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Confidence in Memories:

Behavioral and Neural Approaches

Hannah Reade Joo

Abstract: The brain computes and uses uncertainty to guide decision-making. While

this is well established for information sensed externally in the form of perceptions, it is

less established whether information retrieved from internal storage, in the form of episodic

memory, is also treated probabilistically. To test this question, we developed a spatial

episodic memory task in which rats gamble their time on a memory choice in each trial,

indicating their confidence in its accuracy. We found that rats express higher confidence on

correct trials than errors, indicating a degree of self-reflective consciousness thought

previously to exist only in humans. We introduce a generative model for episodic memory

confidence that predicts the observed patterns of memory confidence.

To investigate the neural correlates of memory confidence, we implanted four rats with

triple-site, local field potential (LFP) and single-unit recording devices targeting the

orbitofrontal cortex (OFC), nucleus accumbens (NAc), and dorsal hippocampus. To

perform these surgeries, we developed a novel method for the implantation of thin-film

polymer electrode arrays through the dura mater. We demonstrate that this technology

can yield long-term, high quality single unit and LFP recordings.
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To investigate the neural activity in these three regions as it may relate to memory

confidence, we took as a starting point the decades-old observation that the hippocampus

is required for memory, and the more recent finding that hippocampal neurons store and

send information about past experience to the rest of the brain. In particular, a

hippocampal neural activity pattern known as the sharp wave-ripple (SWR) is an LFP

event associated with highly synchronous neural firing in the hippocampus and modulation

of neural activity in distributed brain regions. A growing body of evidence indicates that

SWRs support both memory consolidation and memory retrieval. This work is summarized

in a synthetic review that introduces the perspective that the SWR may mediate the

retrieval of stored representations that can be utilized immediately by downstream circuits

in decision-making, planning, recollection, or a confidence evaluation, while simultaneously

initiating memory consolidation processes. Finally, a proof-of-concept study of SWR

function in the episodic memory task is presented.
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Chapter 1

Introduction & Overview

Memory is essential to cognition1 and is impaired in a wide range of neuropsychiatric

disorders2–7, but we still have only a preliminary understanding of its implementation in

the brain. This may be because memory is one of many elements required for behaviorally

useful cognition, and therefore cannot be fully understood except in relation to other

cognitive processes. In particular, there are many behavioral scenarios in which decisions

must be made using incomplete information from memory. Memory corruption is possible

at every stage of memory processing, including encoding, consolidation, and retrieval8–11.

Memory confidence is therefore necessary in mitigating losses from potentially incorrect

decisions12. This can be achieved by reducing the resources invested in a decision according

to an introspective assessment of memory quality (just as we evaluate sensory evidence –

do those look like rainclouds? – we assess information stored in memory – did yesterday’s

weather report predict rain?). In addition to its indirect role in disease by its influence on

memory-based decisions, a failure of memory confidence itself can account directly for

psychiatric symptoms. For example, a patient with obsessive compulsive disorder (OCD)

may wash her hands repeatedly because she feels unclean despite full knowledge of washing

previously, but it is also possible that she may have abnormally low confidence in her
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memory of having washed13,14. A similar theory proposes a memory confidence deficit in

delusions and psychosis in schizophrenia15–17. Despite its clinical18 and fundamental

importance, it is not known how memory confidence is computed at the level of neural

firing activity. The unifying aim of this work is to establish a foundation for further

investigation of a memory confidence computation in the brain and its influence on

behavior.

This work is presented in four sections: a novel behavioral task to study memory

confidence; technology development for recording single unit neural activity in multiple

brain regions stably over months; a review and perspective on current evidence for the

hippocampal sharp wave-ripple (SWR) as neural correlate of memory; and preliminary

investigation of the relationship between the SWR and memory confidence.

Behavior: In a deviation from the traditional hippocampal, brain-first (that is, ‘inside

out’19) approach applied very successfully by my mentor, Dr. Loren Frank, the starting

point for this work has been behavior. We developed a task in which rats could use

knowledge of memory accuracy to maximize reward. A rich history of psychological studies

of confidence is focused almost exclusively on perceptual confidence, and frames it as a

complex “metacognitive” computation indicative of self-awareness and available to only a

subset of species, including rats20,21, monkeys22–24, dolphins25,26, and human subjects27–30.

Confidence in memories is significantly less studied than confidence in perceptions, even in

human subjects, and it is unknown whether non-primate species can compute it at all.

Thus, the first goal of designing a behavioral task was to test whether rats could compute

memory confidence; the second goal was to investigate its neural correlates using the rat as

a model system. Presented in chapter 2 is the final version in a series of three behavioral

tasks I designed to test whether rats can access memory confidence. For posterity: my

approach has been to personally observe every trial of every epoch or to have a technician

very familiar with the task (Hexin Liang or Charlotte Geaghan-Breiner) do so. My current

2



perspective is that this type of observation is invaluable at our current state of

understanding of brain and behavior, particularly for complex tasks. Our direct

observation of behavior led to the analysis and modeling of putative memory confidence in

rats presented in this dissertation.

Technology Development: After establishing the behavioral task, we were prepared to

record from the multiple brain regions that we hypothesized could contribute to memory

confidence. To investigate memory confidence at the level of neural activity, we focused on

the hippocampus (HPC), which is required for memory31,32 and is known to store and send

information about past experience to the rest of the brain33. We focused on two of those

other brain areas, the orbitofrontal cortex (OFC) and nucleus accumbens (NAc). Selection

of the OFC was motivated by previous findings that the OFC can represent confidence in

perceptual discrimination tasks34, and that inactivation of OFC has resulted in a

confidence deficit with no effect on choice accuracy35. Consistent with single-neuron

representations of confidence seen in rat OFC, lesion and imaging studies in human

subjects indicate the anterior frontal cortex in appraisal of uncertainty18. These studies

investigate confidence in the context of perceptual discrimination; electrophysiological

studies of confidence in memories are limited, restricted to human and non-human

primates36,37. The foundation of our choice to record in OFC is the hypothesis that it may

represent confidence not only across sensory modalities but in information retrieved from

memory. Our working hypothesis has been that neural firing in OFC corresponds to

memory confidence, and that behavioral confidence is influenced by hippocampal activity

representing past experience. We included in our investigation the NAc for its

responsiveness to reward and its known coordination with hippocampal activity38.

The technology development work in chapter 3 was necessitated by the aim to record single

units simultaneously in three brain regions over a data collection period spanning months.

For this, we used a novel recording technology that combines flexible polymer probes and a
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tetrode hyperdrive. To increase single unit yield in our electrophysiological recordings and

reduce operative time, we developed a novel delivery strategy for polymer probes through

the dura mater directly to their final recording sites. The force measurements were carried

out with technicians Kevin Fan and Jeanie Pebbles, and the in vivo demonstration surgery

and data collection with technician Hexin Liang. Together we validated that this approach

would result in single unit recordings at 90 days post-implant. As part of this work, I used

and gave feedback for ongoing development of Mountainsort 4.0, a spike sorting algorithm

based on the original Mountainsort 3.039. Together with Hexin Liang and Charlotte

Geaghan-Breiner, and with guidance from Jason Chung, I implanted high-density polymer

arrays into OFC (128 channels) and NAc (64 channels) and 24-tetrode hyperdrives (96

channels) to hippocampal CA1 to record population and spiking activity. We collected full

combined neural and behavioral datasets from the four animals included in chapter 2 over

an approximately three-month recording period each.

Synthetic review of the hippocampal sharp-wave ripple: In perceptual

discrimination, confidence depends on the quality of sensory evidence (e.g., the more

obvious an odor cue, the more confident a subject is)34,40. We hypothesize a similar

principle for hippocampal memory-dependent decisions, such that the computation of

memory confidence is dependent on the accuracy and robustness of a memory trace. Such

a link between the neural representations of memory and of memory confidence has not yet

been found. Simultaneously with the technology development, I considered which neural

phenomena to focus on as a potential memory substrate. A promising candidate

mechanism for memory is the hippocampal sharp wave-ripple (SWR), an event

corresponding to the synchronous activity of neurons representing recent past experience33

that is a longstanding focus of the Frank Lab.

SWRs influence activity brain-wide (including OFC and NAc)38,41–48, and have been

proposed as a candidate mechanism for the rapid storage of memories in hippocampal

4



targets such as the prefrontal cortex8,49–54. Consistent with a role in memory consolidation,

the incidence of SWRs is correlated with experiences thought to require learning, such as

reward55,56 and novelty57. SWRs have also been reported to structure place cell activity

representing paths ahead of an animal’s current location, potentially as a mechanism for

memory retrieval in decision-making and planning48,58–62. Moreover, it has been shown

that SWRs are necessary in the awake state for accurate choices63,64. Based on this

evidence, we hypothesized that SWRs could be responsible for transmission of mnemonic

information to a downstream memory confidence computation. Developing specific

hypotheses as to when SWRs would be important and specifically what function they

would serve required a review of the literature, which led to clarification and synthesis of

what has been discovered so far regarding SWRs in consolidation and retrieval. This work

constitutes chapter 3. Finally, we investigated the possible function of SWRs in relation

to memory confidence behavior, presented in appendix A.5.

May 2020, shelter-in-place

Berkeley, California
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Chapter 2

Episodic memory confidence in the

rat: a novel behavioral task and

memory model

Abstract: The brain computes and uses uncertainty to guide decision-making. While this

is well established for information sensed externally in the form of perceptions, it is not

known how information retrieved from internal storage, in the form of episodic memory,

may also be treated probabilistically. To test this question, we developed an episodic

memory task in which rats must visit the one of two cued locations on a six-arm maze that

was visited longer ago in an ongoing sequence. On each trial, rats gamble a variable,

self-determined length of time on the choice. For correct choices only, a reward amount

dependent on the gambled time is delivered. This allows rats to maximize overall reward

by gambling more on choices that are based on more accurate memories of where they went

at what time. Taking gambled times as a graded, trial-by-trial behavioral readout of

confidence, we found that rats express higher confidence on correct trials than errors.

Using a modern machine learning approach, we defined a synthetic memory difficulty axis
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and found that rats show a graded pattern of confidence as a function of memory difficulty.

We introduce a generative model for episodic memory confidence that represents memories

as distributions with asymmetric noise that increases elapsed time since the episodes. Due

to its unique, time-dependent noise profile, the model differs significantly from previous

signal detection theoretic models of perceptual confidence. The model predicts the

observed patterns of memory confidence. Evidence of an ability to assess confidence in

episodic memories implies animal autonoetic, or self-reflective, consciousness, previously

thought to exist only in humans.

2.1 Introduction

An organism can access information from two sources: the external world as it exists in the

present, and memory, the internal store of past experience65. Neither source is veridical:

green can be perceived as blue66; an image never seen before can be mistaken for one that

was. Some of this inaccuracy is due to adaptive, systematic shifts in perception or memory

based on prior experience that bias them toward more likely scenarios (for example, by

Bayesian inference in predictive coding67). In addition to this systematic error, statistical

error results from limitations of perceptual or mnemonic processes. Metacognitive

monitoring of this error, in the form of uncertainty in the perception itself or confidence in

subsequent decisions68–70, can valuably inform future action71,72. For instance, uncertainty

can drive information seeking73–75 or decreased resource investment in decisions76. For

information perceived directly, in real time, estimates of uncertainty in sensory percepts are

known to influence behavior in adult humans77,78, dolphins25, macaques22–24,36,79–83,

capuchin monkeys84, honey bees85, and rats20,34,35,81,82,86. Theoretical models of perceptual

uncertainty based on signal detection theory (SDT) can successfully describe choice

uncertainty40 and, in primates, its dynamics78,87,88. Whether information sourced
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internally, from memory, is also treated probabilistically, is less established36,89. The focus

on confidence in perception is so exclusive that the term decision confidence is often used

interchangeably in the literature with perceptual decision confidence81,86,90–92.

Like perception, memory is unreliable. Its degradation is time dependent. While there is

no such thing as an ‘old’ percept, an old memory, formed long ago, will persist and evolve

over time. As it fades and loses fidelity, its inaccuracies can lead to suboptimal decisions.

Memory inaccuracies likely result from propagation of perceptual errors in addition to

errors in memory processes proper, including encoding and retrieval in consolidation or

use93,94. Monitoring these processes directly, or monitoring memory quality by some other

mechanism, would confer the same adaptive advantages that exist for perceptual

uncertainty70. There is evidence that humans95 and primates36 access confidence in certain

types of memory, and that an inability to do so can result in neurological or psychiatric

symptoms18. Whether non-primate species estimate uncertainty in their memories or

compute confidence in memory-based decisions, and whether these exert control over

behavior, are completely unknown. Indeed, it was long believed that confidence

computations in general may be restricted to primates or humans96–99.

Given the relative complexity of memory, the studies that establish non-primate perceptual

confidence do not necessarily imply an ability in these same species to also compute

memory confidence. This idea, that an organism may be able to compute confidence in

perceptual discrimination but not memory, originated alongside the concept of episodic

memory itself100,101. In Tulving’s original formulation, three different forms of phenomenal

subjective experience emerge from metacognitive monitoring of different memory systems:

from making judgments of external stimuli in the present moment, based on procedural

memory, anoetic consciousness emerges; from retrieving semantic memories, noetic

consciousness emerges; and from retrieving episodic memories, or mentally simulating the

future, autonoetic consciousness emerges. Only the third level, autonoetic or ‘self-reflective’
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consciousness, is proposed to require — and to imply — conscious self-representation, or

self-awareness65,102,103. This form of consciousness has been argued to exist only in

humans99,104.

Studies that have identified neuronal correlates of memory confidence in human and

non-human primates have focused exclusively on visual36,37,80 or object105 recognition

memory106. In a recent review of human neuroimaging studies of metacognition, Vaccaro

and Fleming identified thirty published metamemory studies95. The majority of these were

also recognition tasks, for words107, face-name associations108, facts109, or visual scenes110.

Even those studies that described the task as requiring episodic memory did not require

retrieval of personally experienced events in their temporal and spatial contexts111,112, the

closest being a test of memory for events in a recently watched film113. Although there is

ongoing debate regarding their relative contributions, familiarity (or knowing) and

recollection (or remembering, equivalent to episodic recall)101 are both known to support

recognition memory. An isolated test of animal autonoetic consciousness, in contrast,

requires a behavioral task dependent on episodic memory retrieval114. If such an animal

model could be established, it could be used to interrogate the neural mechanisms

underlying this important function.

Here, we developed a task to study confidence in memories for personally experienced

events in their temporal and spatial contexts. In other words, high choice accuracy on the

task requires knowledge of ‘where’, ‘when’, and ‘what’, defining features of episodic-like

memories in animals99,115,116. The task design prevents it from being solved using a

decaying memory trace strength/familiarity. Given the evidence that such memories are

supported by the hippocampus117, we designed our task for the rat, in which the

hippocampus and its contribution to temporal and spatial sequences in memory are well

established33,117,118. Other advantages of the rat as a model system for such a study are the

ability to perform relatively many trials of a complex task that takes place in real space,
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and the recording technology for high density recordings in freely moving animals119,120.

Of the various methods used to elicit confidence ratings in non-verbal subjects (including

human infants), post-decision wagering has advantages76,121. For instance, it demonstrates

both metacognitive monitoring and control of behavior122. Post-decision wagers are

typically binary, providing high or low-bet options, but verbal subjects can be instructed to

report confidence on a continuous scale (for example, by using a button press of

self-determined length123). To measure confidence on a continuous scale in non-verbal

subjects, researchers have used willingness to wait for a delayed reward of fixed size that is

delivered only following correct choices34,35. This yields a graded confidence report on all

error trials and a subset of correct trials on which reward is withheld, allowing

experimenters to determine how long the rat would be willing to wait before leaving. Here

we use a new form of confidence report in which rats make a memory-based choice, then

gamble their time on the outcome. Time gambling provides a graded confidence report on

every trial, regardless of outcome. In combination with an episodic memory logic, time

gambling as a confidence report allowed us to study whether a non-primate species, the rat,

uses metacognitive memory retrieval to guide decision-making and resource investment.

2.2 Results

2.2.1 The episodic memory confidence reporting task requires

memory for the order of past spatial trajectories

In our trial-based task, the use of memory confidence is required to maximize reward. Each

trial requires a memory-based decision, then presents an opportunity for the rat to gamble

its time on the outcome of that decision. A larger reward amount is delivered for longer

gambled times, but only for correct choices. If rats are able to compute confidence in their
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memories, they should gamble more time on choices that are based on memories in which

they have higher confidence.

The task takes place in fixed, hour-long epochs, with self-paced trials. On every trial of the

normal task logic, two of six total ports are cued (Figure 2.1). The correct choice, or target,

is the one that was last visited longer ago in the cumulative, ongoing sequence. The

distractor is the one that was last visited more recently. To indicate a choice, the rat must

visit and nose-poke at the port. This visit is then appended to sequence of past visits. If

the rat makes an error, it is this choice, not what would have been the correct choice on

that trial, that is appended to the sequence of past visits. The task differs from a

recognition memory task or classic radial arm maze sequence tasks in that the rat does not

visit a series of spatial locations, experience a delay, then make judgments about the order

of those visits in a brief sequence. Rather, the sequence is ongoing for the entire hour-long

epoch. This requires rats to judge which of two episodes occurred earlier in the ongoing

sequence.

This logic is implemented on a large, branched maze with a central home port, a back port,

and three main branches, which bifurcate into six stems total, each of which has a choice

port at its end (Figure 2.1). Every port can be cued with a light and deliver liquid milk

reward. During an initialization period, the rat is cued to visit each of the six choice ports

in a randomly generated order. After every port has been visited at least once, the normal

task logic begins.

Target and distractor are selected randomly on every trial, with two restrictions. First,

there is a spatial restriction on target types (Figure 2.1). The target and distractor are

always located on topologically adjacent maze arms; A/B and B/C are allowable pairs, but

A/C is not. This results in six total spatial trial types. Three of these, A/B, C/D, and

E/F, are stem trials, pairs with trajectories that share a branch but differ by the stem

portion of the trajectory; the three others, B/C, D/ E, and A/F, are branch trials that cue
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pairs with trajectories that differ in both branch and stem. The branch trial A/F is special

among these in that the angle between the trajectories is larger, and they are farther apart

in space. With the exception of the branch type A/F, stem and branch trials do not differ

in the visual angle or Euclidian distance between the cues.

The second restriction on trial types is temporal, and restricts distractor and target ages.

The distractor is selected such that its last visit (age) is always 1, 2, or 3 trials ago. By

definition, the target’s age is always higher than that of the distractor. Note, however, that

this does not mean that targets are always age 4 or greater: distractor-target pairs 1-2, 1-3,

and 2-3 are allowable. Because of this, the rat cannot simply remember and avoid the ports

aged 1, 2, and 3 on every trial, as targets aged 2 and 3 may be presented as targets. By

presenting distractor-target pairs spanning a range of ages, we could test choice accuracy

as a function of how long ago the to-be-remembered episodes occurred. Because the

presented target and distractor can be influenced by the rat’s particular sequence of

previous visits, we checked for each rat that a balance of trial types was presented

(Figure 2.7). The proportion of trials with distractor ages 1, 2, and 3 is approximately one

third each. The distribution of presented distractor-target age pairs was the same for each

port as the overall distribution. Figure 2.1D shows the full trial sequence for a correct (top

row, blue) and an error (bottom row, red) choice.

2.2.2 Rats have the option to gamble their time following each

trial, indicating confidence in the memory-based choice

Once at the port of its choice, the rat has an option to gamble its time by maintaining the

nosepoke position for a variable, self-determined length of time (Figure 2.1). Withdrawal

from the reward port terminates the gambling period. For correct choices only, a liquid

reward amount dependent on the length of gambled time is delivered. This reward amount
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is delivered at the end of the investment period at the choice port, and at the back port at

the end of the trial. The reward amount dependence on gambled time allows the rat to

maximize overall reward by gambling more time for choices that are based on memories it

assesses to be more accurate. Longer gambled times have a higher possible reward payout

in the case of a correct outcome, but a higher penalty in the case of an incorrect outcome.

By assessing whether gambled times are higher for choices that turn out to be correct, we

test whether they use memory confidence to guide their gambling behavior. Importantly,

because distractor and target ages are not directly observable ‘first order’ sensory stimuli,

rats cannot simply use an associative strategy, gambling more time on specific stimuli that

also have higher accuracy rates 124.

This form of confidence report tests two aspects of metacognition at once, both monitoring

and control125. It also overcomes limitations of previously used post-decision wagering

paradigms including those that use invested time35: it is graded rather than binary,

available on every trial, and relatively more ethological than selection of a token on a

screen. Furthermore, no new information regarding the probability of choice outcome is

gained by the subject over the investment period, in contrast to post-decision wagering

tasks in which a delayed reward is eventually delivered on correct trials. Preventing

acquisition of new information in the post-decision period is important for testing whether

confidence evolves following the decision, even in the absence of new external evidence (i.e.,

as in post-decisional locus models of confidence)28,126,127.

The reward function (Figure 2.1) was designed to counter the possible effects of temporal

discounting on gambled times. Like humans, rats prefer smaller rewards sooner to larger

rewards later128,129. The expected effect of such temporal discounting is that rats would

reduce their gambled times to receive a smaller reward sooner rather than waiting for a

larger one. This effect may be greater on trials where they are highly confident in their

memories and choice, as the option of a smaller reward sooner is more certain. This effect

13



could obscure the difference between gambled times on correct and error trials by inducing

a left shift of gambled times on correct trials. To counter this possible effect, the reward

amount delivered was a piecewise function of gambled time with a relatively low derivative

for the first 2.2 seconds and a relatively high derivative after 2.2 seconds (see Methods). To

ensure a high enough number of trials per epoch to sample trial types evenly, we

discouraged extremely long gambled times greater than 9.5 seconds by choosing a reward

function with a derivative that fell by 9.5 seconds to the level it was prior to 2.2 seconds. A

non-zero intercept ensured that the rat received an appreciable reward amount (350 ms, or

5 mL) even for very short waits on correct trials, preventing the development of

uncertainty in the memory rule itself following a series of short gambled times.
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Figure 2.1: Episodic memory confidence task. A. Memory-based logic. On each trial (top to bottom), two of
ports A-F (top, left to right) are cued with a light (yellow fill, each row). On each trial, the correct choice is to visit the port
that was visited more trials ago (i.e., has a higher age, indicated by number in circle, called the target). Bold number indicates
the target, unbold number indicates distractor. The rat’s choice on each trial is indicated by the colored circle (correct choice,
purple; error choice, orange). Distractor age is restricted to 1, 2, or 3. On each trial, ages of unvisited ports increment and the
last-visited port is set to age 1. Left panel: a sequence of correct choices. Right panel: if the rat made an error to distractor port
F (orange outline), then on trial n+1, port E would be correct. That is, the correct sequence depends on where the rat visited
previously, not what was presented. B. Task environment. The task is implemented on an elevated track with back port,
home port, and six choice ports (A-F), located at the ends of three branches that bifurcate into stems. C. Spatial restriction
of trial types. Cued ports are always adjacent to one another, producing: stem pairs AB, CD, EF (left panel), for which
the trajectories to the choices share a branch and differ by their stems (clockwise from left: blue, purple, green dotted lines);
and branch pairs BC, DE, FA, which differ in both branch and stem (right panel; clockwise from upper left, cyan, magenta,
lime). D. Example trial, correct (top) and error (bottom). Trial sequence (left to right) with rat action at top and
task response at bottom of each panel, for each of correct (upper row) and error (lower row) choices. Highlighted text indicates
events that occur only on correct trials (blue) or error trials (red); events that occur regardless of outcome are not. Panel 1,
top and bottom: trials begin with rat (turquoise triangle) at home port (center, gray), where the rat receives a small, fixed
reward. Target and distractor choices are cued with lights. Panel 2: The rat runs to and nosepokes at his port of choice, target
(port E, age 6 in bold) on a correct trial (top) or distractor (port F, age 2) on an error trial (bottom). For both, the choice
lights turn off. Panel 3: at the choice port, the rat maintains the nosepoke position for a variable, self-determined length of
time to indicate his confidence that the choice outcome will be correct. When he withdraws, the choice light will turn on again
if he was correct (top) but stay unlit if he was in error (bottom). Panel 4: The rat re-pokes at the same choice port, and its
light turns off and delivers reward on a correct trial (top) or no reward (bottom). The back port light turns on. Panel 5: The
rat then runs to and pokes at the back port, and receives a reward amount equal to that received at the choice port. For an
error trial (bottom), this is no reward. E. Graded, trial-by-trial, confidence report. When the rat nosepokes at a port
on a correct (blue) or error (red) trial, the gambling period begins. The reward amount he receives on a correct trial (top) is
a function of how much time he gambles on the choice by maintaining the nosepoke position. On an error trial (bottom) he
receives no reward; the time is lost. Withdrawal from the port indicates the end of the gambled time. The outcome of the trial
is revealed: on a correct trial (top), the choice port re-lights; on an error trial, the port does not re-light. On a correct trial,
the rat can re-poke, still at the choice port, to receive a reward amount dependent on the length of time he gambled.

