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Abstract

Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which 

initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed 

that guard cells control cytosolic ABA concentration through the concerted actions of 

biosynthesis, catabolism as well as transport across membranes. Substantial progress has been 

made at understanding the molecular mechanisms of how the ABA signaling core module 

PYR/PYL/RCAR-PP2C-SnRK2 controls the activity of anion channels and thereby stomatal 

aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in 

guard cells including the role of the second messenger Ca2+ as well as crosstalk with biotic stress 

responses.

Introduction

Guard cells form stomatal pores in the leaf epidermis, which enable plants to balance CO2 

uptake for photosynthesis and water loss via transpiration. Guard cells represent a powerful 

single-cell model system for understanding early signal transduction mechanisms in plants. 

They can sense and rapidly respond to a diverse set of environmental stimuli such as light, 

CO2, pathogen infection, and plant hormones in a cell-autonomous way [1,2]. In response to 

drought, plants synthesize the phytohormone abscisic acid (ABA) that induces stomatal 

closure, thereby reducing transpirational water loss. It has been shown that ABA is de-novo 

synthesized from C40 carotenoids and has also been proposed to be rapidly released from its 
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inactive conjugate, ABA glucose ester (ABA-GE) [3,4]. Through complex signaling 

mechanisms ABA triggers efflux of anions and potassium via guard cell plasma membrane 

ion channels, resulting in decrease of turgor pressure in guard cells and stomatal closure 

(Figure 1). Recent in vitro and in vivo studies have revealed the molecular mechanisms of 

how ABA signaling is initiated and transduced into the turgor regulation response in guard 

cells. Here we review recent advances on ABA signaling in guard cells.

ABA biosynthesis, degradation, and transport in guard cells

A recent work showed that guard cells are capable of autonomously synthesizing ABA [5], 

providing evidence for classical observations [6]. The wilting phenotype of the Arabidopsis 

aba3-1 mutant that lacks the final step of ABA biosynthesis (the conversion of ABA-

aldehyde to ABA) [7] was complemented by guard cell-targeted expression of ABA3 [5], 

suggesting that guard cell-autonomous ABA synthesis is sufficient for low humidity-

induced stomatal closure. Hydrolysis of ABA-GE by β-glucosidase AtBG1 is a mechanism 

proposed for a rapid concentration increase of ABA [8]. Interestingly, the aba3-1 mutant 

exhibited an induced expression of the ABA-GE-hydrolyzing enzyme AtBG1, indicating a 

putative but incomplete compensatory effect for the lack of de-novo ABA synthesis [5]. 

ABA is inactivated either through hydroxylation and subsequent catabolic degradation 

pathways or by conjugation with glucose. The hydroxylation of ABA in Arabidopsis guard 

cells is catalyzed by CYP707A1, which encodes the key ABA 8'-hydroxylase [9]. There are 

also indications for ABA-glucosylating enzyme activities in guard cells [10,11].

Transport of ABA across membranes can be passive as described by the 'ionic trap model' 

[12]. Active ABA uptake into Arabidopsis guard cells has been reported through the ABC 

transporter ABCG40 [13]. Another ABCG gene, ABCG22, which is also highly expressed in 

guard cells, is required for proper regulation of stomatal movements [14]. However, ABA 

transport activity of ABCG22 has not been proven yet. Four members of the NRT/PTR 

family have been characterized as ABA-IMPORTING TRANSPORTERS (AIT), of which 

AIT1 was implicated to mediate ABA uptake into guard cells of inflorescence stems [15]. 

The ABA efflux transporter DETOXIFICATION EFFLUX CARRIER 50 (DTX50) is 

expressed in guard cells and a T-DNA insertion mutant of the DTX50 gene exhibits a 

reduced water loss and ABA-hypersensitive stomatal closure [16]. FRET-based reporters for 

ABA (ABACUS, ABAleon) enable direct in vivo monitoring of ABA transport and the 

visualization of cytosolic ABA concentration ([ABA]cyt) changes in real-time [17,18]. It 

was observed that guard cell [ABA]cyt increases in response to NaCl treatment or a humidity 

drop, but not in response to sorbitol [17]. Compared to other cells or tissues, guard cells 

exhibit increased [ABA]cyt [17]. Taken together with the guard cell autonomous ABA 

synthesis [5,6] and the expression of an ABA efflux transporter DTX50 [16] in guard cells, 

current data indicate that guard cells could also function as an ABA source.

