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Abstract

The concept of fiducial inference was introduced by R. A. Fisher in the 1930s as a response

to the limitations he perceived in Bayesian inference, notably the requirement for a subjective

prior distribution on model parameters when no prior information exists. However, Fisher’s

initial fiducial approach lost favor due to its complexity, especially in multi-parameter set-

tings. A resurgence of interest in the early 2000s led to the development of generalized

fiducial inference (GFI), which extends Fisher’s ideas and offers a promising framework for

addressing a wide array of inferential challenges. Despite its potential, the adoption of GFI

has been limited by its complex mathematical derivations and the need for sophisticated

Markov Chain Monte Carlo (MCMC) algorithms.

This dissertation addresses these implementation challenges by proposing novel variants

of GFI that simplify the sampling process and improve accessibility for researchers and prac-

titioners. Specifically, Chapter 3 introduces AutoGFI, an intuitive algorithm that facilitates

the application of GFI across diverse inference problems involving additive noise. Chapter 4

presents Fiducial Selector, a method specifically developed for high-dimensional linear re-

gression within the GFI framework. Chapter 5 introduces AutoGFI-B and its regularized

version AutoGFI-BR, which extend AutoGFI’s application to binary response models, thus

broadening its use from continuous to binary data. Theoretical and empirical evaluations

in this work validate the effectiveness of these innovative approaches, underscoring the sig-

nificant potential of GFI in modern inference challenges. Overall, this research paves the

way for a more accessible and powerful application of GFI across various practical domains,

substantially expanding the toolkit available for robust statistical inference.
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CHAPTER 1

Introduction

Fiducial inference, originally proposed by Fisher (1930, 1933, 1935), aimed to address

what he considered an issue of Bayesian inference, specifically, the use of a prior distribu-

tion when no prior information is available. Fisher introduced the concept of the fiducial

distribution, a prior-free probability distribution derived directly from observed data, which

could be used for inferential purposes in a manner analogous to Bayesian posterior distribu-

tions. While fiducial inference proved effective in single-parameter settings, closely aligning

with classical confidence intervals, it faced challenges in multi-parameter settings. These

challenges included a lack of uniqueness in the frequentist sense and ambiguity in defining

the fiducial distribution. As a result, fiducial inference was marginalized by mainstream

statisticians for a long time. For further details on the controversies surrounding fiducial

inference, readers are referred to Zabell et al. (1992).

In spite of initial controversies, the past two decades have witnessed a significant resur-

gence of interest in modern adaptations of fiducial inference. These developments include

Dempster-Shafer theory (Edlefsen et al., 2009) and inferential models (Martin et al., 2010;

Zhang and Liu, 2011; Martin and Liu, 2013), which provide posterior probabilistic inferences

about parameters without relying on priors. Another innovative approach, confidence distri-

butions (Singh et al., 2007; Minge Xie and Strawderman, 2011; Xie and Singh, 2013), aims to

establish inferentially meaningful distributions of parameters from a frequentist perspective.

Additionally, objective Bayesian inference uses model-based, non-subjective priors within

the Bayesian framework. Most recently, Xie and Wang (2022) have synthesized concepts

from both confidence distributions and inferential models to develop an algorithmic-based
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inference method. A common thread among these methodologies is to obtain some inferen-

tially meaningful probability statements about the parameter space without subjective prior

information.

Despite all these efforts, generalized fiducial inference (GFI) (Hannig et al., 2016), another

modification of fiducial inference, still has its edge in many areas. For example, GFI often

offers good alternatives in terms of both performance and usability, e.g., the generalized

fiducial distribution (GFD), which plays a similar role to the posterior distribution in the

Bayesian context, is never improper. We believe that GFI and its quickly evolving variants

have the potential to uncover profound and essential understandings of statistical inference.

GFI has been successfully applied across a diverse array of fields, demonstrating promising

results in various applications such as wavelet regression (Hannig and Lee, 2009), ultrahigh-

dimensional regression (Lai et al., 2015), binary response models (Liu and Hannig, 2016),

exoplanet detection (Han and Lee, 2022), and others (McNally et al., 2003; Lidong E and

Iyer, 2008). Additionally, the theoretical properties of GFI have been extensively examined

using asymptotic methods, as documented in Hannig (2009); Hannig et al. (2006); Hannig

(2013); Sonderegger and Hannig (2014); Majumder and Hannig (2016).

However, the practical implementation of GFI often necessitates either a complete or

partial calculation of the GFD. This process requires careful mathematical derivation and

may need integration with Markov Chain Monte Carlo (MCMC) techniques to generate what

are known as fiducial samples from the parameter space. Such procedures can be exceedingly

tedious and, in some instances, impossible, thereby reducing GFI’s appeal to practitioners.

Furthermore, GFI’s performance can be compromised in overparameterized settings, which

are prevalent in many contemporary applications.

In this dissertation, we propose three innovative approaches to address these challenges.

Specifically, in Chapter 3, we introduce a novel approach named “AutoGFI,” designed to

simplify and enhance the application of GFI in additive noise models. Unlike traditional
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methods, which solve the GFD analytically and employ MCMC methods for sampling, Au-

toGFI generates fiducial samples directly from its definition, transforming the sampling pro-

cess into a sequence of optimization problems. This algorithm significantly streamlines the

implementation of GFI, facilitating its application to complex modern models, such as tensor

regression and matrix completion. Subsequently, in Chapter 4, we tailor this approach for

high-dimensional linear regression by incorporating a specialized de-biasing operation. We

refer to this tailored approach as “Fiducial Selector”. We demonstrate that Fiducial Selector

achieves selection consistency and provides an unbiased estimator for the signal parameters

in high-dimensional settings under certain conditions. This approach is also straightforward

to implement and computationally efficient. In Chapter 5, we extend the AutoGFI frame-

work to accommodate binary response models through reasonable approximation techniques.

This extension, termed “AutoGFI-B”, and its regularized version, “AutoGFI-BR”, leverage

the beneficial properties of the original AutoGFI algorithm and adapts them for discrete

models, maintaining its effectiveness across various data types. Overall, these approaches of-

fer robust solutions to the challenge of implementing GFI in complex practical applications,

making it a more accessible, appealing, and viable option for researchers and practitioners

in solving inference problems.

The remainder of this dissertation is structured as follows: Chapter 2 provides a general

background on GFI. Building on this foundation, Chapter 3 introduces AutoGFI, a stream-

lined framework for applying GFI to additive noise models. Chapter 4 discusses Fiducial

Selector, an approach inspired by the same idea as AutoGFI but specifically tailored for

high-dimensional linear regression. Expanding the scope of AutoGFI, Chapter 5 extends

the framework from additive noise models to binary response models with the introduction

of AutoGFI-B and its regularized version, AutoGFI-BR. Chapter 6 presents the conclud-

ing remarks and discusses future prospects. Technical details and supplementary simulation

results are provided in Appendix A and B.
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CHAPTER 2

Background of Generalized Fiducial Inference

2.1. Definition of GFI

The development of GFI is fundamentally inspired by our understanding of Fisher’s

fiducial argument. We explain this argument by connecting it to the widely accepted concept

of the likelihood function, as both are based on a role-switching mechanism. Recall that

f(x; θ) represents the probability density function (pdf) of a random variable X, with θ as

a fixed, unknown parameter, and x as a realized value. The likelihood function emerges

when the roles of the random variable and the parameter are interchanged. In other words,

given observed data x, the pdf f(x; θ) is reinterpreted as the likelihood function lx(θ), which

calibrates our belief in various values of θ. Similarly, fiducial inference derives a distribution

for θ based purely on the observed data, mirroring this role reversal.

Building upon this idea, we now formally introduce the concept of GFI and provide a

formal definition of the GFD. GFI begins with a data generating equation, expressed as

(2.1) Y = F (θ,U),

where Y denotes the observable random variable, F is a deterministic function, θ represents

the unknown parameters in the model, and U is the random component with a known

distribution. The data generating equation provides a comprehensive description of how the

random component U interacts with the parameter θ to produce Y . Thus, the distribution

of Y can be characterized by the distribution of U and the fixed value of θ through the data

generating equation. Conversely, upon observing a specific value y of Y , the roles of the

random variable and the parameter can be switched. With Y fixed at y, the data generating

4



equation can be “inverted” to derive a distribution for θ. This derived distribution is termed

the fiducial distribution and can be utilized to make inferences about θ.

Here, we illustrate the idea with a simple example. The data generating equation of a

random variable Y from a normal distribution with unknown mean µ and variance 1 can be

written as Y = µ+U , where U ∼ N (0, 1) is the random component with known distribution

and θ = µ is the unknown parameter. After observing a value y of Y , the data generating

equation can be inverted to derive µ = y − U . Let U∗ be an independent copy of U . The

fiducial distribution of µ then follows y−U∗ ∼ N (y, 1). For further examples and a detailed

discussion, interested readers can refer to Hannig et al. (2016).

Formally, for any observed data y, we define the following “inverse” mapping of the data

generating equation (2.1):

(2.2) Qy(u) = arg min
θ

ρ (F (θ,u),y) ,

where ρ is a smooth semi-metric, e.g., the squared ℓ2 norm ρ(y,y∗) = ∥y − y∗∥22. Given a

realization u of U , Qy(u) is a value of the parameter θ such that F (θ,u) comes closest to

the observed data y.

Ideally, we want the minimal value of (2.2) to be 0, in other words, Qy(u) serving as an

exact inverse of the data generating equation for θ such that

(2.3) y = F (Qy(u),u).

This is also what Fisher’s original fiducial argument suggests. However, there are statistical

problems in which the exact inverse property (2.3) cannot be guaranteed for all y and u.

Nevertheless, since we assume that the data y could have been generated using (2.1), there

must exist u∗ for which the equality (2.3) holds. Let’s denote the set of all such u∗ by Uy,0,

i.e.,

(2.4) Uy,0 := {u∗ : y = F (Qy(u
∗),u∗)}.
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Additionally, we point out that the uniqueness of Qy(u) cannot be guaranteed for all

y and u. If multiple solutions Qy(u) exist, one can simply select one of them using a

possibly random rule. Some guidance of such selection can be found in Hannig (2013). In

fact, the uncertainty due to multiple solutions will only introduce a second-order effect on

the statistical inference in many parametric problems (Hannig et al., 2016). Thus, in these

parametric problems, the GFD, which is defined in the following, is not sensitive to the

choice among multiple solutions as n grows.

Therefore, in principle, one can generate a fiducial sample of θ by first generating a

series of independent {u∗
(k)}Nk=1 from U ’s distribution truncated to Uy,0, i.e., generating u∗

(k)

conditional on the event that they fall into Uy,0. The sample from the GFD is then any

sequence of {θ∗
(k)}Nk=1 satisfying y = F (θ∗

(1),u
∗
(1)), . . . ,y = F (θ∗

(N),u
∗
(N)).

However, due to Borel paradox (Casella and Berger, 2024, sec. 4.9.3), the above condi-

tional distribution is ill-defined when P (U ∈ Uy,0) = 0. To address this, we enlarge this set

by adding a small tolerance, defining

Uy,ϵ := {u∗ : ρ(y,F (Qy(u
∗),u∗)) ≤ ϵ}.

As this tolerance vanishes, it leads to the following limit definition of GFD (Hannig et al.,

2016).

Definition 2.1.1. Let U ∗
ϵ follows the distribution of U truncated to Uy,ϵ, i.e., having density

fU (u)IUy,ϵ(u)/P (U ∈ Uy,ϵ), where fU (u) is the density of U . Denote the distribution of

Qy(U
∗
ϵ ) by µϵ. If the weak limit limϵ→0 µϵ exists, the limit is called a generalized fiducial

distribution (GFD).

In practice, one could select some ϵ > 0, and the approximate GFD of θ would then

be Qy(U
∗
ϵ ). Essentially, one can use the following process to generate a realization of the

approximate fiducial sample: First, generate u∗ from an independent copy U ∗ of U and

optimize (2.2) to obtain the best-fitting θ∗. Then, compute y∗ = F (θ∗,u∗) and compare

y∗ with the observed data y. The candidate θ∗ is accepted if ρ(y,y∗) ≤ ϵ; otherwise, it is
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rejected. It is important to note that this process closely resembles Approximate Bayesian

Computations (ABC, Beaumont et al., 2002). While both methods involve comparing y∗ =

F (θ∗,u∗) with the observed data y, the main difference lies in how θ∗ is generated. ABC

derives θ∗ from a prior distribution, whereas the GFD method obtains θ∗ as the solution to

the optimization problem defined in (2.2).

2.2. GFI for Continuous Data

Under some smoothness assumptions, see Assumptions A.1-A.4 in Hannig et al. (2016),

the limiting distribution in Definition 2.1.1 has a density

(2.5) ry(θ) =
f(y,θ)J(y,θ)∫

Θ
f(y,θ′)J(y,θ′)dθ′ ,

where f(y,θ) is the likelihood function, and

(2.6) J(y,θ) = D

(
∇θF (u,θ)

∣∣∣∣
u=F−1(y,θ)

)
.

When using squared ℓ2 norm as ρ in (2.2), it is showed in Hannig et al. (2016) thatD(∇θF ) =

(det∇θF
⊤∇θF )1/2. Also, u = F−1(y,θ) is the value of u such that y = F (θ,u).

Equations (2.5) and (2.6) present an interesting and intriguing connection between GFI

and Bayesian methodology: the density ry(θ) in (2.5) behaves like a posterior density in

the Bayesian context with J(y,θ) being the “prior”, except that the data y also appear

in J(y,θ), so strictly speaking it is not a prior density. Note also that J(y,θ) shares the

invariance to reparametrization property with the Jeffreys prior.

In practice, when using (2.5) and (2.6) for GFI applications, typically there are three

possibilities:

(1) A closed-form expression for ry(θ) can be obtained,

(2) ry(θ) is known up to a normalizing constant.

(3) The term J(y,θ) cannot be analytically calculated so (2.5) cannot be applied.

7



The first possibility often happens only for simple problems where alternative inference

solutions are known. For the second possibility, MCMC methods are required to generate

a fiducial sample from ry(θ), which could be computationally demanding. More complex

problems fall into the third category, where working with J(y,θ) is not straightforward.

In addition, recall that the formula (2.5) was derived for scenarios with low dimensionality

and, as such, cannot be directly applied to the high-dimensional context. To accommodate

for the challenges introduced by high dimensionality, model selection is required. As noted by

Hannig and Lee (2009), this can be achieved by adding extra penalty structural equations to

(2.5). Interesting readers can refer to Hannig and Lee (2009); Hannig et al. (2016) for more

details about model selection in GFI. However, this method involves a complex sampling

process to emulate the GFD.

Therefore, the closed form of the GFD is not always practical. To make GFI more widely

applicable, a more user-friendly approach is necessary.

2.3. GFI for Discrete Data

The closed form (2.5) of the GFD is derived for the case when the observations following

continuous distributions. It can no longer be used when working with discrete distributions.

When the observations are discrete, there is no problem with the Borel paradox, i.e., P (U ∈

Uy,0) > 0. Therefore, one must find the exact inverse of the data generating equation to get

the GFD defined in (2.1.1).

Note that the minimizer Qy(u) in (2.2) for u ∈ Uy,0 is not unique; it is actually a set in

the discrete model context. Therefore, a selection rule is needed. Let V [A] denote the rule

for selecting a (possibly random) element from the closure of set A. The GFD of θ is then

defined as the distribution of

(2.7) V [Qy(U
∗
0 )],

8



where U ∗
0 has the density fU (u)IUy,0(u)/P (U ∈ Uy,0), i.e., it follows the distribution of

U truncated to Uy,0 as defined in (2.4). If A = (a, b) is a finite interval, Hannig (2009)

recommends using a “half-correction” rule for V [A], which selects one of the endpoints a or

b randomly and independently of U ∗
0 . Such a selection maximizes the variance of the GFD.

More details can be found in Hannig (2009).

For some common discrete models, the exact inverse Qy(u) can be computed straight-

forwardly; see examples in Hannig et al. (2016); Murph et al. (2023). However, for more

complex models, deriving the exact inverse set of the data generating equation and sampling

from it can be challenging, often involving the solution of multiple inequalities and the use of

MCMC techniques. Therefore, this approach is not always feasible. Applying GFI to more

complex discrete models requires a simplified sampling process.
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CHAPTER 3

Streamlined GFI for Additive Noise Models

In this chapter, we focus on applying GFI to the additive noise model, which has the

data generating equation of the following form:

(3.1) Y = G(X,θ) +U ,

where Y = (Y1, . . . , Yn)
⊤ denotes the observable variables, X represents the feature informa-

tion, θ is the unknown parameter, and U = (U1, . . . , Un)
⊤ denotes the noise vector, following

a completely known distribution. Many popular statistical and machine learning models fit

this framework, for example, linear regression, tensor regression (Zhou et al., 2013), noise

matrix completion (Candès and Recht, 2009), and regression incorporating network cohe-

sion (Li et al., 2019). When the structural function G(X,θ) is complex, computing the

GFD (2.6) can be highly challenging or even impractical, limiting the application of GFI for

these contemporary models. Therefore, this chapter introduces a method, termed AutoGFI,

to simplify the implementation of GFI in such additive noise models, thereby broadening its

applicability.