15



Rats achieve high choice accuracy overall. We collected approximately 3000 trials

from each rat over a period of stable performance accuracy. Each epoch was approximately

50 - 100 trials long, with trial types and errors distributed throughout the epoch

(Figure 2.2). Rats achieved a stable performance average of 80.2± .04 percent accuracy on

the task (mean ± SEM, N = 192 epochs pooled from 4 rats), exceeding what could be

achieved by selecting uniformly at random between the six ports or between the two cued

ports (Figure 2.2). Unlike in a perceptual discrimination task, where trial difficulty can be

strictly controlled by manipulating the stimulus features (e.g., the proportion of dots

moving left or right; the relative proportions of odorants in a mixture), the memorability of

an episode is confounded by various internal factors. For instance, an episode to which the

subject paid more attention may be remembered better, but this is not controlled or even

observable by an experimenter. A starting point is that memory becomes less accurate over

time130. We therefore hypothesized that rats would show higher choice accuracy on lower

distractor ages, which happened more recently. As expected, the average choice accuracies

for distractor ages 1, 2, and 3 respectively were 89.5± 0.5, 77.7± 0.7, and 72.7± 0.7

percent (N = 192 epochs pooled from 4 rats; Figure 2.2). The hierarchy of accuracies is

statistically significant at p� 10−4. We hypothesized an additional effect of the difference

between target and distractor ages, as it has previously been shown that episodes that

occur closer together in time are more likely to be confused with one another131.

Controlling for distractor age, we found that choice accuracy was higher for older targets,

which had an overall range of 2 to about 20. The choice accuracy for each distractor/target

pair is shown in Figure 2.2.
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2.2.3 Rats show higher choice accuracy on stem than branch

trials

Performance accuracy on stem trials was 88.6± 0.4 percent, and on branch trials was

71.1± 0.8 percent (means ± SEM across N = 4 rats; Figure 2.2). We considered whether

the difference in performance could be the result of different strategies applied to the two

trial types. On stem trials, cued trajectories are distinguishable only by the time the rat

last traversed the stem where the port is located (the stem age). On branch trials, in

contrast, cued trajectories are distinguishable by both their branch and stem ages

(Figure 2.1). For the majority of branch trials, the trajectory to the correct port is defined

by the oldest branch and the oldest stem. However, on approximately twenty percent of

branch trials (18.7, 18.4, 17.7, 18.2 percent for rats T, S, D, R), the port on the oldest

stem is not also on the oldest branch. These ‘conflict trials’ gave us an opportunity to

examine the relative effects of branch versus stem age on memorability.

We examined conflict trials and found that rat choices were more consistent with use of a

branch than stem rule: an average of 64.5± 1.6 percent of choices were consistent with a

branch rule versus 32.8± 1.5 percent consistent with a stem rule (average across rats ±

SEM, N = 4 rats). That is, on conflict trials, rats more often selected the cue with the

older branch, not the older stem. This suggests greater reliance on the memory of branch

segments of previous trajectories, of which there are fewer than there are stems, and which

are physically longer trajectories. However, rats do not rely solely on a branch age rule.

For non-conflict branch trials, rats’ performance accuracy was no better predicted by

branch age than stem age (logistic regression accuracies and AUCs consistent; p ≈ 0.3).

Because branch and stem trials were presented in random order throughout the epoch, and

stem trials require knowledge of the stem history, the rat was required to remember at all

times the stem history, not just the branch history. Together these results suggest that

recency judgments of episodes may be influenced by memory of each of the different
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segments of previously traversed paths.

Excluding conflict trials, performance accuracy was still higher on stem than branch trials

(88.6± 0.4 vs. 78.0± 1.1 percent across N = 4 rats). We hypothesize that this could be

because stem but not branch trials allow the rat to partially reenact the trajectories

leading to the cued ports before making a decision. Intriguingly, there was no difference in

accuracy between the different-arm trial types BC and DE versus different-arm trial type

AF (Figure 2.2; t-test, 2-tailed p > 0.5 for all rats except R, with p = .0003), whose ports

A and F are separated by a greater distance and wider visual angle (Figure 2.1). This

suggests that difficulty depends on whether the distractor and target ports share a

partially overlapping trajectory; if they do not, there is no additional effect of how far

apart the non-overlapping trajectories are in space.
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Figure 2.2: A. Full, hour-long epoch for one rat. Y axis: trial start time in seconds. X axis: State for each of the six
choice ports. Target (correct) port is purple and distractor (error) port is orange, with lighter shade indicating age (i.e., which
occurred longer ago in the sequence). Three orange shades correspond to distractor ages 1, 2, 3; three purple shades correspond
to target ages 2-3, 4-6, or 7 or older. The X over the port indicates the port selected by the rat (which can be an uncued port,
no color). B. Performance is stable across epochs. Choice accuracy, defined as the proportion correct, is stable per rat for
each epoch included in the dataset. Error bars are standard error for a binomial process. C. Choice accuracy as a function
of target and distractor ages, representative rat S. D. Choice accuracy for stem versus branch trials, representative rat
S (N = 4111 trials). E. Trial types are balanced over target and distractor age for each port, representative rat S,
(N = 4111 trials).
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2.2.4 Performance accuracy is more consistent with the memory

rule than alternative strategies

We tested whether the true memory rule, to visit the least recently visited of the two cued

ports, could be degenerate with one or more other strategies that did not require memory

and would be easier to apply. Each of ports A-F was equally likely to be presented as a

target or a distractor, preventing success of a selection rule that favored particular ports

(see Methods). We also verified that choice accuracy was higher than could be achieved by

learning a fixed sequence of port visits (Figure 2.8). The probability of any of the other five

ports being presented subsequently is approximately equal, at 0.2 (Figure 2.8).

Next, we considered an alternative strategy in which each of the six spatial trial types is

treated as a separate alternation task. Under this hypothetical alternative strategy, rats

would remember for each of the six port pairs which of the two ports was last visited and

choose the other. To test this alternative strategy, we simulated choices that the strategy

would dictate for the actual sequence of trials experienced by each rat in each epoch. We

calculated the proportion of these trials that yielded a correct choice under the true rule.

Such an alternation strategy was not consistent with the true rule, producing a choice

accuracy that was below the accuracy achieved by rats performing the task (Figure 2.8).

Moreover, this strategy was not consistent with the rat’s actual sequence of choices

(Figure 2.8). Performing this analysis per epoch allowed us to rule out the possibility that

the rat employed an alternation strategy selectively, such as earlier or later in learning.

Using the same approach, we considered and ruled out additional alternative strategies

(Figure 2.8) to select from the two cued ports the port that was: farthest from the

last-visited, the leftmost, the least visited, the least cumulatively rewarded over the epoch

in total, the most cumulatively rewarded over the epoch in total, or the least recently

rewarded. The three of these strategies that had the highest agreement with the true rule,
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exceeding 50 percent, were to visit the least cumulatively rewarded, the farthest from the

last visited, or the least recently rewarded. This is unsurprising, as each of these

alternatives is correlated with the true rule. However, none of these strategies was more

consistent with rat choices than was the true rule (Figure 2.8).

2.2.5 Spatial type and distractor age are the major determinants

of performance accuracy

We next investigated whether features other than spatial trial type, target age, and

distractor age influenced choice accuracy less overtly than by an alternative strategy. A

secondary reason to identify contributors to choice accuracy is that these can be inferred to

also be the determinants of trial difficulty and therefore define a memory difficulty axis,

along which confidence for each of correct and error trials is expected to vary. To

investigate additional effects of features other than spatial and temporal trial type on

choice accuracy, we trained a deep neural network (DNN) to predict rat choice based on an

exhaustive and a reduced feature set. The exhaustive feature set included the age of the

target and distractor ports, the spatial trial type, as well as the last, cumulative and

maximum single reward amount received and the last and cumulative dwell time spent at

each of the target and distractor (Table 2.3). The reduced feature set included only the

target and distractor ages, spatial trial type, and last reward and dwell time at each of the

target and distractor.

We trained a separate model for each rat, using a five-fold cross-validation procedure

(Figure 2.9). By comparing the performance of the model on the exhaustive and reduced

feature sets, we determined whether the additional features significantly improved model

performance. We compared model performance using two metrics. First, the average model

accuracy in predicting rat choice outcome (correct, error) was approximately 70 percent
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Figure 2.3: Table: T , D, t, and r stand for target, distractor, time, and reward amount, respectively. The abbreviations
‘max.’ and ‘cum.’ are short for ‘maximum’ and ‘cumulative’, respectively. An ‘x’ marks the combinations that are part of
the full model and the red ‘x’ denote the combinations of features used in the reduced set. B. Comparison of DNN and
logistic regression models for full and reduced feature sets by ROC AUC. Error bars = standard deviation across the five
folds used in training. C. Comparison of a logistic regression model trained on different feature sets including only
spatial and temporal features or spatial and temporal features plus last reward amount or spatial and temporal features plus
last dwell time D. Comparison of a logistic regression model trained on the base feature set including spatial
and temporal features of time in terms of number of trials versus clock time.
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(Figure 2.9), and the ROC AUC was approximately .75 (Figure 2.9). We also trained and

tested a model on a combined dataset across rats, which yielded similar results. The

primary advantage of a DNN was its capacity to learn interactions we did not explicitly

include as interaction terms. For greater interpretability, we also trained a logistic

regression model, which had comparable performance accuracy.

We next trained a logistic regression model on subsets of the reduced feature set to test

their relative contributions to choice accuracy. We compared a base feature set including

five predictors, distractor age, target age, branch/stem type and the interaction

terms branch/stem × distractor age, branch/stem × target age to one that

included either the last reward amount or the last dwell time at the target and distractor

ports. We found that including each of these improved model performance only slightly,

suggesting that the most important features in predicting choice accuracy were spatial and

temporal (Figure 2.9).

To investigate whether the dependence on distractor age was the result of elapsed trials or

elapsed time itself, we compared the performance of two logistic regression models, one

with target and distractor ages in units of trials and another with target and distractor

ages in units of absolute time (Figure 2.9). For each rat, substituting port age in elapsed

time rather than trial count yielded significantly less accurate (AUC) predictions of rat

performance accuracy, indicating that what matters is the number of elapsed experiences

rather than elapsed time. A similar result has been reported in episodic sequence memory

tasks in monkeys132. Having identified distractor age in units of trials as the most

important determinant of choice accuracy, we could ask whether gambled times predicted

choice outcome over a range of memory difficulty levels, which would provide evidence of a

memory confidence computation.
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2.2.6 Rats use memory confidence to guide time investments

To maximize overall reward in this task, rats should invest more time in choices that are

more likely to be correct. Our previous analysis demonstrates that choice accuracy is

determined by memory variables, primarily distractor age. If choice outcome depends solely

on memory, the only way for a rat to selectively gamble more on choices that turn out to

be correct is to introspectively evaluate memory accuracy. Longer gambled times on trials

that turn out to be correct would therefore indicate a memory confidence computation.

We found that rats gambled more time preceding correct outcomes relative to errors overall

(Figure 2.4; average AUC 0.74 ± .03 SEM, N=4 rats; for each rat, two-tailed KS test

p < 1× 10−5). On average, gambled times were 1.45± 0.33 seconds higher for correct than

error trials (average ± SEM, N=4 rats). Gambled times were higher for correct than error

trials even when controlling for trial stimulus features, which in this task are the target and

distractor ports themselves. Figure 2.4 shows that for every port pair, gambled time on

correct trials was longer than gambled time on error trials (two-sided KS test

p << 1× 10−4; all rats shown in Figure 2.10).
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Figure 2.4: Gambled times predict choice outcome. A. Gambled times were significantly higher for correct (blue)
than error choices (red), as shown for representative rat S, inclusive over all trials in all epochs (N error trials = 738; M correct
trials = 3306). Dashed vertical lines = average gambled times. B. Gambled times were significantly higher for correct than error
choices within each port pair, representative rat S. C. Gambled times are stable within epochs. Each trial is depicted
as a vertical line, located on the x-axis at the time it started. Correct trials show lines extending above the x-axis; error trials
show lines below the x-axis. The length of each line corresponds to the amount of time gambled on the trial. Marker color
indicates distractor age, with darker colors corresponding to harder trials: age 1 is light orange, age 2 is orange, age 3 is dark
orange. Open circles = branch trials; filled circles = stem trials. Diamond marker indicates an error to an uncued port.
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Previous confidence studies in perception and memory have reported lower latency to

choice for trials on which subjects are more confident. In our task, too, we found that the

latency to choice was significantly lower on correct than error trials for each rat (average

AUC of 0.55 ± SEM 0.26, N=4 rats, and two-sided KS test, p < 0.05 for each rat; excludes

data with latency to choice above 30 seconds), and 0.69 seconds lower on correct than error

trials on average (N = 4 rats). Latency to choice was also lower on correct than error trials

for branch and stem trials evaluated separately.

A longer latency to choice can be understood as an information seeking behavior secondary

to uncertainty. From this perspective, longer latency to choice on error trials corroborates

relatively short gambled times on these trials. To rule out the possibility that gambled

times were determined based primarily on trial-by-trial observation of choice latency rather

than metacognitive assessment of memory, we found that latency to choice did not

significantly predict choice outcome when controlling for memory trial type. Pooling all

data, we found only a slight negative correlation between latency to choice and gambled

time with R2 < 0.05, explaining little of the spread in gambled times.This indicates that

rats do not rely on latency to choice as an external decision variable to determine their

gambled times.

2.2.7 Rats gamble less time on error visits to uncued ports

While watching rats perform the task, we observed that they occasionally made errors to a

port that was not one of the two cued ports (uncued errors). Excluding conflict trials,

uncued errors represented an average of 20.9 ± 4.3 percent of total errors (mean and SEM

across N=4 rats), evenly divided between branch and stem trials. If rats have learned the

component of the rule that the correct choice is always one of the two lit ports, we expect

that they should have relatively low confidence on this subset of error trials and thus
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gamble short times. Critically, these gambled times would represent confidence in the

decision itself but not confidence in the age of the target or distractor. Consistent with this

prediction, the time gambled on uncued errors was significantly lower than for other errors

(Figure 2.5 and Figure 2.11; average AUC 0.74 ± .01 SEM, N=4 rats; each rat, two-tailed

KS test p < 1× 10−5).

Interestingly, uncued errors had a significantly longer latency to choice than did errors to

the distractor port (8.9 ± .7 seconds versus 6.3 ± 0.5, average ± SEM across N=4 rats;

t-test for independent populations p < 0.0005 for each rat). Given that faster responding

can be correlated with higher motivation, attention, and anticipation, it is possible that the

longer latency to choice can be explained by low task engagement or foreknowledge that no

reward will be received. Alternatively, the longer latency to choice could represent a longer

period of deliberation to select between the two cued ports, before rats give up and select

an uncued port. The majority (69.1 ± 3.2 percent, N=4 rats) of uncued errors occurred on

trials with distractor age 1, with no significant difference in occurrence as a function of

target age (Figure 2.5). Given that this is the distractor age with the highest choice

accuracy, suggesting it is the easiest, it is possible that the correct answer is known and

that uncued errors correspond to an alternative strategy such as intentionally ‘throwing’ a

trial for alternative gain. In particular, these errors may correspond to a type of

exploration to ascertain that the optimal strategy is still to follow the learned rule.

Gambled times were still significantly different for correct versus error trials after excluding

uncued errors (Figure 2.5 and Figure 2.10; average AUC 0.71 ± .02 SEM, N=4 rats; each

rat, two-tailed KS test p < 1× 10−5).
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Figure 2.5: Less time is gambled on uncued errors. A. The majority of uncued errors occurred on
trials with distractor age = 1, consistent across rats. B. Gambled times were significantly shorter for uncued
errors relative to other errors. Excluding uncued errors, gambled times on error trials were still significantly
lower than gambled times on correct trials.
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2.2.8 A generative episodic memory model to predict confidence

Gambled times that predict choice outcome are a strong indication of metacognitive

memory recall, but in their strictest interpretation they indicate decision confidence in a

memory task, not uncertainty in a memory per se. To test whether gambled times were

explained based on graded memory confidence, we built a generative model of episodic

memory.

In our model, each previous port visit is an episode stored in memory, represented as a

distribution centered at the actual visit time with mnemonic noise as variance on the

temporal axis. Each trial cues a target and distractor port, with ages M0 and M1,

respectively. By definition, M0 > M1. The rat has an internal representation for each of

these episodes, M ′
0 and M ′

1. The spread in the distribution of M ′
i |Mi is due to mnemonic

noise as a result of errors in encoding, consolidation, and/or retrieval. Except for encoding,

each of these processes is assumed to occur repeatedly, with cumulative error, resulting in

an increasing spread over time. We also observed that it should never be possible to

mistakenly retrieve a memory that occurred in the past as having occurred in the future.

To satisfy these two requirements, we selected as our noise distribution the lognormal.

Specifically, we modeled each M ′
i as a lognormal distribution with mean a0Mi and standard

deviation σ0(1 + a1Mi + a2M
2
i ). The separation parameter a0 sets the degree of separation

in memory between two episodes, the spread parameter σ0 sets the baseline spread of each

memory distribution, and the coefficients a1 and a2 set the rate of change in spread for

each memory distribution as a function of its age Mi. By fitting the standard deviation

with a second-order polynomial we give it freedom to increase or decrease as a function of

time, though our hypothesis is that it should increase. Each memory retrieval can be

thought of as sampling from the memory distribution. Figure 2.5 depicts the memory

distributions corresponding to a sequence of previously visited ports. When two ports are

cued (Figure 2.5), the rat retrieves the time of last visit to each by sampling from the
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memory distributions. The rat is correct if the retrieved time of last visit for the target is

older than the retrieved time of last visit for the distractor (i.e., m′0 > m′1). We defined

accuracy and confidence:

Accuracy = Pr(correct|M0 = m0,M1 = m1, σ0,~a) (2.1)

Confidence = Pr(correct|M ′
0 = m′0,M

′
1 = m′1, σ0,~a), (2.2)

for ~a = (a0, a1, a2). Under this model, confidence is monotonically related to the distance

from the decision boundary, |m′ − b|, and for ease of computation we re-define confidence

to be |m′1 −m′0|.

Our overall approach was to (i) fit the model parameters a0, a1, a2 and σ0 based on choice

accuracy for each rat, then (ii), from the memory distributions defined by these

parameters, generate predictions for memory confidence. Based on our finding that trial

count was a better predictor of choice accuracy than elapsed time, we parameterized the

temporal axis of the model by episode age in trials.

For each rat, the model parameters were fit to the observed error rates across the 12 trial

types with distractor ages M0 ∈ {1, 2, 3} and the difference between target and distractor

ages M1 ∈ {1, 2, 3, 4}, excluding errors to uncued ports. We define accuracy in the data as

simply the proportion of correct trials, and the error rate (εdata) as 1−Accuracy. The

model-predicted Accuracy is given by Eq. 2.1 as the difference of the lognormal random

variables M ′
0 and M ′

1. The probability density of the difference between two lognormal

distributions does not have a closed form analytic solution, so we simulated 104 trials for

each trial type within the fit. Each simulated trial generated an m′1 and m′0, from which we

computed an outcome (correct or error). Across many simulated trials, this returned a

predicted error rate pattern across trial types for the current set of parameters.

A χ2 metric was used to evaluate model performance and find the best fit parameters:
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∑
trial type i

(
εi,data − εi,model

σεi,data

)2

, (2.3)

where ε is the error rate and σε is the uncertainty in the error rate (see Methods).

For each rat, the model fit to choice accuracy results in memory distributions with

increasing spread as a function of time (a1 and a2 are positive; Figure 2.5 and Figure 2.12).

The model did not require this, as the standard deviation is fit by a polynomial and so

could increase or decrease over time. This result is consistent with our expectation of

decreasing memory fidelity (or precision) with time. The spread parameter, σ0 � 1, which

sets the overlap between neighboring memory distributions, is relatively low as expected

given the high choice accuracy of 80 percent correct. For each rat, the fitted value of the

separation parameter a0 > 1 (Figure 2.5 and Figure 2.12). A fitted value a0 = 1 would

correspond to single trial unit separation in memory between episodes that in fact did

occur one trial apart in time. Under our model, time is dilated: the recalled time at which

an episode occurred is on average longer ago than the actual time at which it occurred.

The quality of the model fit to the data is shown in Figure 2.5. Model biases (average of

(fit-data)/uncert.) for fits to stem, branch, and all combined data are −0.24± 0.19,

0.03± 0.19, and 0.24± 0.21, respectively. As such, model predictions of rat error rates are

consistent with the data at p ≈ 0.3. The standard deviations of (fit-data)/uncert. are

1.28± 0.12, 1.29± 0.11, and 1.46± 0.15 for stem, branch, and stem+branch, respectively.

These values are all slightly above one, indicating a slight under-estimation of the

uncertainty used in the fit. This is consistent with a small systematic uncertainty, as the fit

only includes statistical uncertainties.
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Figure 2.5: Episodic memory model. Each episode, corresponding to a visit to a choice
port, is stored in memory as having occurred at some time (its age), with a lognormal
distribution about its center representing the probability of retrieval for a given age. Dis-
tributions are from representative rat R with parameters were fit to choice accuracy. A.
An example sequence of memory distributions. Most to least recent port visits F,
D, A, B are shown (teal filled, green, olive, lime). B. Example trial. Ports F and B are
cued. The rat retrieves the time of last occurrence for each, f ′ and b′, and compares them.
If the sign of F - B is the same as f ′ - b′, the choice outcome is correct; otherwise it is
an error. Confidence is defined as the retrieved duration between f ′ and b′, or |f ′ − b′|.
C. Fitted model lognormal distributions corresponding to the memory distributions (M ′

i)
from which the rat samples in memory retrieval. Each distribution is a different color and
corresponds to the memory distribution, from left to right, for the last trial to six trials
ago. Fit parameters for representative rat R. D. The relative difference between the model
and the fit: (εmodel − εdata)/εσdata . E. Confidence distributions for distractor age = 1.
Considering trials that present distractor age = 1 (in A, teal filled distribution for labeled
F) in combination with target age 2, 3, and 4 (green, olive, lime distributions to the right),
each target and distractor combination yields a distribution that represents the distribution
of target - distractor retrievals (colors matched to target in top panel). The density to the
right of zero (black horizontal line) represents those retrievals for which a correct choice will
be made, and the average confidence on these trials is the center of this density (blue vertical
lines). The density to the left of zero represents those retrievals for which an error choice
will be made, and the average confidence on these trials is the absolute value of the center
of this density (red vertical lines). F. As the inter-episode interval increases (target age -
distractor age) increases, the average model-predicted confidence (corresponding to the
‘recalled age difference’ in E) for correct trials increases, but the average confidence for error
trials is virtually constant.
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2.2.9 Confidence predictions of the model deviate from Gaussian

noise SDT models

Next, we generated specific predictions for confidence as a function of memory difficulty.

We first studied the strongest graded predictor of memory difficulty, the distractor age. We

generated predictions for accuracy as a function of gambled time, for accuracy on high

versus low gambled times as a function of memory difficulty, and, finally, the gambled time

on correct versus error trials as a function of memory difficulty. These three predictions

correspond to the three signatures of statistical confidence established in perceptual

discrimination tasks. Under our model, the third prediction deviates significantly from that

of the statistical framework for confidence developed for perceptual discrimination. In

these studies, the Gaussian distributions of fixed variance give rise to a characteristic X

shape for confidence on correct versus error trials as a function of difficulty (the

vevaiometric curve). Due to its asymmetric noise profile and non-constant variance, the

model predicts a differently shaped vevaiometric curve. Figure 2.5 illustrates three

difference distributions corresponding to fixed inter-episode interval (distractor age - target

age) 2 for incrementing distractor ages, or the three distractor-target trial types 1-3, 2-4,

and 3-5. The model-predicted confidence for correct and error trials is marked on the

distributions. Given that choice accuracy is inversely correlated with distractor age,

plotting confidence for each of correct and error trials for each distractor age yields

predicted confidence trends as a function of memory difficulty. On this axis, gambled times

on both correct and error trials are expected to decrease as a function of distractor age

(Figure 2.5). These trends are the result of the model form and hold over the range of the

specific parameters fit based on experimental rat data.

To test whether these model-predicted trends in confidence were consistent with behavioral

data, we converted the predicted confidence values to gambled times. This was done

separately for each rat by calibrating the model confidence CDF to the empirical gambled
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time CDF (see Methods). The mapping was applied to the entire distribution of gambled

times and did not map separately correct versus error trials or any other subset of the data

(Figure 2.12). By construction, there is a monotonic relationship between model-predicted

confidence and model-predicted gambled time.