Core ABA signal components in Guard Cells

The perception of ABA is achieved by members of the START protein family of ABA 

receptors, PYRABACTIN RESISTANCE 1 (PYR)/PYR1-LIKE (PYL)/REGULATORY 

COMPONENT OF ABA RECEPTOR (RCAR). In the presence of ABA, the PYR/PYL/
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RCAR proteins bind to and inhibit clade A protein phosphatases type 2Cs (PP2Cs) [19,20], 

followed by activation of the Ca2+-independent protein kinases SNF1-RELATED KINASE 

2s (SnRK2s), most importantly OPEN STOMATA 1 (OST1/SnRK2.6), which 

phosphorylate multiple downstream targets (reviewed in [21]). In guard cells, ABA causes 

activation of two types of plasma membrane anion channels, called slow-sustained (S-type) 

and rapid-transient (R-type) anion channels, which drives plasma membrane depolarization 

and subsequent K+ efflux through voltage-dependent K+ channels (reviewed in [22–24]) 

(Figure 1). The release of anions and K+ causes a reduction in the turgor pressure of guard 

cells, resulting in stomatal closure. In Arabidopsis guard cells, S-type and R-type anion 

channels are mainly encoded by SLOW ANION CHANNEL-ACCOCIATED 1 (SLAC1) 

[25,26] and ALUMINUM-ACTIVATED MALATE TRANSPORTER 12/QUICKLY 

ACTIVATING ANION CHANNEL 1 (ALMT12/QUAC1) [27,28], respectively. Several in 

vitro studies using Xenopus laevis oocytes show how the core ABA signaling module 

PYR/PYL/RCAR-PP2C-SnRK2 complex regulates SLAC1 and ALMT12/QUAC1 activity 

(Figure 1). In Arabidopsis guard cells, the GUARD CELL OUTWARD RECTIFYING K+ 

CHANNEL (GORK) accounts for the voltage-dependent K+ efflux channel (K+
out) activity 

[29,30]. Involvement of K+ UPTAKE TRANSPORTERs (KUPs) in guard cell K+ efflux 

during stomatal closure was also recently reported [31].

ABA regulation of Ca2+ Signaling in Guard Cells

It has been demonstrated in several plant species that cytosolic Ca2+ functions as a second 

messenger in guard cell ABA signaling. ABA-induced S-type anion channel activation and 

stomatal closure are suppressed by cytoplasmic loading of a Ca2+ chelator, 1,2-bis(2-

aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) in intact guard cells [32,33]. 

Interestingly, it has been also shown that guard cells exhibit spontaneous cytosolic free Ca2+ 

([Ca2+]cyt) elevations and ABA does not cause [Ca2+]cyt elevations in all guard cells [34,35]. 

Furthermore, ABA enables [Ca2+]cyt activation of S-type anion channels [33]. These 

observations suggest that ABA turns on guard cell Ca2+ signaling by enhancing (priming) 

[Ca2+]cyt sensitivity of the downstream targets as well as by inducing [Ca2+]cyt elevations 

[22,34,35]. It has been reported that Ca2+-DEPENDENT PROTEIN KINASES (CPKs) 

function as Ca2+ sensors that mediate the Ca2+-dependent regulation of S-type anion 

channels [36–39]. Recent in vitro and in vivo studies identified a mechanism of how the 

Ca2+-CPK-dependent pathway is integrated with PYR/PYL/RCAR-PP2C-SnRK2 in guard 

cells (Figure 1).

ABA causes guard cell [Ca2+]cyt elevations through activation of plasma membrane Ca2+-

permeable cation (ICa) channel and Ca2+ release from intracellular Ca2+ stores (reviewed in 

[22,35]). ABA activation of ICa channels requires PYR/PYL/RCAR ABA receptors [39,40], 

CPKs [36], and a receptor-like kinase GUARD CELL HYDROGEN PEROXIDE-

RESISTANT1 (GHR1) [41]. The molecular mechanism of how ABA regulates Ca2+ release 

from intracellular Ca2+ stores remains to be clarified in detail.
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Activation of S-type anion channel SLAC1 by protein kinases

Activation of S-type anion channels has been considered as a key step in stomatal closure. 