The remainder of this chapter is structured as follows: Sections 3.1 and 3.2 introduce the

basic form of AutoGFI, as well as its regularized and debiased counterparts. The theoretical

properties of AutoGFI are then explored in Section 3.3, followed by application examples

to tensor regression in Section 3.4, matrix completion in Section 3.5, and regression with

network cohesion in Section 3.6 to demonstrate its wide applicability and excellent empirical

performance. Concluding remarks are presented in Section 3.7, while technical details are

deferred to Appendix A.
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3.1. AutoGFI for Additive Noise Models

First, we examine the algorithm described at the end of Section 2.1, which generates

approximate fiducial samples for the model (3.1):

(1) Generate an independent copy U ∗ of U .

(2) Solve for θ∗ = arg minθ ρ(Y ,G(X,θ) +U ∗).

(3) Accept θ∗ if ρ(Y ,G(X,θ∗) +U ∗) ≤ ϵ; otherwise, reject and return to Step (1).

This algorithm can be viewed as a fiducial version of Approximate Bayesian Computation

(ABC) (Beaumont et al., 2002). We assume U follows a fully known distribution, and

a commonly used choice for that would be the normal distribution, e.g., Ui
iid∼ N (0, σ).

However, σ is often not available in practice. In such cases, it is advisable for computational

reasons to replace σ with a consistent plug-in estimator. ϵ can be set to εδ0, where δ0 =

minθ ρ(Y ,G(X,θ)) and 0 < ε < 1. For some simple models, such as linear regression

without regularization, the optimization problem in Step (2) can be solved in closed form,

making the algorithm very easy to implement.

Building upon the basic GFI algorithm, we propose several generalizations to extend its

applicability to more complex models. These generalizations include the introduction of a

penalty term and a de-biasing operation. First, in Step (2) of the algorithm, we add a penalty

term Λ(θ) to introduce regularization or shrinkage. This addition is particularly useful for

handling model selection problems. Next, when a penalty is applied, we propose including

a de-biasing operation d(θ) to counteract the bias introduced by the penalty. A general

approach to finding such a de-biasing function will be provided in Section 3.2. The resulting

easy-to-use AutoGFI algorithm, which incorporates these generalizations, is summarized in

Algorithm 1.

The proposed AutoGFI algorithm is versatile and can be applied to a wide range of

modern applications as long as there is a fitting procedure for the parameters, i.e., Step (2)

can be executed. In the following sections, we will use AutoGFI to perform the uncertainty

11



Algorithm 1 AutoGFI: Generating fiducial sample for additive noise models.

Input: Data (X,Y ); penalty parameter of Λ(θ); tolerance ϵ
Output: De-biased fiducial sample of θ: θ∗

de

(1) Generate an independent copy U ∗ of U .
(2) Solve

θ∗ = arg min
θ

ρ(Y ,G(X,θ) +U ∗) + Λ(θ).

(3) Debias θ∗ with θ∗
de = d(θ∗).

(4) Accept θ∗
de if ρ(Y ,G(X,θ∗

de) +U ∗) ≤ ϵ; otherwise, reject and return to Step (1).

quantification task in three different problems. Through a series of simulation studies, we

will showcase its exceptional empirical performance.

In the end of this section, we compare AutoGFI to the celebrated bootstrap (Efron and

Tibshirani, 1994), highlighting their distinctions and similarities. Non-parametric bootstrap

is based on the “re-sampling” idea, for example, re-sampling pairs in regression setup. In

contrast, parametric bootstrap must rely on an “initial” fitted model, and hence the inference

made is sensitive to the initial fitting. On the other hand, the key of AutoGFI is re-sampling

the random component U acting similarly to a “pivot” and then refitting the perturbed

data as in Step (2) of the algorithm. Additionally, AutoGFI incorporates a rejection step to

ensure that the data is perturbed in a manner considered reasonable. It is worth mentioning

that although one might expect this step to increase computational demands, in practice,

AutoGFI maintains a computation cost comparable to that of the bootstrap methods. The-

oretical results, presented in Section 3.3, indicate that the inference remains valid even if

the rejection step (Step (4)) is omitted. This allows us to relax the choice of ϵ to speed

up the calculation. Consequently, we choose a relatively large ϵ and exclude only samples

that appear to be outliers. As a result, the effect of the rejection step on the computational

efficiency of AutoGFI is minimal.

3.2. Debiasing for AutoGFI

As hinted before, if a penalty term is added in Step (2), the AutoGFI estimates necessarily

suffer from non-negligible bias. Inspired by the idea proposed in van de Geer et al. (2014)
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and Janková and van de Geer (2018), this section provides a general approach to correct

such estimation bias.

Under differentiability conditions, a potential fiducial sample generated by Step (2) can

often be viewed as solving the estimating equation

(3.2) ∇θρ(Y ,G(X,θ) +U ∗)|θ=θ∗ + ξ(θ∗) = 0,

where ξ(θ∗) is a (sub-)gradient of the penalty term Λ(θ) evaluated at θ∗. The idea of

removing the bias associated with the penalty is to modify the fiducial sample θ∗ such that

the first term of (3.2) is closer to zero. To achieve this, we implement a one-step modification

and define the de-biased fiducial sample θ∗
de by solving the equation

(3.3) −ξ(θ∗) +H(θ∗)(θ∗
de − θ∗) = 0,

where H(θ∗) represents the Hessian matrix of second partial derivatives of ρ(Y ,G(X,θ) +

U ∗) with respect to θ, evaluated at θ∗. When the j-th coordinate of the sub-gradient,

ξ(θ∗)j, is an interval, we recommend using −ξ(θ∗)j = ∇θρ(Y ,G(X,θ)+U ∗)j|θ=θ∗ in (3.3),

unless the sub-gradient interval includes zero. If zero is included, we do not de-bias the j-th

coordinate of the fiducial sample; instead, we set θ∗j,de = θ∗j and exclude the corresponding

coordinates in (3.3), also removing the relevant rows and columns from the matrix H(θ∗).

This approach ensures that our de-biasing process does not interfere with model selection.

For instance, if an ℓ1 penalty shrinks some coefficients to zero, these coefficients will remain

zero.

In high-dimensional settings, the matrix H(θ∗) is often rank-deficient and poorly con-

ditioned. As a consequence, the solution to (3.3) can be numerically unstable and highly

variable. To manage this variability, we employ two strategies. First, when penalty-induced

sparsity is utilized, as mentioned previously, we treat Step (2) as a model selection step and

perform de-biasing only for the non-zero coordinates where ξ(θ∗) does not form an interval
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containing zero. Second, to further reduce variability, we use the pseudo-inverse H(θ∗)pinv

in place of the actual inverse H(θ∗)−1 when solving the equation (3.3).

For a square matrix H ∈ Rn×n with singular value decomposition as H = VΣW⊤, where

Σ is the diagonal matrix containing all non-zero singular values, denote by ζi(H) the i-th

largest singular value of H. Let S be the diagonal matrix containing all the singular values

greater than c ζ1(H) for some threshold constant c. We define the pseudo inverse of H as

Hpinv := W

S−1 0

0 0

V⊤.

In other words, we only use those singular vectors corresponding to significant singular values

of H(θ∗) to perform de-biasing. The threshold c can be a small constant or determined in

a data-dependent manner. For example, c can be chosen as any value between ζi(H)/ζ1(H)

and ζi+1(H)/ζ1(H) where i = arg max
k

ζk(H)/ζk+1(H). This implies that c is located at the

point where there is a large jump in the magnitude of the singular values of H. With these,

the de-biasing function is defined as

(3.4) θ∗
de := θ∗ +H(θ∗)pinvξ(θ∗).

The remaining problem is calculating the first and second derivatives of ρ, which could

be quite challenging for complex models. To tackle this, we advocate using a set of new tech-

niques in mathematical computation called Automatic Differentiation (Autodiff). Autodiff

provides a robust framework for evaluating derivatives of functions formulated as computer

programs. At its essence, Autodiff takes advantage of the fact that every computer program,

regardless of complexity, ultimately breaks down into a sequence of elementary arithmetic

operations (such as addition and subtraction) and basic functions (like exponential, loga-

rithmic, sine, and cosine functions). Similar to backpropagation in neural networks, Au-

todiff applies the chain rule systematically to these operations, enabling the computation of

derivatives at any desired order. The precision of these derivatives matches the computer’s
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operational accuracy, and the technique requires only a modest increase in computational

effort compared to the original program execution. Therefore, with such techniques, we can

accurately and efficiently evaluate the first and second derivatives of ρ even for complex

models. Numerous software packages have been developed to implement Autodiff in fields

such as machine learning and scientific computing. In our work, we use the Python package

JAX (Frostig et al., 2018) to carry out the calculations.

3.3. Theoretical Properties

This section presents some theoretical properties of AutoGFI. The proofs are delayed to

Appendix A.

Let Yi = G(Xi,θ0) + Ui for all i = 1, . . . , n and U ∗ be an independent copy of U =

(U1, . . . , Un)
⊤, i.e., U and U ∗ are i.i.d.. Assume ρ(y,y∗) = ∥y − y∗∥2/2 =

∑n
i=1(yi −

y∗i )
2/2, the gradient of the penalty function ξn(θ) is a monotone increasing and differentiable

function, and the data generating function G(X,θ) is twice continuously differentiable in

θ. Consequently (3.2) becomes

n∑
i=1

−∇θG(Xi,θ)(Yi −G(Xi,θ)− U∗
i ) + ξn(θ) = 0.

Denote by θ̂ the solution of

(3.5)
n∑
i=1

−∇θG(Xi, θ̂)(Yi −G(Xi, θ̂)) + ξn(θ̂) = 0,

by θ∗ the solution of

n∑
i=1

−∇θG(Xi,θ
∗)(Yi −G(Xi,θ

∗)− U∗
i ) + ξn(θ

∗) = 0,

and by θ̂0 the solution of

(3.6)
n∑
i=1

−∇θG(Xi, θ̂0)(G(Xi,θ0)−G(Xi, θ̂0)) + ξn(θ̂0) = 0.
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We assume the following:

Assumption 3.3.1. There exists a compact K ⊂ Θ so that θ0 ∈ Ko the interior of K.

(a) The probability that there exist θ̂0 ∈ K, θ̂ ∈ K, and θ∗ ∈ K converges to 1.

(b) There exists a monotone increasing function h so that h(0) = 0 and for all θ ∈ K

P
(
∥n−1

n∑
i=1

∇θG(Xi,θ)(G(Xi,θ0)−G(Xi,θ))∥ ≥ h(∥θ − θ0∥)
)
→ 1.

(c) There exists a full rank, continuous covariance matrix S(θ) so that

n−1/2

n∑
i=1

∇θG(Xi,θ)Ui
D−→ N(0,S(θ))

uniformly in θ ∈ K.

(d) The penalty satisfies n−1 supθ∈K ξn(θ) → 0.

Theorem 3.3.2. Under Assumption 3.3.1, ∥θ̂ − θ0∥
P−→ 0 and ∥θ∗ − θ0∥

P−→ 0.

Assumption 3.3.3. Consider the Taylor series approximation at θ̂0

(3.7) n−1

(
n∑
i=1

−∇θG(Xi,θ)(G(Xi,θ0)−G(Xi,θ)) + ξn(θ)

)

= Tn(θ̂0)(θ − θ̂0) +Rn(θ, θ̂0).

Assume

(a) Tn(θ̂0)
P−→ T∞, where T∞ is invertible.

(b) There is a continuous function R, so that R(0) = 0, and ϵ > 0 so that for all

∥θ − θ̂0∥ ≤ ϵ,

P
(
∥Rn(θ, θ̂0)∥ ≤ ∥θ − θ̂0∥R(∥θ − θ̂0∥)

)
→ 1.

Theorem 3.3.4. Under the Assumptions 3.3.1 and 3.3.3,

n1/2(θ̂ − θ̂0)
D−→ N(0,T−1

∞ S(θ0)T
−1⊤
∞ ),
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n1/2(θ∗ − θ̂)
D−→ N(0,T−1

∞ S(θ0)T
−1⊤
∞ ).

Notice that if n−1/2ξn(θ) → 0, Theorem 3.3.4 implies that confidence intervals based

on the generalized fiducial distribution will be asymptotically correct. Otherwise, recall the

debiasing procedure (3.4) and notice that under assumptions of this section

H(θ∗) =
n∑
i=1

[
−(∇θ∇⊤

θG(Xi,θ
∗))(Yi −G(Xi,θ

∗)− U∗
i ) +∇θG(Xi,θ

∗)∇⊤
θG(Xi,θ

∗)
]
.

Next define

Ĥ(θ) =
n∑
i=1

[
−(∇θ∇⊤

θG(Xi,θ))(Yi −G(Xi,θ)) +∇θG(Xi,θ)∇⊤
θG(Xi,θ)

]
,

H0(θ) =
n∑
i=1

[
−(∇θ∇⊤

θG(Xi,θ))(G(Xi,θ0)−G(Xi,θ)) +∇θG(Xi,θ)∇⊤
θG(Xi,θ)

]
,

and set

θ̂de = θ̂ + Ĥ(θ̂)pinvξn(θ̂), θ̂0,de = θ̂0 +H0(θ̂0)
pinvξn(θ̂0).

Assumption 3.3.5. The de-biasing procedure satisfies

(a) n1/2(H(θ∗)pinv−H0(θ
∗)pinv)ξn(θ

∗)
P−→ 0 and n1/2(Ĥ(θ̂)pinv−H0(θ̂)

pinv)ξn(θ̂)
P−→ 0.

(b) There exist Cn
P−→ 0 so that

∥H0(θ1)
pinvξn(θ1)−H0(θ2)

pinvξn(θ2)∥ ≤ Cn∥θ1 − θ2∥

for all θ1,θ2 ∈ K.

(c) Rn = sup∥θ−θ0∥≤∥θ̂0−θ0∥ ∥I−H0(θ̂0)
pinvH0(θ)∥2

P−→ 0.

The following theorem shows that under our assumptions the de-biasing procedure re-

duces bias without affecting the asymptotic normality of the fiducial samples.

Theorem 3.3.6. Under the Assumptions 3.3.1, 3.3.3, 3.3.5

n1/2(θ̂de − θ̂0,de)
D−→ N(0,T−1

∞ S(θ0)T
−1⊤
∞ ),
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n1/2(θ∗
de − θ̂de)

D−→ N(0,T−1
∞ S(θ0)T

−1⊤
∞ ),

and

θ̂0,de − θ0 = oP (θ̂0 − θ0).

3.4. Tensor Regression

In this section, we introduce tensor regression as the first example of a complex modern

model. By applying AutoGFI to this model, we aim to evaluate its performance in parameter

estimation and uncertainty quantification within such a complex model structure.

3.4.1. Background. In the field of biomedical sciences, technological advances have

led to the generation of vast multi-way array data in areas such as genomics (Tao et al.,

2017) and medical imaging (Zhou et al., 2013). These multi-way array data can be naturally

represented as tensors. For instance, gene-gene and protein-protein interaction networks

can be expressed as second-order tensors (i.e., 2D adjacency matrices), while anatomical

MRI scans can be represented as third-order tensors. Understanding the relationships be-

tween these complex tensor data and clinical outcomes is crucial for uncovering the biological

mechanisms underlying various diseases. To address this challenge, tensor regression models

are employed, linking clinical outcomes, represented as continuous criterion variables, with

multi-way data serving as predictors. While tensor regression models have proven particu-

larly valuable in biomedical research, their utility extends far beyond this field. These models

can handle a tensor predictor and a real-valued response, making them suitable for a wide

range of applications where high-dimensional data need to be correlated with quantitative

outcomes.

Tensor decomposition is a useful method for exploring the low-rank structure of a tensor,

as the major component is often governed by a small number of latent factors (Kolda and

Bader, 2009; Shang et al., 2014). Several tensor regression models have been proposed based

on tensor decomposition, such as the CANDECOMP/PARAFAC and Tucker decomposi-

tions. While many studies have focused on estimating the tensor coefficient and selecting

18



effective regions (Guo et al., 2011; Li et al., 2018; Ou-Yang et al., 2020; Zhou et al., 2013),

few have addressed quantifying the uncertainty of estimates. Notable exceptions include

the Bayesian approaches introduced in Guhaniyogi et al. (2017) and Papadogeorgou et al.

(2021).

This section applies AutoGFI to the tensor regression model and compares it with the

two Bayesian methods mentioned above. Results from simulation experiments show that

AutoGFI can provide a robust estimate of the tensor coefficient and, at the same time, can

offer preferable uncertainty quantification.

3.4.2. Problem Definition. Let Yi ∈ R be a response variable and Xi ∈ ⊗D
d=1Rpd be

a tensor predictor of order D for i = 1, . . . , n. We consider the Gaussian linear model for

tensor regression, given by

(3.8) Yi = ⟨Xi,B⟩+ Ui, Ui
iid∼ N(0, σ2),

where B is the tensor coefficient, a D-mode tensor with
∏D

d=1 pd unknown parameters. The

inner product of two tensors, denoted by ⟨Xi,B⟩, is defined as vec(Xi)
⊤vec(B), where

vec(Xi) represents the vectorization of Xi. Our objective is to provide robust estimation

and uncertainty quantification for the tensor coefficient B.