2.2.10 The statistical episodic memory model predicts

confidence as a function of episode age

We tested whether the observed gambled times were consistent with model predictions as a

function of memory difficulty defined by the distractor age axis. Figures 2.5A, C, and E

show model predictions with data overlaid for representative rat R, excluding uncued errors

and conflict trials. Figure 2.5A shows model-predicted accuracy as a function of gambled

time, with data overlaid, for representative rat R. Intuitively, longer gambled times predict

higher choice accuracy. Figure 2.5C shows that gambled time is longer for correct than

error trials at every difficulty level, with trends for correct and error trials as a function of

difficulty in agreement with those predicted by the model. Figure 2.5E shows that for

correct trials, gambled times are higher than error trials with a slight negative slope as a

function of distractor age, whereas gambled times decrease more dramatically with

distractor age. The same qualitative patterns were observed for all rats (Figure 2.13), and

for branch (Figure 2.15) and stem trials (Figure 2.17) separately. Figures 2.5B, D, and F

show averages across the four rats, with trends corresponding to the model.
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Figure 2.5: Model-predicted gambled times match data. Model-predicted gambled times (lines) with data (points)
overlaid. A. Model predictions (gray line) for gambled time as a function of choice accuracy, for representative rat R, excluding
uncued errors and conflict trials (black points are mean ± Y-error in 20 bins of X trials each). E. Model-predicted trends in
gambled time as a function of distractor age match data. bf For representative rat R, long (upper 50 percent, dark gray points
are mean ± SEM) and short (upper 50 percent, light gray points are mean ± SEM) gambled times are predicted by the model
(dark and light gray lines, respectively). C. For representative rat R, correct (blue) and error (red) trials, trends in gambled
times (points, mean ± SEM) are predicted by the model (lines). D - F Average trends across all rats are consistent with model.
The average trends depicted in subfigures D-F match the model predictions shown in A-C, respectively. G. Comparison of
gambled times on correct and error trials for SEM predictions (lines) versus data (triangles) versus DNN predictions (circles),
representative rat R. H. As in G but with data from all four rats overlaid.
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2.2.11 The probabilistic memory confidence model predicts

confidence as a function of a synthetic difficulty axis

An advantage of the distractor age as a memory difficulty axis is its interpretability; it is

intuitive that memory accuracy should be lower for episodes that occurred longer ago.

However, memorability in general and on this task depend on many features. To take this

into account, we generated a synthetic difficulty axis by again training a DNN to predict

choice accuracy on the exhaustive feature set (Table 2.3) plus target and distractor branch

ages. The network gave as output a probability that the rat would make a correct choice.

Previously, we assessed the network accuracy in predicting trial outcome by interpreted

probabilities above 0.5 as correct and below 0.5 as errors. Here, we interpret the

probability of a correct choice as a difficulty score for each trial. We then defined trial

types by binning based on these synthetic difficulty scores, and calculated rat performance

accuracy in each. This yielded a synthetic difficulty axis, inferred from performance

accuracy, based on the features in the exhaustive set. Calculation of performance accuracy

for the trial types identified by this method allowed direct comparison to confidence

predictions of our generative model and rat performance accuracy characterized by

distractor age trial type. The DNN predicted the same trends observed for the distractor

age memory difficulty axis for representative rat R (Figure 2.5) and for all four rats.

2.2.12 The statistical episodic memory confidence model

predicts confidence as a function of episode temporal

discriminability

Our model also generates predictions for confidence as a function of another determinant of

choice accuracy, the target - distractor age. Treating this as another memory difficulty
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axis, we can generate predictions for confidence on correct versus error trials as for the

distractor age axis. Figure 2.6 shows three target - distractor differences for fixed distractor

age 1, corresponding to trial types 1-2, 1-3, and 1-4. The model-predicted vevaiometric

curve on this axis has a flat trend in gambled times for errors, and an increasing trend in

gambled time for correct trials, as a function of target - distractor age. This is the result of

the long-tailed memory distribution shapes, which result in a relatively greater shift for the

positive density than the negative density of the difference distribution between a fixed

distractor and increasingly older target distributions.

We found that predicted gambled times for correct and error trials on this memory

difficulty axis also match trends in the confidence data for individual rats (representative

rat R is shown in Figure 2.6) and for an average over all rats. Like for distractor age as a

memory difficulty axis, gambled times predicted accuracy and were higher for correct than

error trials (Figure 2.18). The same compression of gambled times seen for distractor age is

also seen on this difficulty axis. The same qualitative patterns were observed for all rats

(Figure 2.19).
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Figure 2.6: A. Confidence distributions for distractor age = 1. Considering trials that present
distractor age 1 with target age 2, 3, and 4 (green, olive, lime distributions to the right), each target and
distractor combination yields a distribution that represents the distribution of target - distractor retrievals
(colors matched to target in top panel). The density to the right of zero (black horizontal line) represents
those retrievals for which a correct choice will be made, and the average confidence on these trials is the
center of this density (blue vertical lines). The density to the left of zero represents those retrievals for which
an error choice will be made, and the average confidence on these trials is the absolute value of the center
of this density (red vertical lines). B. Episodic memory model prediction. As the inter-episode interval
(target age - distractor age) increases, the average confidence for correct trials increases, but the
average confidence for error trials is virtually constant. C. Comparison of gambled times on correct and
error trials for SEM predictions (lines) versus data (triangles) for correct (blue) and error (red) trials for
representative rat R. D. As in G but with data from all four rats overlaid.
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2.3 Discussion

Episodes occur at a temporal and a spatial coordinate, and when they are stored and

accessible in memory by these coordinates as episodic memories, they are the most

detailed, least abstract form of stored experience. For these memories, there is uncertainty

on the temporal and spatial axes representing when and where the episode occurred, as

well as the third, ‘what’ axis, which represents all other features. Uncertainty arises from

perception itself and the ongoing memory processes underlying storage and use. We found

evidence that rats have metacognitive knowledge of these uncertainties in memory and use

this information to maximize reward. Specifically, rats can recall which of two locations

they visited first in an ongoing sequence and use confidence in these memories to guide the

amount of time they gamble on their choices. Time gambling as a confidence report

requires both metacognitive monitoring of memory and demonstrates metacognitive control

of future action122. The task design precludes associative learning of specific ports and

their probability of being correct, and we found that latency to choice could not explain

the pattern of metacognitive gambling133.

In studies of confidence in a perceptual discrimination context, a single decision variable

with Gaussian noise can often explain choice accuracy and confidence well. A longstanding

challenge in studying metacognitive memory is in identifying the appropriate decision

variable and noise axis134–136. Previous memory confidence tasks in human and non-human

primates have used ROC analysis and an implicit Gaussian noise model134. Here, we

applied to our task a modern machine learning approach to define a synthetic memory

difficulty axis based on an exhaustive feature set. We used a DNN to predict accuracy as a

function of task features, and treated the predicted accuracy as a synthetic memory

difficulty score. This allowed us to treat choice accuracy, predicted by the DNN as a

function of many features, as a proxy decision variable.
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To better understand the determinants of memory confidence, we developed a novel

generative model of episodic memory in which past episodes are modeled as memory

distributions on a mental timeline, representing the animal’s belief in when the episode

occurred. We made two observations: first, that memory should decrease in fidelity with

time; second, that an event that occurred in the past can never be thought to have

occurred in the future. To satisfy these requirements, we modeled each memory

distribution as a lognormal distribution with time-dependent variance. For each rat, we fit

the model parameters based on choice accuracy, then generated predicted confidence

values. Model-predicted gambled times as a function of the DNN-synthetic decision

variable were in agreement with the data. We next generated model predictions as a

function of the single feature that was most predictive of choice accuracy, the elapsed time

since the distractor episode. This has been found in previous studies to determine

difficulty22. Like the synthetic decision variable, model-predicted gambled times as a

function of this feature were in agreement with the data. Finally, our model also predicted

the observed patterns of choice accuracy and confidence on a third difficulty axis, the

number of trials elapsed between the target and distractor episodes.

Critically, model predictions differed from predictions of the standard SDT model of

confidence that employs Gaussian noise and a fixed variance40,77. Such a model could not

explain our data. In particular, the trend in gambled time for correct versus error trials a

function of memory difficulty (the vevaiometric curve) differs starkly from predictions of

the Gaussian noise model. It has been observed previously that deviations from this

signature can be seen under different model forms, for instance, a second-order

computation where decision and confidence variables are not identical137, varying stimulus

strengths138, or different confidence heuristics137,139,140. No model variant with Gaussian

noise can produce the trends we observed in memory confidence, which require an

asymmetric noise profile and unequal variance. Furthermore, these unique trends are not

an effect of our specific choice of lognormal distributions, but arises as a direct consequence
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of the two basic assumptions of the model. To predict gambled times from modeled

confidence, we applied a transformation to the CDF of predicted confidence values such

that its shape matched that of the empirical gambled times. This calibration step was

applied over the empirical distribution of all gambled times for each rat, and therefore

cannot account for the observed difference in gambled times between correct and error

trials. Moreover, such a transformation in combination with a Gaussian noise model could

not account for the observed trends in gambled time as a function of memory difficulty.

A trend in the data that is not captured well by the model is the saturating rise for gambled

times as a function of target - distractor age (Figure 2.6), the second identified memory

difficulty variable. One explanation for the leveling off of gambled times may be that rats

have a temporal discounting bias for shorter/sooner rewards relative to longer/later, which

will bias them toward shorter gambled times. Although we designed our reward function

with this in mind, it may not be fully compensated by our reward function. This effect is

likely to be strongest on trials for which animals are more confident and therefore have the

highest reward expectation (these tasks can be understood as self-control tasks; they must

exert the most on this trial type). This would result in shorter wait times on easy correct

trials, flattening the curve of gambled times as a function of difficulty. This effect would be

seen in real data but not the computational model predictions, which are calibrated to

empirical gambled times overall but not selectively as a function of memory difficulty.

Previous studies of memory confidence have focused on visual or other recognition memory

tasks36,37, which present a series of stimuli then, after a delay, require the subject to

identify them among never before seen distractors. In human subjects, recognition memory

accuracy and confidence have been modeled by ‘dual process’ models of two parallel,

distinct memory processes, recollection and familiarity141,142 Recollection is remembering

the full episodic details, based on an episodic memory system; familiarity is merely

knowing that the event occurred, without its details, based on the semantic memory
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system. A signal detection theory approach has been applied to each of familiarity and

recollection143 but differ fundamentally in from our approach: targets and lures share a

distribution rather than each having one, with Gaussian noise, and on a memory strength

axis134,144. In our task, such a familiarity computation alone cannot account for high

accuracy in identifying the specific temporal ordering of port visits, both of which have

been previously visited, often close in time. Rather, our task requires memory confidence

in recent actions and their outcomes in spatial and temporal context. High choice accuracy

indicates that rats can access such information. Gambled times consistent with the model

imply animal metacognitive recall and autonoetic or self-reflective consciousness, previously

reported only in humans. Our axis of time of occurrence is correlated with memory

strength, but is not equivalent to it.

The model represents memory distributions at the present moment for episodes that

happened n trials ago. Memory dynamics are implicit in the model; each memory

distribution could alternatively be interpreted as corresponding to a different time. The

model does not, however, address the evolution of confidence within a trial; it is a static

SDT confidence model compatible with theories of confidence dynamics developed for

perceptual discrimination, such as a drift diffusion model or other diffusion to bound

variants30.

Although we use a temporal axis, our model could be adapted to episodic memory on a

spatial or other axis, or multiple axes. That the predictions of the model, which takes only

timing information, are consistent with the data as a function of a synthetic difficulty axis

that includes non-memory features, such as the last reward amount at each of the choice

ports, suggests that a model on the temporal axis captures much of the variability. An

advantage of parametrizing our model by a temporal axis is that this axis is correlated

with memory strength and ongoing memory creation and use processes, allowing

interpretation of our parameters as a form of hypothesis generation. Under the model, each
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memory is represented at the time of encoding (t = 0) as a delta function. While this could

be interpreted as representing perfectly accurate memory encoding, that is likely

unrealistic; another interpretation is that there is merely uniform encoding noise across

episodes, with no lapses in attention. The accumulating noise on older episode memories

corresponds to memory processes subsequent to encoding. Every time a memory is

retrieved for consolidation or use it is known to become labile again. That episodes are

increasingly difficult to remember the longer ago they happened is explained by ongoing

retrieval processes and is reflected in our model as the time-dependent increase in variance

of each memory distribution.

The evidence we find that rats are able to compute confidence in episodic memories

suggests they may have autonoetic consciousness. A theorized aspect of autonoetic

consciousness is the ability also to imagine or plan the future . There is evidence of overlap

between episodic memory and an ability to predict the future145,146, raising the possibility

that rats may also compute confidence in their future plans or projections.

We note that the data in this study were taken from rats implanted with multi-site

recording devices, that the reported number of trials and the time gambling behavior can

be performed by rats with neural implants, opening the door to a mechanistic

understanding of the underlying neural processes147. In addition to its philosophical

implications for the self and consciousness, memory confidence has significant legal, social,

and political importance, for instance in judging the credibility of eyewitness testimony

(e.g., in the 2018 Kavanaugh hearings)148.

Aberrations in confidence computations have been proposed to account for a variety of

psychiatric symptoms149. These proposals have built conceptually on models of

perception150. For instance, hallucinations and delusions may result from overly strong

priors as described in a predictive coding framework151. Aberrations in memory confidence,

particularly in episodic memories, have been proposed to account for symptoms of
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OCD13,152, schizophrenia15,153, and others18. Relative to perceptual confidence, however,

memory confidence has not had the requisite behavioral tasks, animal models, or

theoretical framework for understanding its contribution to disease. A statistical treatment

of memory confidence may enable study of the negative symptoms of schizophrenia and

other conditions thought to be related to memory. As these negative symptoms are often

more debilitating than positive symptoms like hallucinations, it is our hope that this line of

investigation will eventually be of therapeutic value to patients and their families.

2.4 Methods

2.4.1 Behavioral training and task

All procedures followed the guidelines from the University of California San Francisco

Institutional Animal Care and Use Committee and US National Institutes of Health. Male

Long-Evans hooded rats were trained to perform an episodic memory task with time

gambling for liquid reward. Behavioral testing was controlled by custom software written

in Python using data acquisition hardware (Trodes ECU, SpikeGadgets LLC) to record rat

pokes and unpokes at the ports and to control reward delivery.

Three cohorts of Long Evans male rats (3-4 months old, 450-600g, 6-8 rats per cohort) were

habituated to daily handling for a week and to hand-delivered liquid food reward

(evaporated milk plus 5 percent sucrose) from a syringe in the home cage for three days.

Animals were then food deprived to 85-90 percent of their baseline weight and pre-trained

on a raised linear track for 3-4 days, 2-3 epochs/day, 10 mins/epoch (Stage I). A port was

located at each end of the track, each equipped with an LED light and an IR beam, which

detects entry and exit from the port154. Each port can automatically deliver reward, which

flows for a specified length of time through the port at a rate of .17mL/sec; it must be
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consumed during this period, as the reward does not remain in the port after this period.

A variable delay between nose-poke and reward delivery drawn from exponential

distribution with τ = 0.2− 0.5 seconds that was gradually incremented to τ = 1− 8

seconds. Rats learned to run back and forth on the track to visit the lit well, and to wait

for the delayed reward From each cohort, 2-3 rats with the best performance were selected

for training on the episodic confidence task.

Following linear track pre-training in Stage I, rats were trained on the full track where the

EC task took place. The track had eight ports in total: one home port at the center, one

back port, six choice ports at each end of six branches. Each epoch was of a fixed length

per animal, during which trials were self-paced. In Stage II, rats learned the basic task

structure (Figure 2.1) with only one cue lit per trial. The lit cue corresponded to the target

selected by the same code as in the final task logic; lighting of the distractor port was

suppressed. The sequence of visits within a trial was: home port light on; rat pokes at

home port for a small fixed reward (350 ms long); home port light off; after a variable cue

delay, one choice port lights; rat pokes lit choice port; choice port light off and port

delivers initial reward 350 ms long and, after a variable reward delay, a

wait-dependent reward; back port light on; rat pokes back port; back port light off and

port delivers back reward. Choice accuracy was measured as the percentage of trials for

which the rat visited the lit choice well.

The cue delay was introduced to jitter the events of each trial relative to every other trial,

to control for across-trial temporal correlations between behavioral and neural events. To

train rats to wait for the cue lights to come on, the cue delay was gradually increased

from range [0.2, 0.5] to [0.5, 2]. Initially, the back reward delivered the same reward

amount as the wait-dependent reward regardless of trial outcome, which encouraged the

animals to solidify knowledge of the port visit sequence (i.e., to not skip the back port).

After three epochs, back reward was only delivered on correct trials.
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The reward delay was determined by sampling from an exponential distribution with rate

parameter λ = 1/2, accepting only samples that were between 1-3s at the start of this

training phase and 2-10s by the end, with a wait-dependent reward amount that

increased accordingly, to allow rats to learn that a longer period spent nosepoked in the

port would result in a larger reward. After rats were consistently performing at above 80

percent choice accuracy and waiting for the full reward delay, the initial reward was

omitted. Once rats were able to wait for the majority of the reward delays (6-10s), the

switch was made to gambling logic. In the gambling logic of the final task, rats voluntarily

reported the time they were willing to wait for the reward. The gambled time began at the

time of nosepoke in the choice port and ended when rats withdrew from the port.

Nosepoke withdrawal was detected with a ‘grace period’ (800 ms for rats T, S, D; 700 ms

for rat R in final behavior, calibrated based on how quickly each rat moved) to allow for

small head movements during the gambling period: rats were only declared to have ended

the gambling period after a grace period had passed between un-poke and the next re-poke.

After gambled times were observed to be stable across at least three epochs, the distractor

cue was introduced alongside the target cue, starting with distractor age 1. Distractors age

2 and 3 were introduced when choice accuracy was approximately 80 percent and stable.

Approximately 3000 - 4000 trials were collected from each of four rats. Each rat

had a typical length of time for which he would continuously play the game, after which he

would occasionally perform trials but otherwise sleep or lean off the edge of the track and

attempt to eat the milk tubes or CAT6 cables. Epochs shorter than 20 minutes (rat T, N

= 5 excluded epochs), 40 minutes (rats S, N = 0 excluded epochs, and D, 2 excluded

epochs) or 45 minutes (rat R, N = 2 excluded epochs) were excluded from final analyses.

This resulted in the following epoch and trial counts: From rat T, 2978 epochs over 42

trials; from rat S, 4111 trials over 40 epochs; from rat R, 3660 trials over 49 epochs; from

rat D, 4369 trials over 61 epochs. Typically rats ran an average of 350-400 meters per day

(the human equivalent of approximately five miles) and consumed 50 mL of sweetened
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evaporated milk.

The selection of distractor and target is random with temporal weighting. The

logic used for selection of the two cued ports on each trial is: from the list of possible pairs

[AB, BC, CD, DE, EF, FA], select candidate pairs for which at least one of the ports has

an allowable distractor age (1, 2, or 3). If there is more than one candidate pair in this list,

remove from it the candidate pairs with distractor ages equal to those presented on the last

trial, the penultimate trial, and the trial before that, in that order, until candidate pairs

with only one distractor age remain. If there is only one candidate pair in this set, select it

as the presented pair. If there is more than one candidate pair in this set, randomly select

between them with equal probability. For example, if the last three trials were distractor

ages 1, 2, 3 (N.B.: regardless of which ports these distractor ages corresponded to), then on

the upcoming trial, the candidate pair with distractor age 3 would be removed first, then

the candidate pair with distractor age 2. The candidate pair with distractor age 1 would be

selected; if there were more than one candidate pair with distractor age 1 remaining, the

cued pair would be selected randomly from this set. On every trial, there will necessarily

be a candidate pair with distractor age 1. There will not, however, be candidate pairs with

distractor ages 2 and 3 on every trial; this can occur in the case of revisits, where the port

with distractor age 3 is the same as the port with distractor age 1 (or the age 2 port = the

age 1 port, or the age 3 port = the age 2 port = the age 1 port). For this reason, the

sequence of presented distractor ages is similar to a repeating cycle 1-2-3, but not exactly.

This selection algorithm has the effect of sampling evenly across distractor types and

preventing an alternation sequence from developing.

The reward function was designed to counter the potential effects of temporal

discounting. On correct trials, for investments less than 2.2 seconds, the length of time

for which a sweetened evaporated milk reward was delivered at a constant rate of 0.17

mL/sec was given by R = 0.27e0.34(t+0.8); for investments greater than 2.2 seconds,
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R = 2.6× log(0.44× (t+ 0.8)). This function delivered a minimal reward (350 ms long, or

about 5 mL) for any correct trial, even if the gambled time was zero. Four seconds of

reward are delivered for a ten-second wait. The reward function has a relatively low,

increasing derivative for gambled times less than or equal to 2.2 seconds and a relatively

high, decreasing derivative for gambled times greater than 2.2 seconds. The desired effect

was to bias the rat toward longer gambled times on trials for which he would already have

waited at least 2.2 seconds, as he could double the reward amount by waiting just one

second longer. If rats were able to access memory confidence, these longer waits should be

enriched in correct trials and the reward function could help better resolve them from error

trials. By selecting a function with a derivative that fell to approximately the value it had

in the [0, 2.2] second range at 9.5 seconds, rats were still encouraged to run enough trials to

sample evenly over the trial types within each epoch: rats take an average of 15 seconds to

perform the rest of a trial, with a 9.5 second gambled time, 4-second reward delivered at

both choice and back ports, this yields approximately 30-second trials, for our aim of 80

trials per 40-minute epoch.

Rats that performed many trials per epoch with a large spread in gambled times were

implanted with hardware for recording neural data. Following a week or more of recovery,

behavioral data in the final task were acquired from implanted rats.

2.4.2 Correlation of choice latency and gambled time

For analysis of correlation between gambled times and latency to choice, outliers with

gambled times greater than 10 seconds or latency to choice greater than 20 seconds were

excluded, leaving over ninety percent of the data per rat. Linear regression was

implemented in SciPy.
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2.4.3 Evaluation of alternative strategies

For each rat, the proportion of times that each port was presented as target versus

distractor were compared. Per epoch, these values were rarely above or below 50 percent

by greater than 3 percent, and the majority of differences were not statistically significant

by a t-test for independent samples.

We tested whether there existed an alternative strategy that could better explain the rat’s

choices than the true rule, which is to select the least recently visited of the two cued ports.

For every trial in every epoch, for each rat, we determined whether the alternative rule

would have resulted in the same choice as the one the rat made, or the same choice

dictated by the true rule. This resulted in two proportions per epoch for each rat.

2.4.4 Evaluation of logistic regression and neural network

models of choice accuracy

We used logistic regression and a DNN model to predict choice outcome (correct or error)

as a function of an exhaustive or a reduced feature set. The features were each

standardized to have zero mean and unit variance.

The DNNs were implemented in Keras155 using the Tensorflow156 backend and

optimized using Adam157. Each network has three hidden layers with 32 nodes each and

the rectified linear unit activation. The output of the last layer is a sigmoid and the binary

cross-entropy is the loss function. Networks were trained with 200 epochs with early

stopping using a patience of 5 epochs. A k = 5-fold training procedure is used whereby

1/kth of the data are withheld for testing, 1/kth are withheld for validation and the rest are

used for training. The trials that comprise each fold are uniformly selected at random. A

total of 10 networks are trained for this configuration and the network with the best
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validation loss is used to evaluate on the test set. The test set is then rotated k times until

all data are used for testing. The loss is weighted during training so that the weighted

number of instances from the two trial outcomes (i.e., correct or error) are the same.

Logistic regression was tested in multiple frameworks. In Keras, logistic regression is

simply a neural network without any hidden layers. It was found that the performance of

such a regression model was comparable to the default logistic regression in Sci-kit

learn158 as well as statsmodels159. Unless otherwise indicated, the Sci-kit learn tool

was used for logistic regression studies.

2.4.5 Fitting the statistical episodic memory model parameters

The model was fit on a subset of distractor-target trial types for which there was enough

data, excluding uncued errors and conflict trials. The reduced datasets were 1716, 2356,

2493, and 2092 trials for rats T, S, D, R, respectively. Model parameters a0, a1, a2 and σ0

were fit for each rat based on its performance across trial types defined by distractor and

target - distractor ages (excluding uncued error trials and target - distractor ages > 4). To

find the best fit parameters using Eq. 2.3, we use the Nelder-Mead method with 200

maximum iterations as implemented in scipy, minimizing the χ2 fit to error rates across

trial types. Then, using these parameters, we generated the distributions corresponding to

each episode memory and sampled from each 100,000 times to generate target memories,

distractor memories, the outcome of the trial (correct/error) and a confidence (absolute

value of the difference between target and distractor).

To convert the simulated confidence values to invested times, we mapped the confidence

(C) probability density onto the probability density of the rat’s invested times (T ). Let

F (x) = Pr(C ≤ x) be the cumulative distribution function (CDF) for C and

G(x) = Pr(T < x) be the CDF of the invested times. Then, the mapping procedure

52



proceeds as follows:

1. Compute the empirical CDF of the confidence values from the model F̂ using ECDF

from statsmodels. Trials are generated from the model such that the number of

trials from each trial type follows the relative rates in data which are not uniform.