Several studies investigated the regulation of SLAC1 in Xenopus oocytes. When SLAC1 is 

expressed alone in Xenopus oocytes, no significant anion currents can be detected while co-

expression of the Ca2+-independent OST1 or several CPKs evokes large anion currents 

[37,39,42–44]. The importance of this central drought stress signaling mechanism is 

highlighted by the conservation of the SLAC1 activation mechanism by OST1 in several 

land plant species [45,46]. OST1 and CPKs phosphorylate the N-terminus of SLAC1 

[37,42–44]. Mass spectroscopy approaches revealed that OST1 could phosphorylate SLAC1 

at Serine (S) 59, S86, S113, and S120 in vitro [47]. S59 is also phosphorylated by CPK6 

[44]. When S120 of the SLAC1 N-terminus is mutated to non-phosphorylatable Alanine 

(A), SLAC1 cannot be activated by OST1 anymore, but activation by CPKs is still intact in 

Xenopus oocytes [37,39,43,44,48]. A second key amino acid for the SLAC1 activation in 

oocytes, S59, is required for the activation by CPK5, CPK6, and CPK23 but not OST1 

[39,44,48]. Research in Arabidopsis guard cells showed that for in planta ABA activation of 

S-type anion channels, either S59 or S120 of SLAC1 is sufficient for complete guard cell 

ABA responses and only mutating both of the S59 and S120 impairs guard cell ABA-

responses [39]. The SLAC1 S120F mutation impairs stomatal closing in response to ozone, 

elevated CO2, and low humidity [47,49], which might be due to the effect of the bulky 

phenylalanine residue.

Although functional reconstitution of ABA activation of SLAC1 in Xenopus oocytes has 

been achieved by co-expression of either the Ca2+-dependent CPK6 or the Ca2+ independent 

OST1 protein kinase [44], it was recently found that disruption of either multiple CPKs or 

Ca2+-independent SnRK2s causes impairment of ABA activation of S-type anion channels. 

Use of these higher order cpk and snrk2 mutants suggests that in planta both Ca2+-

dependent and the Ca2+-independent branches are required for intact stomatal ABA 

responses [39]. The molecular mechanism of this interdependence is still unknown and 

subject of future research.

The role of the cytosolic C-terminal region of SLAC1 in the regulation of SLAC1 activity is 

still under investigation. Reports show that the SLAC1 C-terminus can be phosphorylated by 

OST1 [42,43], but not by CPK6 and CPK23 [37,44]. Replacement of Threonine (T) 513 in 

the SLAC1 C-terminus by Aspartate, which mimics phosphorylation, results in constitutive 

current activation, indicating a regulatory role of the SLAC1 C-terminus T513 [48]. A 

SLAC1 T513A mutant channel is still activated by OST1 and CPKs [48], which suggests 

that T513 is not strictly required for phosphorylation dependent activation of SLAC1. The 

Aspartate mutation of SLAC1 T513D may also have a structural impact on the channel 

rendering it constitutively active. The determination of the function of the SLAC1 C-

terminus for SLAC1 regulation requires further research.

SLAC1 activation and phosphorylation by all of the above-mentioned protein kinases are 

inhibited by PP2Cs, for example by ABA-INSENSITIVE 1 (ABI1) and PROTEIN 

PHOSPHATASE 2CA (PP2CA) [37,42–44,48]. Recent research revealed the mechanism by 

which PP2Cs inhibit SLAC1 activation by protein kinases: While OST1 kinase activity is 
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directly regulated by PP2Cs [50,51], detailed biochemical analyses showed no evidence for 

a direct regulation of CPK protein kinase activity by ABI1 and PP2CA [39]. In vitro data 

showed that the PP2Cs could inhibit the activation of SLAC1 by CPKs via direct de-

phosphorylation of the channel [39,44]. It was initially reported that ABI1 is not able to 

dephosphorylate OST1-added phospho-groups at SLAC1 [43]. However, recent research 

shows that the OST1-phosphorylated SLAC1 N-terminus could be de-phosphorylated by 