As the dimensionality of B usually exceeds the sample size, low-rank approximation

and regularization techniques are needed to reduce the number of parameters. We follow

Zhou et al. (2013) and assume a rank-R CP decomposition of the tensor coefficient, i.e.

B =
∑R

r=1 β
(r)
1 ◦ · · · ◦ β(r)

D , where β
(r)
d ∈ Rpd for r = 1, . . . , R and d = 1, . . . , D. With this,

model (3.8) becomes

(3.9)

Yi = ⟨Xi,B⟩+ Ui = ⟨Xi,

R∑
r=1

β
(r)
1 ◦ · · · ◦ β(r)

D ⟩+ Ui

=
R∑
r=1

vec(Xi)
⊤β

(r)
D ⊗ · · · ⊗ β

(r)
1 + Ui.
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In the above, the coefficient B is determined by the factors {βrd}r=1...R
d=1...D. Therefore, the

number of unknown parameters of B decreases from
∏D

d=1 pd to R
∑D

d=1 pd.

3.4.3. AutoGFI for Tensor Regression. Model (3.9) can be re-expressed as

Yi = G(Xi,θ) + Ui

with Ui
iid∼ N(0, σ2) and

G(Xi,θ) = ⟨Xi,

R∑
r=1

β
(r)
1 ◦ · · · ◦ β(r)

D ⟩.

Choosing the squared ℓ2 norm as the semi-metric ρ, we have

(3.10) ρ(Y , G(X,θ) +U ∗) =
n∑
i=1

(Yi − ⟨Xi,
R∑
r=1

β
(r)
1 ◦ · · · ◦ β(r)

D ⟩ − U∗
i )

2,

where Y = (Y1, . . . , Yn), X = (X1, . . . ,Xn) and U ∗ is an independent copy of U .

Although the low-rank structure assumption reduces the number of parameters signifi-

cantly, further regularization is required to ensure the number of parameters is less than the

number of observations. Here we employ an ℓ1 penalty to introduce sparsity into the model:

Λ(β) = λ
∑

d,r ∥β
(r)
d ∥1.

Plugging the above ρ and Λ in the AutoGFI algorithm, Steps (2) and (3) of Algorithm 1

for tensor regression become:

(2). Solve

θ∗ = arg min
θ

[
n∑
i=1

(Yi − ⟨Xi,

R∑
r=1

β
(r)
1 ◦ · · · ◦ β(r)

D ⟩ − U∗
i )

2 + λ
∑
d,r

∥β(r)
d ∥1

]
.

(3). De-bias θ∗ as described in Section 3.2.

Note that the optimization problem in Step (2) is readily solvable using the block relaxation

algorithm proposed by Zhou et al. (2013). The gradient and Hessian matrix of ρ, required

in Step (3), can be efficiently and accurately obtained using the automatic differentiation
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technique. Therefore, when the noise scale σ is known, one can generate a de-biased fiducial

sample for the unknown parameters θ = {βrd}r=1...R
d=1...D by AutoGFI.

In practice, when σ is unknown, we first obtain its MLE σ̂ before generating the fiducial

sample and then replace σ by σ̂ in the algorithm.

A de-biased fiducial sample of N copies of {βr∗d }r=1...R
d=1...D can be generated by repeating the

above algorithm. Each copy forms a sample of B, denoted by B∗. The entries of B can

then be estimated by taking the element-wise mean or median of the B∗s. Additionally, the

(1− α) confidence interval can be constructed by using the percentiles of the sample.

3.4.4. Empirical Performance. This subsection evaluates the practical performance

of AutoGFI by comparing it to two Bayesian methods in Guhaniyogi et al. (2017) and Pa-

padogeorgou et al. (2021). The former utilizes CP decomposition for dimension reduction

and assumes a multiway shrinkage prior in the model, while the latter softens the CP de-

composition by introducing entry-specific variability to the row contributions. We refer to

these two methods as Bayesian-hard and Bayesian-soft, respectively.

Throughout the simulation study, we set Xi as a 32 × 32 matrix with standard normal

entries and the corresponding coefficientB as an image varying from low-rank to no low-rank

structure, with different degrees of sparsity. Setting σ2 = 0.5, we generated 100 replicated

datasets with n = 400 according to (3.8). The images B considered are shown in Figure 3.1.

Figure 3.1. Four 32× 32 2D images B used in the tensor regression simula-
tion study. Their sparsity levels, defined as % of non-zero pixels, are displayed
in parentheses.
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The methods are evaluated by their pixel-wise average biases and root-mean-squared

errors (rMSEs), as well as frequentist coverages (and widths) of 90%, 95%, and 99% con-

fidence/credible intervals. By default, we set R = 10 for AutoGFI and Bayesian-hard and

R = 3 for Bayesian-soft as recommended by Papadogeorgou et al. (2021). The regularization

parameter λ in AutoGFI was chosen by 10-fold cross-validation. The accepting threshold

ϵ was automatically chosen as Q3 + 1.5(Q3 − Q1) to remove potential outliers of the losses

ρ(Y , G(X,θ∗
de) + U ∗), where the Q1 and Q3 are, respectively, the first and third quartiles

of these losses. We chose 0.05 as the threshold constant c for de-biasing based on our ex-

periment results, which indicated that the singular values of H(θ∗) experienced a significant

drop near 0.05 ζ1(H(θ∗)).

Table 3.1 reports the relative performance of the methods on point estimation, which

shows that AutoGFI outperformed the two Bayesian methods in both bias and rMSE.

AutoGFI Bayesian-hard Bayesian-soft

R3-ex
bias 0.0024 0.0141 0.0372

rMSE 0.0079 0.0198 0.1155

shapes
bias 0.0384 0.0675 0.1431

rMSE 0.0730 0.1008 0.3150

dog
bias 0.1130 0.1310 0.2260

rMSE 0.1561 0.1736 0.3235

feet
bias 0.1039 0.1226 0.2957

rMSE 0.1469 0.1625 0.4321

Table 3.1. Average biases and rMSEs of the three methods compared in
tensor regression.

Table 3.2 compares the empirical frequentist coverages and widths of 90%, 95%, and

99% confidence/credible intervals for truly zero and truly non-zero pixel entries in B. For

non-zero entries, when the low-rank assumption is true (R3-ex), AutoGFI and Bayesian-

hard performed similarly, with coverages close to the target level. When B is approximately

low-rank, AutoGFI outperformed other methods, with coverage levels much closer to the

target levels and much higher than the others when sharing the same order of interval
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widths. For truly zero elements, AutoGFI provided higher coverages (and very often smaller

interval widths), indicating that they are better at distinguishing significant regions from

zeros. This is because shrinkage causes a significant portion of the relevant coordinates

in the fiducial sample to be exactly zero. The suboptimal performance of Bayesian-soft

may stem from hyperparameters related to the prior that have not been optimally tuned.

Although we adhered to the parameter settings suggested in the original paper, refining

these hyperparameters to better align with our specific dataset could potentially improve

the model’s effectiveness and reliability.

3.5. Matrix Completion

In this section, we present matrix completion, another modern machine learning problem,

as our second example. We apply AutoGFI to this problem to further assess its performance

in uncertainty quantification.

3.5.1. Background. Matrix completion is a fundamental problem in machine learning,

encountered in many applications, with the Netflix movie rating challenge (Bennett and

Lanning, 2007) being perhaps the most well-known example. Here the dataset is a large movie

rating matrix consisting of 17770 movies (columns) and 480189 customers (rows), with less

than 1% of the data matrix (customer-movie pairs) observed. The challenge participants were

asked to develop methods to impute the unobserved movie ratings, which is an ill-specified

problem and requires additional constraints on the unknown full matrix to make it well-

defined. Rank constraints are the most popular choices, with many solutions assuming the

full matrix is of low rank. This low-rank assumption is well-empirically motivated in many

applications; for example, in the Netflix challenge, it corresponds to the belief that users’

movie ratings are based on a few factors. Other applications areas for matrix completion

include computer vision (Chen and Suter, 2004), medical imaging (Haldar and Liang, 2010),

collaborative filtering (Rennie and Srebro, 2005), and others.
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AutoGFI Bayesian-hard Bayesian-soft

R
3-
ex n
on

-z
er
o 90% 88.02% (0.0730) 90.77% (0.1032) 88.03% (0.3090)

95% 93.87% (0.0869) 95.33% (0.1231) 91.32% (0.3725)

99% 98.49% (0.1131) 98.91% (0.1610) 93.42% (0.5004)

ze
ro

90% 99.98% (0.0030) 94.99% (0.0649) 97.29% (0.1648)

95% 99.99% (0.0046) 97.84% (0.0790) 98.35% (0.2105)

99% 99.99% (0.0094) 99.64% (0.1074) 99.05% (0.3075)

sh
ap

es n
on

-z
er
o 90% 89.48% (0.4225) 77.16% (0.4282) 41.51% (0.4036)

95% 94.15% (0.5075) 84.33% (0.5072) 45.44% (0.4913)

99% 97.83% (0.6597) 91.77% (0.6485) 49.57% (0.6721)

ze
ro

90% 98.52% (0.1422) 94.92% (0.2889) 92.65% (0.3189)

95% 99.16% (0.1867) 97.22% (0.3464) 93.58% (0.3981)

99% 99.79% (0.2827) 98.99% (0.4541) 94.24% (0.5683)

d
og n
on

-z
er
o 90% 90.19% (0.5138) 82.98% (0.4757) 70.32% (0.5806)

95% 94.29% (0.6313) 88.58% (0.5680) 75.86% (0.6993)

99% 98.35% (0.8853) 94.51% (0.7409) 84.72% (0.9405)

ze
ro

90% 97.09% (0.3795) 90.96% (0.4394) 87.71% (0.5281)

95% 99.39% (0.4882) 95.32% (0.5267) 90.78% (0.6405)

99% 100.0% (0.7434) 98.81% (0.6923) 94.23% (0.8720)

fe
et n
on

-z
er
o 90% 84.35% (0.4654) 79.64% (0.4604) 50.57% (0.4993)

95% 90.96% (0.5709) 86.00% (0.5484) 56.01% (0.5991)

99% 97.62% (0.7945) 93.45% (0.7102) 64.39% (0.7989)

ze
ro

90% 96.13% (0.3088) 91.97% (0.4060) 79.68% (0.4175)

95% 98.62% (0.4004) 95.79% (0.4864) 82.39% (0.5051)

99% 99.95% (0.6155) 98.64% (0.6375) 84.53% (0.6842)

Table 3.2. Empirical frequentist coverages and widths (in parentheses) of
90%, 95%, and 99% confidence/credible intervals among truly zero and truly
non-zero pixel entries for different methods in tensor regression.

3.5.2. Problem Definition. Let M be a real matrix of size m × n. Only a small

fraction of the elements Mijs of M are observed. Denote the index set of the observed

elements as Ω = {1, . . . ,m} × {1, . . . , n}; that is, (i, j) ∈ Ω if and only if Mij is observed.

For simplicity, we collect all the observed elements in a matrix Y , through a projection
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function f(M ) of M ; that is,

Yij =


Mij if (i, j) ∈ Ω

0 otherwise.

The goal is to, given Y , estimate the unknown elements of M . Under the low-rank assump-

tion and in the absence of noise, the matrix completion problem can be formulated as a

rank-minimization problem:

(3.11) min
M

rank(M ) s.t. Y = f(M).

Although (3.11) guarantees the exact recovery of M under some regularity conditions

(Candès et al., 2011; Candès and Recht, 2009), it is a non-convex and NP-hard problem

(Srebro and Jaakkola, 2003) so no known polynomial-time solutions exist. Various com-

putationally feasible reformulations have been proposed to overcome this limitation, e.g.,

(Candès and Plan, 2010; Chen and Wainwright, 2015; Gross, 2011; Keshavan et al., 2010;

Koltchinskii et al., 2011; Negahban and Wainwright, 2012).

This section focuses on a reformulation that allows for the observed entries to be corrupted

by additive noise and assumes the true matrix M can be factorized into two factors, i.e.,

M = AB⊤. The optimization problem for this reformulation is given by:

(3.12) min
A,B

∥Y − f(AB⊤)∥2F + λ∥A∥2F + λ∥B∥2F ,

where ∥ · ∥F denotes the Frobenius norm and λ is the regularization parameter. This refor-

mulation has been studied, for example, in Chen et al. (2020, 2019); Yuchi et al. (2022).

3.5.3. AutoGFI for Matrix Completion. Here we apply AutoGFI to solve the noise

matrix completion task. With the assumptions behind (3.12), the noisy matrix observation

model is

(3.13) Yij = (AB⊤)ij + Uij
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for all (i, j) ∈ Ω, where Uij denotes independently generated normal noise at the location

(i, j). We assume the data are missing uniformly at random. That is, each index (i, j) is

included in Ω independently with the same probability. The data generating equation of

(3.13) is

Y = f(AB⊤) +U ,

where U is a matrix with Uij
iid∼ N(0, σ2) for all (i, j) ∈ Ω and Uij = 0 for all (i, j) /∈ Ω.

Choosing the squared ℓ2 norm as the semi-metric ρ, we have

(3.14) ρ(Y ,G(θ) +U ∗) = ∥Y − f(ABT )−U ∗∥2F ,

where θ = (A,B). With penalty chosen as Λ(θ) = λ∥A∥2F + λ∥B∥2F , this leads to an

optimization problem that is similar to (3.12) and can be efficiently solved by the 2-stage

algorithm proposed in Chen et al. (2020). Assuming the noise scale σ is known, the fiducial

samples of A and B can be generated by Algorithm 1, where Steps (1) to (3) become:

(1) Generate U∗
ij ∼ N(0, σ2) for (i, j) ∈ Ω and leave the other entries as 0.

(2) Solve

θ∗ = (A∗,B∗) = arg min
A,B

∥Y − f(ABT )−U ∗∥2F + λ(∥A∥2F + ∥B∥2F )

using the 2-stage algorithm of Chen et al. (2020).

(3) Debias θ∗ as described in Section 3.2 using ρ defined in (3.14) and ξ the gradient

of the penalty term.

In practice, if the matrix rank R and the noise scale σ are not known, they can often be

reliably estimated in a data-dependent manner (e.g., Chen et al., 2020).

Using the procedure introduced above, one can obtain a debiased fiducial sample of size

N for A and B, and consequently, for M = AB⊤. The point estimates and confidence

intervals of the missing entries of M can then be obtained from these samples.
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3.5.4. Empirical Performance. This section compares the empirical performance of

AutoGFI for matrix completion with the frequentist method proposed in Chen et al. (2019),

referred to as Freq-MC below, and the Bayesian method BayeSMG proposed in Yuchi et al.

(2022).

Similar to the experimental setting of Chen et al. (2019), we generated a rank-R matrix

M = AB⊤, where A,B ∈ Rn×R are random orthonormal matrices. We added noise with

σ = 0.001 to obtain Y = M+U , where Uij ∼ N(0, σ2) are i.i.d. Each entry of Y is observed

with probability p independently. We considered two values for n: (500, 1000), two values

for R: (2, 5), and two values for p: (20%, 40%), resulting in eight simulation settings.

The methods are evaluated by estimation errors measured in Frobenuis norm and frequen-

tist coverages (and widths) of 90%, 95%, and 99% confidence/credible intervals. We used

10-fold cross-validation to choose the penalty parameter λ for AutoGFI and set λ = 2.5σ
√
np

for Freq-MC as suggested by the authors. Same as tensor regression, the accepting threshold

ϵ was chosen as Q3+1.5(Q3−Q1), where the Q1 and Q3 are the, respectively, first and third

quartiles of the losses ρ(Y , G(θ∗
de) + U ∗). The threshold constant c used in debiasing was

chosen as 0.05, the same as tensor regression.

For each simulation setting, we randomly generated 100 matrices with missing entries,

and for each matrix, we applied the above three methods to estimate its missing entries

and construct confidence intervals. Table 3.3 reports the estimation errors of the methods,

while Tables 3.4 shows the empirical coverage rates. Notice that AutoGFI gave the lowest

estimation errors and produced comparable confidence interval coverages when compared to

the other two methods.

3.6. Regression with Network Cohesion

In this section, we introduce a regression model which incorporates the network cohesion.

We use it our last example to evaluate AutoGFI’s performance.
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AutoGFI BayeSMG Freq-MC

n = 500, R = 2
p = 0.2 0.1035 0.1449 0.1125

p = 0.4 0.0724 0.1002 0.0738

n = 500, R = 5
p = 0.2 0.1707 0.2335 0.1944

p = 0.4 0.1156 0.1611 0.1207

n = 1000, R = 2
p = 0.2 0.1469 0.2027 0.1500

p = 0.4 0.1040 0.1417 0.1020

n = 1000, R = 5
p = 0.2 0.2373 0.3214 0.2457

p = 0.4 0.1629 0.2248 0.1625

Table 3.3. Average estimation errors of the three methods compared in
matrix completion.