The minimum number of trials generated is 104.

2. Compute the empirical CDF of the wait times from data Ĝ using ECDF from

statsmodels. This is inclusive over trial types.

3. For each confidence value c, evaluate Ĝ−1(F̂ (c)). The inverse Ĝ−1 is computed via

linear interpolation (using numpy’s interp function) inverting the x and y

coordinates.
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Figure 2.7: Even sampling across memory age and spatial trial type.
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Figure 2.8: A. Performance is higher for branch than stem trials. Includes conflict
trials.
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Figure 2.8: Alternative strategies cannot explain performance accuracy. A. For all trials from representative rat
S, the correct port on trial n-1 (y-axis) does not strongly predict the correct port on trial n (x-axis), as illustrated by the nearly
equivalent transition probabilities across rows. B. PDF of transition probabilities in (A) for each of four rats shows a smooth
distribution with two peaks: a low-probability peak corresponding to the same port being presented as target twice in a row,
and a peak centered at 0.2, corresponding to the probability of transition from port N to any of the other five ports. C. There
is no epoch (x-axis) for which an alternation rule matches the true rule on every trial (black points), stem trials only (light
blue) or branch trials (dark blue). Dashed lines = averages across epochs. D. As in C, for agreement with rat choices rather
than true rule. There is no epoch for which an alternation strategy can explain greater than 90 percent of the rat’s choices. E.
Alternative strategies are not consistent with the true rule. The proportion of trials that would be correct under application
of each of six alternative strategies (y-axis) is shown for each epoch (x-axis) for representative rat S. Strategies that result in
a correct outcome greater than .5 of the time are to select the least recently rewarded, the farthest from last-visited, or least
rewarded overall of the two cued ports. Dashed lines = averages across epochs. F. Considering for representative rat S those
strategies that were in agreement with the true rule more than .5 of the time (blue, green, and pink points), the proportion of
trials consistent with the rat’s choices (y-axis) for each epoch (x-axis). The true rule (black points) explains behavior better
than the alternative strategies. Dashed lines = averages across epochs.
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Figure 2.8: As in Figure 2.8, including data for all rats.
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Figure 2.9: A. Comparison of DNN, logistic regression models for full and reduced feature sets by accuracy.
Error bars = B. Comparison of a logistic regression model trained on feature sets including only spatial and
temporal features or spatial and temporal features plus last reward amount or spatial and temporal features
plus last dwell time C. Comparison of a logistic regression model trained on the base feature set including
spatial and temporal features of time in terms of number of trials versus clock time.
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Figure 2.10: As for Figure 2.4. For rat T, D, R, N(correct trials), N(error trials) = 2400, 479; 3479, 772;
2952, 539.

62



0 2 4 6 8 10 12
Gambled time (sec)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al

is
ed

 c
ou

nt

Gambled time by trial outcome, Rat T
correct
uncued error
error

(a)

0 2 4 6 8 10 12
Gambled time (sec)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
al

is
ed

 c
ou

nt

Gambled time by trial outcome, Rat D
correct
uncued error
error

(b)

0 2 4 6 8 10 12
Gambled time (sec)

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

is
ed

 c
ou

nt

Gambled time by trial outcome, Rat R
correct
uncued error
error

(c)

Figure 2.11: Less time is gambled on uncued errors. A. The majority of uncued errors occurred on
trials with distractor age = 1, consistent across rats. B. Gambled times were significantly shorter for uncued
errors relative to other errors. Excluding uncued errors, gambled times on error trials were still significantly
lower than gambled times on correct trials.
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Figure 2.12: A., F., K., P. The measured error rate εdata in bins of Distractor Age and Target-Distractor
Age. B., G., L., Q fitted model predictions εmodel. C., H., M., R. the relative difference between the
model and the fit: (εmodel− εdata)/εσdata

. D., I., N., S. Fitted model lognormal distributions corresponding
to the memory distributions (M ′i) from which the rat samples in memory retrieval. Memory distributions
(M ′i) from which the rat samples in memory retrieval. Each distribution is a different color and corresponds
to the memory distribution, from left to right, for the last trial to six trials ago. E., J., O., T. Mapping
function from confidence to gambled times. The function Ĝ−1(F̂ (c)) that converts model confidence into
model invested time for rats T, S, D, R.
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Figure 2.13: Data from all rats for model predictions on memory difficulty axis based on
distractor age. Model-predicted gambled times (lines) with data (points) overlaid, for each rat (rows).
A., D., G. Model predictions for gambled time as a function of choice accuracy. Excluding
uncued errors and conflict trials (black points are mean ± Y-error; N=X trials), gambled time predicts
choice accuracy as predicted by the model (gray line). B., E., H. Model-predicted trends in gambled
time as a function of distractor age match data. Long (upper 50 percent, dark gray points are mean
± SEM) and short (upper 50 percent, light gray points are mean ± SEM) gambled times are predicted by
the model (dark and light gray lines, respectively). C., F., I. Trends in gambled time are predicted
by the model. Correct (blue) and error (red) trials, trends in gambled times (points, mean ± SEM) are
predicted by the model (lines).
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Figure 2.14: Model predictions for distractor age, branch trials only. Model-predicted gambled
times (lines) with data (points) overlaid. A. Model predictions for gambled time as a function of
choice accuracy. For representative rat R, excluding uncued errors and conflict trials (black points are
mean ± Y-error; N=X trials), gambled time predicts choice accuracy as predicted by the model (gray line).
B. Model-predicted trends in gambled time as a function of distractor age match data. For
representative rat R, long (upper 50 percent, dark gray points are mean ± SEM) and short (upper 50 percent,
light gray points are mean ± SEM) gambled times are predicted by the model (dark and light gray lines,
respectively). C. Trends in gambled time are predicted by the model. For representative rat R,
correct (blue) and error (red) trials, trends in gambled times (points, mean ± SEM) are predicted by the
model (lines). D - F Average trends across all rats are consistent with model. The average trends
depicted in subfigures D-F match the model predictions shown in A-C, respectively.
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Figure 2.15: As for 2.14, data for all rats.
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Figure 2.16: Model predictions for distractor age, stem trials only.
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Figure 2.17: As for 2.16, data for all rats.
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Figure 2.18: Model predictions for memory difficulty axis ‘episode discriminability’, in target - distractor
age, for representative rat R and averages across rats.
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Figure 2.19: As for 2.18, all rats.
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Chapter 3

A microfabricated, 3D-sharpened

silicon shuttle for insertion of flexible

electrode arrays through dura mater

into brain

Abstract: Objective. Electrode arrays for chronic implantation in the brain are a

critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer

electrode arrays have shown promise in facilitating stable, single-unit recordings spanning

months in rats. While array flexibility enhances integration with neural tissue, it also

requires removal of the dura mater, the tough membrane surrounding the brain, and

temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling,

vascular damage, and surgical time. Insertion using a bracing shuttle results in additional

vascular damage and brain compression, which increase with device diameter; while a

higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it

will damage more brain parenchyma and vasculature. One way to penetrate the intact
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dura and limit tissue compression without increasing shuttle diameter is to reduce the force

required for insertion by sharpening the shuttle tip. Approach. We describe a novel

design and fabrication process to create silicon insertion shuttles that are sharp in three

dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation

of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then

transferring its sloped profile to silicon with dry etches. Main results. We demonstrate

that sharpened shuttles can reliably implant polymer probes through dura to yield high

quality single unit and local field potential recordings for at least 95 days. On insertion

directly through dura, tissue compression is minimal. Significance. This is the first

demonstration of a rat dural-penetrating array for chronic recording. This device obviates

the need for a durotomy, reducing surgical time and risk of damage to the blood-brain

barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that

facilitates their implantation, particularly in multi-site recording experiments. This

sharpening process can also be integrated into silicon electrode array fabrication.

3.1 Introduction

Electrode arrays for implantation in the brain are a technology critical to both

fundamental neuroscience and clinical treatments for diseases including epilepsy160, retinal

degeneration161, Parkinson disease, and depression162. Classically, electrode arrays have

been made of silicon163,164 or other hard metal165. While these devices can be effective in

recording single units166, the longevity of recordings is limited167,168. More recent designs

of silicon electrodes with smaller cross sections can record an estimated one cell per

electrode, and can detect single units in mouse for at least 150 days169, but the ability to

record continuously from a given neuron over days has yet to be demonstrated. These

limitations are thought to result from the stiffness of the device relative to brain tissue.
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This has inspired the development of flexible neural implants. These include

probes119,167,170–172 and mesh173 that are better matched mechanically to brain tissue and

show reduced inflammation and immune responses174–176,167,177,178, particularly if they are

also small179–181. Chronically implanted in animal models, polymer devices can yield

single-cell recordings spanning months119,167,170,180, and many of the same individual

neurons can be recorded continuously for at least ten days119. As penetrating neural

devices are made smaller and more compliant to reduce tissue damage, surgical technique

becomes more complicated. The force required to insert a flexible device into the brain

typically exceeds the critical buckling load of the device. This presents a major barrier to

use for many flexible devices182. Insertion is made more difficult as a result of the dense

irregular connective tissue — the dura, arachnoid, and pia mater — that together protect

the brain from mechanical and other insults183.

Solutions to the problem of inserting a flexible electrode array into the brain involve

surgical removal of the dura mater, then insertion through the remaining pia by methods

that temporarily increase the critical load of the device using biodissolvable

coatings179,184–189, fluidic injection190–193, freezing172, or shape memory polymer (SMP)194.

One straightforward solution is to temporarily attach the flexible array to a hard shuttle,

such as silicon187,195,196, or tungsten197 that is shape-matched to the device itself and can

be retracted once the array has been inserted to its target depth in the brain. Temporary

attachment can be achieved by inserting shuttles through a small hole in the array198 or,

more commonly, by a biodissolvable adhesive. An advantage to this general method is that

a very stiff material can be used to fabricate the insertion shuttle, since it will not be left in

the brain. The shuttle diameter can thus be smaller, and the paired device very flexible, for

reduced damage to the tissue on implantation and over the lifetime of a chronic implant181.

Previously, we have used such a method to insert 16 independent polymer devices through

rat pia, each to a different brain area, for high-quality, chronic recording119.
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If a flexible device could be inserted directly through dura with minimal brain compression,

then the tissue damage and longer surgical time that result from durotomy itself would be

eliminated. Furthermore, a dural-penetrating method could also avoid errors in depth

targeting that result from outward swelling of the brain following durotomy. Together,

these effects could yield high quality, chronic single-unit recordings. Of these previously

mentioned insertion methods, only insertion using a delivery shuttle can be easily adapted

for transdural delivery. For a shuttle made of a given material, with length determined by

the depth of the target brain area, a lower limit on its cross-section is calculable by Euler’s

critical load equation. A thicker device will have a higher critical load to more likely

penetrate the meninges, but is not desirable because it will compress a greater area of

brain tissue on insertion and disrupt more vasculature199. One way to enable insertion of a

device without increasing its diameter is to reduce the effective force on the device (i.e., to

lower the required insertion force) by fabricating a sharper tip200–203.

Previous work has demonstrated the benefits of sharpened silicon device tips in reducing

insertion force199,200,204 and penetrating dura204,205. A diamond206 delivery shuttle for

polymer devices has demonstrated successful insertion of flexible polymer devices through

rat dura, as has use of an insertion guide with an SMP device207. However, such methods

have not yet yielded chronic, single-unit recordings in freely behaving animals. We

therefore aimed to develop a low-diameter, sharpened shuttle for polymer array delivery

that could penetrate dura with minimal brain compression and yield high-quality single

unit recordings. Here, we describe a fabrication method which sharpens silicon shuttles in

3 dimensions at any tip angle or crystal orientation and which uses readily available

cleanroom tools. We demonstrate a reduction in insertion force compared to

planar-sharpened silicon shuttles on insertion through rat dura. Finally, we show that

compliant devices implanted by transdural shuttle delivery yield high-quality recording of

local field potential (LFP) and single units over months in the awake behaving rat. This is

the first in vivo demonstration of successful chronic neural recording using a method to
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implant through a membrane with Young’s modulus in the range 0.1-1 MPa208,

corresponding to the rat dura or primate pia. 3D-sharpened shuttles obviate the need for a

durotomy, increasing the efficiency and reliability of insertion for polymer electrode arrays

to that of dural-penetrating arrays while maintaining the desirable properties of polymer

for high quality single-unit neural recordings. Importantly, our fabrication method can be

readily adapted to provide similar benefits to silicon-based multielectrode arrays.

3.2 Materials and methods

We fabricated a sharpened shuttle for insertion of flexible, thin-film polymer probes and

tested transdural insertion in vivo in the rat. In vivo tests and chronic recording were

performed in 10-16 month-old, male Long Evans rats. To evaluate this method, we

measured insertion force and brain compression, which have been shown to predict neural

tissue damage209. First, we compared the insertion force through intact dura for shuttles

that were either sharpened in three dimensions (sharpened) or two dimensions (planar)

with otherwise identical dimensions. We first tested insertion through dura over the

hippocampus, then tested insertion through the thicker dura over the OFC. Second, we

calculated the brain compression in each case. Finally, we implanted polymer devices using

sharpened shuttles through intact dura over the nucleus accumbens (NAc) and OFC, and

recorded LFP and single units for 95 days.

3.2.1 Shuttle microfabrication

Planar and sharpened shuttles both had a 30◦ tip angle (Fig. 3.1), a width of 80 µm, and a

thickness of 30 µm. The difference in their design was the gradual increase in thickness

(the ‘sharpened’ profile) of the 3d-sharpened shuttle. Figure 3.2 shows SEM images of
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planar and sharpened shuttles mounted on double-sided copper at magnification 300× with

accelerating voltage 3kV using an APREO S Low Vacuum EDX Benchtop SEM (Fig. 3.1)

or at magnification 650× with a Hitachi S-800 SEM (Fig. 3.2). Figure 3.3 is a profilometer

scan, taken using a Veeco Dektak profilometer, in which the scan proceeds from the shuttle

tip along the shank as it increases in thickness. For this representative shuttle, seven

individual step heights, each approximately 5 µm higher than the previous, are seen over

the 100 µm length of the tip. Both planar and sharpened insertion shuttles were fabricated

on 4” silicon-on-insulator (SOI) wafers with 30 µm device layers (Fig. 3.4). First, 10 µm

deep ‘wicking’ channels (Fig. 3.1, Fig. 3.2) were fabricated using standard photolithography

and the Bosch Deep Reactive Ion Etch (DRIE) process in an STS ICP DRIE tool (SPTS

Technologies). Wicking channels were designed to hold polyethylene glycol (PEG,

molecular weight 10,000 mn), which acted as a biodissolvable adhesive to mount polymer

probes on insertion shuttles, as described in Felix et al., 2012196. Next, 300 nm of aluminum

was sputtered (Semicore Equipment Inc.), patterned photolithographically, and wet etched

to create a hard mask with the insertion shuttle geometry. Sharpened shuttle fabrication

involved a third photolithography step to specify the sharpened tip profile overlaid on the

aluminum hard mask, followed by a 2-minute reflow bake of the photoresist (AZ4620) at

180◦ Celsius (Fig. 3.4). This resulted in a sloped profile in the patterned photoresist that

was transferred to silicon using alternating timed silicon etch and photoresist etch steps

(Fig. 3.4) in the same STS plasma etcher. The height of each ‘stair’ shown in Figure 3.3 is

determined by a timed silicon DRIE step, which alternates SF6 for etching and C4F8 for

passivation. The length of each stair is determined by both a timed photoresist etching step

using O2 and the photoresist reflow step (Fig. 3.4). Uneven height and length of the stairs

can arise from either imperfect photoresist reflow or imperfect timing of etching steps.

Dimensions of the stairs can be adjusted to etch arbitrary 3D profiles, in contrast with

anisotropic wet etching methods for which angles are restricted by silicon crystal structure.

Planar shuttles underwent DRIE without the third photolithography step, resulting in a
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tip profile of uniform thickness. Lastly, the aluminum hard mask was removed (Piranha

etch) and individual shuttles were released from the SOI wafer using hydrofluoric acid.

Figure 3.1: Top down view by light microscope (scale bar = 50 µm) of (A) planar and (B)
sharpened profiles on 2d- and 3d-sharpened silicon shuttles, respectively, oriented with tips
toward the top of the figure, and wicking channel for PEG at midline.

Figure 3.2: Top-down view by SEM for comparison of planar (A) and sharpened (B) shuttles
(scale bar = 50 µm). Shuttles are oriented with tips toward the top of the figure and wicking
channel for PEG at midline. Residue in (B) from previous insertion through neural tissue.
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Figure 3.3: Profilometer scan of sharpened shuttle tip.

Figure 3.4: Process flow detail.

3.2.2 Polymer probe microfabrication

Polymer devices used in chronic recordings were made of polyimide with platinum

electrodes electroplated with PEDOT:PSS. Each device had two shanks separated by 250

µm, each 80 µm wide and 6 or 8 mm long. As shown in Figure 3.5, each shank had 16

contacts arranged in an offset dual-line configuration of 8 contacts each. Contacts were 20

µm in diameter with 20 µm contact edge-to-edge spacing, and 6 µm from electrode edge to

shank edge. The image in Figure 3.5 was taken using Keyence Model VH-Z250R at

∼ 250×, with illuminated lighting on auto detect for white balance and brightness.
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Figure 3.5: Top-down view by light microscope of a single, two-shank, 32-channel probe
mounted on a sharpened, two-shank silicon shuttle. The shuttle tip extends approximately
100 µm past the tip of the probe, which appears yellow-gold atop the shuttle and has, on each
shank, two offset rows of eight PEDOT-PSS plated platinum contacts. Distance between
shanks is 250 µm. Scale bar = 100 µm.

3.2.3 Surgical insertion in vivo

We used single-shank silicon shuttles (Fig. 3.1) for in vivo insertion force tests.

Single-shank shuttles were created for shuttle-only tests by cutting off one of the shanks on

a two-shank shuttle. All animal-involved protocols described in this manuscript have been

approved by the Institutional Animal Care and Use Committee at UCSF. Studies were

performed in male Long Evans rats. For the comparison of force insertion measurements

between planar and sharpened shuttles in vivo, two animals were used, ages 12 and 16

months. For sharpened shuttle-guided insertion of probes for chronic neural recordings, one

animal, age 10 months, was used.

In all cases, animals were anesthetized with inhaled isoflurane plus a mixture of ketamine,

xylazine, and atropine and were confirmed unresponsive to a foot pinch. The head was

shaved and the animal transferred to the sterile surgery environment and head-fixed in a

stereotactic frame. Body temperature was maintained throughout surgery by an isothermal

pad beneath the animal. Following sterilization of the incision site and application of

lidocaine as a local anaesthetic, a minimal incision was made through all skin layers at the

top of the skull. The skin flaps were retracted and the tissues detached from the bone,

preserving the attachment of the temporalis muscle to the temporal ridge. For the chronic
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recording animal, a dental drill was used to make 12 sub-penetrating skull holes along the

temporal ridge. Into each of these holes, 0–80 titanium set screws (United Titanium, OH)

were partially inserted, serving to anchor the implant to the skull. These were drilled with

a rotating dental drill with carbide bur (SS White carbide bur, FG 2) at 6000 rpm, at an

intermittent rate, with the drill removed completely from contact with the bone between

bouts of drilling. Coordinates for target insertion sites were located using bregma and

stereotactic coordinates. One craniotomy of approximately 2–3 mm diameter was made to

expose the meninges over each of NAc (1.5 AP, ± 1.3 ML, mm) and OFC (+3.6 AP, ± 3.4

ML, mm) bilaterally (for chronic recordings), or each of hippocampus (-3.6 AP, ± 2.5 ML,

mm) and OFC bilaterally (for force insertion measurements). The craniotomy technique

was the same as for skull screw holes with the exception that the final ∼500 µm of bone

was removed using a smaller carbide bur (SS White carbide bur, FG 1/4). The dura mater

was maintained fully intact. Following in vivo data collection, animals were sacrificed using

an overdose of pentobarbital sodium and phenytoin sodium (Euthasol, Virbac AH, Inc.).

3.2.4 Insertion force measurements

Insertion force tests of shuttles without attached devices were performed over hippocampus

and OFC bilaterally in each of two animals. We performed 16 insertions in Animal 1 (4

sharpened and 4 planar to hippocampus; 4 sharpened and 4 planar to OFC) and 11

insertions in Animal 2 (4 sharpened and 2 planar to hippocampus; 2 sharpened and 3

planar to OFC). Each test insertion was performed with a new, single-shank shuttle over a

new area of dura. In both experiments, insertion force measurements were performed with

a precision load cell (FUTEK FSH02534) and voltage was read out through the digitizer

(FUTEK FSH03633) to a computer at 100 samples/second. The largest source of error in

our force measurements is in the readout of the digitizer, which is load-dependent and

equivalent to ±0.067 mN for our measured loads. Rigid adapters between the motor, load
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cell, and insertion shuttle were 3D-printed with hard plastic from custom designs

(PolyJetHD Blue, Stratasys Ltd.; Fig. 3.6). Insertions were conducted at a constant

velocity of 50 µm/s using a micropositioner (Kopf model #2662) and insertion force was

measured as the shuttle contacted dura and either inserted or failed (Fig. 3.7). To match

our typical surgical conditions, we tested serial insertions through dura in the same

craniotomy, with at least 300 µm separation between insertion sites. Each insertion was

performed with a shuttle through intact dura. The dura and brain were hydrated for the

duration of the surgeries using hand irrigation with saline.

Figure 3.6: Test insertion apparatus for in vivo insertion force measurements. The test
device was a single shank, 6 mm long.

Shuttle insertions were classified as successes if they insert through the dura without signs

of buckling. Consequently, insertions were classified as failures if they visibly buckled,

regardless of whether they eventually penetrated dura. Maximum insertion force was

82



measured at the time of penetration, which was taken as the first absolute maximum of the

force curve that preceded the first approximately infinite-slope curve characteristic of

membrane penetration199,210. In a few cases, a slightly higher force was measured after

initial penetration. In these cases we did not use the later timepoint to determine the

maximum insertion force because, by then, the device had already begun to penetrate

tissue and the total force measured thus included the frictional force as well.

Figure 3.7: Example of a successful (A) and failed (B) insertion attempt for sharpened silicon
shuttles, 6mm. Scale bar = 1 mm.

Brain deflection distances were calculated by multiplying the insertion speed (50 µm/s) by

the time between dural contact and penetration. We estimated the time of dural contact

by first calculating the mean and standard deviation of the (150-sample minimum) baseline

period, during which the shuttle was still above tissue and contacting only air; we then

determined the point at which a 5-sample sliding average of the measured force reached at

least one standard deviation above the baseline mean. The time of penetration was chosen

to be the first large peak of the force trace. The load cell itself compresses as a function of

force applied, and the amount of compression was measured under a microscope and

subtracted from the brain deflection values calculated from force measurement data as

described above. This resulted in a correction of 5 to 12 µm, which is within the variance

of deflection values between insertions.
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3.2.5 Imaging

Shuttles were imaged using Keyence Model VH-Z250R at ∼1000×, with illuminated

lighting on auto detect for white balance and brightness. Eight planar and eight sharpened

shuttles were each imaged both before and after in vivo insertions through dura to verify

that no shuttle breakage occurred during insertion or retraction.

3.2.6 Chronic recordings

All procedures were in accordance with guidelines from the University of California San

Francisco Institutional Animal Care and Use Committee and US National Institutes of

Health. For the tests of shuttles used with chronically implanted probes, the probe and

shuttle were adhered to each other by PEG on the side opposite the recording contacts, as

previously described for planar silicon shuttles. The meninges were hydrated between

craniotomy completion and the time of insertion using hand irrigation with a saline drip.

When all craniotomies were complete, a custom designed, 3D-printed plastic base piece was

secured to the skull using dental acrylic attached to the 128-channel headstage

(SpikeGadgets, LLC). These insertions were performed manually, lowering with a stereotax

at approximately 50 µm/s until the probe penetrated the dura mater. Once in the brain,

the device was lowered using a micromanipulator (MO-10, Narshige) at 10 µm/s until it

was 1 mm above target depth, then at 5 µm/s until it was 500 µm above target depth, and

at 3 µm/s until it reached target depth.

