the (vertical) 
middle. Table 2 shows the formalization of figure A in a 
structured way: Figure A consists of a group g1 with black 
elements and a group g2 with white elements. g1 is used 
in the transformation to construct figure B. At this stage, 
figure C is formalized as a list of primitive elements o9, 
o10, and o11. Structural patterns in C are only detected in 
the re-representation process described later. 

Formalization of Transformations from A to B 
After a description of structural patterns in A and C, one has 
to analyze the relation between geometric figure A and B, to 
transfer the AB-relation and construct D. The AB-relation is 
represented by describing the transformations applied to 
either the complete figure A or only a subset of its elements. 
Based on the findings in our experiment, we implemented 
the following set of transformations: 
• The move transformation changes the position of 

elements: moveTo moves elements to an absolute point 
determined by coordinates or to a relative point such as 
top, middle or bottom of the figure and moveBy moves 
elements by a certain vector. 

• The rotate transformation changes the orientation of an 
element or a group of elements. 

• The reflect transformation mirrors an element or a 
group of elements along an axis. 

• The change attribute transformation changes the 
value of an attribute such as color. There is also the 
possibility to determine two properties being switched: 
the transformation colorFlip flips the colors black and 
white. This was often used in our experiment. 

• The add transformation adds new elements to figure B. 
In this case, all transformations refer to changes in the 
position and changes in the attributes, however this set is 
extendable to other transformations such as topological. 
Table 4 shows the transformation between figure A and B in 
our running GPA example. It is applied to a subgroup g1 in 
figure A, which contains only the black elements. 
 

Table 4: Transformation between figure A and B. 
group(figATOfigB,List):- 
transform(g1,[moveTo(middle)],List). 
 

List = [o7,o8] 

The Analogy-Making Process 
In the previous chapter, we explained how to represent 
geometric figures, structural patterns, and transformations 
between geometric figures. In the following, we discuss the 
analogy-making process with its different phases: HDTP 
first determines structural patterns in figure A, computes a 
structured representation to establish a mapping between 
figure A and C, and detects the solution of the analogy by 
transferring the relation between AB to C. 

The determination of structural patterns in figure A, the 
re-representation of figure C and the mapping are not 
sequentially separated processes, but interact with each 
other. It may be, that only in the mapping it is recognized, 
that the current structure does not lead to any good analogy. 
In this case, HDTP has to search for a new representation. 

Determining Structural Patterns 
Determining the preferred structured representation of 
figure A is a highly complex problem determined by the 
observer’s perception. Attribute similarity, spatial nearness 
and an iteration of identical groups have been the major 
grouping criteria in our experimental data (compare 
heuristics described above). In some analogies, all elements 
of a figure were considered as a single group. That was 
often the case when figures consisted of a small amount of 
elements. Furthermore, the perception of figure A is 
determined by its context, i.e. figure C as you can see in our 
running example: In the third preferred solution, the middle 
elements of figure A are grouped, because the middle 
element in C differs from the other elements in C. Therefore 
our algorithm of computing groups is also based on the 
grouping criteria of figure C. 

 

 
Figure 7: Groupings in figure A and C are determined by 

clustering the objects according to their similarity. 
 

The groupings as shown in Figure 7 are computed by 
hierarchically clustering the objects based on their attribute 
or spatial similarity. Not every grouping is equally 
preferred1. We identify the following criteria to evaluate the 
degree of preference: 
• Grouping is preferred, if the ratio of distinguishing to 

non-distinguishing criteria is high. 
• Grouping is preferred, if the same grouping can be 

established via different criteria (e.g. based on color and 
based on position as in our running example). 

• Grouping is preferred, if the same grouping is supported 
in the context (i.e. is preferred in figure A and figure C). 

The list of preferred groupings serves as input for the re-
representation and mapping phase. 

Re-Representation and Mapping 
Given one structured representation of figure A, the re-
representation process aims at finding a structured 

                                                           
1 There were developed several complexity measures (Dastani & 

Scha, 2003; Van der Helm et al., 1992), but they originated rather 
from computational than from psychological ideas. 
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representation of figure C that a good match can be 
established between both figures. HDTP uses rules in the 
background knowledge2 to compute alternative 
representations for a geometric figure. The re-representation 
benefits from HDTP’s logical basis: since the domain 
descriptions are understood as logical theories, different 
representations can be inferred from the basic description. It 
leads to a syntactically different, but semantically equivalent 
description of the geometric figures. 
 

group(g1,L) :-
filter(g1,color,black,L).

object(o9,[shape(circle),
position(p(1,1)), color(white)])

....

anti-unification anti-unification

: ?

all possible representations that can 
be inferred

generalized theory

generalized axioms

:

source 
domain

target 
domain

figure A and B figure C

group(figA, [o1,o2,...,o6].
group(g1,L):-filter(g1,color,black,L).

group(g2,L):-filter(g1,color,¬black,L).
group(figATOfigB,L):-

transform(g1,[moveTo(middle)],L).

 
Figure 8: Re-Representation of figure C in HDTP. 