PP2Cs [39,48]. The dual action of PP2Cs in directly down-regulating SnRK2.6/OST1 and 

SLAC1 ensures the tight and robust negative regulation of SLAC1 activity, a crucial 

mechanism ensuring plant stress adaption and resistance (Figure 1). In planta analyses 

revealed that GHR1, which encodes a receptor-like kinase localized on the plasma 

membrane, is involved in ABA- and hydrogen peroxide (H2O2)-induced stomatal closure 

[41]. GHR1 directly phosphorylates the SLAC1 N-terminus in vitro and activates the 

channel current in Xenopus oocytes. Although OST1, CPK6, and CPK23 activation of 

SLAC1 in Xenopus oocytes is inhibited by both PP2Cs, ABI1 and ABI2 [37,43,44], GHR1 

activation of SLAC1 is inhibited by ABI2, but not ABI1 [41]. Together with a previous 

study [52], these results suggest different roles of each PP2C in guard cell ABA signaling. 

However, more detailed biochemical analyses are required to understand how PP2Cs down-

regulate GHR1 activation of the SLAC1 channel.

The CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) was also reported to activate 

SLAC1 in oocytes when the Ca2+ sensing CALCINEURIN-B-LIKE 1 and 9 (CBL1 and 

CBL9) are co-expressed [48], but the role of CIPK23 in guard cell ABA signaling was not 

confirmed in planta.

PP2Cs-based Ca2+ sensitivity priming mechanism in guard cells

As intracellular Ca2+ represents a universal second messenger, a key question is how Ca2+ 

signaling specificity is achieved in plant cells. Stomatal closing stimuli, such as ABA and 

CO2 prime [Ca2+]cyt sensitivity in guard cells, thus enabling [Ca2+]cyt activation of S-type 

anion channels [33,53,54]. A recent in planta electrophysiological study found that 

disruption of PP2Cs causes non-specific [Ca2+]cyt activation of S-type anion channels [39]. 

These findings reveal a first mutant in guard cells that causes constitutively primed [Ca2+]cyt 

signaling. Thus PP2Cs function as a master regulator that ensures Ca2+ signal specificity in 

guard cells. PP2Cs have also been shown to down-regulate ABA activation of ICa channels 

[52] (Figure 1).

Evolution and conservation of guard cell ABA signaling

Molecular biological and genomic analyses provide evidence that the core ABA signaling 

pathway consisting of PYR/PYL/RCAR, PP2Cs and OST1-like kinases and its target genes 

was established during the transition from an aquatic to a terrestrial environment over 400 

million years ago [45,55,56]. Functional analysis in Xenopus oocytes using the homologs 

from organisms lacking stomata such as liverwort or alga supports this model [46]. An 

alternate view of ABA-mediated control of stomatal aperture has also been proposed [57–

59]. This view is based on data obtained in evolutionary younger fern and lycophytes which 

show that stomata in these organisms respond poorly to endogenous ABA with the leaf 
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water potential being proposed as the major factor determining stomatal aperture in a 

passive-hydraulic mechanism [57,58]. Data on the functional role and evolution of stomata 

in bryophytes [60] appear to be more complex in particular since stomata are not present in 

all sub clades and current evolutionary models implicate the existence of three origins of 

stomatal emergence in tracheophytes [61]. Another layer of complexity is added by the 

dependence of ABA responsiveness on the developmental stage as stomata are relevant for 

desiccation of the spore capsule [62] and in hornworts stomata never close once they open 

[61]. CO2 control of stomatal development has been observed in the fossil record and is 

considered to be an ancient trait in plants [63]. A recent study provides evidence that this 

CO2 response requires intact ABA signaling, pointing to the hypothesis that ABA signaling 

itself evolved at the time of or before the developmental CO2 response [63]. For stomatal 

closing responses, amplification of CO2-induced stomatal closing by ABA was identified in 

classical studies [64] and studies have shown that partial CO2 responses prevail in intact 

leaves of strongly ABA-insensitive mutants (e.g. [49]). The study of [63] also points to the 

open question whether or not CO2 causes a rapid increase in the guard cell ABA 

concentration (within ca. 3 min of CO2 exposure) or whether basal ABA signaling 

synergistically amplifies the CO2 response as CO2 and ABA target the same stomatal 

closing mechanisms. Further evidence for establishing the evolutionary timeline when 

functional ABA signaling gene expression appeared in guard cells could be helpful for 

further refinement of evolutionary models.