3.6.1. Background. As modern communication technology advances, network data are

becoming increasingly popular. One longstanding problem is community detection, as in

identifying friendship circles in a social network. Also, combining information from node

features and the network structure has gained interest among researchers, such as using

node covariates to assist in inferring the network structure (e.g., Binkiewicz et al., 2017; Su

et al., 2020; Zhang et al., 2016).

One can also leverage network structures to assist inference on the node covariates, which

is the main focus of this section. We consider a linear regression model with observations

connected in a network, where each node is associated with some node covariates and a re-

sponse variable of interest. To incorporate network effects into traditional predictive models,

Li et al. (2019) proposed an regression with network cohesion (RNC) estimator that uses a

graph-based regularization to assert similar individual effects for those who are connected in

the network. They showed that by adding the network cohesion, the out-of-sample predic-

tion error was significantly improved. This idea of adding graph-regularization has also been

applied to many other problems, such as graph-regularized matrix completion (Ma et al.,

2011; Rao et al., 2015).
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AutoGFI BayeSMG Freq-MC

n
=

50
0,
R

=
2

p
=

0.
2 90% 89.08% (0.0006) 89.82% (0.0006) 86.27% (0.0006)

95% 94.30% (0.0007) 94.85% (0.0008) 92.18% (0.0007)

99% 98.59% (0.001) 98.90% (0.0010) 97.73% (0.0010)

p
=

0.
4 90% 89.31% (0.0004) 89.92% (0.0004) 88.44% (0.0004)

95% 94.46% (0.0005) 94.93% (0.0005) 93.89% (0.0005)

99% 98.67% (0.0007) 98.96% (0.0007) 98.57% (0.0007)

n
=

50
0,
R

=
5

p
=

0.
2 90% 87.73% (0.0010) 89.78% (0.0011) 81.94% (0.0010)

95% 93.34% (0.0012) 94.83% (0.0013) 88.78% (0.0012)

99% 98.24% (0.0016) 98.90% (0.0017) 96.04% (0.0015)

p
=

0.
4 90% 88.64% (0.0007) 89.90% (0.0007) 86.69% (0.0007)

95% 94.00% (0.0008) 94.92% (0.0009) 92.62% (0.0008)

99% 98.50% (0.0011) 98.96% (0.0011) 98.07% (0.0011)

n
=

10
00
,
R

=
2

p
=

0.
2 90% 89.54% (0.0004) 89.79% (0.0004) 88.15% (0.0004)

95% 94.57% (0.0005) 94.81% (0.0005) 93.62% (0.0005)

99% 98.70% (0.0007) 98.89% (0.0007) 98.43% (0.0007)

p
=

0.
4 90% 89.57% (0.0003) 90.10% (0.0003) 89.46% (0.0003)

95% 94.67% (0.0004) 95.05% (0.0004) 94.62% (0.0004)

99% 98.76% (0.0005) 98.95% (0.0005) 98.83% (0.0005)

n
=

10
00
,
R

=
5

p
=

0.
2 90% 89.01% (0.0007) 89.84% (0.0007) 86.44% (0.0007)

95% 94.22% (0.0009) 94.86% (0.0009) 92.38% (0.0008)

99% 98.60% (0.0011) 98.90% (0.0011) 97.94% (0.0011)

p
=

0.
4 90% 89.66% (0.0005) 90.06% (0.0005) 88.96% (0.0005)

95% 94.68% (0.0006) 95.01% (0.0006) 94.26% (0.0006)

99% 98.71% (0.0008) 98.97% (0.0008) 98.69% (0.0008)

Table 3.4. Empirical frequentist coverages and widths (in parentheses) of
90%, 95%, and 99% confidence/credible intervals for the missing entries in
matrix completion.

This section demonstrates the use of AutoGFI in the RNC problem to provide uncertainty

quantification of the model parameters. We note that, when the noise is additive, AutoGFI

can be straightforwardly extended to other graph-regularized methods.
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3.6.2. Problem Definition. In linear regression with network cohesion (Li et al., 2019),

the model is

(3.15) Y = Xβ +α+U ,

where Y = (Y1, . . . , Yn)
T is the response vector, X is an n× p design matrix, α is an n× 1

vector of individual effects, β is a p × 1 vector of fixed effects, and U ∼ N(0, σIn) is the

error term.

We assume these n samples are connected in a network G = (V ,E), where V =

{1, . . . , n} is the node set, and E ⊂ V × V is the edge set. The Laplacian of G is de-

fined as L = D − A where A is the adjacency matrix and D = diag(d1, . . . , dn) with di

being the degree of the i-th node. The RNC estimator is defined as the minimizer of

(3.16) L(α,β) = ∥Y −Xβ −α∥22 + λαTLα,

where λ > 0 is a tuning parameter selected by cross-validation.

In general, the n + p parameters (α and β) cannot be estimated from n observations

without further assumptions. In this network regression setting, we assume that the design

matrixX is centered and has full column rank. Li et al. (2019) proved that when the network

contains additional information beyond what is contained in X, the RNC estimator defined

in equation (3.16) always exists. We will make the same assumption here.

Li et al. (2019) also derived the asymptotic bounds for the bias and the variance of the

RNC estimator. In particular, the bias term depends on Lα, and the norm of bias grows with

∥Lα∥. Under the condition that ∥Lα∥ = 0, the RNC estimator is unbiased. This occurs

only when the individual effect on node i is simply the average of those of its neighboring

nodes; otherwise, there is bias involved.

3.6.3. AutoGFI for Network Regression. The data generating equation of network

regression is given in (3.15). Using our notations from Section 3.1, we can express it in

the form of Y = G(X,θ) + U with G(X,θ) = Xβ + α. The unknown parameters are
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θ = (α,β), and the random component is U . Also, the semi-metric ρ (the squared ℓ2 norm)

for this model is

(3.17) ρ(Y ,G(X,θ) +U ∗) = ∥Y −Xβ −α−U ∗∥22,

where U ∗ is an independent copy of U . According to (3.16), the penalty term is

(3.18) Λ(θ) = λαTLα.

Unlike the penalty terms used in Sections 3.4 and 3.5, formula (3.18) only penalizes the

component of α that lies in the column space of L. The component of α in the null space

does not contribute to the penalty term. Consequently, we only need to debias the component

in the column space of L, i.e., we only debias the part that was penalized.

The optimization problem in Step (2) of AutoGFI can be solved by the Newton-Raphson

or another appropriate convex optimization algorithm. To de-bias the penalized parameters,

we separate α as α = (I− PL)α+L−1/2η and transform (3.17) to

(3.19) ρη(Y ,G(X,θ) +U ∗) = ∥Y −Xβ − (I− PL)α−L−1/2η −U ∗∥2,

where PL is the project matrix of L and η = L1/2α.

From (3.19), we can see that η is the term that we penalize. Thus, we first debias η,

then use d(η) to rebuild a debiased α, and finally refit the model to debias β. Therefore,

Steps (2) and (3) of Algorithm 1 for network regression become:

(2). Solve

θ∗ = (α∗,β∗) = arg min
α,β

∥Y −Xβ −α−U ∗∥2 + λαTLα.

(3). Let η∗ = L1/2α∗ and plug it in (3.19) so that

ρη(Y ,G(X,θ) +U ∗) = ∥Y −Xβ∗ − (I− PL)α
∗ −L−1/2η∗ −U ∗∥2.
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(a) Debias η∗ by η∗
de = η∗ +H(η∗)pinvξ(η∗).

(b) Calculate the debiased α∗ as α∗
de = PLα

∗ +L−1/2η∗
de.

(c) Obtain the debiased β∗ by refitting the model, i.e.,

β∗
de = (X⊤X)−1X⊤(Y −L−1/2η∗

de).

Set θ∗
de = (β∗

de,α
∗
de).

In the above, as the Laplacian matrix L is not of full rank, the generalized inverse of L1/2

is used instead. This de-biased fiducial sample enables the construction of a (1− α) fiducial

confidence interval for β using the α/2 and 1− α/2 quantiles of β∗
de.

3.6.4. Empirical Performance. We evaluated the practical performance of AutoGFI

using a stochastic block model with 3 blocks. The probability of a connection between

two nodes in the same block was pw, and the probability of a connection between nodes in

different blocks was pb. The adjacency matrix A ∈ {0, 1}n×n was generated independently

with Aij = Aji and Aii = 0 from the probability matrix P = B ⊗Jn/3, where B is given by

B =


pw pb pb

pb pw pb

pb pb pw


and Jk is a k × k matrix with all ones.

We generated β from N(1, Ip), where p = 10 in our experiments, and the covariate

matrix X was generated independently from the standard normal. Therefore, the columns

are uncorrelated and have 0 means. The α was generated independently from a normal

distribution with the mean determined by the node’s block assignment N(γk, s
2), where

γ1 = −1, γ2 = 0, γ3 = 1. Finally, Y = α+XTβ +U with U ∼ N(0, σ2I).

As mentioned before, the bias of the RNC estimator depends on ∥Lα∥. We tested

AutoGFI under both unbiased (i.e., ∥Lα∥ = 0) and biased (i.e., ∥Lα∥ > 0) conditions.

Specifically, we set pw = 0.2, σ = 0.5 and used three choices of (pb, s): (i) (0, 0) which
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gives ∥Lα∥ = 0, (ii) (0.01, 0.1) which gives ∥Lα∥ ≈ 65, and (iii) (0.02, 0.1) which gives

∥Lα∥ ≈ 108.

Once the network A, design matrix X and parameters (α, β) were generated, we fixed

them. We then simulated 500 datasets by re-generating U and generating a fiducial sample

of size 1000 for (α, β) for each dataset using AutoGFI. These samples were then used to

form point estimates and confidence intervals.

We compared AutoGFI with two other methods. The first was ordinary linear regression

(OLR) without using network information. We used the true σ2 and the classical way

of constructing confidence intervals. Since the network is correlated with individual effects,

ignoring them would lose information and worsen the estimation results. The second method

was based on a fixed effects linear model, for which we assumed the true group assignments

of nodes are known. That is, there were 3 known groups, and the individuals within each

group shared a common intercept. When s ̸= 0, the randomness in α was simply combined

into U , i.e., Ui ∼ N(0, s2 + σ2). Note that this second method could be seen as an oracle

method since it has access to the usually unknown group assignment. For the AutoGFI, the

σ2 was estimated by the MSE of the RNC estimator before the fiducial sample was generated.

We compared the rMSEs of the methods and the coverages and widths of their confidence

intervals for the fixed effect parameters β. The results are summarized in Table 3.5 for

different settings.

We can see AutoGFI outperforms the OLS method and is very similar to the oracle in

terms of rMSEs when estimating β. The coverage of AutoGFI based confidence intervals

is also very close to the target level under all cases. As the value of ∥Lα∥ increases, all

confidence intervals tend to be wider due to more noise in the data. Compared to the oracle,

the AutoGFI confidence intervals are often slightly wider because σ2 is slightly overestimated

by the MSE of the RNC estimator, resulting in more dispersed fiducial samples and thus

wider confidence intervals. However, under the unbiased case (i.e., ∥Lα∥ = 0), the AutoGFI

confidence intervals are almost identical to the oracle ones. On the other hand, the confidence
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intervals of OLR have dramatically lower coverage than the target. This shows the necessity

of taking the network information into consideration.

AutoGFI oracle OLR

pb = 0,
s = 0,

∥Lα∥ = 0

rMSE 0.0292 0.0290 0.0537

90% 89.32% (0.0992) 89.98% (0.0981) 62.90% (0.0980)

95% 94.80% (0.1180) 95.38% (0.1170) 71.46% (0.1169)

99% 98.68% (0.1535) 99.10% (0.1542) 83.68% (0.1540)

pb = 0.01,
s = 0.1,

∥Lα∥ ≈ 65

rMSE 0.0298 0.0295 0.0571

90% 90.04% (0.1055) 90.00% (0.1002) 54.46% (0.0979)

95% 94.68% (0.1255) 95.04% (0.1195) 64.66% (0.1167)

99% 98.66% (0.1632) 99.12% (0.1574) 80.72% (0.1538)

pb = 0.02,
s = 0.1,

∥Lα∥ ≈ 108

rMSE 0.0318 0.0299 0.0606

90% 91.62% (0.1157) 89.58% (0.1008) 55.16% (0.0984)

95% 95.78% (0.1377) 95.04% (0.1203) 64.00% (0.1173)

99% 99.12% (0.1791) 99.12% (0.1585) 77.46% (0.1546)

Table 3.5. Average rMSEs of the parameter estimates and empirical fre-
quentist coverages and widths (in parentheses) of various confidence intervals
in network regression.

3.7. Conclusion

In this chapter, we discussed a new form of GFI, which can be applied to a broad range of

high-dimensional and/or nonlinear additive noise problems. We introduced a practical and

straightforward-to-implement algorithm, AutoGFI, for generating fiducial samples of the

parameters of interest. This approach is particularly useful in situations where uncertainty

quantification has been difficult or impossible using traditional inference methods. Numerical

results of applying AutoGFI to three challenging problems demonstrate its highly competi-

tive performance compared to tailor-made competitors. Overall, the result has shown that

GFI is a promising alternative to traditional methods for addressing important and practical

inference problems.
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CHAPTER 4

Fiducial Selector for High-Dimensional Linear Regression

High-dimensional linear regression is a pivotal tool in numerous scientific fields. In re-

sponse to its importance, we introduce Fiducial Selector, a novel approach aimed at en-

hancing the application of GFI to such models. Built upon insights from the sampling

framework detailed in Chapter 3, Fiducial Selector is tailored to address the challenges of

high-dimensional linear regression. Notably, it incorporates a specialized de-biasing proce-

dure designed to mitigate the bias introduced by regularization terms within the model. This

new approach, Fiducial Selector, has the following attractive properties:

• It enjoys model selection consistency under certain conditions.

• It provides unbiased estimates for the significant parameters.

• It is straightforward to implement.

• It is computationally fast.

• It demonstrates highly competitive empirical performance.

In this chapter, we introduce Fiducial Selector in the following order. Section 4.1 pro-

vides a brief review of recent work on the high-dimensional linear regression problem. Sec-

tion 4.2 presents Fiducial Selector in detail. Sections 4.3 and 4.4 examine the theoretical

and empirical properties of Fiducial Selector, respectively. Concluding remarks are offered

in Section 4.5, and technical details are provided in Appendix B.

4.1. Introduction

The high-dimensional linear regression problem has attracted enormous research atten-

tion in the statistics literature. Consider the following linear model:

(4.1) Y = Xβ + e,
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where Y = (Y1, . . . , Yn)
T is a vector of n response variables, X = (x1, . . . ,xn)

T is a design

matrix of size n× p, β = (β1, . . . , βp)
T is a size p vector of parameters, and e = (e1, . . . , en)

T

is a size n vector of i.i.d. normal random errors with zero mean and unknown variance σ2.

The error term e and x1, . . . ,xn are assumed to be independent.

In high-dimensional settings where p ≫ n, we often assume the true model is sparse.

Specifically, let A = {j : βj ̸= 0, j = 1, . . . , p} be the support of β, with cardinality s = |A|

then s ≪ p. Identifying the significant variables becomes the major task, which we call

the variable selection problem. This problem has been well studied in the past decade, and

regularized methods are the most popular approach, including the l1 regularized method

lasso (Tibshirani, 1996) and its variations, such as non-concave penalized method (SCAD)

(Fan and Li, 2001), elastic net (Zou and Hastie, 2005), the adaptive lasso (Zou, 2006), and

the Dantzig selector (Candes and Tao, 2007).

In recent years, much attention has been given to the statistical inference problem in high-

dimensional regression. For example, Bühlmann (2013), Zhang and Zhang (2014), van de

Geer et al. (2014), and Javanmard and Montanari (2014) proposed different versions of

“de-biased” lasso and applied them to perform statistical inference in the high-dimensional

linear regression problem. These methods require a sparse estimate of the precision matrix.

However, due to the singularity of the sample covariance matrix, obtaining a satisfactory

solution is challenging. Typically, the computational workload associated with these methods

is substantial. Furthermore, specific regularity conditions must be met to ensure that the

estimated precision matrix is feasible and stable.

Post-selection inference is another class of methods for statistical inference in high-

dimensional linear regression problems. As implied by its name, post-selection inference only

performs statistical inference for the selected coefficients. Such inference is conditioning on

the selection event. Multiple methods have been proposed to conduct a valid post-model

selection inference. Among those, one kind is the sample splitting method (Wasserman and

Roeder, 2009; Meinshausen et al., 2009) that splits data to do model selection and inference
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separately. Such methods are sensitive to the manner in which the sample is split, and sev-

eral methods, including Rasines and Young (2022) and James Leiner and Ramdas (2023),

are proposed to provide more elaborate splitting strategies. Another kind, including but not

limited to Lockhart et al. (2014), Lee et al. (2016), and Tian and Taylor (2018), is to correct

inferential statements for variable selection by conditioning on the region of the sample space

that led to the selection being made. Resampling methods (Jessica Minnier and Cai, 2011)

and bootstrap-based methods (Chatterjee and Lahiri, 2011; Liu and Yu, 2013; Tibshirani

et al., 2018) are also proposed to solve this problem. Interested readers can refer to Zhang

et al. (2022) for a comprehensive review of post-selection inference. Many other new tools

are combining the above techniques to provide more valid inferences for high-dimensional

problems. Some of the most recent ones include the simultaneous post-model selection infer-

ence method proposed by Wang et al. (2021), the bootstrap lasso and partial ridge method

proposed by Liu et al. (2020), the data splitting-based method proposed by Fei and Li (2021),

and the method proposed by Battey and Reid (2023).