The four implant targets were: OFC bilaterally, at the same coordinates for the insertion

force measurements, at depth −4 mm from brain surface; and NAc at depth −7 mm from

brain surface. Following insertion, probes were secured to the base piece and the

electronics connected. Once the probe reached target depth, polyimide “wings” glued to

the probe perpendicular to its length were adhered to the base piece with acrylic, securing
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the probe at the target location. The shuttle was then detached from the probe by filling

the base piece with saline, which dissolved the PEG at the probe-shuttle interface, thus

allowing retraction of the shuttle without disrupting the probe. After all the probes were

inserted, the base piece was drained of saline and filled with silicon elastomer (Dow

Corning 3-4680) to prevent dural regrowth and scarring, brain swelling, and mechanical

perturbation of the probes211. Kwik-sil (World Precision Instruments, LLC), dental acrylic,

and a plastic case made of moldable plastic (ThermoMorph) was used to encase the

devices. Post-surgically, meloxicam (Eloxiject, Henry Schein) and buprenorphine (Baytril,

Reckitt Benckiser Healthcare) were given for pain, and a single dose of enrofloxacin

(Baytril, Bayer Corporation) was given to prevent infection. Neural recordings were

conducted in an approximately 1 square foot sleep box constructed of anti-static plastic

and located in a recording room. Data were collected for 30 minutes or longer per day

using the SpikeGadgets recording system (Trodes version 1.74), as previously described119.

The recording session analysed here was 1 hour long. Typically, the animal was asleep or

quietly immobile during the recording period. The animal also ran a spatial navigation

behaviour in epochs distinct from the sleep epoch analysed here. Recording quality was

analysed at 95 days, as we have found previously that cell count using these polymer

probes stabilizes by this time119.

3.2.7 Neural data analysis

Data pre-processing was performed using custom Python and Matlab scripts.

Common-average referencing was applied across the sixteen channels of each shank. Spike

sorting was performed using the MountainSort software package39,119,212, version 4.0. An

initial round of automated sorting was performed with the following sorting parameters:

detect sign = −1, detect threshold = 3, clip size = 100, adjacency radius = 200 µm. The

raw data were filtered between 600 and 6000 Hz. The detect interval was set to 10 samples
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and the first 10 principal components were used. For units identified using these

parameters, only those with cluster quality metrics above the following thresholds were

included as single units: firing rate threshold = 0.01 Hz, isolation threshold = 0.96, noise

overlap threshold = 0.03, peak signal-to-noise ratio threshold = 1.5. The rest were marked

as multi-unit activity. All identified units, including those marked as multi-unit activity,

were manually inspected and curated: in MountainView software, clusters that did not

appear to be single units based on refractory period violations (i.e., frequent spiking within

2 ms of the last spike) were rejected; multiple clusters that were identified as corresponding

to the same unit based on a combination of firing rates, waveforms, peak channels, and

temporal cross-correlograms were merged, and all cluster metrics listed above were

re-calculated. Clusters that passed the curation metric thresholds were accepted.

3.3 Results

3.3.1 Planar and sharpened shuttle insertion forces

We first tested single-shank shuttles with either a flat profile (planar; N = 6) or a

sharpened profile (sharpened; N = 8) but otherwise identical dimensions

(6 mm × 30 µm × 80 µm, Fig. 3.1 and Fig. 3.2) in transdural insertion to the

hippocampus (Fig. 3.8). Sharpened shuttles penetrated dura (8/8 shuttles, 100%) but

planar shuttles did not (0/6 shuttles, 0%). Figure 3.8 shows the maximum insertion force

for each insertion test over hippocampus. One shuttle characterized as failed did penetrate

dura, but only after buckling to an extent that would likely have caused separation from an

attached polymer probe due to the slight difference in curvature of the probe relative to the

shuttle during buckling. For successfully inserted shuttles, the average insertion force was

8.9 ± 1.6 mN (N = 8, ± s.d.). In contrast, failed penetrations resulted in buckling and had
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an average buckling force of 13.6 ± 1.8 mN (N = 6, ± s.e.m.; Fig. 3.8A, left).

The insertion force traces for shuttles that successfully penetrated the dura showed

increasing force, followed by a characteristic series of rapid decrements between local

maxima, in a sawtooth pattern (Fig. 3.9). In a few cases, a slightly higher force was

measured following initial penetration (Fig. 3.9, panels 3, 9, 10, 11 from top left to bottom

right), likely due to increased friction force after the device had begun to penetrate tissue.

In these cases we took the first local maximum as the maximum insertion force.

Our hippocampal target was located approximately halfway between bregma and lambda,

and halfway between the midline and the temporal ridge. As a test of the effectiveness of

our sharpened shuttles through thicker dura, we next performed the same tests over the

OFC, where the dura is thicker and more difficult to penetrate. Tests were performed for

OFC as for hippocampus (Fig. 3.7). Of the sharpened profile shuttles tested, 3/6 shuttles

(50%) penetrated dura, while 0/7 planar shuttles (0%) did. The worse performance over

OFC relative to hippocampus is expected given the tougher dura. Figure 3.7 shows the

maximum insertion force for each insertion test over OFC. Two sharpened shuttle

insertions characterized as failed, one over left OFC and one over right OFC, successfully

penetrated dura but did so only after buckling to an extent that would likely have caused

separation from an attached device.

For successfully inserted shuttles over OFC, the average insertion force was 10.6 ± 1.5 mN

(N = 3, ± s.e.m.; Fig. 3.8, right; insertion profiles also included in Fig. 3.9), which is not

significantly different than for hippocampus (Welch’s t-test: p = 0.24). In contrast, failed

penetrations included both sharpened and unsharpened shuttles and had an average

buckling force of 14.2 ± 0.6 mN (N = 10, ± s.e.m.; Fig. 3.8, left).
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Figure 3.8: Maximum insertion force for sharpened (triangles) and planar (circles) shuttles
inserted to (A) hippocampus (B) OFC that either failed (left) or succeeded (right). Y-
axis = maximum insertion force in mN. Random jitter applied along x-axis for visualization
of failed insertions. Points with dot centers indicate shuttles that penetrated dura but
only after buckling to an extent that would likely have caused separation from an attached
polymer probe.

3.3.2 Brain compression on transdural shuttle insertion

We calculated the degree of brain deflection for sharpened shuttles successfully inserted

through dura without buckling (i.e., those insertions included in Fig. 3.9). Deflection

distances were calculated using the number of samples between dural contact and

penetration (refer to Methods for details). On average, the calculated compression for

sharpened shuttle insertions through dura was 389.9 ± 159.6 µm (N = 8, ± s.e.m.) for

hippocampus and 302.5 ± 158.5 µm (N = 3, ± s.e.m.) for OFC.

3.3.3 Imaging before and after insertion

We imaged 8 sharpened and 8 planar shuttles before and after in vivo insertion. We

observed no breakage or other discernible damage to any of the shuttle tips, indicating that
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sharpened shuttles, despite having a tip diameter of less than 3 µm in width and thickness,

maintain their structural integrity and do not break off in the brain (Fig. 3.10).

Figure 3.9: Raw force traces for all sharpened shuttles inserted through dura without buck-
ling. X-axes in seconds, with traces aligned to 0 as the timepoint of maximum force, y-axes
in mN. The animal and area of insertion are labelled in the upper right of each panel; plot
at lower right shows all insertion force measurements depicted here overlaid. If the insertion
was through a different area of a craniotomy where a section of dura at least 300 µm away
was already used for a test insertion, the insertion site is marked with an asterisk.

3.3.4 Neural recordings using sharpened shuttles

Device-attached shuttles entered the brain with minimal compression of the dura and

brain, with no observable difference relative to shuttle-only insertions. This is expected,

given that devices were intentionally attached to shuttles such that their tips were shifted

approximately 100 µm back along the shuttle shanks (Fig. 3.5). This enabled the bare
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sharpened shuttle tip, without the device, to form the penetrating point. We observed that

after the dura was punctured, tension in the membrane slightly expanded the opening to

allow the probe, which itself is 14 µm thick, to enter the brain. After dural penetration

using a stereotax, the device was inserted to its final depth using a micromanipulator. We

observed that single units were detected on all six implanted shanks (16 channels each) for

at least 90 days. We selected a single epoch on day 95 post-implant to perform spike

sorting on one of the shanks targeted to the left OFC. This shank was selected for its

electrode quality prior to insertion (no shorts or dead channels) and relatively low noise

levels (Fig. 3.11). We identified 18 single units on this 16-channel shank, for an average of

approximately one unit per electrode (Fig. 3.11). This is similar to what we have

previously observed for polymer arrays inserted using planar shuttles119. Single units that

passed curation standards were evenly distributed over the recording channels, with no

apparent systematic difference in quality, from the top to bottom of the shank.

Figure 3.10: Top-down view of the same sharpened shuttle. A. Before insertion. B. After
insertion through dura. Scale bar = 50 µm.
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Figure 3.11: A. Raw, 150-millisecond local field potential recorded on each of the 16 channels of one
shank targeted to OFC, 95 days after implant. Channels 1-16 are ordered from top to bottom. Channels 1–8
correspond to electrodes on the left side of the probe shank, from top to bottom; channels 9-16 correspond to
electrodes on the right side of the device, from bottom to top (i.e., channels 1 and 16 are at similar depth).
Scale bar, bottom left = 1 mV vertical, 15 milliseconds horizontal. B. Each of 18 units detected on the
16-channel shank shown in A. Odd rows: average waveforms (solid line) ± one standard deviation (dashed
line) for units 1-18, numbered in bottom right of each panel. For each waveform, vertical scale bar = 2.5
millivolts, horizontal scale bar = 100 samples (at 30 kHz), or approximately 3.33 milliseconds. Even rows:
spike auto-correlograms for the unit shown above, spanning 100 milliseconds, in 0.5-millisecond bins.
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3.4 Discussion

Previous work has demonstrated the benefits of sharpened device tips in reducing insertion

force (Sharp et al., 2009,199,204 and penetrating dura200,204,205. Here, we sharpen not only in

two dimensions but three, resulting in a more gradually increasing cross-section204. This is,

to our knowledge, the first demonstration of a dural-penetrating, polymer device insertion

method to yield chronic single unit recordings. It also allowed us to directly compare

shuttles made of the same material (silicon) that were sharp in three versus two

dimensions. We have shown that sharpened silicon shuttles result in low insertion forces

and brain compression. The expected buckling force, also known as the critical load, of our

silicon shuttle can be calculated with Euler’s critical load equation:

Fcrit =
π2E I n

L2
, (3.1)

where E is the Young’s modulus of silicon, I is the moment of inertia for the

cross-sectional area of the shuttle, n is a factor accounting for end conditions, and L is the

length of the shuttle. The moment of inertia I of a rectangular cross-section is ab3/12

where a and b are the longer and shorter side lengths, respectively. We take 169 GPa as the

Young’s modulus of our silicon shuttles, which are fabricated in the 〈110〉 crystal

directions214. For translation fixed, rotation fixed and translation fixed, rotation free (brain

side) end conditions, n = 2 and the expected critical load is:

92



Fcrit =
π2 (169 GPa)×

(
80 µm× (30 µm)3

12

)
× 2

(6 min)
(3.2)

= 16.7 mN.

This is close to our measured result of 13.6 mN for hippocampus and 14.2 mN for OFC.

Due to the deformable nature of the brain, the boundary condition on the brain side is not

completely translation fixed, with true n less than 2 and true Fcrit expected to be slightly

lower than calculated. We did not, however, visually observe the shuttle tip translate

across the dural surface during insertions.

Our maximum insertion force for transdural insertion of sharpened shuttles of

approximately 10 mN is lower than previous reports for planar devices (e.g., 41 mN with

silicon probes;205 and similar to the 11 ± 2 mN reported previously in a proof-of-concept

study in which a less flexible, silicon-specific etch technique was used to insert but not

record from silicon probes204. Table 1 summarizes previously published insertion force

measurements made through rat dura. For comparison, previously reported peak insertion

forces for rat pia-only insertions are approximately 5 mN204,215. In addition to those

devices included in Table 3.1, other silicon arrays have been inserted transdurally in cat216

and rat217 without measurement of insertion force. For comparison, commercially available

silicon Neuronexus probes range from 15 – 50 µm thick and the state-of-the-art silicon

Neuropixels probe is 70 × 20 µm169. These dimensions are comparable to the smallest

devices in the table. The design and fabrication technique presented here could be used for

these silicon electrode arrays to enable dural penetration.

Our insertion force traces each show multiple peaks separated by approximately 100 µm in

depth, which in some cases (traces 3, 9, and 11 from the upper left) include a peak that is
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higher than the first. Additional force peaks over the course of insertion could be due to

penetration of the pia and arachnoid mater, which lie between the dura mater and brain

parenchyma. Such a sawtooth or non-monotonic pattern has been observed previously by

other experimenters performing device insertions into the brain199,210 though not in all

cases200,204,206, and is expected to depend on the shape of the device and its insertion

speed. In cases where such a pattern has been observed, it has been suggested that

myelinated axon bundles or other heterogeneities in the brain parenchyma itself, below the

insertion site, could account for the insertion force profile199. Another possibility is that

this pattern would be observed even in absence of the underlying brain parenchyma. The

dura is a dense irregular connective tissue, made of collagen and elastin, and it is

conceivable that the first peak on the insertion force trace could correspond to the tip of

the shuttle breaking superficial matrix fibers, with subsequent peaks corresponding to

further breakage of deeper fibers. Such a process has been observed for rat dura-only

penetrations208. Heterogeneities in the brain parenchyma and dura exist not only across

depths at a given insertion site, but at different anteroposterior and mediolateral

coordinates. This may explain the variation in force traces for insertions performed at

different locations within the same craniotomy, which will present different vasculature,

cellular composition, and overlying dural matrix fibers.

Recently, an insertion method using a diamond shuttle tested rat transdural insertion at a

variety of speeds, finding a minimum average compression of 488 µm at insertion speed

10 µm/sec with 200 Hz vibration206. At approximately 300–400 µm of compression

without piezovibration, our method is comparable. To our knowledge, these are the lowest

brain compression values for a working device through dura. It is a reasonable expectation

that for surgeries where performing a durotomy is preferable, these devices can be

implanted into the brain through pia with even lower brain compression. This use could be

particularly valuable for superficial cortical sites in which recording quality is easily

compromised by compression of the brain218.
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Force and tissue compression are important metrics to gauge neural tissue damage, but a

single unit count weeks after implant is required to fully demonstrate a neural recording

technology for chronic use. Recently, promising strategies for insertion of flexible polymer

devices through rat dura have been demonstrated197,207, but such methods have not yet

reported chronic, single-unit recordings in freely behaving animals. Here, we evaluated our

single unit count at 95 days. At that timepoint we were able to record high quality single

units on 11 of 16 (69%) channels, with a total of 18 sorted units on 16 channels, or an

average of 1 high-quality unit per electrode. In comparison, the other recent technology

that reports a single unit count is the dural penetrating diamond shuttle for delivery of a

flexible array, which yielded acute neural recordings of 20 units over 60 channels, or an

average of 0.33 units per electrode206. Another exciting alternative to manual durotomy is

laser microablation, which has been used preceding robotic insertion of thin-film polymer

probes. The longest recordings reported using this method were taken at two months

post-implant, with approximately 40 percent of channels recording single-unit action

potentials198.

Table 3.1: Rat trans-dural insertion forces measured here and in previously published work.

Further reduction in brain compression may be achieved by fabrication of even sharper

profile tips199, which our fabrication method can achieve with minimal adjustment.

Another way to reduce brain compression could be to change insertion speed. A range of

speeds, including meters-per-second scale pneumatic insertion219, have yielded dural

penetration204 and neural recordings197,205,216, with the optimal speed dependent on tip
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shape and features in the target tissue, such as vessels201. A recent report indicates that

slower insertion of silicon probes into brain following durotomy, over the range 2 µm/sec to

1 mm/sec, improves cell yields in acute recordings220. Retraction speed, too, has been

varied; for example, the ballistic retraction method used in combination with

needle-and-thread insertion to prevent displacement of electrodes from target depth has, as

previously discussed, yielded chronic neural recordings198. In addition to determining the

optimal insertion and retraction speeds, incorporating fast axioaxial vibration with

relatively slow insertion speed could also aid in insertion with minimal brain

compression206. Additionally, application of collagenase to the dura could make it more

easily penetrable215, though this process is slow and titration to determine an appropriate

concentration presents a challenge, as the dural membrane thickness varies with target

location and age204.

Another complementary insertion strategy uses an insertion guide, as recently

demonstrated for insertion of SMP devices through rat dura207. Inspired by the labium

that guides the proboscis of the female mosquito, a guide at the insertion site increases the

critical buckling load of the inserted device itself. Such a strategy could be used in

combination with the sharpened shuttles validated here.

This work addresses successful dural insertion with single and double-shank devices, but

the fabrication method described here could be applied to larger, multi-shank arrays for

recording more neural data, over a more distributed brain volume. If the spacing between

shanks is much larger than the dimpling radius, we would expect each shank to experience

the same force as if it were implanted independently. However, if the spacing between

shanks is small, the required insertion force for the array is expected to scale with the

number of shanks, as has been shown for probes from one to ten shanks205. The mechanics

are akin to those that protect the yogi lying on a bed of nails, across which the total force is

distributed to prevent injury. One array design that could maintain the ability to penetrate
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dura would have shanks of varied lengths such that, at any given time, only a subset of

shanks is in the process of penetrating dura. Our measurements of brain deflection can

guide the design of these arrays to determine these varied shank lengths. Although we have

focused on the delivery of flexible arrays, the design and fabrication technique presented

here could be used for silicon electrode arrays themselves, either for dural penetration or to

reduce brain compression in clinical and non-human primate implants.

3.5 Conclusion

Recording more neurons in distributed circuits will likely lead to scientific insights that are

unachievable with a smaller number of neurons221,222. Polymer probes are among the most

promising methods for chronic, large-scale neural recordings, but their insertion through

the tough protective membranes of the central nervous system is challenging and currently

limits their broad use and effectiveness. Here, we have validated for chronic recordings the

first dural-penetrating shuttle in combination with a modular polymer probe-based

recording platform. This method shows limited brain compression and obviates the need

for a durotomy in rats and other model organisms with similar dural tensile strength.

Maintaining intact dura will reduce post-surgical edema, likely increasing accuracy in

depth-targeting of the electrode arrays. This is critical for fixed, non-drivable arrays,

particularly for targets with a small dorsoventral extent. The number and quality of single

units we have recorded with this system is comparable to what we have previously recorded

in the OFC using planar shuttles, inserted through pia only212. It is our hope that this

method to more efficiently implant polymer devices for high-density, chronic neural

recordings will enable experimentalists to address compelling open questions in

neuroscience.
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Chapter 4

Sharp-wave ripples in retrieval for

memory consolidation and use

Abstract: Various cognitive functions have long been known to require the hippocampus.

Recently, progress has been made in identifying the hippocampal neural activity patterns

that implement these functions. One such pattern is the sharp wave-ripple (SWR), an

event associated with highly synchronous neural firing in the hippocampus and modulation

of neural activity in distributed brain regions. Hippocampal spiking during SWRs can

represent past or potential future experience, and SWR-related interventions can alter

subsequent memory performance. These findings and others suggest that SWRs support

both memory consolidation and memory retrieval for processes such as decision-making. In

addition, studies have identified distinct types of SWR based on representational content,

behavioural state and physiological features. These various findings regarding SWRs

suggest that different SWR types correspond to different cognitive functions, such as

retrieval and consolidation. Here, we introduce another possibility – that a single SWR

may support more than one cognitive function. Taking into account classic psychological

theories and recent molecular results that suggest that retrieval and consolidation share
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mechanisms, we propose that the SWR mediates the retrieval of stored representations

that can be utilized immediately by downstream circuits in decision-making, planning,

recollection and/or imagination while simultaneously initiating memory consolidation

processes.

4.1 Introduction

It is not possible for the body to go back or to leap ahead in time, but it is possible for the

mind to do so, as it can store and access information about the past to conceive of the

future, and thus maintain a sense of self through time. This remarkable ability depends on

memory. The most general organizing framework divides memory into three phases: its

initial formation, known as encoding; its ongoing storage; and its retrieval223–226. These

phases were originally formulated by experimental psychology with reference to animal and

human behaviour226. Following this tradition, behavioural tests designed to isolate one or

more of encoding, storage and retrieval can be used in conjunction with manipulations to

identify necessary brain areas, or with measurements to identify coincident neural activity

patterns.

A complementary starting point is the observation of neural activity during relatively

unconstrained behaviour227–229. In contrast to the approach from psychology, this approach

does not presuppose cognitive functions, such as consolidation or retrieval. Instead, its

focus is neural activity, the features and patterns in which are used to define physiological

functions that support memory-associated behaviour. The mapping between the

physiological functions and cognitive functions that support memory remains unclear.

The approach from psychology has established that the hippocampus supports certain

types of memory-associated behaviours. Complementing these results, the approach from
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physiology has identified the hippocampal sharp wave–ripple (SWR) as a specific neural

activity pattern that supports various memory and cognitive functions, as described in

previous reviews230–240. These previous reviews establish a link between SWR neural

activity and two different phases of memory, consolidation and retrieval, introducing an

apparent conflict between knowledge gained from the classic psychological and

physiological approaches. Are there functional subtypes of SWR that preferentially

subserve retrieval or consolidation? Alternatively, might a single SWR subserve both

functions? Here, our aim is to extend the conclusions of earlier work in a new synthesis

focused on relating SWRs with particular physiological features, which occur in specific

states, to specific memory functions.

We begin with a review of hippocampal function in memory as defined by human lesion

studies. Next, we establish working definitions of memory concepts including encoding,

consolidation and retrieval, and we review the dependence of these processes on the

hippocampus based on work in rodents and humans. We then introduce the physiological

features of the SWR, which have been studied primarily in rodents. In setting out to relate

the SWR to specific memory functions, we first define a series of predictions for neural

mechanisms that would support consolidation or retrieval. Each of these prediction

domains is the focus of a section: behavioural state dependence, necessity in

memory-dependent behaviours, representational content, and relationship to activity in

distributed brain regions. In each section, we summarize what is known about the SWR

with respect to the predictions for consolidation and retrieval. Based on the results of this

exploration, we end with an argument for consideration of an alternative conceptual

approach to memory wherein each SWR mediates retrieval in support of both the

immediate use of remembered information and the gradual process of memory

consolidation.
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4.2 The hippocampus and memory

Damage to the hippocampus, the generative structure of the SWR, has been known for at

least fifty years to result in the combination of anterograde and temporally graded

retrograde amnesia223,241. These findings, primarily based on human lesion studies (for

example, of the famous patient H.M.242), indicated a specific deficit in what are often

characterized as ‘relational memories’, defined as those memories that store information

about complex combinations of stimuli or states243. In humans, these include episodic

memories, which comprise the subset of declarative memories for specific experiences225,244.

The findings from the lesion and other studies support three main conclusions. First, the

encoding of relational memories requires the hippocampus, accounting for the anterograde

amnesia observed in the lesion studies. Second, the hippocampus is also required for the

retrieval of these memories for some time after initial storage, accounting for the retrograde

amnesia with hippocampal lesions. Third, after the initial formation of memories, during

their ongoing storage, memory retrieval gradually shifts from requiring an intact

hippocampus to being at least partially independent of it, accounting for the temporally

graded nature of retrograde amnesia following such lesions.

During encoding, neural representations of experience must be linked together to capture

information about experience as it unfolds in time245. Physiologically, encoding is thought

to depend on hippocampal mechanisms246–248 other than the SWR249–252. Encoding is

distinct from other memory processes in that it happens first and only once (at most) per

event or episode225,253, although multiple encoded episodes can contribute to what is

thought of as a single memory (for example, each exposure in a fear conditioning task is

encoded; the resulting long-term ‘fear memory’ is probably the result of generalization

across these experiences during consolidation254). By contrast, retrieval and consolidation

can occur repeatedly and in alternation throughout the life of a memory255.
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The adaptive value of memory storage is in its later use, the starting point for which is

memory retrieval, specifically defined as the function of accessing information stored in

memory. Importantly, retrieval is distinct conceptually256 (and probably neurally) from the

conscious experience of remembering, or recollection, for which retrieval is necessary but

not sufficient. In addition to conscious recollection, retrieval has many other uses. In

perhaps its simplest application, retrieval of a single stimulus-response association can

drive behaviour directly, as when exposure to a context associated with shock leads to

freezing254. A more complex computation may be performed when a subject is confronted

with multiple options and retrieves specific episodes of past experience for decision-making

or planning. Retrieval in some form could also support imagination, which can be

understood as the rearrangement or elaboration of stored information in mental simulation

of future possibilities257.

Retrieval is typically inferred from behaviour, and behavioural studies indicate that all of

the aforementioned retrieval and use scenarios require the hippocampus in rodents258,

monkeys259 and humans260–266. In some circumstances, the dependence of such memory

retrieval-and-use behaviours on the hippocampus is time-limited254,267,268. The gradual

shift in their dependence from the hippocampus to the neocortex, initially inferred from

lesion studies, is attributed to a hypothetical process known as systems consolidation. The

standard model of systems consolidation and its alternatives269 describe a process spanning

weeks to years that renders memories less liable to disruption (although they are still

mutable)255,270,271.

Importantly, systems consolidation itself is thought to depend on retrieval226,232,256,272–274.