Regulation of stomatal movements by pathogens and interaction with ABA 

signaling

Open stomata represent main gateways for pathogen entry. Therefore, closing of stomata in 

response to pathogens and pathogen-associated molecular patterns (PAMPs) serves as the 

first line of defense against pathogen invasion [65]. Many studies have investigated the 

interplay of PAMP-mediated and ABA-mediated stomatal closure. Exposure of guard cells 

to pathogens and PAMPs activates S-type anion channels [66–69]. It has been shown that 

OST1 is required for stomatal closure induced by PAMPs including lipopolysaccharides 

[70], the flagellin peptide flg22 [69,70], and yeast elicitor (YEL) [68]. However it was also 

reported that flg22-induced stomatal closure is partially dependent on OST1 [71], and OST1 

is not activated by flg22 [71] and YEL [68]. The ABA receptors PYL8/RCAR3 and PYL7/

RCAR2 and the PP2C PP2CA are not involved in Pseudomonas syringae pv tomato (Pst)- 

and flg22-triggered stomata closing [72]. The PP2C ABI1 was reported as not involved in 

flg22-triggered stomatal closure [69], while an independent study shows ABI1 plays a role 

in YEL-mediated closure [68]. It is evident that further investigation is required for the role 

of early ABA signaling components including OST1 in biotic signaling in guard cells. The 

roles of CPKs in biotic signaling will also be of interest [67]. Roles of ABA biosynthesis in 

pathogen/MAMP-triggered stomatal closing are controversially discussed in Arabidopsis 

and tomato [69–71,73].

Reactive oxygen species (ROS) function as a second messenger in both guard cell ABA and 

biotic signaling. The NAD(P)H oxidases RESPIRATORY BURST OXIDASE HOMOLOG 

D (RBOHD) and RBOHF function in ABA-triggered ROS production and Ca2+ channel 

Munemasa et al. Page 6

Curr Opin Plant Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activation in guard cells [74]. Recent biochemical analyses revealed that phosphorylation of 

RBOHD at distinct sites by CPKs and BOTRYTIS-INDUCED KINASE 1 (BIK1) is 

required for stomatal immunity to bacteria [75,76], indicating that RBOH and the 

downstream ROS production are key for the signal interaction between ABA and biotic 

signaling in guard cells. The detailed mechanisms were recently reviewed by [2].

Chemical genetics identified a novel small molecule 5-(3,4-dichlorophenyl)furan-2-yl]-

piperidine-1-yl-methanethione (DFPM) that interferes with ABA signaling, including in 

guard cells [77]. DFPM inhibits ABA-induced stomatal closure and S-type anion channel 

activation. DFPM does not inhibit ABA-dependent interaction of PYR1 and ABI1 and ABA 

activation of SnRK2 protein kinases [77]. DFPM suppresses imposed Ca2+ oscillation-

induced stomatal closure, suggesting that DFPM targets the Ca2+-dependent branch of ABA 

signaling. DFPM signaling requires PHYTOALEXIN DEFICIENT4 (PAD4), and 

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). PAD4/EDS1 are known as central 

regulators of basal and effector-triggered immunity [77,78]. Furthermore, natural variation 

in the DFPM response among Arabidopsis accessions identified the immune-receptor-like 

VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response) further 

establishing a link of DFPM to effector-triggered immune signaling [78]. Thus, DFPM 

provides a small molecule that enables specific dissection of crosstalk between an R-protein 

mediated-effector triggered immune responses and ABA signaling. Together these studies 

imply that multiple biotic signal inputs crosstalk with ABA signaling in guard cells.