GFI has also been previously applied to the high-dimensional linear regression problem.

In Lai et al. (2015), a sampling method was introduced that allows direct sampling from

the GFD as delineated in equations (2.5) and (2.6). This method incorporates additional

penalty structural equations into equation (2.5) to manage high dimensionality. It involves

a complex sampling process to emulate the GFD. Furthermore, the general approach Auto-

GFI, introduced in Chapter 3, is designed to facilitate the application of GFI across various

problems, including high-dimensional regression. However, the broad applicability of Au-

toGFI sometimes compromises its precision, leading to undesirable empirical outcomes. To

mitigate the complexities of sampling and enhance problem-specific performance, we propose

a new approach, termed Fiducial Selector. This method retains the simplicity of sampling

characteristic of AutoGFI but is specifically tailored for high-dimensional linear regression.
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4.2. Methodology

4.2.1. Fiducial Selector. We start by aligning the notations used in the linear model

(4.1) with those introduced in the fiducial framework in Chapter 2. Assuming the noise scale

σ is known, the only unknown parameter in the linear model is β, thus θ = β. The error

term e can be expressed as σU , where U represents the random component in the model

following a known distribution, specificallyN (0, In). After aligning the notations, it becomes

evident that (4.1) corresponds to the data generating equation for the linear models.

Since we are aiming at a sparse solution, we propose to select the β with the smallest l1

norm as the solution. In particular, we generalize the optimization problem (2.2), used for

producing fiducial samples, to the following form:

(4.2) Qy(U) = argmin
β

∥y −Xβ − σU∥22 + λ∥β∥1,

where y is the observed value of Y and the distribution of U is truncated to the set

(4.3) Uy,ϵ = {u : ∥y −Xβ − σu∥22 ≤ ϵ}.

We term the limiting distribution as ϵ→ 0 the raw fiducial selector.

4.2.2. Practical Generation of Fiducial Sample from (4.2). In this subsection,

we propose a practical procedure to generate a fiducial sample of β from the GFD defined

by equation (4.2). The resulting fiducial sample, de-biased using the method described in

Section 4.2.3, can be used for statistical estimation and inference, which will be discussed in

Section 4.2.5.

By definition, a realization of the fiducial selector, denoted as β∗, is obtained by solving

the optimization problem (4.2), where the truncated random componentU is replaced by one

of its realizations, u∗. This process begins by generating a u∗ from the original unbounded

distribution, specifically N (0, σIn). Then with U replaced by u∗, we solve the optimization

problem (4.2) for β∗, which is equivalent to fitting a lasso regression from y − σu∗ to X.
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Next, we check whether ∥y −Xβ∗ − σu∗∥22 ≤ ϵ and only accept β∗ as a valid realization of

the fiducial selector if the condition is met. If the condition is violated, a new u∗ is generated

and the process repeats. This accept/rejection step is to ensure u∗ is from the truncated set

defined in (4.3). In summary, a fiducial sample of size N can be generated by repeating the

following procedure N times:

(1) Generate u∗ from N (0, σIn).

(2) Fit a lasso regression on (y − σu∗,X) to obtain β∗.

(3) Accept β∗ if ∥y −Xβ∗ − σu∗∥22 ≤ ϵ; otherwise, return to Step (1).

4.2.3. De-biasing Method for Fiducial Selector. Due to the bias of the lasso es-

timator, the raw fiducial selector defined by (4.2) and the fiducial sample generated from

Section 4.2.2 is biased. Here, we develop a de-biasing method for the fiducial samples of the

fiducial selector.

The idea is based on the following facts of the standardized score function s(β),

(4.4) s(β) = I(β)−1/2 ∂

∂β
log f,

where f is the likelihood function and I(β) is the Fisher information. This standardized

score function satisfies the following two equations,

(4.5) E
(
I(β)−1/2 ∂

∂β
log f

)
= 0,

(4.6) Var

(
I(β)−1/2 ∂

∂β
log f

)
= Ip×p,

For the linear model, we can calculate (4.4) as follows,

(4.7) s(β) = I(β)−1/2 ∂

∂β
log f =

1

σ
(XTX)−1/2(XTy −XTXβ).

An unbiased estimator of β should make (4.7) satisfy (4.5) and (4.6). Thus, we define the

de-biased fiducial sample as follows.

39



Definition 4.2.1. De-biased fiducial sample: A de-biased fiducial sample is defined by

(4.8) β̂ = −S
−1/2
β∗ (β∗ − E[β∗]),

where β∗ is the original fiducial sample, E[β∗] and Sβ∗ are the mean and variance-covariance

matrix of the original fiducial distribution respectively.

In practice, E[β∗] and Sβ∗ are replaced with the average and sample variance-covariance

matrix of the all the original fiducial samples.

Lemma 4.2.2. The de-biased fiducial sample for the linear regression problem has the fol-

lowing closed-form expression:

(4.9) β̂ = (XTX)−1XTy + σ(XTX)−1/2S
−1/2
β∗ (β∗ − E[β∗]).

The proof of (4.9) is a direct result of (4.7) and (4.8).

In high-dimensional settings, the true parameter vector β is often assumed to be sparse.

When performing de-biasing, it is crucial to maintain this sparsity to avoid losing the benefits

of the penalty. Therefore, we need to decide which βjs should be de-biased. Additionally,

when p > n, X⊤X is not full-rank, and we need to obtain an approximate inverse of X⊤X.

A simple approach to address these issues is to perform the de-biasing procedure only on

the significant βjs.

To identify those significant βjs, we use the following simple procedure. For each βj, we

count the percentage of zero values in the fiducial sample. If it is more than 50%, we say that

this particular βj is not significant. Otherwise, we treat this βj as a significant parameter

and perform de-biasing. Barbieri and Berger (2004) applied a similar idea to determine the

significance of a parameter in the Bayesian inference context. The choice of the threshold

(50%) is the same as the thresholds in Barbieri and Berger (2004) and Lai et al. (2015). We
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denote the identified significant set by Â and define it as

(4.10) Â = {j :
N∑
k=1

1(β∗
(k),j ̸= 0) ≥ ⌊N

2
⌋},

where β∗
(k),j denotes the j-th element of the k-th realization of the fiducial selector and N is

the fiducial sample size.

To sum up, upon decomposing X into X = (XÂ,XÂc), where XÂ comprises columns

with coordinates in Â andXÂc includes the remaining columns, the de-biased fiducial sample

β̂ = d(β∗) is characterized as follows:

(4.11) β̂Â = (XT
ÂXÂ)

−1XT
Ây + σ(XT

ÂXÂ)
−1/2Ŝ

−1/2
β∗
Â

(β∗
Â − β

∗
Â),

(4.12) β̂Âc = 0.

Here, β̂Â denotes the vector composed of β̂j for indices j ∈ Â, and similarly, β̂Âc refers to the

coefficients corresponding to the complementary set of indices. The notation β
∗
Â represents

the average of all realizations of β∗
Â within the fiducial sample, while Ŝβ∗

Â
denotes the sample

variance-covariance matrix of β∗
Â. In the following, we will use β∗ to represent a copy in the

original fiducial sample of the fiducial selector and use β̂ to represent a copy in the de-biased

fiducial sample of the fiducial selector. It is important to note that all copies in the de-biased

fiducial sample of the fiducial selector have the same set of nonzero parameters.

4.2.4. Implementation Details. In this subsection, we clarify some implementation

details and summarize the steps of the proposed method in Algorithm 2.

Firstly, the processes introduced in both Section 4.2.2 and 4.2.3 are based on the as-

sumption that the noise scale σ is known, which is often not the case in practice. When σ is

unavailable, we recommend obtaining an estimate, σ̂, prior to applying the method. This σ̂

can then be used in place of σ for both the sampling and de-biasing procedures. In the sta-

tistics literature, several methods have been proposed to estimate σ in the high-dimensional
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regression setting. Examples include Fan et al. (2012), Lai et al. (2015), and Sun and Zhang

(2012). In our numerical experiments, we used the R package selectiveInference, intro-

duced in Taylor and Tibshirani (2015), to obtain σ̂.

Secondly, a well-tuned penalty parameter λ for the lasso regression is important in prac-

tice. The classical cross-validation method can be used to tune this parameter. However,

considering the potential computational cost of conducting full cross-validation for the fidu-

cial selector, such as tuning λ for every copy of the fiducial sample, we investigated a quicker

approach that provides similar coverage results to the full cross-validation approach. First,

we apply the cross-validation procedure for lasso on the observed data (y,X) to obtain the

cross-validated λCV . Then, this λCV is used throughout the entire fiducial sample generation

procedure.

Another hyper-parameter in our analysis is the tolerance, denoted by ϵ. Although, ac-

cording to Definition 2.1.1, it is preferable to set ϵ as small as possible, we have observed

in practice that the specific value of this tolerance is not critically stringent. Even with a

relatively large tolerance, the fiducial selector demonstrates excellent empirical performance.

Consequently, throughout our experiments, we chose ϵ = ∥y − y∥22 to effectively exclude

extremely poor fiducial samples.

In summary, the implementation steps of the proposed method are outlined in Algo-

rithm 2.

It is worth noting that Fiducial Selector, Algorithm 2, is an overall fast method due to

the efficiency of the lasso procedure and the closed-form nature of the de-biasing formula.

The computational time of Fiducial Selector and its competitors is reported in Section 4.4.

4.2.5. Point Estimates and Confidence Intervals. Applying Algorithm 2, one can

obtain a de-biased fiducial sample consisting of multiple copies of β̂. Similar to the Bayesian

posterior sample, we can use this fiducial sample to form point estimates and confidence

intervals for β. For example, the average of all copies in the fiducial sample can be used as

42



Algorithm 2 Generating fiducial sample for high-dimensional linear models.

1: Input: Data (X,y); noise scale σ; penalty parameter λCV ; tolerance ϵ; fiducial sample
size N

2: Output: N realizations of the de-biased fiducial sample: {β̂(k)}Nk=1

3: for k = 1 to N do
4: Generate u(k) from N (0, σIn).
5: Fit a lasso regression to {y − σu(k),X} using λCV to obtain β∗

(k).

6: if ∥y −Xβ∗
(k) − σu(k)∥22 ≤ ϵ then

7: Accept β∗
(k).

8: else
9: Reject β∗

(k) and restart the iteration at line 4.

10: Determine the significant set Â as defined in (4.10).

11: De-bias β∗
(k) by (4.11) and (4.12) to obtain β̂(k), for k = 1, . . . , N .

the point estimator of β, and the 5% quantile and 95% quantile can be used to form the

90% confidence interval.

4.3. Theoretical Properties

In this section, we demonstrate that the de-biased fiducial selector exhibits model selec-

tion consistency and mean unbiasedness for the significant parameters under certain condi-

tions. We begin by introducing the necessary notations and conditions from Zhao and Yu

(2006).

Without loss of generality, let βn = (βn1 , . . . , β
n
s , β

n
s+1, . . . , β

n
p )
T represent the parameter

vector, where the superscript n denotes the number of observations. Assume the true signal

set A = {1, . . . , s}, such that βnj ̸= 0 for j = 1, . . . , s and βnj = 0 for j = s + 1, . . . , p.

Define βnA = (βn1 , . . . , β
n
s )
T and βnAc = (βns+1, . . . , β

n
p )
T . Let Xn

A and Xn
Ac represent the first

s and last p− s columns of the design matrix Xn, respectively. Define Cn = 1
n
Xn⊤Xn and

partition Cn into four blocks as follows:

Cn =

Cn
11 Cn

12

Cn
21 Cn

22

 ,
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whereCn
11 =

1
n
Xn⊤

A Xn
A,C

n
12 =

1
n
Xn⊤

A Xn
Ac ,Cn

21 =
1
n
Xn⊤

Ac Xn
A, andCn

22 =
1
n
Xn⊤

Ac Xn
Ac . Assume

Cn
11 is invertible. The strong irrepresentable condition is defined as follows.

Definition 4.3.1 (Strong Irrepresentable Condition). There exists a positive constant vector

η of size (p− s)× 1 s.t. the following equation hold,

|Cn
21(C

n
11)

−1sign(βnA)| ≤ 1p−s − η,

where the inequality holds element-wise.

The strong irrepresentable condition states that the correlation between the significant

parameters and insignificant parameters should not be too large. Section 2.3 of Zhao and Yu

(2006) provides some examples of correlation designs that satisfy the strong irrepresentable

condition.

Now, we cite the regularity conditions that are necessary for the selection consistency

theorems of the lasso. For the ‘small p and s’ cases (i.e., fixed p and s), we need the

following two conditions

(4.13) Cn → C, as n→ ∞,

where C is a positive definite matrix, and

(4.14)
1

n
max
1≤i≤n

((xni )
Txni ) → 0, as n→ ∞,

where xni is the ith row of the design matrix Xn.

For the ‘large p and s’ case (i.e., p = pn and s = sn are allowed to grow with n), we

assume there exists 0 ≤ c1 ≤ c2 ≤ 1 and M1,M2,M3 > 0 s.t. the following holds:

(4.15)
1

n
(xni )

⊤xni ≤M1 for ∀i,

(4.16) α⊤Cn
11α ≥M2, for ∀||α||22 = 1,
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(4.17) sn = O(nc1),

(4.18) n
1−c2

2 min
j=1,...,s

|βnj | ≥M3.

Theorem 4.3.2 (Selection Consistency). For both “small p and s” and “large p and s”

cases and arbitrary fixed fiducial sample size N , under the strong irrepresentable condition

(Definition 4.3.1) and regularity conditions (4.13) and (4.14) (for “small p and s” case)

and (4.15), (4.16), (4.17) and (4.18) (for “large p and s” case), the probability of the de-

biased fiducial selector (4.11) and (4.12) identifying the correct set of significant parameters

tends to 1 as the number of observations n goes to infinity. That is, For arbitrary fixed

fiducial sample size m, we have

P (Â = A) → 1 as n→ ∞,

where Â is defined in equation (4.10) and A is the true signal set.

The proof of the theorem is delayed to Appendix A.

Theorem 4.3.3 (Mean Unbiasedness). If for ∀j ∈ Âc, we have βj = 0. Then the mean

of the de-biased fiducial sample (4.11) and (4.12) is an unbiased estimator of βj for ∀j ∈ Â.

The proof of the theorem is delayed to Appendix A.

The above two theorems show that the de-biased fiducial selector can guarantee the model

selection consistency and provide unbiased estimation for significant parameters at the same

time, which is stronger than lasso’s strong and general sign consistency defined in Zhao and

Yu (2006).

4.4. Empirical Performance

4.4.1. Simulation Study. This section presents the results of a simulation study de-

signed to evaluate the performance of Fiducial Selector and to compare it with existing
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methods. We employed the following model to generate simulated noisy data:

(4.19) Y = Xβ + e,

where e ∼ N (0, σI). In this setup, σ is set to 0.5. Let s represent the number of parameters

in the signal set A, which is a randomly sampled subset of {1, · · · , p}. The signal parameters

within A are drawn from a uniform distribution U(0.2, 0.5), while the remaining null signal

parameters are fixed at 0. Each row of X is generated independently from a multivariate

normal distribution N (0, 0.5R(ρ)), where R(ρ) is a first-order autoregressive correlation

matrix with correlation parameter ρ. Furthermore, each column of X is normalized to have

an ℓ2-norm of 1.

We evaluated the following scenarios of combinations: n ∈ {300, 500}, p ∈

{400, 600, 1000}, s ∈ {5, 15} and ρ ∈ {0.3, 0.5}. In total, we conducted experiments un-

der 24 different settings. For each of these settings, 500 datasets were simulated using the

linear model (4.19), with independent error terms. For each dataset, a fiducial sample of

size 1000 was generated to estimate the model coefficients and construct confidence inter-

vals. Our proposed method was compared with several contemporary approaches, including

“MOCE”, a post-model selection method from Wang et al. (2021); “pBLPR”, a bootstrap

lasso+partial ridge estimator by Liu et al. (2020); “LDPE” and “SSLasso”, two well-known

de-biased lasso methods introduced by Zhang and Zhang (2014) and Javanmard and Mon-

tanari (2014), respectively; and “AutoGFI” introduced by Du et al. (2024). Additionally,

we employed the classical maximum likelihood estimate of the true model as a benchmark

(termed the “Oracle” method), even though it is impractical to obtain in real-world scenarios.

To evaluate the performance of different methods, we use bias as a measure for both the

signal and non-signal parameters to assess the accuracy of point estimators. Additionally, we

evaluate the inferential performance of the methods by examining the confidence intervals

they provide for the signal parameters. Specifically, we calculate the coverage probability
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and average width of the confidence intervals. These metrics are defined as follows:

BiasA =
1

s

∑
j∈A

|β̃j − βj|, BiasAc =
1

p− s

∑
j /∈Ac

|β̃j − βj|,

CPαA =
1

s

∑
j∈A

1{βj ∈ CIj(α)}, WidαA =
1

s

∑
j∈A

width(CIj(α)),

where β̃j is the point estimate of βj, and CIj(α) is the confidence interval for βj under the

confidence level 1− α.