Mechanistically, repeatedly retrieving information that is stored in memory is hypothesized

to initiate synaptic consolidation processes, including subsequent protein synthesis, that

strengthen or weaken specific synapses over minutes to weeks275. The standard model

proposes that synaptic strengthening, in particular, effects the gradual, but complete,
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transfer of memories from the hippocampus to neocortex253,276. Alternatives to this model

cite findings that some memory-dependent behaviours, particularly those requiring detailed

episodic memory, are always compromised following hippocampal lesion and thus may

require the hippocampus indefinitely260,277,278. Systems consolidation is also associated

with the extraction from specific episodes of general features or rules related to stored

experiences261,279 in more semantic or schema-like representations in the neocortex260.

Although this account of memory retrieval and consolidation has its basis in behavioural

studies, the extent to which behaviour alone can provide mechanistic insight to memory is

limited. A behavioural report of retrieval requires not only retrieval itself but also its

successful encoding, likely consolidation, and at least one of its many possible downstream

uses. For this reason, behaviour is not a highly sensitive detection method for retrieval;

introspection tells us that it is possible to access information from memory without any

obvious outward behavioural signs. Neither is behaviour specific to the particular use of

retrieval: behavioural expression of simple associations, decision-making, imagination and

planning may not be differentiable. Moreover, just as retrieval cannot be reliably inferred

from behavioural output, it is not fully predictable from observable inputs: although

memory retrieval can be prompted by experience with contexts or stimuli from the

past280,281, it does not always occur (often we are distracted; sometimes, we forget). Thus,

we can infer from behaviour that consolidation and retrieval occur, but we cannot infer

precisely when, or how. Here, the behavioural approach is complemented by the study of

brain physiology, which has independently identified striking patterns of neural activity

that are suggestive of memory function, such as the SWR.
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4.3 Sharp wave-ripples

4.3.1 Physiology of the SWR

For at least 50 years, the extracellular local field potential (LFP) has been used to relate

neural and behavioural phenomena228,229. In early work, large, brief deflections in the

hippocampal LFP were observed during periods of rest227,228; this striking LFP pattern

was termed large-irregular activity (LIA). The defining activity during LIA in the

hippocampus is a more specific pattern known as the SWR282, the properties of which have

been studied primarily in the rodent (but see Box 4.3.1).

The sharp wave component of the SWR is an extracellularly recorded event that

corresponds to the summed, synchronous depolarization of a large fraction of the neurons

in the CA1 subregion of the hippocampus228,282–285. In permissive network states230, CA1

activity can be driven by activity in upstream CA3 that is independent of external

inputs282,286. Such activity can be modulated by activity in CA2287 and the dentate

gyrus288. The strong recurrent connectivity in CA3289,290 is thought to allow the increased

activity of relatively few pyramidal cells to spread rapidly through the region. The same

activity from CA3 that excites a large subset of CA1 pyramidal cells291 also excites

interneurons, resulting in the oscillatory excitation and inhibition of

interneuron-coordinated pyramidal cell ensembles that manifest as the coincident ripple, a

high amplitude 150–250 Hz oscillation228,285,292–296.

The presence of high power in the ripple band is itself often used as a marker for SWRs

(usually using a threshold between 3 and 9 standard deviations above the mean)297,298.

The distribution of ripple band power is not, however, bimodal. Rather, it is approximately

log-normal with a long tail towards high values298. The application of a threshold to ripple

power, therefore, should not be understood as discriminating SWR and non-SWR events
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with perfect accuracy. Nonetheless, the properties of spiking and LFP activity observed

during SWRs are consistent across a variety of studies that use different thresholds230.

Based on features that we review below, SWR-associated neural activity has been proposed

to support memory consolidation, retrieval, planning and imagination230,231,237–239,299. In

parallel, different types of SWRs have been identified based on representational and

physiological characteristics. Whether there is a simple mapping from memory function to

SWR type remains unclear, however. This question is particularly important because of its

implications for our understanding of the relationship between retrieval and consolidation.

Consolidation requires retrieval; does retrieval necessarily lead to consolidation? An

absence of SWR functional types would suggest that, for this particular candidate memory

mechanism, retrieval and consolidation may be effected together.

4.3.2 SWR occurrence depends on experience and behavioural

state

The SWR is a physiological event of sub-second duration. To the extent that a SWR

supports systems consolidation, it would likely be by initiation of slower synaptic

consolidation processes323. In this Review, we differentiate these hypothetical

consolidation-promoting events (consolidation events) from consolidation itself, the process

of strengthening a memory that is thought to correspond to synaptic changes.

Consolidation events are expected to occur with greater strength or frequency following

any experience that would be adaptive to remember, such as a novel, rewarding, punishing

or otherwise instructive experience324. Because sleep has been shown to have a

memory-strengthening effect279, we expect consolidation events to occur during sleep. It is

possible, however, that they also occur during wake.

Because consolidation is thought to require retrieval, any period when consolidation events
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The majority of sharp wave–ripple (SWR) and replay studies have been per-
formed in mice or rats, but SWRs have also been described in vivo in cats300,301,
bats302, rabbits303,304, monkeys305–309 and humans310–313. SWR activity has
also been described in the Australian bearded dragon (Pogona vitticeps), but
in a region that is not considered to be a hippocampal analogue314, and whole
zebrafish brains in vitro show SWR-like activity315. Although sequential replay
has only been observed in rodents, the relationship in rodents between SWRs and
memory-dependent behaviour has also been reported in rabbits303,304, non-human
primates306 and humans311.

Consistent with rodent findings230, human SWRs are most frequent during
slow-wave sleep and immobility316,317 and are correlated with widespread changes
in activity throughout the brain. In macaque monkeys, a series of fMRI studies
identified activation of the neocortex and inhibition of subcortical structures at
the time of SWRs305,318, as well as elevated activity following SWRs of the default
mode network319, which in humans is linked to memory processes, including
imagination and prospection262,319. Differences between SWRs in rodents and
in primates include a lower SWR rate in humans and monkeys308,311 (possibly
due to challenges inherent in primate SWR detection) and, in monkeys, the
observation of SWRs during visual search, which is considered an analogue of
active exploration306. This is at odds with thinking that, in rodents, exploration
is associated with a theta rhythm and memory encoding229,320 more than with
the SWR and its proposed memory functions.

A cross-species comparison of memory ability and features of the SWR, includ-
ing state dependence and replay content, would potentially be informative for
determining SWR function. Such a comparison will require further testing of the
memory abilities of those species with SWRs321, and causal studies of the SWR
in species other than rodents322.

Box 4.3.1: Sharp wave–ripples across species.

are expected based on state or behaviour is also expected to contain retrieval events; like

consolidation events, retrieval events are expected to occur following novelty, reward and

punishment, as well as in sleep and probably also in wake. These timing-based predictions

therefore cannot discriminate SWR function in consolidation from function in the retrieval

that supports it.

For retrieval in uses other than consolidation, similar dependencies on behavioural state are

expected. Because retrieval is necessary for processes that occur in the awake state, such as
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decision-making, retrieval events are expected to occur then. Retrieval events for

decision-making might also be expected to decline with novelty, occurring more often in

situations early in learning before general rules have been learned325,326, as this is when

specific memories may be used to guide decisions. Likewise, the use of retrieval in

recollection may be more frequent for events following reward327. Retrieval events may also

occur during sleep, as when elements of waking experiences recur in dreams, and thus

would support the previously reported phenomenon of sleep insight328. These possibilities

demonstrate that predictions based on behavioural state or experience alone cannot

definitively differentiate a mechanism that supports retrieval for consolidation from

retrieval for other uses – just as such predictions cannot distinguish retrieval events in

consolidation from consolidation events themselves. Furthermore, because consolidation

and retrieval events are expected to occur in the same behavioural states, a single

mechanism could exist to support both simultaneously.

Work in rodents has demonstrated that SWRs occur most frequently during slow-wave

sleep, least frequently during running, and at an intermediate rate, occurring once every

few seconds, during periods of quiet rest298,329. This pattern of occurrence is regulated by

modulatory factors330 including cholinergic tone232,331, which tends to be higher during

movement332. Cholinergic modulation has also been speculated to explain a recent report

that SWR occurrence is entrained by breathing333. SWRs typically occur more frequently

during and after novel experiences298,334–336, although the SWR rate has been reported in

some tasks to increase over the course of multiple traversals of a familiar path337. An

increase in SWR rate is also seen immediately after receipt of a reward, particularly if it

occurs in an unfamiliar location338 (Fig. 4.1).

Together, these findings indicate that the SWR rate is at its highest in the contexts of

novelty and reward, consistent with functions in both consolidation and retrieval. The

increase in SWR rate immediately following reward is consistent with theoretical

107



predictions for a consolidation mechanism that would be particularly effective in linking

extended actions to their outcomes, a specialized information storage problem known as

credit assignment338,339. However, a higher SWR rate after reward could also represent

retrieval for recollection, and a higher SWR rate during novel experience could also

indicate retrieval for decision-making.

4.3.3 SWRs are necessary for memory performance and stable

representations

If the SWR supports consolidation, either as a retrieval mechanism or in some other

capacity, it is expected to be necessary for memory-dependent behaviours and changes in

synaptic strength, the established molecular correlates of learning. Under the standard

model, a mechanism for systems consolidation is also expected to be necessary for the

renormalization of synapses in the hippocampus and, in parallel, the alteration and

stabilization of synapses in extra-hippocampal structures, particularly the

neocortex323,340,341. Alternatively, if the SWR is a mechanism for memory retrieval for use

in functions other than consolidation, it is likewise expected to be necessary for

memory-dependent behaviours but not plasticity.

Studies that have interrupted or disrupted the structure of SWRs during sleep have

demonstrated their necessity for memory-dependent behaviours and have been interpreted

as evidence of a consolidation function. The first of these studies truncated SWRs by

electrical stimulation of CA3–CA3 connections in the ventral hippocampal commissure

(VHC). Across many days of learning, SWRs were truncated during hour-long sleep or rest

periods following experience. This resulted in slower learning in hippocampus-dependent

spatial memory tasks342,343. SWR disruption by other methods, including suppression of

CA3 output to CA1344, and optogenetic activation of the locus coeruleus345 or median
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For retrieval in uses other than consolidation, sim-
ilar dependencies on behavioural state are expected. 
Because retrieval is necessary for processes that occur 
in the awake state, such as decision-making, retrieval 
events are expected to occur then. Retrieval events for 
decision-making might also be expected to decline 
with novelty, occurring more often in situations early 
in learning before general rules have been learned80,81, 
as this is when specific memories may be used to guide 
decisions. Likewise, the use of retrieval in recollection 
may be more frequent following reward, as these events 
may be preferentially recollected82. Retrieval events may 
also occur during sleep, as when elements of waking 
experiences recur in dreams, and thus could support 
the previously reported phenomenon of sleep insight83. 

These possibilities demonstrate that predictions based 
on behavioural state or experience alone cannot defini-
tively differentiate a mechanism that supports retrieval 
for consolidation from retrieval for other uses — just 
as such predictions cannot distinguish retrieval events 
in consolidation from consolidation events themselves. 
Furthermore, because consolidation and retrieval 
events are expected to occur in the same behavioural 
states, a single mechanism could exist to support both 
simultaneously.

Work in rodents has demonstrated that SWRs occur 
most frequently during slow-wave sleep, least frequently 
during running, and at an intermediate rate, occurring 
once every few seconds, during periods of quiet rest76,84. 
This pattern of occurrence is regulated by modulatory 
factors85 including cholinergic tone10,86, which tends to be 
higher during movement87. Cholinergic modulation has 
also been speculated to explain a recent report that SWR 
occurrence is entrained by breathing88. SWRs typically 
occur more frequently during and after novel experi-
ences76,89–91, although the SWR rate has been reported in 
some tasks to increase over the course of multiple travers-
als of a familiar path92. An increase in SWR rate is also 
seen immediately after receipt of a reward, particularly  
if it occurs in an unfamiliar location93 (FIG. 1).

Together, these findings indicate that the SWR rate 
is at its highest in the contexts of novelty and reward, 
consistent with functions in both consolidation and 
retrieval. The increase in SWR rate immediately follow-
ing reward is consistent with theoretical predictions for 
a consolidation mechanism that would be particularly 
effective in linking extended actions to their outcomes, a 
specialized information storage problem known as credit 
assignment93,94. However, a higher SWR rate after reward 
could also correspond to retrieval for recollection, and 
a higher SWR rate during novel experience could also 
correspond to retrieval for decision-making.

SWRs are necessary for memory performance and sta-
ble representations. If the SWR supports consolidation, 
either as a retrieval mechanism or in some other capac-
ity, it is expected to be necessary for memory-dependent 
behaviours and changes in synaptic strength, the estab-
lished molecular correlates of learning. Under the stand-
ard model, a mechanism for systems consolidation is 
also expected to be necessary for the renormalization of 
synapses in the hippocampus and, in parallel, the alter-
ation and stabilization of synapses in extrahippocampal 
structures, particularly the neocortex78,95,96. Alternatively, 
if the SWR is a mechanism for memory retrieval for 
use in functions other than consolidation, it is like-
wise expected to be necessary for memory-dependent 
behaviours but not for plasticity.

Studies that have interrupted or disrupted the struc-
ture of SWRs during sleep have demonstrated their 
necessity for memory-dependent behaviours and have 
been interpreted as evidence of a consolidation function. 
The first of these studies truncated SWRs by electrical 
stimulation of CA3–CA3 connections in the ventral hip-
pocampal commissure. Across many days of learning, 
SWRs were truncated during hour-long sleep or rest 
periods following experience. This truncation of SWRs 
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Fig. 1 | Schematic of sharp wave–ripple rate across brain state and with movement 
speed. In the awake state, the sharp wave–ripple (SWR) rate varies as a function of 
movement speed, novelty and receipt of reward. SWRs are most common during periods 
of immobility and become increasingly rare at higher movement speeds. Their rate is 
higher across all speeds in novel versus familiar environments, and in both novel and 
familiar environments their rate is highest following receipt of reward. During sleep, 
SWRs occur only rarely during rapid eye movement (REM) sleep and occur most often 
during slow-wave sleep. The SWR rate during slow-wave sleep (in a familiar sleep box) 
following exploration of a novel environment is higher than it is following exploration of 
a familiar environment. The SWR rate in REM sleep has not been studied following 
experience in a novel environment, therefore it is omitted from the figure. These patterns 
of modulation are consistent with an increased SWR rate during and after learning and 
indicate that SWR-mediated retrieval is utilized primarily at lower speeds.

Rapid eye movement (REM) 
sleep
The ‘paradoxical’, wake-like 
phase of sleep that is marked 
by reduced synchrony in the 
LFP and REM and that is 
associated in humans with 
dreaming.

Slow-wave sleep
The phase of sleep marked by 
low-frequency oscillations in 
the LFP that is strongly 
associated with memory 
consolidation.

Figure 4.1: Schematic of sharp wave–ripple rate across brain state and with movement speed.
In the awake state, the sharp wave–ripple (SWR) rate varies as a function of movement speed,
novelty and receipt of reward. SWRs are most common during periods of immobility and
become increasingly rare at higher movement speeds. Their rate is higher across all speeds
in novel versus familiar environments, and in both novel and familiar environments their rate
is highest following receipt of reward. During sleep, SWRs occur only rarely during rapid
eye movement (REM) sleep and occur most often during slow-wave sleep. The SWR rate
during slow-wave sleep (in a familiar sleep box) following exploration of a novel environment
is higher than it is following exploration of a familiar environment. The SWR rate in REM
sleep has not been studied following experience in a novel environment, therefore it is omitted
from the figure. These patterns of modulation are consistent with an increased SWR rate
during and after learning and indicate that SWR-mediated retrieval is utilized primarily at
lower speeds.
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raphe330 during post-behaviour sleep, has a similar effect. Interestingly, when SWRs are

disrupted in sleep after learning, but not after a random foraging task, there is a subsequent

increase in their rate, suggesting the existence of homeostatic-like control of SWRs that is

set based on learning346. A recent gain-of-function study also demonstrated that electrical

stimulation of the medial prefrontal cortex (mPFC) immediately after each SWR during

sleep led to an increase in coordinated activity between mPFC and hippocampus, as well

as an improvement in memory for a briefly experienced set of objects in a context347.

Disruption of SWRs during awake behaviour also impairs learning and performance in

spatial memory tasks303,348. SWRs were demonstrated to be necessary for a normal rate of

initial learning of a spatial alternation rule and, in a separate group of animals already

trained in the task, for continued performance348,349. Similarly, delivery of a strong light

stimulus after SWRs disrupted learning in a trace eye blink conditioning task, suggesting

that the period extending hundreds of milliseconds following an SWR is important for

memory processes303. In further support of this hypothesis, gain-of-function experiments

showed that presentation of conditioned stimulus – unconditioned stimulus pairings

specifically following SWR events led to an acceleration in learning (but also slowed

extinction)304. The disruption of SWRs that is observed in both sleep and wake in models

of diseases with memory symptoms also suggests SWRs contribute to memory (Box 4.3.2).

There is complementary evidence that SWRs contribute to stabilization of representations

that are formed during experience. In awake behaving rodents, SWRs can contribute to

stabilization of place fields, the spatial representations typical of principal cells in the

hippocampus (‘place cells’)350,351. During awake behaviour for mice performing a spatial

memory task, optogenetic silencing of principal neurons in CA1 during SWRs reduced the

stability of their place representations352, and following this period of silencing, active

hippocampal neurons were more likely to have altered place fields350 when the mice were

re-exposed to the environment. Similar manipulations during sleep have suggested that the
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subset of place cell ensembles that are not yet fully stable at the end of an initial novel

experience can be destabilized by optogenetic suppression of neural activity during

SWRs353. By contrast, ensembles that were stable by the end of a novel experience were

not affected, perhaps explaining why another group found that optogenetic suppression of

CA1 principal neurons during sleep SWRs had no effect on spatial representations354.

The stabilization of these representations probably results from changes in synaptic

strength, but studies have differed in their reported effects of SWRs on synaptic plasticity

in the hippocampus. SWR-like activity in vitro can promote intrahippocampal synaptic

potentiation355,356, but recent findings have indicated that sleep SWRs can also contribute

to the widespread downscaling of hippocampal synapses357, which substantiates a

previously developed model358 predicting that SWRs induce downscaling of

intrahippocampal synapses and potentiation of extrahippocampal synapses. The possibility

that SWRs could drive local synaptic renormalization (perhaps to reset hippocampal

synapses so that new learning could occur357–359 is also consistent with the clearance of a

hippocampal memory trace and simultaneous consolidation in neocortex predicted by the

standard model of systems consolidation. Whether awake SWRs can have the same effect

is unknown, as wake and sleep are different neuromodulatory states and SWRs probably

differ, and/or have different effects, in each of these states232,240. For both sleep and wake,

it is unknown whether some synapses might be maintained or strengthened while others

are weakened.

The effects of SWR disruption on behaviour and hippocampal place representation

constitute strong support for a memory function of SWRs in both wake and sleep. SWR

disruption and augmentation effects on learning and synaptic plasticity indicate a role in a

consolidation function in particular, for at least a subset of SWRs. It is not possible,

however, to rule out the possibility that these or a different subpopulation of SWRs have

an additional function in retrieval for other uses. For example, to date, published awake
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SWR disruption experiments have interrupted all SWRs. The detriment in performance

resulting from this disruption could therefore be explained instead by an effect on retrieval

in support of decision making, particularly for those studies in which SWR disruption

occurred after rule learning was complete and resulted in a decline in otherwise stable

performance348. Thus, although SWR disruption studies indicate that SWRs support

memory in both sleep and wake, these studies do not specifically indicate retrieval for

consolidation versus other use, or a function other than retrieval in support of

consolidation.

An urgent goal of neuroscience is to understand diseases of the human brain,
many of which share the symptom of debilitating memory loss. One explanation
for this symptomatic overlap is that myriad cellular- and molecular-level changes
can cause dysfunction in the network-level activity patterns that support mem-
ory360. Identifying such emergent activity patterns presents the possibility of a
therapeutic shortcut that is broadly effective: if activity patterns can be restored,
even if the circuitry that naturally supports them cannot, memory could be
restored.

The sharp wave–ripple (SWR) is a reasonable candidate for that approach.
The first report of disrupted SWRs in disease was in human epilepsy230,313,361.
Disrupted SWRs have since been reported in animal models of epilepsy291,362,
Alzheimer disease363, dementia364, schizophrenia365 and normal ageing366,367.
Recent studies have demonstrated up- or down-regulation of SWRs through
neuromodulatory330,331,345,368 or other control369, suggesting possible therapeutic
strategies.

Given the diversity of findings in disease models for simple metrics such as the
SWR rate370–372, however, success with this approach is likely to require iden-
tification of more specific patterns of disordered activity291,365,367,373. As an ex-
ample, genetic and developmental mouse models of schizophrenia show disrupted
sequential spiking activity during the SWR366,373, or decreased coordination of
SWRs with cortical sleep spindles373. Also, a study of a knock-in mouse express-
ing the human APOE4 variant known to cause late-onset disease found learn-
ing and memory deficits that were associated with a deficiency in the normal
slow gamma364 rhythm known to organize the activity of CA1 cells during the
SWR374,375. A subsequent study found that rescuing the gamma deficit reduced
the level of Alzheimer disease-related amyloid-β isoforms376, indicating that ad-
dressing network-level dysfunction could also resolve other disease symptoms.

Box 4.3.2: Sharp wave–ripples in disease and ageing.
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4.3.4 Hippocampal spiking during an SWR can represent

previous experience

Mechanistically, the most readily recognizable form that retrieval could take is the precise

repetition of the activity pattern that was observed during the experience itself274. Indeed,

retrieval is thought to occur by reactivation of neural activity patterns in the hippocampus

that correspond to those that occurred during a previous experience, a possibility

foundational to modern engram theory280,377. This activity, in turn, is thought to reactivate

hippocampal–cortical and subcortical activity patterns to represent the multisensory

features of a memory. In synaptic and systems consolidation, it is likewise the repeated

reactivation of the hippocampal–cortical patterns stored during an experience253,323 that is

hypothesized to create and strengthen the intrahippocampal and hippocampo–cortical

synapses that constitute the memory trace. This correspondence further highlights that

the hypothetical consolidation event and the retrieval event are effectively identical, and

that the requirement for retrieval in consolidation is satisfied by the repetition of such

events. The evidence indicates that SWR activity may constitute such an event.

During SWRs, more than during any other period of activity, sequences of neural spiking

activity recapitulate those seen during prior experience. These striking reactivations were

originally observed at the level of single cells378 and cell pairs379, but also occur at the level

of ensembles380,381. Individual reactivation events can represent either specific locations in

space381,382 or can ‘replay’ long sequences of place cell activity that recapitulate entire

spatial trajectories299,339,383–387. Replay events can also represent long, extended

experiences, with events spanning multiple SWRs387,388. Such replay of past experience is

seen in a subset of SWRs in both waking and sleep, although replay in sleep is a less

accurate recapitulation of awake activity patterns385,389. The representation of past

experience by replay activity suggests that it is a critical component of the SWR

contribution to memory, and that replay variants may correspond to different SWR
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memory functions.

Replay events can reactivate representations corresponding to either local trajectories

beginning at the animal’s current location or remote trajectories, defined as those that

begin far from the animal?s location385,386 or in an entirely different

environment383,385,390,391. When spatial sequences correspond to the current environment,

∼80% of identified replay events begin with representations of the animal’s current

position339,384,385,387. These events then extend towards locations farther from the animal,

with a bias for representation of future goal locations299. Remote replay occurs in both

wake and sleep385,389. Behavioural state influences replay content, in that events that occur

in close temporal proximity to movement more often originate at the animal?s current

location (that is, they are more often local)385,392.

Replay events also vary in the represented direction of movement (Fig 4.2). In linear

environments, hippocampal place cells gradually develop directionally biased firing

patterns, with a higher firing rate when the animal traverses the place field in one direction

of motion than in the reverse393,394. These biases in firing make it possible to use ensemble

spiking during replay events to infer not only the represented location of the animal but

also the direction of movement. These analyses have revealed that awake replay can occur

in both the same direction as the original traversal (forward replay) and the opposite

direction, which may never have occurred during behaviour (reverse replay)339,384,387.

A functional difference for forward and reverse replay in wake is suggested by their

independent modulation: increases in reward magnitude increase the rate of local, reverse

replay events and decreases in reward magnitude reduce it, with no effect on forward replay

events395. This result is consistent with the hypothesis that local, reverse replay following

an outcome can function as a consolidation mechanism that is specialized to the problem of

credit assignment, wherein outcomes must be linked to the actions that led to them.

During replay, earlier reactivation of cells with place representations that are physically
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closer to the outcome location is hypothesized to facilitate the strengthening of synapses

with coactive cells representing reward or punishment, while the specificity for movement

towards the outcome location preserves directionality339. Consistent with credit assignment

or consolidation in general, the intensity of reactivation during SWRs can be related to the

reorganization of spatial representations and to memory for previously rewarded

locations382.