Perspectives

Recent studies have proven that chemical control of ABA signaling is a promising potential 

strategy to improve drought tolerance of crop species. It was shown that synthetic ABA 

agonists can be utilized to induce stomatal closure and enhance drought tolerance [79,80]. In 

addition, a recent study elegantly proved the potential of controlling the ABA response by 

an engineered ABA receptor [81]. These findings also highlight the importance of basic 

research in this field towards addressing drought tolerance in crops. Because guard cells can 

synthesize ABA in a cell-autonomous manner and also take up ABA, a key question is 

which pathway is dominantly activated when guard cells respond to various stresses. Non-

invasive single-cell imaging using ABA biosensors can answer this question in the future. 

Recent studies identified novel regulators that control plasma membrane localization and 

protein turnover of PYR/PYL/RCAR proteins [82,83], and their roles in guard cell ABA 

signaling remains to be determined. Single-cell metabolome and proteome analyses have 

identified an array of possible candidates as modulators of guard cell ABA and biotic 

signaling [84,85], but their function and regulation need to be investigated in detail. 

Electrophysiological studies using Xenopus oocyte systems have led to significant advances 

in our mechanistic understanding of guard cell ABA signaling and enable rapid testing of 

signaling mechanisms and models. However, observations from in planta analyses cannot be 

fully explained by these studies suggesting a more complex in planta network [39]. For 

example, in planta analyses demonstrate a strong dependence of Ca2+-dependent signaling 

on the Ca2+-independent ABA signaling pathway [39]. Along with oocyte 

electrophysiological and biochemical analyses, in planta analyses (e.g. higher-order 

mutants) will be required to understand in vivo guard cell ABA signaling.
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Highlight

• ABA triggers a robust signal network that controls stomatal closing

• Guard cell ABA levels are controlled by biosynthesis, catabolism, and transport

• SnRKs and CPKs are key for ABA activation of anion channels in guard cells

• PP2Cs down-regulate both Ca2+-independent and Ca2+-dependent ABA 

signaling branches

• Multiple biotic signal inputs target ABA signaling in guard cells
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Figure 1. Schematic model of ABA signal transduction mechanisms in guard cells. (Left)
In the absence of ABA, PP2Cs dephosphorylate SnRK2 protein kinases and the S-type anion 

channel SLAC1. Note that non-specific Ca2+ elevations are prohibited from activating 

stomatal closing mechanisms, as direct dephosphorylation of SLAC1 by PP2Cs prevents 

non-specific [Ca2+]cyt activation of S-type anion channels [39]. (Right) In the presence of 

ABA, PYR/PYL/RCAR ABA receptors bind to and inhibit PP2Cs, followed by activation of 

the Ca2+-independent protein kinases SnRK2s, including OST1, possibly by auto-

phosphorylation. Hyperpolarization-dependent Ca2+-permeable cation (ICa) channels are 

released from PP2C-dependent down regulation, resulting in ABA-responsive [Ca2+]cyt 

increases that activate CPKs. CPKs also are required for activation of ICa channels. ABA-

induced Ca2+ release from intracellular Ca2+ stores is not shown in this figure for simplicity 

and due to the need to further characterize the detailed signaling mechanisms. The active 

SnRK2s and CPKs phosphorylate SLAC1 with preferential affinities at different sites and 

activate the channel. The SnRK2 protein kinase OST1 also phosphorylates and activates the 

R-type anion channel ALMT12/QUAC1. In planta roles of CPKs and PP2Cs in ALMT12/

QUAC1 regulation and possible direct cross-regulation of CPKs and SnRK2s need to be 

further investigated. Activation of the two types of anion channels causes sustained plasma 

membrane depolarization, which drives K+ efflux through the voltage-dependent outward 

K+ (K+
out) channel GORK. The loss of K+ and anion leads to guard cell turgor decrease and 

stomatal closure. NAD(P)H oxidase-mediated ROS production is involved in guard cell 

ABA signaling. The ROS possibly activate GHR1 that mediates ABA activation of ICa and 

S-type anion channels. Phosphorylation sites in SLAC1 mediated by GHR1 need to be 

identified.
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