The metric Bias for both signal and non-signal parameters is reported across 500 simula-

tion replicates in Tables 4.1 to 4.4, which cover different experimental setups and methods.

It is evident that, apart from the Oracle method, Fiducial Selector consistently shows the

lowest BiasA and BiasAc . Furthermore, Figure 4.1 illustrates the absolute bias |β̃j − βj| for

each signal parameter βj, which varies in magnitude, in cases with s = 5 and 10. Regardless

of signal magnitude, Fiducial Selector consistently achieves the lowest bias for all parame-

ters. Note that we present only the configuration with n = 300, p = 1000, and ρ = 0.5 here

to limit the scope; similar trends in other settings are detailed in the Appendix B.

n p Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400
A 0.02270.0005 0.02280.0005 0.02380.0004 0.02720.0015 0.02750.0014 0.02550.0009 0.02970.0016
Ac − 0.00000.0001 0.00050.0005 0.02750.0018 0.02490.0016 0.00860.0003 0.04770.0028

600
A 0.02360.0006 0.02370.0010 0.02620.0011 0.02760.0010 0.02850.0014 0.02650.0008 0.03410.0019
Ac − 0.00000.0001 0.00070.0005 0.02780.0024 0.02290.0013 0.00730.0003 0.01820.0011

1000
A 0.02300.0011 0.02350.0008 0.02760.0005 0.02860.0016 0.03160.0030 0.02570.0011 0.03930.0031
Ac − 0.00000.0001 0.00060.0004 0.02800.0027 0.01950.0012 0.00540.0003 0.00920.0011

500

400
A 0.01740.0007 0.01740.0009 0.01740.0010 0.02130.0010 0.02320.0012 0.01940.0007 0.02140.0011
Ac − 0.00000.0000 0.00010.0001 0.02110.0009 0.02280.0011 0.00760.0003 0.03320.0017

600
A 0.01770.0007 0.01770.0004 0.01770.0005 0.02160.0018 0.02120.0009 0.01950.0007 0.02120.0007
Ac − 0.00000.0000 0.00010.0001 0.02130.0011 0.02000.0009 0.00690.0003 0.06320.0038

1000
A 0.01810.0007 0.01800.0008 0.01820.0007 0.02130.0007 0.02150.0013 0.02030.0011 0.02270.0007
Ac − 0.00000.0000 0.00010.0001 0.02140.0013 0.01810.0008 0.00570.0002 0.01410.0007

Table 4.1. In the scenario of s = 5 and ρ = 0.3, averages of the biases BiasA
and BiasAc for different methods across 500 simulation rounds, with standard
errors as subscripts.

Tables 4.5 to 4.8 present the metrics CPαA and WidαA for confidence intervals constructed

by various methods across different scenarios, with α values of 0.1, 0.05, and 0.01. Generally,
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n p Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400
A 0.02310.0005 0.02330.0004 0.02530.0021 0.02980.0013 0.03020.0006 0.02650.0006 0.03230.0021
Ac − 0.00000.0001 0.00070.0006 0.03090.0024 0.02800.0019 0.00840.0004 0.05800.0036

600
A 0.02250.0007 0.02330.0012 0.02580.0017 0.03180.0037 0.03040.0012 0.02620.0005 0.03320.0026
Ac − 0.00000.0003 0.00050.0008 0.03080.0023 0.02530.0018 0.00720.0003 0.02020.0013

1000
A 0.02360.0007 0.02430.0007 0.03110.0018 0.03450.0067 0.03480.0058 0.02710.0003 0.04080.0030
Ac − 0.00000.0002 0.00060.0006 0.03120.0031 0.02310.0016 0.00540.0003 0.00960.0008

500

400
A 0.01810.0002 0.01820.0004 0.01860.0005 0.02360.0008 0.02590.0002 0.02060.0003 0.02340.0009
Ac − 0.00000.0001 0.00010.0004 0.02380.0011 0.02520.0012 0.00730.0003 0.03890.0024

600
A 0.01840.0008 0.01840.0008 0.01890.0008 0.02480.0009 0.02530.0004 0.02120.0004 0.02490.0015
Ac − 0.00000.0001 0.00010.0004 0.02400.0013 0.02300.0013 0.00670.0003 0.07520.0050

1000
A 0.01760.0010 0.01750.0004 0.01770.0005 0.02450.0017 0.02320.0003 0.02080.0006 0.02380.0010
Ac − 0.00000.0000 0.00010.0002 0.02400.0015 0.02030.0013 0.00560.0002 0.01560.0008

Table 4.2. In the scenario of s = 5 and ρ = 0.5, averages of the biases BiasA
and BiasAc for different methods across 500 simulation rounds, with standard
errors as subscripts.

n p Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400
A 0.02350.0008 0.02410.0007 0.02730.0017 0.03020.0038 0.03060.0035 0.02630.0011 0.03410.0025
Ac − 0.00030.0011 0.00170.0019 0.02750.0030 0.02580.0026 0.00870.0005 0.07510.0052

600
A 0.02330.0009 0.02410.0007 0.02820.0025 0.03140.0051 0.03100.0042 0.02670.0007 0.03550.0032
Ac − 0.00020.0006 0.00150.0015 0.02760.0034 0.02390.0025 0.00730.0005 0.01870.0012

1000
A 0.02350.0011 0.02470.0011 0.03210.0038 0.02970.0050 0.03120.0055 0.02620.0011 0.03850.0038
Ac − 0.00020.0007 0.00120.0014 0.02780.0043 0.02050.0028 0.00540.0005 0.00870.0011

500

400
A 0.01810.0006 0.01830.0005 0.01830.0005 0.02170.0012 0.02390.0009 0.01960.0006 0.02310.0008
Ac − 0.00000.0002 0.00030.0006 0.02120.0013 0.02290.0012 0.00760.0003 0.02890.0013

600
A 0.01790.0006 0.01800.0006 0.01840.0006 0.02210.0013 0.02250.0010 0.01990.0004 0.02430.0015
Ac − 0.00000.0001 0.00030.0006 0.02140.0017 0.02030.0012 0.00690.0003 0.10470.0087

1000
A 0.01830.0008 0.01850.0008 0.01990.0015 0.02320.0025 0.02320.0021 0.02030.0010 0.02820.0023
Ac − 0.00000.0001 0.00040.0006 0.02150.0022 0.01860.0015 0.00570.0002 0.01440.0008

Table 4.3. In the scenario of s = 15 and ρ = 0.3, averages of the biases BiasA
and BiasAc for different methods across 500 simulation rounds, with standard
errors as subscripts.

Fiducial Selector maintains an empirical coverage probability close to the target confidence

level for the significant parameters, while also offering the narrowest confidence intervals.

However, all methods struggle with the challenging scenario of n = 300, p = 1000, ρ = 0.5,

and s = 15, significantly under-covering. Still, the coverage probabilities of Fiducial Selec-

tor’s confidence intervals remain closest to the target level. Turning to the other methods,

AutoGFI demonstrates competitive performance, particularly in cases with larger sample
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n p Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400
A 0.02360.0006 0.02480.0011 0.02800.0025 0.03130.0022 0.03170.0021 0.02760.0012 0.03530.0022
Ac − 0.00030.0010 0.00160.0019 0.03070.0033 0.02860.0026 0.00850.0008 0.08070.0064

600
A 0.02350.0008 0.02720.0060 0.03500.0091 0.03500.0065 0.03520.0067 0.02900.0020 0.03980.0036
Ac − 0.00030.0009 0.00160.0019 0.03070.0041 0.02650.0032 0.00740.0010 0.02120.0015

1000
A 0.02350.0011 0.02620.0016 0.03900.0077 0.03700.0083 0.03830.0105 0.02810.0017 0.04610.0056
Ac − 0.00020.0008 0.00140.0017 0.03110.0053 0.02450.0036 0.00540.0007 0.00940.0013

500

400
A 0.01860.0012 0.01910.0013 0.01970.0012 0.02500.0014 0.02650.0012 0.02100.0011 0.02510.0017
Ac − 0.00010.0003 0.00050.0010 0.02380.0014 0.02530.0013 0.00730.0003 0.03410.0020

600
A 0.01810.0006 0.01880.0013 0.01970.0015 0.02520.0023 0.02600.0024 0.02080.0010 0.02710.0016
Ac − 0.00010.0006 0.00040.0012 0.02400.0019 0.02320.0015 0.00670.0004 0.12590.0114

1000
A 0.01850.0012 0.01880.0012 0.01960.0013 0.02470.0012 0.02320.0012 0.02130.0014 0.02630.0008
Ac − 0.00000.0002 0.00030.0006 0.02410.0022 0.02070.0016 0.00560.0002 0.01600.0009

Table 4.4. In the scenario of s = 15 and ρ = 0.5, averages of the biases BiasA
and BiasAc for different methods across 500 simulation rounds, with standard
errors as subscripts.
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Figure 4.1. Scenario: n = 300, p = 1000, ρ = 0.5. Relationship between
signal magnitude of βj and absolute bias |βj − β̃j| for all signal parameters,
i.e. j ∈ A. (a) presents the case when the number of signals is s = 5, while
(b) corresponds to s = 15.

sizes, such as n = 500, or in lower dimensional scenarios with p smaller than 1000. However,

it encounters severe under-coverage issues in more challenging environments characterized by

smaller sample sizes and higher dimensionality, for example, n = 300 and p = 1000. This lim-

itation arises because AutoGFI is designed for broad applicability in complex models, which

may compromise its de-biasing effectiveness. The general approach employed by AutoGFI

can lead to missing signals or the excessive de-biasing of noise. Consequently, AutoGFI

tends to underperform in these demanding situations. LDPE also displays strong coverage
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performance, with rates nearly at the target level. However, compared to Fiducial Selector,

LDPE tends to produce wider confidence intervals, occasionally leading to over-coverage.

This is due to LDPE’s strategy of optimizing global coverage across all parameters, without

distinguishing between significant and null signals, thereby incurring larger biases and wider

intervals. SSLasso faces similar issues but exhibits more instability; it tends to over-cover

in scenarios with large n but under-cover with large p. Both pBLPR and MOCE generally

underperform, predominantly showing under-coverage in most scenarios.

To examine the impact of the signal magnitude on empirical coverage probabilities and

interval widths, Figure 4.2a and Figure 4.3a displays the coverage probability versus sig-

nal magnitude for each signal parameter in the cases with s = 5 and s = 15, respectively.

It is evident that Fiducial Selector’s coverage probabilities remain close to the target level

across varying signal magnitudes, whereas other methods tend to under-cover smaller sig-

nals. Similarly, Figure 4.2b and Figure 4.3b illustrate how interval widths vary with signal

magnitude for the cases with s = 5 and s = 15. The results indicate that Fiducial Selector

consistently provides the narrowest confidence intervals for all signal parameters. Figure 4.4

further illustrates this finding by plotting coverage probabilities against interval widths for

all signal parameters. Note that we display only the most challenging scenarios with n = 300,

p = 1000, ρ = 0.5 for s = 5 and s = 15 here to conserve space. Similar trends observed in

other cases are detailed in Appendix B.

Another advantage of Fiducial Selector is its computational efficiency. Tables 4.9 and 4.10

report the average computation time per replicate across different values of n and p, for

s = 5 and s = 15, respectively. The results clearly demonstrate that Fiducial Selector is

the most efficient method. While we have presented results for ρ = 0.3, similar performance

is observed the case with ρ = 0.5. It is noteworthy that the average computation time for

some methods increases with smaller p values. For instance, in Table 4.9, the computation

time for MOCE is greater at n = 500 and p = 600 than at n = 500 and p = 1000. This

counter-intuitive result can be explained by the increased sparsity of the target parameter
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n p 1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400

90% 0.9070.096 0.9070.096 0.9200.103 0.9240.120 0.9080.118 0.8760.133 0.8430.104
95% 0.9560.114 0.9510.114 0.9570.123 0.9580.143 0.9460.137 0.9360.155 0.9070.124
99% 0.9890.150 0.9880.148 0.9910.163 0.9930.189 0.9890.175 0.9810.198 0.9690.163

600

90% 0.8940.096 0.8890.096 0.8880.106 0.9170.118 0.8840.112 0.8640.125 0.7900.107
95% 0.9460.114 0.9430.114 0.9440.126 0.9580.141 0.9300.129 0.9220.144 0.8680.128
99% 0.9900.150 0.9870.148 0.9850.165 0.9940.185 0.9790.163 0.9750.186 0.9570.168

1000

90% 0.8970.096 0.8860.095 0.8800.108 0.9000.119 0.8490.111 0.8430.139 0.7631426.525
95% 0.9520.114 0.9400.113 0.9350.129 0.9530.142 0.8940.126 0.9070.162 0.8501699.809
99% 0.9910.150 0.9860.147 0.9840.169 0.9910.187 0.9520.155 0.9670.206 0.9492233.928

500

400

90% 0.9080.074 0.9040.074 0.9060.075 0.9050.090 0.9050.097 0.8800.102 0.8480.077
95% 0.9500.088 0.9530.088 0.9560.089 0.9550.107 0.9530.114 0.9330.121 0.9090.092
99% 0.9900.116 0.9890.114 0.9860.116 0.9940.140 0.9900.148 0.9810.154 0.9740.121

600

90% 0.9110.074 0.9060.074 0.9110.075 0.8990.090 0.8990.088 0.8790.118 0.8660.078
95% 0.9540.088 0.9520.088 0.9590.089 0.9460.107 0.9430.104 0.9320.138 0.9240.093
99% 0.9880.116 0.9870.114 0.9880.116 0.9900.141 0.9850.133 0.9820.169 0.9780.123

1000

90% 0.8940.074 0.9010.074 0.9040.076 0.9090.091 0.8980.088 0.8580.103 0.8420.081
95% 0.9510.088 0.9430.088 0.9480.090 0.9530.108 0.9370.102 0.9140.119 0.9120.096
99% 0.9910.115 0.9880.114 0.9910.118 0.9930.142 0.9860.130 0.9720.147 0.9730.127

Table 4.5. In scenario of s = 5 and ρ = 0.3, average empirical coverage
probabilities CPαA, with interval widths WidαA as subscripts, for the signal
parameters across 500 simulation rounds. The table includes results for target
levels α = 0.1, 0.05, and 0.01.
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Figure 4.2. Scenario: n = 300, p = 1000, ρ = 0.5 and s = 5. Relationship
between signal magnitude of βj and empirical coverage probability / interval
width for all signal parameters, i.e. j ∈ A.