 
The algorithm sketched in Table 5 describes the re-

representation and mapping of geometric figures in GPA. It 
is based on the general HDTP algorithm described in 
(Krumnack et al., 2008), but is adapted and optimized for 
GPAs. In the first step, the algorithm selects the preferred 
groupings as computed in the previous phase determining 
structural patterns. As Figure 7 shows, in our running 
example this is a group consisting of objects o5 and o6 
called g1 and the complement group g2 consisting of 
object o1, o2, o3, o4. The first group shares the properties 
black color, circular shape and the top position. The second 
group shares the properties white color, circular shape and 
the “not top” position. Step A3 computes the preference 
degree of these groups based on the grouping criteria (in this 
case a high preference degree because the groups share 
many properties). In step A4, a suitable transformation is 
computed (in this case, moveTo(middle)) and evaluated. 
Step A6 tries to regroup the objects in figure C. In the 
example, it succeeds only if the grouping criteria of group 
g1 are reduced to either color black or position top. A new 
group (called g3) is created in figure C. In step A7, HDTP 
establishes a mapping between figure A and figure C via 
anti-unifying groupings from figure A with groupings from 
figure C. Higher-order anti-instances and a mapping of 
different structures with different complexity (e.g. a group 
mapping on a single element) are generally avoided. Step 
A9 computes the transfer and stores the solution with its 
preference degree as well as the generalizations with the 
substitutions. Particularly in GPAs, all objects in figure A 
and C should be included in the match. Mappings where 

                                                           
2 In principle, rules in the domain knowledge can be used as 

well, however, the descriptions of GPAs do not contain rules. 

objects do not have a counterpart usually lead to non-
preferred analogies. 

 
Table 5: Algorithm for determining structural patterns. 

Input: Unstructured representation of figure A, B, and C, 
list of preferred groupings in A and C. 
A1 (select starting group): Select preferred and not yet 
tested group from list, select all common properties as 
grouping criteria. If no such group is left, terminate. 
A2 (grouping): Form groups according to grouping criteria. 
A3 (preference degree): Evaluate each group based on 
number of properties common to group and distinct to 
complement group(s) or based on number of common 
complementary properties of complement group(s). 
A4 (transformation): Compute all alternative minimal 
transformations from figure A to B based on groups. If not 
all elements in A or B are covered by the transformation, go 
to step A1. 
A5 (preference degree): Evaluate complexity based on 
number of transformations. 
A6 (re-represent): Prove groupings with same criteria on 
target side. If resulting group is empty, reduce or change 
grouping criteria without changing the group and go to A2. 
A7 (try AU): Find (non-deterministically) the best matching 
clauses from figure C according to the heuristic 
• same operation and same arguments 
• else: same operation and different arguments 
Mark anti-unified objects as directly covered and objects 
used in the re-representation process (step A6) as 
(indirectly) covered. 
A8 (preference degree): Evaluate anti-unification based on 
quality of structural match (i.e. equally complex substi-
tutions on both sides). Furthermore, the mapping should 
cover all elements in figure A and C. 
A9 (transfer): Apply AB-transformation to aligned groups 
in figure C. If result is non-empty, save solution with degree 
of preference. Go to step A1. 
Output: Possible solutions with degree of preference and 
structured figure A and C and AB-transformation. 

 
The following mappings are established in the example: 

group(g1,L):-filter(figA,color,black,L) 
from the source domain and the re-represented group 
group(g3,L):-filter(figC,color,black,L) 
from the target domain are aligned and generalized to 
group(Z,L):-filter(X,color,black,L) with 
the substitutions X→figA/fiC and Z→g1/g3. 

Transfer of Relation AB to Solve GPA 
Once there exists a mapping between the structured figures 
A and C, the AB-transformation must be transferred and 
applied to figure C (step A9). All existing mappings are re-
used: g1 is replaced by g3 and the transformation 
transform(g3,[moveTo(middle)],List) is then 
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applied to the target domain. The resulting figure is a black 
square with the position (1,2) in the middle of the figure. It 
is one possible solution for figure D. 

Conclusions and Future Work 
In this paper, we show how the analogy-making framework 
HDTP can be used to solve geometric proportional analogy 
problems. GPAs can be considered as special cases of 
analogies, because of their particular structure A:B::C:D. 
The analogy is solved by analyzing structural commonalities 
between figure A and C, transferring the AB-transformation, 
and applying it to C to construct the missing figure D. 

We have shown in detail how to describe geometric 
figures formally with a limited set of properties, how to 
detect structural patterns in geometric figures using Gestalt 
principles and qualitative reasoning mechanisms, and how 
to detect transformation between figures. Afterwards, we 
have shown how our framework is used during the analogy-
making process, i.e. how figures A and C are re-represented 
until an analogous structure is found, how a mapping is 
established and how the transfer works. The algorithm and 
the heuristics follow the same basic idea as the general 
version of HDTP. Only small modifications have been 
necessary to adapt HDTP to solve GPAs. Future work will 
concentrate on the refinement of suitable heuristics to 
determine the degree of psychological preference. 
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