In contrast to reverse replay, local replay events in the forward direction during wake have

been correlated with subsequent behaviour, suggesting that they function in retrieval of

previous experiences that occurred in the same context, for immediate decision-making or

planning299. These events could also function in retrieval for conscious recollection, or

‘mental time travel’, the ability to be in one location and simultaneously remember a past

experience that may have occurred in another244,299,396,397 (but see230). Consistent with this

possibility, replays are enriched for representation of immediate future choices299, and more

intense activity during these events can be predictive of a subsequent correct choice398.

Further, the awake replay of an upcoming location associated with shock is predictive of a

subsequent change in movement direction399.

Although reverse and forward replay events are both common during wake, reverse events

are seen only infrequently during sleep383,400. The consolidation function of sleep is

therefore expected to be carried out by forward replay events. The specific nature of this

hypothesized consolidation remains unclear, however. Consistent with standard

consolidation, the intensity of reactivation during sleep SWRs is related to the

reorganization of spatial representations and to memory for previously rewarded

locations381. However, the fidelity of replay events during sleep is, on average, much lower

than of those in wake385, prompting speculation that sleep events represent sequences

including elements of multiple experiences to support consolidation, in the form of

generalization across them240,385.
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rearrangement of that information in novel combina-
tions. These imagined scenarios might correspond to 
potential future choices, such as when planning new 
routes to a goal location. As in veridical retrieval, this 
neural activity would likewise be expected to reactivate 
patterns of activity throughout the brain.

Consistent with these predictions for an imagination 
mechanism, SWRs can contain sequences correspond-
ing to trajectory events that represent novel paths that 
have not been previously traversed by the animal77,126. 
Such prospective trajectory events suggest a function 
beyond veridical retrieval for decision-making or con-
solidation, wherein retrieval and rearrangement of pre-
viously stored representations support a process such as 
imagination. In addition to novel sequences pertaining 
to the local environment, there have been reports of 

what can be understood as remote prospective events, 
or ‘preplay’, in which activity sequences that will occur 
in a subsequent novel experience are seen during sleep 
before the experience142–144, although this remains a 
topic of debate in the field145. We return to the issue of 
imagination in the final section.

SWR activity engages extrahippocampal areas. A key 
prediction shared by mechanisms for consolidation and 
for retrieval in other uses is the modulation of neural 
activity in distributed brain regions. In systems consoli-
dation, the reactivation of hippocampal–cortical patterns 
for synaptic stabilization necessarily requires correlated 
activity. Retrieval is likewise thought to depend on hip-
pocampal coordination of cortical (and likely subcortical) 
networks to represent the various aspects of experience, 
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Fig. 2 | Schematic of possible local replays: in the forward and reverse directions, centrifugally and centripetally. 
Place cells increase their firing rates as a rat traverses the cells’ respective place fields on a linear track from left to right 
(orange to purple). When the rat pauses, immobile, at the centre of the track , a sharp wave–ripple (SWR) occurs. Place cell 
activity during the SWR recapitulates recent experience, firing in the same order on a compressed timescale. Relative 
to the order of place cell firing during actual experience, these sequences can represent trajectories that are forward 
and centripetal (towards the rat); reverse and centrifugal (away from the rat); forward and centrifugal; or reverse and 
centripetal. Forward sequences are indicated by arrows beside the label ‘forward’ that are oriented in the same direction 
as the trajectory arrow (in this case rightward); reverse sequences, by contrast, are indicated by arrows in the direction 
opposite to the trajectory arrow. For centrifugal sequences, these arrows are oriented away from the rat; for centripetal 
sequences, the arrows are oriented towards the rat. If any of these sequences occurred before the rat actually traversed that 
track segment (as occurs more often in a less constrained environment with more path options), they would represent novel 
sequences. A second set of place cells with overlapping place fields, but that are preferentially active when the rat moves 
in the opposite direction (right to left), would participate in the same four replay types. If the rat ran on the track (middle 
panel), then the replays (top row) occurred when the rat was no longer on the track , and they would be classified as remote.

Figure 4.2: Schematic of possible local replays: in the forward and reverse directions, cen-
trifugally and centripetally. Place cells increase their firing rates as a rat traverses the cells’
respective place fields on a linear track from left to right (orange to purple). When the rat
pauses, immobile, at the center of the track, a sharp wave-ripple (SWR) occurs. Place cell
activity during the SWR recapitulates recent experience, firing in the same order on a com-
pressed timescale. Relative to the order of place cell firing during actual experience, these
sequences can represent trajectories that are: forward and centripetal (toward the rat); re-
verse and centrifugal (away from the rat); forward and centrifugal; or reverse and centripetal.
Forward sequences are indicated by arrows beside the label ‘forward’ that are oriented in
the same direction as the trajectory arrow (in this case rightward); reverse sequences, by
contrast, are indicated by arrows oriented toward the rat. For centrifugal sequences, these
arrows are oriented away from the rat; for centripetal sequences, the arrows are oriented
toward the rat. If any of these sequences occurred prior to the rat actually traversing that
track segment (as occurs more often in a less constrained environment with more path op-
tions), they would represent novel sequences. A second set of place cells with overlapping
place fields, but that are preferentially active when the rat moves in the opposite direction
(right to left), would participate in the same four replay types. If the rat ran on the track
(middle panel), then the replays (top row) occurred when the rat was no longer on the track,
they would be classified as remote.
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4.3.5 Spiking during SWRs can represent actual or alternative

future actions

Mechanistically, the imagination function thought to be supported by the hippocampus401

could begin with a retrieval process wherein stored information is accessed, and proceed

with the rearrangement of that information in novel combinations. These imagined

scenarios might correspond to potential future choices, such as when planning new routes

to a goal location. As in veridical retrieval, this neural activity would likewise be expected

to reactivate patterns of activity brain-wide.

Consistent with these predictions for an imagination mechanism, SWRs can contain

sequences corresponding to trajectory events that represent novel paths that have not been

previously traversed by the animal299,386. Such prospective trajectory events suggest a

function beyond veridical retrieval for decision-making or consolidation, wherein retrieval

and rearrangement of previously stored representations supports a process like imagination.

In addition to novel sequences pertaining to the local environment, there have been reports

of what can be understood as remote prospective events, or ‘preplay’, in which activity

sequences that will occur in a subsequent novel experience are seen during sleep before the

experience402–404, although this remains a topic of debate in the field405. We return to the

issue of imagination in the final section.

4.3.6 SWR activity engages extra-hippocampal areas

A key prediction shared by mechanisms for consolidation and for retrieval in other uses is

the modulation of neural activity in distributed brain regions. In systems consolidation,

the reactivation of hippocampal–cortical patterns for synaptic stabilization necessarily

requires correlated activity. Retrieval is likewise thought to depend on hippocampal
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coordination of cortical (and likely subcortical) networks to represent the various aspects of

experience, including different sensory modalities and extracted features406, a possibility

consistent with functional MRI (fMRI) studies of human retrieval407. Both retrieval and

consolidation can be influenced by external stimuli, including during sleep279.

Mechanistically, this is thought to depend on inputs to the hippocampus, such as those

from the entorhinal cortex, that can bias the local network to reactivate specific

representations (potentially by a pattern-completion process)341,408. Distributed activity in

consolidation is expected to result in strengthened synapses, whereas such activity in

retrieval for other uses is not expected to have such an effect. With respect to SWRs, for

their typology based on replay content to be meaningful, they should be associated with

different downstream effects, and only a subset of SWRs (for example, those with reverse

replays in wake) should be associated with synaptic consolidation. For an SWR typology

based on replay content to be meaningful, different subsets of SWRs should be associated

with different downstream effects, with only one subset of SWRs (for example, those with

reverse replays in wake) associated with synaptic consolidation.

Consistent with these predictions, changes in neural activity throughout the brain have

been observed during SWRs. Electrophysiological studies have identified coordination

between hippocampal SWRs and neocortical sleep spindle events310,409 as well as

coordinated hippocampal and extrahippocampal modulation of spiking activity at the time

of SWRs in the dentate gyrus288,410,411, deep (but not superficial412,413) entorhinal cortex

(EC)414,415, orbitofrontal cortex416, mPFC389,409,417,418, anterior cingulate cortex

(ACC)382,419,420, auditory cortex421, parietal cortex422, ventral striatum423,424 and ventral

tegmental area (VTA)425.

In some extra-hippocampal structures, stronger coactivity with hippocampal cells has been

reported in wake than in sleep, despite the association of SWRs with sleep spindles389.

Patterns of hippocampal–PFC coactivity seen during behaviour were more strongly
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re-expressed during awake than sleep SWRs389, mirroring the finding of more veridical

hippocampal replay in awake SWRs385. Similarly, SWR-associated reactivation of VTA

neurons was present during both wake and sleep426, although it was more prevalent during

wake425.

A recent study also found learning-related coordination of SWRs and high-frequency

activity specifically in association cortices during sleep427. Additional studies have

identified patterns of coordinated hippocampal–cortical activity that are consistent with

SWR activity, but these studies did not detect SWR events390,428. All of these studies

report that hippocampal and cortical or sub-cortical neurons that fired together during

waking experience also fired together during subsequent SWRs or reactivation events, as

expected in retrieval for consolidation (or for any other application). Complementing this

result, combined hippocampal electrophysiological recordings and fMRI in primates

revealed changes in blood oxygen level-dependent (BOLD) activity around the time of

SWRs across virtually all cortical areas and many subcortical areas305.

The specific subset of cells engaged in SWR-coordinated activity also changes with learning.

Early in learning, hippocampal–PFC coactivity patterns during SWRs are correlated with

coactivity during behaviour, suggesting a simple Hebbian association mechanism418. Later,

once the environment and task are familiar, this relationship becomes much weaker389,

with a subset of PFC neurons that encode general features of the environment and task

showing more specific engagement during SWRs429. The resulting hippocampal–PFC

coactivity preferentially links hippocampal activity patterns representing specific locations

with cortical activity patterns that generalize across a set of locations.

Studies of the precise timing of cortical activity relative to hippocampal activity during a

SWR have suggested that cortical activity could influence subsequent hippocampal SWR

activity. During sleep, hippocampal SWRs often occur immediately after transitions from

cortical down states to cortical up states430, and increases in hippocampal spiking can
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occur as much as ∼200 milliseconds after increases in spiking in sensory cortical

areas390,421,431,432. By contrast, although some PFC and ACC neurons appear to increase in

activity before SWRs in both wake382 and sleep389,420, SWR-related PFC activity has most

often been reported to follow, rather than precede, SWR-related hippocampal activity

during both wake418 and sleep305,417,433. The overall temporal offsets for PFC are small

(∼15 milliseconds), however, compared with those for sensory cortex (∼200 milliseconds).

One possible explanation for these inconsistent reports arises from the recent discovery of a

cortical–hippocampal–cortical loop of information transmission. It was previously known

that hippocampal activity could be biased by sound presentations during sleep434, but the

mechanism was unknown. Recently, it was discovered that in auditory cortex, patterns of

activity before SWRs can be used to predict subsequent hippocampal SWR activity, and

that hippocampal SWR activity in turn predicts post-SWR cortical activity421. These

findings suggest a cortical–hippocampal–cortical loop of information transmission around

the time of sleep SWRs, in which cortical activity can cue hippocampal SWR activity,

which in turn drives broad activation of cortical areas. This loop has been proposed to

support cortical consolidation236. It is also possible that such a loop could explain

differences in neocortical activity relative to SWRs, if reactivation of cortex by the

hippocampus recruits association areas that were not initially active (a possibility

reminiscent of one element of hippocampal indexing theory435).

In the same regions where spiking rates increase in coordination with SWRs, separate

populations of cells simultaneously decrease firing rate389,418,430,436. These decreases occur

specifically for cells that are most active immediately before SWRs, and in both the

hippocampus and the PFC these neurons encode information related to the animal?s

current location. This is consistent with the expectation that, during retrieval, processing

of current sensory information might be suppressed.
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4.4 Outstanding issues

Evidence supports the current view that the SWR is a principal network-level mechanism

for reinstatement of stored representations to support both awake and sleep memory

processes229,273,437. However, in the context of awake retrieval, issues related to its timing

indicate that it is not the sole mechanism. SWRs take up only a relatively small fraction of

the total time of awake experience (at most a few percent)298, and occur very infrequently

during movement. There is no evidence that memory and cognition are limited to periods

of stillness, and thus awake retrieval probably engages additional mechanisms229. The

ordered activations of place cells also observed during theta (‘theta sequences’438) are an

excellent candidate activity pattern that could support awake retrieval and use processes,

and indeed the content of these sequences can predict subsequent choice439,440. This is also

consistent with observations of intact SWR sequences following manipulations that impair

theta sequences and performance in a memory task441.

Even during immobility, the SWR may not be strictly necessary for learning and memory.

Animals can still learn a spatial task when awake SWRs are disrupted, albeit at a slower

pace348 (but see303). Similarly, the observation of correct trials during which no SWRs

occur suggests that the SWR is not required by trial-by-trial decision-making306. These

results could be explained by incomplete SWR interruption or detection442, however, or by

compensation for an absence of SWRs by other mechanisms325,326.

The evocative pairing of replay activity with the plasticity potential of the SWR also makes

it easy to leap to the conclusion that that the SWR is a privileged period for replay, and

that every SWR contains a single replay event that is retrieved for decision-making and/or

systems consolidation. Although many SWRs are associated with reactivation of activity

patterns representing past experience, studies typically report that only 10–40% meet

statistical criteria for replay299,339,383–387, and that reactivation events can occur outside of
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identified SWRs299. It is also possible that some events cannot be decoded spatially

because they correspond to trajectories that were not measured by the experimenter or are

not spatial in nature443,444. Regardless, it seems likely that many SWRs do not contain

spiking sequences consistent with a single, discrete past or potential future experience.

Another possibility is that SWRs without detectable replay content correspond to retrieval

events for content with representations that have mutated over time to the point they no

longer match the activity that was recorded during the original experience. Indeed, place

representations can change over days445. Such replays would be undetectable but still

functional, and could explain how replay, which has been observed to decline significantly

in rate during the 18 hours following experience385, could still contribute to a systems

consolidation process extending weeks to years after an experience.

Finally, although there is evidence of the brain-wide coordination of activity expected

during retrieval and consolidation at the time of the SWR, there is no evidence to suggest

that different replay types correspond to different patterns of neural activity in areas

downstream of the hippocampus. Recently, work in non-human primates has identified four

SWR event subtypes, defined by the timing of the ripple relative to the sharp wave, that

are associated with different patterns of cortical and subcortical activity307. A rodent

study has identified subsets of SWR in which hippocampal–cortical patterns corresponding

to immobility versus immobility are reactivated separately382. Regarding the question of

consolidation versus retrieval, however, we are aware of no strong evidence to suggest that

any specific subtype of SWR is exclusively associated with the plasticity expected in

consolidation, or with behaviour indicating the planning and decision-making associated

with awake use of retrieved memories.
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4.5 SWRs, retrieval and consolidation

In modern work, memory retrieval and consolidation are often conceptualized as distinct

processes that occur on different timescales: a retrieval event is understood to take place in

milliseconds274,446,447, whereas consolidation may take hours to years (but see448);

furthermore, the effect of retrieval is thought to be a transient change in activity for

immediate use, whereas consolidation is thought to effect lasting change. However, the two

processes share a fundamental similarity that has long been hypothesized in experimental

psychology224,256,449: the neural activity representing a previous experience that is

reinstated in retrieval is thought to be reinstated repeatedly in consolidation to strengthen

associations and synapses (for more on the essential function of repetition in biological and

artificial learning systems, see Box 4.5.1).

SWR-associated replay is a prime candidate for that reinstatement232,272,273; the basic

function of the SWR seems to be retrieval. Behavioural results establish that such retrieval

can be used to support consolidation in sleep342,343,381 and in wake237,348,352,386, and to

support other uses including decision-making in wake299,348,399. Replay during sleep could

support a more creative variant of planning, like imagination, that might activate elements

of multiple experiences in novel conjunctions. Previous work has not clearly addressed

whether these varied retrieval-based functions are achieved by distinct functional types of

SWR that would, for example, subserve exclusively retrieval for consolidation versus

retrieval for decision-making237,238,240,450. Although such type splitting is possible given the

diversity in representational content and physiological properties of the SWR, as well as

the behavioural states in which they occur230,287,307,382,387,451–453, we conclude that there is

not yet evidence to suggest a correspondence between SWR types and different cognitive

functions. In particular, there is no evidence to suggest that some SWRs are better suited

to consolidation than others. Indeed, slice electrophysiology and modelling indicate that

SWRs with forward and reverse replays may equally support synaptic strengthening or
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downscaling and could therefore both subserve consolidation231,234,355,454.

We therefore propose the working hypothesis that each SWR simultaneously retrieves a

memory and, in doing so, drives that memory’s consolidation (Fig. 4.3). This is consistent

with recent work indicating that memory retrieval shares many molecular mechanisms with

consolidation, including protein synthesis and NMDA receptor-mediated AMPA receptor

trafficking274,455,456. Furthermore, the proposal that the two processes typically occur

together to support normal behaviour might explain findings in the reconsolidation field

that retrieval with blockade of synaptic strengthening (that is, consolidation) degrades a

memory457–462. Such a relationship would also guarantee the adaptive solution of

strengthening and transformation through consolidation of regularly retrieved and used

memories. This notion is similar to the old idea that each act of retrieval forms a new,

composite memory for the retrieved information in its current context, to extract

generalities226,281.

What, then, would happen when SWRs include activity representing partially or fully

novel sequences? Specifically, is there a mechanism by which these are prevented from

being consolidated? Alternatively, it is possible that they are consolidated, but in such a

way as to be differentiable from memories of experience463,464. Such consolidation of novel

(but realistic) sequences is a potentially adaptive method of creating and maintaining a

cognitive map of the environment228,231,325,465.
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Learning is supported by the repetition of experience, which has many names,
including practice, study and training. Internally driven replay of neural activity
representing an experience – a form of training without repetition of experience
itself – can efficiently promote further learning, because it enables easily adjusting
the amount and the timing of training.

Such flexibility is an important point of similarity between artificial and biological
learning systems; the brain’s capacity for fast, flexible experience replay enables
it to keep up with artificial systems, and justifies the sharing of solutions between
them. For instance, a foundational problem faced by any learning system,
biological or artificial, is that of balancing stability and plasticity466,467. An early
description of this problem was given in the context of connectionist systems, now
known as neural networks, in which learned information is stored in the form of
altered synaptic weights, as in the nervous system468. In a highly stable system,
a single instance of repetition will not drastically alter synaptic weights; here new
learning requires multiple exposures, and information cannot be acquired quickly.
A more plastic system is the opposite, and thus risks overweighting recent
experience to result in ‘catastrophic forgetting’, the total erasure of previously
stored information.

Presented as the brain’s solution to this problem, the complementary learning
systems (CLS) model469 described the updating of a stable neocortex by a
plastic hippocampus through ‘interleaved learning’, wherein new information is
incorporated gradually to existing knowledge through spaced repetition, now
attributed mechanistically to hippocampal SWR-replay470. Similar dual-network
architectures were developed in artificial systems466. Hippocampal replay has
since inspired other machine learning algorithms471, including the successful
‘prioritized experience replay’ used in training the Deep Q Network, in which
rewarded events replay more often472,473.

In general, machine learning relies on repetition in the form of exposure to many
events and, in some cases, multiple passes over the full training set, possibly with
prioritization474,475. These two forms of repetition are reminiscent of the brain’s
capacity to learn both from multiple examples of direct experience and from their
replay, potentially complementary abilities that could provide insight into learning
systems in general.

Box 4.5.1: Repetition, sharp wave–ripple replay and machine learning.
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elements of multiple experiences in novel conjunctions. 
Previous work has not clearly addressed whether these 
varied retrieval-based functions are achieved by dis-
tinct functional types of SWR that would, for example, 
subserve exclusively retrieval for consolidation versus 
retrieval for decision-making15,16,18,194. Although such 
type splitting is possible given the diversity in rep-
resentational content and physiological properties of 
the SWR, as well as the behavioural states in which they 
occur8,65,122,127,189,195–197, we conclude that there is not yet 
evidence to suggest a correspondence between SWR 
types and different cognitive functions. In particular, 
there is no evidence to suggest that some SWRs are better  
suited to consolidation than others. Indeed, slice electro-
physiology and modelling indicate that SWRs with for-
ward and reverse replays may equally support synaptic 
strengthening or downscaling and could therefore both 
subserve consolidation9,12,112,198.

We therefore propose the working hypothesis that 
each SWR simultaneously retrieves a memory and, in 
doing so, drives that memory’s consolidation (FIG. 3). This 
hypothesis is consistent with recent work indicating that 
memory retrieval shares many molecular mechanisms 
with consolidation, including protein synthesis and 
NMDA receptor-mediated AMPA receptor trafficking52,199,200. 
Furthermore, the proposal that the two processes typi-
cally occur together to support normal behaviour might 
explain findings in the reconsolidation field that retrieval 
with blockade of synaptic strengthening (that is, consol-
idation) degrades a memory201–206. Such a relationship 
would also guarantee the adaptive solution of strength-
ening and transformation through consolidation of 
regularly retrieved and used memories. This notion is 
similar to the old idea that each act of retrieval forms a 
new, composite memory for the retrieved information in 
its current context to extract generalities4,59.
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Fig. 3 | Hypothesized function for sharp wave–ripples in retrieval of information from memory for immediate use 
and consolidation. We hypothesize that retrieval, as it occurs here as the rat pauses on approach to a choice point, can be 
mediated by the sharp wave–ripple (SWR) (left panel, lower box), during which the ordered reactivation of place cells can 
represent trajectories previously experienced by the animal. Here, a centrifugal forward replay composed of activity from 
place cells with fields shown in purple to red is depicted (left panel, middle box). Nodes (left panel, top box) represent 
recorded hippocampal cells, and coloured nodes represent those place cells that spiked during the replay ; they do not, as 
is true for many detected replay events, correspond to all the cells that likely participate in the replay event. The effect of 
replay activity in the hippocampus is the reactivation of activity in distributed networks outside the hippocampus (for 
example, the cortex; middle; red nodes indicate active neurons). The immediate effect of this on behaviour (top right) is to 
enable computations for decision-making leading to action; in this case, selection of the trajectory option that was not 
replayed. We propose that another long-term effect (bottom right) is the initiation of consolidation processes that can 
maintain (solid black lines), form (dashed red lines), strengthen (solid red lines) or renormalize (dashed black lines) synapses 
within the hippocampus, between the hippocampus and the cortex or within the cortex. Which of these effects will occur 
likely depends on neuromodulatory and other factors, subject to plasticity rules. We show here examples of possible 
changes: strengthened (solid red lines) or newly formed (dashed red lines) synaptic connections between pairs of active 
cells in the cortex (red nodes), between cells in the hippocampus (coloured nodes) or between cells in the hippocampus 
and cortex as well as weakened synaptic connections between cell pairs where one or both was inactive (white nodes). 
The maintenance of synaptic strength may also be supported by the SWR , potentially between any combination of active 
and inactive cells. The effect of these changes, which may contribute to systems consolidation, is to facilitate future 
retrieval events. It is possible that strengthened intracortical synapses could also eventually support memory retrieval 
independent of the hippocampus.

NMDA receptor-mediated 
AMPA receptor trafficking
The process by which 
glutamatergic NMDA receptor 
activation leads to preparation 
of glutamatergic AMPA 
receptors for insertion in the 
membrane to result in 
increased synaptic weight.

Figure 4.3: Hypothesized function for sharp wave–ripples in retrieval of information from
memory for immediate use and consolidation. We hypothesize that retrieval, as it occurs
here as the rat pauses on approach to a choice point, can be mediated by the sharp wave–
ripple (SWR) (left panel, lower box) during which the ordered reactivation of place cells
can represent trajectories previously experienced by the animal. Here, a centrifugal forward
replay composed of activity from place cells with fields shown in purple to red, is depicted
(left panel, middle box). The effect of replay activity in the hippocampus (left panel, top
box; coloured nodes represent place cells that spiked during the replay) is the reactivation of
activity in distributed networks outside the hippocampus (for example, the cortex; middle;
red nodes indicate active neurons). The immediate effect of this on behaviour (top right) is
to enable computations for decision-making leading to action, in this case selection of the
trajectory option that was not replayed. We propose that another long-term effect (bottom
right) is the initiation of consolidation processes that can maintain (solid black lines), form
(dashed red lines), strengthen (solid red lines), or renormalize (dashed black lines) synapses
within the hippocampus, between the hippocampus and the cortex, or within the cortex.
The effect of this process, which constitutes systems consolidation, is to facilitate future
retrieval events. It is possible that strengthened intra-cortical synapses could also eventually
support memory retrieval independent of the hippocampus.
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4.6 Conclusions

The evidence suggests that SWR activity is a general mechanism for the retrieval of

information gained through past experience that provides an adaptive advantage to future

behaviour on multiple timescales: in decision-making and planning in the short term; and

in consolidation, facilitating future instances of retrieval and use in the long term. We

hypothesize that any given SWR can mediate retrieval for decision-making, planning,

imagination or recollection, depending on behavioural demands and internal brain states

(for example, following reward395)346. Although these different demands and brain states

probably induce different types of SWR events (for example, forward versus reverse, or

centrifugal versus centripetal replays (Fig. 4.2)) for different immediate uses, our working

hypothesis is that, in every case, the retrieved activity pattern also contributes to a

consolidation process (Fig. 4.3). Although it is less clear what the immediate uses of

retrieval in sleep are240,328, we would expect the same multiplicity of function in that state.