β at p = 1000 compared to p = 600. The higher sparsity results in a larger penalty term
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n p 1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400

90% 0.8910.096 0.8990.095 0.9140.111 0.9250.132 0.9110.129 0.8700.126 0.8160.108
95% 0.9520.114 0.9510.113 0.9590.134 0.9640.157 0.9530.151 0.9280.148 0.8900.129
99% 0.9920.150 0.9870.146 0.9910.177 0.9930.206 0.9880.193 0.9810.191 0.9660.169

600

90% 0.9050.096 0.8940.096 0.9090.109 0.8950.131 0.8960.127 0.8720.125 0.8120.110
95% 0.9500.114 0.9440.114 0.9500.130 0.9520.156 0.9440.148 0.9250.144 0.8880.131
99% 0.9910.150 0.9880.149 0.9900.171 0.9900.205 0.9840.188 0.9780.182 0.9620.172

1000

90% 0.8990.096 0.8800.097 0.8570.114 0.8690.130 0.8400.121 0.8440.150 0.7470.118
95% 0.9480.114 0.9380.115 0.9200.136 0.9300.155 0.8900.139 0.9120.172 0.8450.140
99% 0.9880.150 0.9820.150 0.9820.179 0.9820.203 0.9560.173 0.9710.211 0.9410.185

500

400

90% 0.8980.074 0.8860.074 0.8980.078 0.9020.101 0.8970.108 0.8700.103 0.8290.081
95% 0.9470.088 0.9390.088 0.9530.094 0.9500.120 0.9440.127 0.9280.121 0.9030.097
99% 0.9910.115 0.9870.114 0.9900.124 0.9920.158 0.9840.165 0.9800.152 0.9740.127

600

90% 0.8980.074 0.8880.074 0.9060.080 0.9050.102 0.9010.103 0.8780.108 0.8200.083
95% 0.9510.088 0.9350.088 0.9500.096 0.9520.122 0.9460.121 0.9230.125 0.8900.099
99% 0.9920.115 0.9840.114 0.9890.125 0.9890.160 0.9860.156 0.9800.158 0.9640.130

1000

90% 0.9040.074 0.9060.074 0.9100.079 0.9000.100 0.9160.099 0.8610.108 0.8310.083
95% 0.9550.088 0.9510.088 0.9620.094 0.9500.120 0.9560.115 0.9270.125 0.9060.099
99% 0.9920.116 0.9900.115 0.9940.123 0.9900.157 0.9870.147 0.9760.155 0.9740.131

Table 4.6. In scenario of s = 5 and ρ = 0.5, average empirical coverage
probabilities CPαA, with interval widths WidαA as subscripts, for the signal
parameters across 500 simulation rounds. The table includes results for target
levels α = 0.1, 0.05, and 0.01.
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Figure 4.3. Scenario: n = 300, p = 1000, ρ = 0.5 and s = 15. Relationship
between signal magnitude of βj and empirical coverage probability / interval
width for all signal parameters, i.e. j ∈ A.

during the regression process, which in turn accelerates computation despite the increase in

dimensionality.
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n p 1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400

90% 0.9030.098 0.8900.099 0.8870.110 0.8890.122 0.9110.131 0.8780.141 0.8110.112
95% 0.9520.117 0.9410.117 0.9420.132 0.9440.146 0.9500.151 0.9330.169 0.8860.134
99% 0.9910.153 0.9880.152 0.9860.174 0.9880.192 0.9860.190 0.9810.224 0.9560.175

600

90% 0.9010.097 0.8910.098 0.8860.112 0.8890.124 0.9140.132 0.8590.141 0.8060.116
95% 0.9510.116 0.9430.116 0.9400.133 0.9450.148 0.9500.151 0.9180.169 0.8750.138
99% 0.9910.152 0.9870.151 0.9870.175 0.9870.194 0.9860.187 0.9780.221 0.9610.181

1000

90% 0.9020.097 0.8800.098 0.8490.116 0.8990.124 0.9020.129 0.8420.149 0.806284.052
95% 0.9530.116 0.9360.116 0.9160.138 0.9490.148 0.9360.145 0.9040.178 0.880338.469
99% 0.9920.152 0.9830.151 0.9770.180 0.9890.194 0.9740.175 0.9690.229 0.961444.824

500

400

90% 0.9020.075 0.9010.075 0.9050.077 0.9050.092 0.9110.103 0.8840.088 0.8380.081
95% 0.9480.089 0.9480.090 0.9510.092 0.9540.109 0.9520.121 0.9360.105 0.9040.096
99% 0.9910.117 0.9880.116 0.9900.120 0.9910.144 0.9900.157 0.9820.136 0.9700.127

600

90% 0.9040.075 0.9000.075 0.9080.079 0.9090.093 0.9210.099 0.8750.099 0.8270.083
95% 0.9550.089 0.9510.089 0.9560.094 0.9530.111 0.9580.115 0.9340.118 0.8950.099
99% 0.9920.117 0.9900.116 0.9920.122 0.9900.146 0.9890.146 0.9830.153 0.9690.130

1000

90% 0.9060.075 0.9000.075 0.9000.082 0.8870.093 0.9070.097 0.8620.095 0.7810.087
95% 0.9520.090 0.9500.090 0.9500.098 0.9430.111 0.9470.111 0.9240.114 0.8590.103
99% 0.9900.118 0.9890.117 0.9890.129 0.9890.146 0.9850.139 0.9770.150 0.9520.136

Table 4.7. In scenario of s = 15 and ρ = 0.3, average empirical coverage
probabilities CPαA, with interval widths WidαA as subscripts, for the signal
parameters across 500 simulation rounds. The table includes results for target
levels α = 0.1, 0.05, and 0.01.
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Figure 4.4. Scenario: n = 300, p = 1000, ρ = 0.5. Relationship between
empirical coverage probability and interval width for each signal parameters.
(a) presents the case when the number of signals is s = 5, while (b) corresponds
to s = 15.
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n p 1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

300

400

90% 0.9050.097 0.8880.100 0.8920.114 0.9120.134 0.9300.144 0.8800.123 0.8150.116
95% 0.9510.116 0.9410.119 0.9430.136 0.9590.160 0.9630.167 0.9310.148 0.8850.138
99% 0.9910.152 0.9850.154 0.9870.178 0.9910.210 0.9910.210 0.9820.198 0.9670.181

600

90% 0.9040.097 0.8760.097 0.8550.126 0.8790.136 0.9060.147 0.8240.140 0.7760.123
95% 0.9520.116 0.9300.115 0.9220.151 0.9340.162 0.9430.168 0.8980.167 0.8550.146
99% 0.9900.152 0.9730.148 0.9810.195 0.9830.214 0.9820.208 0.9700.219 0.9540.192

1000

90% 0.8990.097 0.8650.098 0.7820.122 0.8590.138 0.8710.146 0.7590.154 0.7470.132
95% 0.9480.116 0.9240.117 0.8730.146 0.9210.165 0.9140.165 0.8480.181 0.8330.158
99% 0.9900.152 0.9760.151 0.9570.192 0.9810.216 0.9680.202 0.9470.234 0.9400.207

500

400

90% 0.9000.077 0.8910.077 0.9050.084 0.9040.103 0.9170.114 0.8810.089 0.8320.086
95% 0.9490.091 0.9450.092 0.9550.100 0.9530.123 0.9580.134 0.9370.106 0.9020.103
99% 0.9890.120 0.9870.120 0.9900.132 0.9900.162 0.9900.172 0.9820.141 0.9710.135

600

90% 0.8990.075 0.8900.076 0.8970.082 0.9010.105 0.9170.113 0.8790.097 0.8070.088
95% 0.9470.090 0.9440.090 0.9500.098 0.9510.125 0.9530.131 0.9320.117 0.8790.105
99% 0.9900.118 0.9860.118 0.9890.128 0.9890.164 0.9880.167 0.9810.154 0.9610.138

1000

90% 0.8940.076 0.8900.076 0.9060.083 0.9080.105 0.9410.110 0.8710.096 0.8280.089
95% 0.9500.090 0.9420.090 0.9530.099 0.9550.125 0.9680.126 0.9300.115 0.8980.106
99% 0.9910.118 0.9880.118 0.9910.130 0.9930.164 0.9930.157 0.9810.152 0.9650.139

Table 4.8. In scenario of s = 15 and ρ = 0.5, average empirical coverage
probabilities CPαA, with interval widths WidαA as subscripts, for the signal
parameters across 500 simulation rounds. The table includes results for target
levels α = 0.1, 0.05, and 0.01.

n p Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

400 5.82 6.34 636.68 91.73 91.76 6.67

600 7.72 8.67 508.80 370.94 289.29 11.18300

1000 12.86 14.92 892.79 828.21 789.41 37.27

400 18.76 21.03 1363.77 242.84 376.35 16.24

600 19.60 22.26 909.13 576.93 469.85 87.27500

1000 46.41 53.53 1459.78 1095.29 1004.13 65.27

Table 4.9. In scenario of s = 5 and ρ = 0.3, average execution times (in
seconds) for different methods with different values of n and p.

Overall, the empirical results strongly indicate that Fiducial Selector is the superior

method. It consistently demonstrated the smallest biases and achieved empirical coverage
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n p Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

400 6.62 7.98 670.63 104.57 104.94 8.97

600 9.42 11.47 510.36 434.40 321.51 15.55300

1000 16.03 20.24 873.98 807.42 804.74 48.42

400 21.17 24.22 1334.49 237.83 344.27 42.27

600 28.14 34.03 909.11 541.38 485.37 110.67500

1000 56.40 66.95 1444.84 1075.12 984.83 90.80

Table 4.10. In scenario of s = 15 and ρ = 0.3, average execution times (in
seconds) for different methods with different values of n and p.

rates that closely aligned with the target levels, all while maintaining the narrowest con-

fidence intervals. Moreover, Fiducial Selector ranked as the fastest method among those

tested, further solidifying its preference for high-dimensional regression analysis.

4.4.2. Misspecified Models. In this section, we evaluate the performance of Fiducial

Selector in situations where the model is misspecified. Specifically, we consider two situa-

tions: one where the noise distribution is misspecified and one where the model structure is

misspecified.

Misspecified noise distributions. For this scenario, we generated the noise term e

from two non-Gaussian distributions: a heavy-tailed Student’s t-distribution and a non-

symmetric chi-square distribution. Specifically, we assumed the true model structure follows

model (4.19). For the Student’s t-distribution, we assumed the noise term ei
i.i.d.∼ c0t3,

where the scale c0 is set to 0.3. For the chi-square distribution, we assumed the noise term

ei
i.i.d.∼ c0(χ4 − 4), with the scale c0 set to 0.4. The design matrix X and the true coefficient

vector β were generated as described in Section 4.4.1, with ρ = 0.5 and all signal parameters

equal to 0.5. We evaluated cases with n = 300, p = 1000, and s = 5, 15. For each case,

we simulated 500 datasets using the linear model (4.19) with independent error terms. For

each dataset, a fiducial sample of size 1000 was generated to estimate the model coefficients

and construct confidence intervals. The empirical results are summarized in Table 4.11 and
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Table 4.12. It is clear that fiducial methods, Fiducial Selector and AutoGFI, are robust to

the misspecified noise distributions.

s Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

t3

5
A 0.02370.0010 0.02510.0010 0.02540.0010 0.03020.0017 0.03250.0029 0.02720.0014 0.03840.0022
Ac − 0.00000.0000 0.00000.0001 0.03320.0044 0.02350.0015 0.00560.0003 0.00950.0007

15
A 0.02410.0007 0.02610.0007 0.02750.0016 0.03760.0089 0.03780.0085 0.02790.0012 0.04540.0046
Ac − 0.00000.0002 0.00020.0007 0.03360.0069 0.02520.0038 0.00550.0003 0.00960.0013

χ4

5
A 0.02570.0008 0.02580.0008 0.02580.0008 0.03270.0009 0.03410.0008 0.02970.0004 0.06040.0057
Ac − 0.00000.0000 0.00000.0002 0.03570.0038 0.02600.0017 0.00620.0003 0.00870.0012

15
A 0.02570.0008 0.02580.0008 0.02580.0008 0.03270.0009 0.04270.0097 0.02970.0004 0.06040.0057
Ac − 0.00000.0000 0.00000.0002 0.03570.0038 0.02780.0041 0.00620.0003 0.00870.0012

Table 4.11. In the scenario of misspecified noise distribution, averages of the
biases BiasA and BiasAc for different methods across 500 simulation rounds,
with standard errors as subscripts.

s 1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

t3

5

90% 0.8920.098 0.8860.096 0.8940.101 0.9290.140 0.8800.125 0.8830.206 0.7770.116
95% 0.9430.116 0.9380.115 0.9460.121 0.9730.167 0.9280.143 0.9340.251 0.8690.139
99% 0.9880.153 0.9810.149 0.9840.158 0.9950.220 0.9730.179 0.9790.348 0.9510.182

15

90% 0.8970.100 0.8890.099 0.8940.107 0.8820.149 0.8890.151 0.8600.229 0.7711084.239
95% 0.9470.119 0.9400.118 0.9450.128 0.9380.177 0.9340.170 0.9220.288 0.8521291.950
99% 0.9890.157 0.9830.153 0.9850.169 0.9850.233 0.9750.208 0.9800.393 0.9471697.910

χ4

5

90% 0.8940.108 0.8930.107 0.8990.109 0.9310.150 0.8930.138 0.8770.254 0.7450.179
95% 0.9500.128 0.9470.128 0.9520.131 0.9700.179 0.9360.158 0.9330.312 0.8270.213
99% 0.9870.169 0.9880.167 0.9890.171 0.9960.235 0.9780.197 0.9780.407 0.9220.280

15

90% 0.8950.111 0.8920.111 0.9020.121 0.8790.158 0.8790.167 0.8470.247 0.6270.156
95% 0.9470.132 0.9440.132 0.9530.147 0.9380.189 0.9260.188 0.9090.298 0.7190.185
99% 0.9890.173 0.9890.171 0.9910.199 0.9860.248 0.9740.231 0.9760.402 0.8510.244

Table 4.12. In scenario of misspecified noise distribution, average empirical
coverage probabilities CPαA, with interval widths WidαA as subscripts, for the
signal parameters across 500 simulation rounds. The table includes results for
target levels α = 0.1, 0.05, and 0.01.

Misspecified linear model. In this scenario, we examine the performance of Fiducial

Selector when the linear model structure is misspecified. We simulated the response vector
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Y = (Y1, . . . , Yn) from the following model:

(4.20) Yi = x⊤
i β +

∑
j∈A

αjx
2
ij +

∑
j,k∈A,j<k

αjkxijxik + ei, ei
i.i.d.∼ N (0, σ),

where xi is the i-th row of the design matrix X, and A is a randomly selected subset of

1, . . . , p with size s = 3. The coefficients αj and αjk were independently generated from a

uniform distribution U(0, 0.1). The true coefficients βj were set to 0.5 for j ∈ A and 0 for

j /∈ A, and the error scale σ was set to 0.5.

Since the quadratic and interaction terms are not included in the design matrix X, the

linear model (4.1) is misspecified. In this misspecified linear model, the parameter vector β0

we are interested in is the projection coefficient of E(Y |X) onto the subspace spanned by

the relevant predictors:

β0
A = (X⊤

AXA)
−1X⊤

AE(Y |X); β0
Ac = 0.

Again, we considered the case when n = 300 and p = 1000. The design matrix X

was generated as described in Section 4.4.1, with the correlation parameter ρ = 0.5. We

simulated 500 datasets from model (4.20). For each dataset, a fiducial sample of size 1000

was generated to estimate the projection coefficient β0 and construct confidence intervals.

The empirical results are summarized in Table 4.13 and Table 4.14, demonstrating that

Fiducial Selector remains robust even when the linear model is misspecified.

Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

A 0.02180.0008 0.02520.0053 0.03030.0059 0.02960.0012 0.03880.0060 0.03280.0069 0.05080.0156
Ac − 0.00000.0008 0.00040.0013 0.03360.0057 0.02760.0063 0.00650.0015 0.01170.0032

Table 4.13. In the scenario of misspecified linear model, averages of the
biases BiasA and BiasAc for different methods across 500 simulation rounds,
with standard errors as subscripts.

4.4.3. Real Data Example. In this section, we apply Fiducial Selector to analyze

a real dataset about riboflavin (vitamin B2) production rate. This riboflavin production
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1− α Oracle Fiducial Selector AutoGFI LDPE SSLasso pBLPR MOCE

90% 0.9160.095 0.9070.107 0.9230.127 0.9540.143 0.8650.142 0.9290.297 0.7510.130
95% 0.9570.113 0.9460.127 0.9610.152 0.9810.171 0.9230.164 0.9640.350 0.8260.157
99% 0.9940.149 0.9850.165 0.9900.197 0.9990.224 0.9790.207 0.9940.418 0.9390.201

Table 4.14. In scenario of misspecified linear model, average empirical cover-
age probabilities CPαA, with interval widths WidαA as subscripts, for the signal
parameters across 500 simulation rounds. The table includes results for target
levels α = 0.1, 0.05, and 0.01.

data set was first made public by Bühlmann et al. (2014), which contains n = 71 samples

and p = 4088 covariates. The response variable is the logarithm of riboflavin production

rate, while the 4088 covariates are the logarithm of the expression level of p = 4088 genes.

Many studies have been done on this dataset to detect the genes that are related to the ri-

boflavin production rate. Under the 5% significance level, Meinshausen et al. (2009) used the

multisample-splitting method to find only ‘YXLD-at’ as a significant variable. At the same

time, Javanmard and Montanari (2014) applied the SSLasso method and located ‘YXLD-

at’ and ‘YXLE-at’ as significant variables. Bühlmann et al. (2014) identified ‘LYSC-at’,

‘YOAB-at’, and ‘YXLD-at’ as significant ones by the method stability selection proposed

by Meinshausen and Bühlmann (2010). Chichignoud et al. (2016) calibrated the lasso in

the supremum norm ℓ∞-loss to find ‘YXLD-at’, ‘YOAB-at’, ‘YEBC-at’, ‘ARGF-at’ and

‘XHLB-at’ as significant genes. However, van de Geer et al. (2014) applied their method

that is fundamentally the same as LDPE (RLDPE) and found no variable significant at a

5% significance level.

We applied Fiducial Selector directly to the original dataset without variable screening.

Under 5% significance level, it detected ‘YXLD-at’, ‘YOAB-at’, ‘YEBC-at’, ‘ARGF-at’,

‘YCKE-at’, ‘YDDK-at’ and ‘XTRA-at’ as significant variables. In other words, Fiducial

Selector was able to locate ‘YXLD-at’ and ‘YOAB-at’, which are considered significant in

most previous studies. Moreover, it is computationally efficient and takes less than 1 minute

to run on a personal laptop.
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To allow for evaluation of the prediction accuracy of the proposed fiducial selector, the

sample of size 71 was first randomly split into a training set of size 61 and a holdout test set

of size 10. The entire process was then repeated 10 times to reliably compare the resulting

prediction errors (SSPE, sum of squared prediction error) and model sizes. Comparison

methods include AutoGFI, SSLasso, and pBLPR. We summarize the results in Table 4.15.

One can see that Fiducial Selector achieves a comparable prediction error with pBLPR,

which has the lowest prediction error but uses all the predictors due to its ridge penalty.

method: Fiducial Selector AutoGFI SSLasso pBLPR

SSPE 2.488 3.471 3.720 2.284

model size 12.8 11.7 64.1 4088

Table 4.15. SSPE and model size from different methods for the riboflavin
dataset.