In this formulation, the SWR is a general mechanism for ongoing consolidation and

retrieval processes that support a memory at every point following its encoding.

An ideal test of this hypothesis would isolate specific periods during behaviour when

retrieval or consolidation are known to occur, and, within these periods, classify subtypes of

SWR based on their replay content. Observation and disruption of this activity476,477 with

concordant measurement of established synaptic consolidation processes and neural activity

in other brain regions would test whether there is a specific subset of SWRs that functions

in consolidation. Although emerging similarities between retrieval and consolidation have

been noted previously, here we have found it valuable to discuss them explicitly and in

relation to the SWR as a potentially shared mechanism. Further study of SWR activity

has the potential to refine these memory concepts and uncover their mechanisms.
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and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA 100

(2003) 2065. No citations.

[48] C. T. Wu, D. Haggerty, C. Kemere, and D. Ji. Hippocampal awake replay in fear

memory retrieval. Nat. Neurosci. 20 (2017) 571. (pages 4, 5).
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[282] G. Buzsáki, L. W. Leung, and C. H. Vanderwolf. Cellular bases of hippocampal eeg in

the behaving rat. Brain Res. 287 (1983) 139. (page 104, 104, 104).
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Appendix: Dataset characterization

For the main cohort of rats presented in this thesis, I collected simultaneous behavioral and

in vivo recordings of local field potentials and spikes from a hybrid tetrode drive/flexible

polymer probe device (366 channels) targeted bilaterally to the dorsal hippocampus,

nucleus accumbens, and orbitofrontal cortex from four rats performing the episodic

memory confidence task presented in chapter 2. The following section describes an

overview of the pre-processing required to prepare the behavioral and neural data, with

particular focus on the challenge of realtime measurement of the invested time.

A.1 Epoch and trial counts

Data were collected in hour-long epochs from four rats in two rig rooms, with behavioral

data recorded in two ways: in the stateScriptLog (SSL) written out by the stateScript

behavior module of the data acquisition system Trodes, and the Digital In/Out (DIO)

channels recorded by the main neural data recording module of the data acquisition system

Trodes. Two types of epochs exist: those for which behavioral data were recorded without

simultaneous neural data, and those for which behavioral and neural data were recorded

simultaneously. All epochs necessarily generated an SSL, but only those for which neural
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data were recorded also had a DIO. As a result, the SSL-sourced dataset is larger for three

of four animals. For animal Dolo, some of the SSL were corrupted, resulting in a larger

usable DIO-sourced dataset.

Despite constituting a larger data source, significant data corruption in the SSLs (see

below) required that behavioral data be sourced from the DIOs. The final DIO-sourced

epoch and trial counts, including only the subset of epochs equal or greater in length to the

animal’s typical continuous performance period, are listed below for the four animals in the

order they were collected:

• Tub (room 1)

– 3119 trials / 46 epochs (SSL)

– 2978 trials / 42 epochs (DIO parsed post-hoc; 20-minute epoch length threshold)

• Sojo (room 1)

– 4113 trials / 40 epochs (SSL)

– 4111 trials / 40 epochs (DIO parsed post-hoc; 40-minute epoch length threshold)

• Dolo (room 2)

– 4212 trials / 60 epochs (SSL)

– 4369 trials / 61 epochs (DIO parsed post-hoc; 40-minute epoch length threshold)

• Rosa (room 2)

– 3798 trials / 52 epochs (SSL)

– 3662 trials / 49 epochs (DIO parsed post-hoc; 45-minute epoch length threshold)

In this task, every correct trial is programmed to be rewarded. For two animals, Tub, Sojo,

the SSLs failed to record reward delivery periods for a subset of correct trials (unrewarded
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corrects). For animal Tub, there were 410 unrewarded corrects. For animal Sojo, there were

236 unrewarded corrects. These were distributed across epochs. Based on the SSLs alone,

it was initially unknown whether reward was actually delivered at these time periods. If it

was not, this would constitute a serious error in the basic task logic. Independent data

extraction from the DIOs revealed that reward was indeed delivered on every correct trial.

DIO-sourced data, however, was only collected for epochs during which neural data were

recorded and so constitutes a subset of the SSL-sourced data. The DIO-sourced dataset is

additionally reduced because of various errors in the data acquisition software and fragility

in the hardware design, that resulted in irrecoverable errors (i.e., core dumps and

segmentation faults) that crashed the main recording module and corrupted the DIO log

but were survived by the SSL stream.

A.2 Timing noise in realtime behavioral task implementation

On each trial, a rat indicates his choice by poking at a choice port, and can then maintain

the nosepoke position for as long as he chooses. The reward amount he receives on correct

trials is a monotonic function of the length of time for which he maintains the poke

position. On error trials, he receives no reward, regardless of the invested time. Because

trials take place in a fixed-length epoch, it is possible to get more reward by preferentially

investing more time on correct trials, and therefore advantageous for a subject to use its

prediction of whether a trial will be correct. The relationship between invested time and

reward amount is crucial to the task logic. Handling of the timing of the invested time

duration is done in custom code (HRJ) in a combination of the stateScript behavior

module of the Trodes recording system and Python.

Throughout the time investment duration - when the animal is in the nosepoke - the

photodiode beam within the port is broken when the animal’s nose is low within the port,
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but when it is higher within the port or briefly withdrawn, the beam can re-form. Rats

bobbed their heads slightly within the port, resulting in a series of short beam breaks and

unbreaks (i.e., beam breaks do not correspond 1:1 with the nosepoke position). To avoid

detecting only slight head movements (see video), we instituted a brief grace period (800

ms for rats Sojo, Tub, Dolo; 700 ms for rat Rosa) during which the rat could move its head

up or down, allowing the photodiode beam to reform, without ending the invested time

duration. That is, as long as the rat broke the beam again within the grace period, or

trigger duration, he was determined to still be investing time. When the trigger duration

occurred following the last beam unbreak, the investment period was declared to have

ended.

The time investment duration had to be calculated in realtime, on the order of tens of

milliseconds, to deliver the appropriate reward amount. This was performed based on the

state of the beam and a timer in the stateScript module. The same beam states were

recorded in the DIO log, as were the reward delivery and other task changes based on the

realtime-calculated invested time. After data collection, I verified that the reward

delivered, based on the realtime calculation of invested time, was equal to that expected

based on the post-hoc calculation of invested time from the DIO log of beam states.

In the majority of cases, realtime- and post-hoc-calculated invested times were equivalent.

In both the SSL and DIO-sourced datasets, however, I found that for a minority of trials,

the reward amount received did not correspond to the post-hoc-calculated invested time.

Approximately one percent of trials delivered a reward amount that exceeded what was

expected given the invested time, and another approximately one percent delivered a

reward amount less than expected (Figure 1).

The difference between the delivered reward amount and the reward amount expected

based on post-hoc parsing of the DIO poke log could possibly be accounted for by a

discrepancy in the calculation of invested time. To investigate this possibility, I compared
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Figure 4: Reward delivered, from DIO milk pump log, as a function of post-hoc-calculated invested time
from DIO beam break and unbreak log. Each gray point represents a trial. Orange line is the programmed
reward amount to be delivered as a function of invested time. Gray points above the line correspond to trials
for which the reward delivery amount exceeded what was coded, taking as input the post-hoc-calculated
invested time. Gray points below the line correspond to trials for which the reward delivery amount was less
than what was coded, taking as input the post-hoc calculated invested time.

the post-hoc and realtime-calculated invested times (Figure 5).

Trials for which the realtime-calculated invested time was long (light blue, Figure 5)

received more reward than expected based on post-hoc parsing of invested time (light blue,

above reward function in Figure 6), and trials for which the realtime-calculated invested

time was short (purple, Figure 5) received less reward than expected based on post-hoc

parsing of invested time (purple, below reward function in Figure 6). The discrepant

reward amounts were accounted for fully by discrepant invested times (with exception of a

few outliers due to parsing errors).

I hypothesized that slight timing errors in the realtime parsing could account for the

discrepant invested time measurements or calculations. If a beam unbreak duration only

slightly longer than the trigger interval passed, the post-hoc measurement would identify

this as the end of the invested time duration, but a realtime timer running slowly would
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Figure 5: Realtime- versus post-hoc-calculated invested time. Each point represents a trial. Trials with
equivalent realtime- and post-hoc-calculated invested time fall along the unity line (gold). Trials with
realtime-calculated invested time greater than post-hoc-calculated invested time are light blue and above
the line; trials with post-hoc-calculated invested time greater than realtime-calculated invested time are in
purple and below the line.
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Figure 6: Reward delivered as a function of post-hoc-calculated invested time, as in Figure 4, with each point
(trial) colored as in Figure 5. Programmed reward function in orange. Trials for which realtime-calculated
invested time exceeds post-hoc-calculated invested time are light blue, and above the reward function line;
trials for which post-hoc-calculated invested time exceeds realtime-invested time are purple, and below the
reward function line.
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not detect it. This false negative would result in an elongated invested time. Likewise, a

beam un-break duration slightly shorter than the trigger interval could be measured in

realtime to be equivalent to it if the stateScript timer were running slowly. This false

positive would result in a truncated invested time.
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The start of the invested time is always identified as the time at which the rat first pokes

at the choice port. Even during the task, this timepoint is not determined until after the

end of the invested time and does not rely on a stateScript timer, so is not a source of

error. The realtime-calculated invested time is:

ITrealttime = endrealtime − start

For post-hoc calculation of invested time, the end of the invested time is detected by

measuring in the DIO log the intervals between each unpoke and the subsequent poke and

detecting the first interval that exceeds the trigger duration. The invested time is given by:

ITpost = endpost − start

The invested time durations thus depend on the timing precision of the realtime code, or

the difference between the realtime-measured end time and the post-hoc-measured end time

(with the latter taken as the true clock time):

ITpost − ITrealtime = (endpost − start)− (endrealtime − start)

= endpost − endrealtime

After the first beam un-break interval equal to the trigger interval, the investment period is

declared over, a 50-millisecond delay follows, then the choice outcome is revealed: if the

choice was correct, the choice port will light; if it was in error, the back port will light. The

timing of the choice or back port lighting can therefore be used to infer the endrealtime that

was measured in real time:

For a correct trial: endrealtime = choiceon− delaylength− triggerinterval

For an error trial: endrealtime = backon− delaylength− triggerinterval
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Discrepant realtime- vs. post-hoc-parsed invested times were distributed across epochs and

trial outcomes (Figure 7).

To identify false positive detections→truncated invested times, I calculated the inferred

realtime invested time (Trt) and, given the start time, identified the time of unpoke that

resulted in the most similar invested time duration. I then determined the interval from

this unpoke to the subsequent unpoke, which was measured in realtime to be equivalent to

the trigger interval. These intervals were reliably slightly less than the trigger interval,

suggesting that intervals slightly shorter than the trigger interval were sometimes measured

in realtime as being equal to it, resulting in an earlier end to the invested time than should

have occurred. The average of these durations was 4 milliseconds below the trigger interval

(for representative rat Rosa).

To identify false negative detections→elongated invested times∗, I also used the procedure

above to identify the time of unpoke that resulted in the most similar invested time

duration and determined the interval from this unpoke to the subsequent unpoke. As

expected, these intervals were reliably greater than the trigger interval. I next used the

same procedure, but taking post-hoc invested time duration as input, to identify the

corresponding time of unpoke and the interval to the subsequent poke. Reliably, these

intervals were all only slightly more than the trigger interval. This is consistent with the

expectation that the realtime code may have mis-timed these intervals as being shorter

than the trigger interval though they were in fact longer. The average of these durations

was 3 milliseconds over the trigger interval (for representative rat Rosa).

Figure 8 shows the distribution of differences from the trigger interval for false

positives→truncated investment times and false negatives→elongated investment times.

This occurred with two different threshold values (rat Rosa = 700 ms, all others = 800 ms)

∗NB: It is somewhat counterintuitive that: (i) mis-measurement of a headlift duration as shorter than it
was (false negative) results in a longer invested time duration; (ii) mis-measurement of a headlift duration
as longer than it was (false positive) results in a shorter invested time duration.
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and in two different rig rooms with different hardware and software setups.

As expected, truncated invested times occurred when there was an earlier headlift duration

only slightly shorter than the trigger interval that was detected in realtime to be equivalent

to the trigger interval. Long invested times occurred when an earlier headlift duration only

slightly longer than the trigger duration or more was not detected, the rat continued to

invest time, and a later headlift duration longer than the trigger interval was instead

detected (Figure 9).

The relative symmetry between false positive and false negative errors indicates a temporal

resolution on the order of milliseconds for the timer itself running in stateScript. That false

negative detections that occur more frequently (i) and are longer (ii) could be consistent

with a slow stateScript clock due to additional delays, either inherent in the stateScript

module itself or between the stateScript and python modules in handling the task logic.

This is not seen for every rat, however.

The total fraction of false negative and false positive detections, and their percentage of

total, is:

• Tub: 22 false positives (0.7 percent of total); 12 false negatives (0.4 percent of total)

• Sojo: 55 false positives (1.3 percent of total); 74 false negatives (1.8 percent of total)

• Dolo: 27 false positives (0.6 percent of total); 45 false negatives (1.0 percent of total)

• Rosa: 35 false positives (1.0 percent of total); 24 false negatives (0.7 percent of total)

As it is unlikely that rats can discern temporal differences on the order of milliseconds,

they likely could not detect when the task treated an unpoke interval as order-milliseconds

shorter or longer than the actual time. Indeed, there was no indication of this in behavior,
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for which every trial was observed. All analyses were based on realtime-parsed invested

times.

Individual rat noise characterization

The same plots shown for representative rat Rosa above are included for each rat in this

section.

A.3 Rat: Tub

189



0 5 10 15 20 25
Post-hoc-calculated invested time (sec)

0

5

10

15

20

25

R
ea

lt
im

e-
ca

lc
u
la

te
d
 i
n
v
es

te
d
 t

im
e 

(s
ec

) Uncued errors (Rosa)

0 5 10 15 20 25
Post-hoc-calculated invested time (sec)

0

5

10

15

20

25

R
ea

lt
im

e-
ca

lc
u
la

te
d
 i
n
v
es

te
d
 t

im
e 

(s
ec

) Cued errors (Rosa)

0 5 10 15 20 25
Post-hoc-calculated invested time (sec)

0

5

10

15

20

25

R
ea

lt
im

e-
ca

lc
u
la

te
d
 i
n
v
es

te
d
 t

im
e 

(s
ec

) Correct trials (Rosa)

Post-hoc vs. realtime-detected invested time by epoch

Figure 7: Discrepant realtime- vs. post-hoc-parsed invested times were distributed across epochs and trial
outcomes. Each color represents the trials of a different epoch. For a subset of correct trials, the realtime-
determined invested time was based on the post-hoc-parsed reward amount, and the trial is marked with an
x; for all other trials, the realtime-determined invested time was determined based on the posthoc-parsed
cue/back-on time, and the trial is marked with an o. Unity line in gold.
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Figure 9: A. False negative detection of unpoke interval end. A series of poke (beam break) and unpoke
(beam unbreak) intervals after the rat has nose-poked at a choice port. A timer begins at the start of every
unpoke period, and if the length of the unpoke period exceeds that of the trigger interval (orange horizontal
line), the rat is declared to be ‘gone’ and the investment period to have ended. The first two unpoke intervals
(from left) are shorter than the trigger interval. The third is longer than the trigger interval, and post-hoc
calculation of invested time takes this unpoke interval as the end of the invested time (orange arrow). In
realtime, however, a false negative error was made, and the third unpoke interval was measured to be shorter
than it actually was, and insufficient to trigger the end of the invested time. Note that this occurred because
the unpoke interval was only slightly greater than the trigger interval. The fourth unpoke interval was also
longer than the trigger interval, and was detected in realtime as the end of the investment period (light
blue arrow). B. False positive detection of unpoke interval end. The first unpoke interval is shorter than
the trigger interval. The second is also shorter than the trigger interval, but was measured in realtime as
being equal to it (purple arrow) and was taken as the end of the investment period. Note that this occurred
because the unpoke interval was only slightly shorter than the trigger interval. The third unpoke interval
was shorter than the trigger interval; the fourth was longer than it, and was detected post-hoc as the end to
the investment period.
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Figure 10: Reward delivered, from DIO milk pump log, as a function of post-hoc-calculated invested time
from DIO beam break and unbreak log. Each gray point represents a trial. Orange line is the programmed
reward amount to be delivered as a function of invested time. Gray points above the line correspond to trials
for which the reward delivery amount exceeded what was coded, taking as input the post-hoc-calculated
invested time. Gray points below the line correspond to trials for which the reward delivery amount was less
than what was coded, taking as input the post-hoc calculated invested time.
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Figure 11: Realtime- versus post-hoc-calculated invested time. Each point represents a trial. Trials
with equivalent realtime- and post-hoc-calculated invested time fall along the unity line (gold). Trials with
realtime-calculated invested time greater than post-hoc-calculated invested time are light blue and above
the line; trials with post-hoc-calculated invested time greater than realtime-calculated invested time are in
purple and below the line.
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Figure 12: Reward delivered as a function of post-hoc-calculated invested time, as in Figure 10, with each
point (trial) colored as in Figure 11. Programmed reward function in orange. Trials for which realtime-
calculated invested time exceeds post-hoc-calculated invested time are light blue, and above the reward
function line; trials for which post-hoc-calculated invested time exceeds realtime-invested time are purple,
and below the reward function line.
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Post-hoc vs. realtime-detected invested time by epoch

Figure 13: Discrepant realtime- vs. post-hoc-parsed invested times were distributed across epochs and trial
outcomes. Each color represents the trials of a different epoch. For a subset of correct trials, the realtime-
determined invested time was based on the post-hoc-parsed reward amount, and the trial is marked with an
x; for all other trials, the realtime-determined invested time was determined based on the posthoc-parsed
cue/back-on time, and the trial is marked with an o. Unity line in gold.
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Figure 14: Distribution of differences from trigger interval for false positives (purple) and false negatives
(light blue).
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A.4 Rat: Sojo
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Figure 15: Reward delivered, from DIO milk pump log, as a function of post-hoc-calculated invested time
from DIO beam break and unbreak log. Each gray point represents a trial. Orange line is the programmed
reward amount to be delivered as a function of invested time. Gray points above the line correspond to trials
for which the reward delivery amount exceeded what was coded, taking as input the post-hoc-calculated
invested time. Gray points below the line correspond to trials for which the reward delivery amount was less
than what was coded, taking as input the post-hoc calculated invested time.
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Figure 16: Realtime- versus post-hoc-calculated invested time. Each point represents a trial. Trials
with equivalent realtime- and post-hoc-calculated invested time fall along the unity line (gold). Trials with
realtime-calculated invested time greater than post-hoc-calculated invested time are light blue and above
the line; trials with post-hoc-calculated invested time greater than realtime-calculated invested time are in
purple and below the line.
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Figure 17: Reward delivered as a function of post-hoc-calculated invested time, as in Figure 15, with each
point (trial) colored as in Figure 16. Programmed reward function in orange. Trials for which realtime-
calculated invested time exceeds post-hoc-calculated invested time are light blue, and above the reward
function line; trials for which post-hoc-calculated invested time exceeds realtime-invested time are purple,
and below the reward function line.
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Post-hoc vs. realtime-detected invested time by epoch

Figure 18: Discrepant realtime- vs. post-hoc-parsed invested times were distributed across epochs and trial
outcomes. Each color represents the trials of a different epoch. For a subset of correct trials, the realtime-
determined invested time was based on the post-hoc-parsed reward amount, and the trial is marked with an
x; for all other trials, the realtime-determined invested time was determined based on the posthoc-parsed
cue/back-on time, and the trial is marked with an o. Unity line in gold.
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Figure 19: Distribution of differences from trigger interval for false positives (purple) and false negatives
(light blue).
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A.5 Rat: Dolo
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Figure 20: Reward delivered, from DIO milk pump log, as a function of post-hoc-calculated invested time
from DIO beam break and unbreak log. Each gray point represents a trial. Orange line is the programmed
reward amount to be delivered as a function of invested time. Gray points above the line correspond to trials
for which the reward delivery amount exceeded what was coded, taking as input the post-hoc-calculated
invested time. Gray points below the line correspond to trials for which the reward delivery amount was less
than what was coded, taking as input the post-hoc calculated invested time.
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Figure 21: Realtime- versus post-hoc-calculated invested time. Each point represents a trial. Trials
with equivalent realtime- and post-hoc-calculated invested time fall along the unity line (gold). Trials with
realtime-calculated invested time greater than post-hoc-calculated invested time are light blue and above the
line; trials with post-hoc-calculated invested time greater than realtime-calculated invested time are in purple
and below the line. The six blue points just below the unity line represent a different, lower-magnitude,
rarer, and less systematic parse error than that characterized here.
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Figure 22: Reward delivered as a function of post-hoc-calculated invested time, as in Figure 20, with each
point (trial) colored as in Figure 21. Programmed reward function in orange. Trials for which realtime-
calculated invested time exceeds post-hoc-calculated invested time are light blue, and above the reward
function line; trials for which post-hoc-calculated invested time exceeds realtime-invested time are purple,
and below the reward function line.
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Post-hoc vs. realtime-detected invested time by epoch

Figure 23: Discrepant realtime- vs. post-hoc-parsed invested times were distributed across epochs and trial
outcomes. Each color represents the trials of a different epoch. For a subset of correct trials, the realtime-
determined invested time was based on the post-hoc-parsed reward amount, and the trial is marked with an
x; for all other trials, the realtime-determined invested time was determined based on the posthoc-parsed
cue/back-on time, and the trial is marked with an o. Unity line in gold.

202



-20 -10 0 10 20
Actual interval length - trigger interval (800ms) (ms)

0

1

2

3

4

5

6

7

8

T
ri

al
 c

ou
n
t

Realtime-calculated invested time errors (Dolo)

False positives

False negatives

Figure 24: Distribution of differences from trigger interval for false positives (purple) and false negatives
(light blue).
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Appendix: Sharp wave-ripples in the

episodic memory task

The design of the episodic memory confidence task (chapter 2) allowed us to investigate

the potential function of SWRs in the retrieval of information on a short (minutes)

timescale. High performance in the task requires rats to accurately recall and compare the

timing of two recent episodes. By focusing on the period after which the task rule was well

learned, we could dissociate the potential contribution of SWRs to rule learning (which

should no longer be occurring) versus the learning of information necessary to successfully

apply the rule. The task was designed with distinct trial phases, which enabled us to

separately study the storage (‘consolidation’) and use (‘retrieval’) phases of memory. To

study the potential function of SWRs in retrieval for selection of the choice port, we could

examine their rate, duration, and amplitude during the current trial. To study their

potential function in a storage capacity, we could examine those metrics during the two

previous episodes being queried on the current trial.

We first asked which trial phase SWRs occurred during. As expected, we observed the

highest rate of SWRs during periods of immobility and reward (Figure 25), corresponding

to periods when the rat was at a port rather than traversing the track between them.

We next investigated whether SWRs contribute to retrieval on a short timescale. The task
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can be divided into the decision phase, the confidence reporting phase, and the outcome

phase. The decision phase begins when the cues are lit and ends when the rat selects a

port. The confidence reporting phase begins when the rat selects a port and ends when he

withdraws, and the outcome phase begins when the cue light comes back on to indicate a

correct trial. The distinction between the decision and the confidence reporting phases

enabled us to study the relative contribution of SWRs to these two processes.

Figure 25 shows the average relative ripple rate for correct and error trials as a function of

task phase for one representative rat. For the entire trial (‘homepoke - backunpoke’,

leftmost), the ripple rate is higher for correct than error trials. We compared the

‘pre-outcome’ phase that starts at homepoke and ends when the choice or back port light

turns on, indicating a correct or error outcome respectively, to the ‘post-outcome’ phase

that starts when the choice or back port light comes on and ends at back port unpoke

(rightmost). We saw that there was a higher ripple rate for correct trials in both pre- and

post-outcome phases, and that the rate was higher in the post-outcome than pre-outcome

period for correct trials. Other differences have emerged from this line of investigation.

205



Ripple rate per phase, all epochs, Rat: dolo
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Figure 25: SWR rate during immobile periods (velocity less than 4 cm/sec) by behavioral
phase, pooled across all epochs, no ripple size threshold, otherwise as described previously38,
for correct (blue) and error (yellow) trials, error bars = standard deviation, all trials. Behav-
ioral phases defined by reward start and end times only exist for correct trials, and so report
no SWR rate for error trials. The two rightmost phases correspond to the pre-outcome and
post-outcome periods for error trials.
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