4.5. Conclusion

In this chapter, we have adapted the GFI framework to address the inference challenges in

the high-dimensional regression problem through the development of Fiducial Selector. The

Fiducial Selector is notable for its computational efficiency and incorporates an innovative

de-biasing technique that greatly enhances its performance. Through rigorous theoretical

analysis, we have demonstrated that Fiducial Selector consistently selects the correct model

and offers unbiased estimates of the significant parameters under certain conditions. Em-

pirical tests reinforce these theoretical assertions, confirming that Fiducial Selector delivers

reliable uncertainty quantification for high-dimensional regression challenges. Comparative

evaluations with other contemporary methods suggest that Fiducial Selector offers notable

computational and statistical advantages, making it a promising choice for practitioners and

researchers navigating the complexities of high-dimensional data analysis.
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CHAPTER 5

Streamlined GFI for Binary Response Models

In this chapter, we extend the AutoGFI framework from continuous response models to

binary response models. Specifically, we consider the model with a binary response vector

Y = (Y1, . . . , Yn)
⊤, where each response Yi is independently and identically distributed as

Bernoulli with probability pi, denoted by

(5.1) Yi
i.i.d.∼ Bernoulli(pi).

The probabilities pi are linked to a set of multivariate predictors xi and a parameter vector

θ through the log-odds, utilizing a flexible function f . This relationship is formalized as:

(5.2) log

(
pi

1− pi

)
= f(xi,θ).

The function f(xi,θ) is assumed to capture complex interactions between predictors xi and

parameters θ, accommodating both linear and non-linear dependencies. This allows the

model to flexibly adapt to varying data structures and relationships inherent in real-world

scenarios.

This chapter introduces a binary version of AutoGFI to simplify the implementation of

GFI for the aforementioned models. Specifically, we present the approach AutoGFI-B in

Section 5.1 and its regularized and debiased counterpart, AutoGFI-BR, in Section 5.2. We

then demonstrate the applicability and empirical performance of this approach by apply-

ing it to three particularly useful binary response models: the logistic regression model in

Section 5.3, the covariate-assisted ranking estimation model (an extension of the Bradley-

Terry-Luce model for pairwise comparison problems) in Section 5.4, and the Rasch model

60



for item response theory applications in Section 5.5. Concluding remarks are provided in

Section 5.6.

5.1. AutoGFI-B for Binary Response Models

The data generating equation for the model (5.1) has the following form:

(5.3) Yi = 1{f(xi,θ) + Li ≥ 0}, i = 1, . . . , n,

where 1 is the indicator function such that 1(x ≥ 0) = 1 if x ≥ 0 and 0 otherwise, and

Li = log Ui

1−Ui
with Ui

i.i.d.∼ Uniform(0, 1). In other words, Li
i.i.d.∼ Logistic(0, 1). Let L =

(L1, . . . , Ln)
⊤, f(x,θ) = (f(x1,θ), . . . , f(xn,θ))

⊤, and y = (y1, . . . , yn)
⊤ be the observed

data of Y . According to the Definition (2.1.1) of GFD, in practice one could generate a

piece of the approximate fiducial sample with a pre-defined semi-metric ρ and some ϵ > 0

through the following steps:

(1) Generate l∗ from L∗, an independent copy of L.

(2) Solve

(5.4) θ∗ = arg min
θ

ρ(1{f(x,θ) + l∗ ≥ 0},y).

(3) Accept θ∗ if ρ(1{f(x,θ∗) + l∗ ≥ 0},y) ≤ ϵ; otherwise reject and return to Step 1.

Here θ∗ represents a realization of the fiducial sample.

However, due to the discontinuity of the data generating equation (5.3), locating the

optimizer of (5.4) presents significant challenges. To circumvent this issue, we propose

using a sigmoid function with a relatively large scale parameter as an approximation for the

indicator function. The sigmoid function is defined as follows:

(5.5) sigmoid(x, a) =
1

1 + e−ax
,

where a represents the scale parameter, controlling the steepness of the function. As illus-

trated in Figure 5.1, when a exceeds 5, the sigmoid function closely resembles the indicator
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function. With such approximation, the data generating equation (5.3) becomes

(5.6) Yi ≈ sigmoid(f(xi,θ) + Li, a), i = 1, . . . , n.
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Figure 5.1. Sigmoid function with different values of a.

Plugging the approximate data generating equation (5.6) into the optimization problem

(5.4) yields an objective function of the form ρ(sigmoid(f(x,θ) + l∗, a),y). However, for

commonly used semi-metrics ρ, such as the squared ℓ2 norm, this objective function remains

non-convex even for linear f , still rendering the optimization problem challenging to solve.

To address this issue, we propose further relaxing the semi-metric ρ by replacing it with

the cross-entropy loss, denoted as ρ̃, which possesses more favorable optimization properties.

Therefore, Step (2) becomes

(5.7) θ∗ = arg min
θ

ρ̃(y∗(θ),y) = arg min
θ

−
n∑
i=1

[yi log y
∗
i (θ) + (1− yi) log(1− y∗i (θ))] ,

where

(5.8) y∗(θ) = sigmoid(f(x,θ) + l∗, a)

with y∗i (θ) being the i-th element of it.

Having relaxed the indicator function and introduced the cross-entropy loss, we can now

generate the approximate fiducial sample for the model (5.1) using Algorithm (3), which we

term AutoGFI-B, where “B” stands for binary data. The resulting fiducial sample forms a

distribution estimate of θ, which can be used in a manner similar to a Bayesian posterior
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sample. We can use this fiducial sample to derive point estimates and confidence intervals

for θ. For instance, the average of all copies in the fiducial sample can serve as the point

estimator of θ, while the α/2 percentile and (1 − α/2) percentile can be used to construct

the (1− α) confidence interval.

Algorithm 3 AutoGFI-B: Generating fiducial sample for model (5.1) without regularization.

1: Input: Data x, y; fiducial sample size N ; sigmoid scale parameter a; tolerance ϵ
2: Output: Approximate fiducial sample for θ of size N
3: for k = 1 to N do
4: Generate l∗ from L∗.
5: Solve θ∗ = argminθ ρ̃(y

∗(θ),y) where y∗(θ) is defined in (5.8).

6: if ρ̃(y∗(θ∗),y) ≤ ϵ then
7: Accept θ∗ as the k−th piece of the fiducial sample.
8: else
9: Reject θ∗ and repeat from line 4.

It is worth emphasizing that AutoGFI-B exhibits remarkable versatility, as it is compati-

ble with a wide range of functions f . For any given form of f , AutoGFI-B can be effectively

applied to conduct inference on the corresponding class of problems, provided that the op-

timization problem (5.7) can be solved. This inherent flexibility makes AutoGFI-B suitable

for a diverse set of inference tasks, as demonstrated in Sections 5.3, 5.4, and 5.5.

5.2. AutoGFI-BR: The Regularized AutoGFI-B

Although the algorithm AutoGFI-B is flexible with the choice of f , it is limited to

models that do not require regularization. Taking inspiration from the approach AutoGFI

introduced in Chapter 3, we propose the following generalizations to AutoGFI-B to accom-

modate regularized models: First, a penalty term Λ(θ) can be added to the optimization

problem (5.7) to introduce regularization or shrinkage. Next, when penalty is applied, a

de-biasing operation d(θ) is subsequently performed to mitigate the bias introduced by the

penalty.

The optimization problem with regularization has the following form:

(5.9) θ∗ = argmin
θ
ρ̃(y∗(θ),y) + Λ(θ),
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where ρ̃ and y∗(θ) are defined in (5.7) and (5.8), respectively. Due to the penalty term Λ(θ),

θ∗ becomes a biased fiducial sample, necessitating a de-biasing step. The de-biasing idea

is as follows: Under certain differentiability conditions, solving the problem (5.9) is often

equivalent to solving the estimating equation

(5.10) ∇θρ̃(y
∗(θ),y)

∣∣
θ=θ∗ + ξ(θ∗) = 0,

where ξ(θ∗) is a (sub-)gradient of the penalty term Λ(θ) evaluated at θ∗. To remove the bias

associated with the penalty, we aim to modify θ∗ such that the first term of (5.10) is closer

to zero. To this end, we employ a one-step modification and define the de-biased fiducial

sample θ∗
de by solving the equation:

(5.11) ∇θρ̃(y
∗(θ),y)

∣∣
θ=θ∗ +H(θ∗)(θ∗

de − θ∗) = 0,

where H(θ∗) is the Hessian matrix of second partial derivatives of ρ̃(y∗(θ),y) with respect

to θ, evaluated at θ∗. More specifically, under our settings,

(5.12) ∇θρ̃(y
∗(θ),y) = a

n∑
i=1

(y∗i (θ)− yi)∇θf(xi,θ),

(5.13) H(θ) = a2
n∑
i=1

[
y∗i (θ)(1− y∗i (θ))∇θf(xi,θ)∇θf(xi,θ)

⊤ + (y∗i (θ)− yi)Hf (xi,θ)
]
,

where Hf (xi,θ) is the Hessian matrix of second partial derivatives of f(xi,θ) with respect

to θ.

In high-dimensional settings, the matrix H(θ∗) is often rank-deficient and poorly condi-

tioned, leading to high variability in the solution to (5.11). To manage this variability, we

employ a two-step approach. First, when sparsity is introduced with a penalty, we treat

formula (5.9) as a model selection step and only perform de-biasing for the “significant”

parameters. These significant parameters are identified by computing the percentage of

non-zero values in the fiducial sample for each component θj of the parameter vector θ. If
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this percentage exceeds 50%, we consider θj significant; otherwise, it is treated as a con-

stant 0. Consequently, ∇θρ̃(y
∗(θ),y) and H(θ∗) are only calculated along the coordinates

corresponding to these significant components θj, reducing the computational burden and

improving the stability of the de-biasing process.

Secondly, we mitigate the variability by employing a pseudo-inverse Hpinv, which dis-

regards small singular values during matrix inversion. Specifically, for a square matrix

H ∈ R
n×n with Singular Value Decomposition (SVD) given by H = VΣW⊤, where Σ

is the diagonal matrix containing all singular values, we construct S as the diagonal matrix

containing only singular values greater than a threshold c. The pseudo-inverse of H is then

defined as

Hpinv := W

S−1 0

0 0

V⊤.

Essentially, we only use singular vectors corresponding to significant singular values of H for

de-biasing. The threshold c can be determined in a data-dependent manner.

With these considerations, the de-biasing function is defined as:

(5.14) θ∗
s,de := θ∗

s −H(θ∗
s)

pinv∇θs ρ̃(y
∗(θs),y)

∣∣
θs=θ∗

s
,

where θs is a vector of the significant components θj identified from the biased fiducial

sample.

In summary, when regularization is added, the de-biased fiducial sample can be gen-

erated using Algorithm (4). We term this algorithm AutoGFI-BR, where “R” stands for

regularization.

5.3. Logistic Regression

5.3.1. Introduction. When specializing the function f(xi,θ) as

f(xi,θ) = x⊤
i θ,
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Algorithm 4 AutoGFI-BR: Generating fiducial sample for model (5.1) with regularization.

1: Input: Data x, y; fiducial sample sizeN ; sigmoid scale parameter a; tolerance ϵ; pseudo-
inverse threshold c

2: Output: Approximate fiducial samples θ∗ for the parameter θ of size N
3: for k = 1 to N do
4: Generate l∗ from L∗.
5: Solve θ∗ = argminθ ρ̃(y

∗(θ),y) + Λ(θ) where y∗(θ) is defined in (5.8).

6: if ρ̃(y∗(θ∗),y) ≤ ϵ then
7: Accept θ∗ as the k−th piece of the fiducial sample.
8: else
9: Reject θ∗ and repeat from line 4.

10: Identify θs and debias for θ∗
s by equation (5.14).

model (5.2) becomes the logistic regression model, which is one of the most widely used

models for classification problems. Its significance spans across diverse fields, from engineer-

ing and applied sciences to social sciences and beyond. An detailed introduction about the

application of the logistic regression model can be found in Hosmer Jr et al. (2013).

Logistic regression in low-dimensional cases, where n/p ≫ 1, has been thoroughly in-

vestigated. It is established that with fixed p and n approaching infinity, the maximum

likelihood estimator (MLE) is efficient, with its covariance matrix converging to the inverse

of the Fisher information matrix. Recent studies (Sur and Candès, 2018; Sur et al., 2019;

Candès and Sur, 2020) have extended this analysis to situations where n/p approaches a

fixed ratio, demonstrating that while MLE remains unbiased, its variability is significantly

greater than previously estimated. For cases where p/n≫ 1, regularized logistic regression,

particularly with ℓ1 norm penalties assuming sparsity in parameters, has been proposed.

Extensive research has addressed the properties of such penalized estimators, focusing on

solving the ℓ1-penalized optimization problem at scale (Lee et al., 2006; Koh et al., 2007),

and analyzing estimation and variable selection characteristics (Bunea, 2008; van de Geer,

2008; Salehi et al., 2019), as well as statistical inference (van de Geer et al., 2014; Javanmard

and Montanari, 2013; Dezeure et al., 2015; Ning and Liu, 2017; Ma et al., 2020; T. Tony Cai

and Ma, 2023; Guo et al., 2021). Notably, van de Geer et al. (2014) achieve asymptotic

normality for debiased estimators by inverting the Karush-Kuhn-Tucker (KKT) conditions
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of the ℓ1 regularized loss function. Ning and Liu (2017) construct an approximately unbiased

estimator through the decorrelated score function, offering a general framework for hypoth-

esis testing and confidence region development in high-dimensional models. Ma et al. (2020)

address the bias of the logistic Lasso estimator using a generalized low-dimensional projec-

tion method and derive the null distribution for conducting global tests. T. Tony Cai and

Ma (2023) explore binary generalized linear models with various link functions, proposing a

link-specific weighting method for bias correction in penalized estimators. Guo et al. (2021)

propose a bias-corrected estimator for the case probability using linearization and variance

enhancement techniques.

Given the widespread popularity and extensive application of logistic regression in prac-

tical scenarios, we selected it as our initial example to demonstrate the capability of our pro-

posed method. By comparing our approach with both classical techniques in low-dimensional

settings and advanced debiasing methods in high-dimensional contexts, we aim to illustrate

the robustness of our method with respect to the hyperparameter a and the effectiveness of

the debiasing step (5.14) in high-dimensional cases.

5.3.2. AutoGFI-B(R) for Logistic Regression. In the absence of regularization, the

approximate fiducial sample of θ can be generated by applying AutoGFI-B with f(xi,θ) =

x⊤
i θ.

However, when the dimensionality p exceeds the sample size n or when θ is assumed to be

sparse, we introduce ℓ1-regularization to the model. Under this regularization scheme, the

approximate fiducial sample can be obtained using AutoGFI-BR, the Algorithm (4), with

f(xi,θ) = x⊤
i θ and the penalty term Λ(θ) = λ∥θ∥1. For the logistic regression model, the

gradient and Hessian matrix of ρ̃ can be efficiently computed as follows:

∇θρ̃(y
∗(θ),y) = aX⊤ (y∗(θ)− y)

H(θ) = a2X⊤D(θ)X,
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where X = (x1, . . . ,xn)
⊤ and D(θ) = Diag

(
y∗1(θ)(1− y∗1(θ)), . . . , y

∗
n(θ)(1− y∗n(θ))

)
. There-

fore, the de-biasing step in AutoGFI-BR is

(5.15) θ∗
s,de = θ∗

s −
(
X⊤

sD(θ∗)Xs

)pinv
X⊤

s

(
y∗(θ∗)− y

)
/a,

where Xs is the columns of X corresponding to the significant coordinates.

The point estimate and confidence intervals for θ can then be constructed from the mean

and the corresponding percentiles of the approximate fiducial sample, respectively.

5.3.3. Empirical Performance. This subsection examines the practical performance

of the proposed methods for logistic regression in two distinct scenarios. First, we assess

the performance of AutoGFI-B in low-dimensional settings where regularization is not re-

quired. Second, we evaluate the performance of AutoGFI-BR in high-dimensional settings

with sparse θ, necessitating the use of regularization techniques.

Case 1: Low dimensional settings. In this part, we conducted simulation studies to

evaluate AutoGFI-B for logistic regression within low-dimensional contexts. We configured

the simulations with n = 200, p = 3, and set θj = 1 for j = 1, . . . , p. The covariates were

independently generated from a multivariate Gaussian distribution Np(0,Σ), where Σ is a

Toeplitz matrix with Σij = ρ|i−j|. We considered two values of ρ: 0.25 and 0.75. A total

of 500 datasets were generated according to the model outlined in (5.1) and (5.2), with

f(x,θ) specified as Xθ. For each dataset, we produced a fiducial sample of size 1000 using

Algorithm (3) to estimate the model coefficients θ and to construct confidence intervals.

Our analysis proceeded in two stages. Initially, we evaluated the performance of AutoGFI-

B across various a values by examining the mean squared error (MSE) and the empirical

coverage probabilities and widths of confidence intervals at different levels, ranging from

0.01 to 0.99. These results are illustrated in Figure 5.2. Subsequently, with a set to 100,

we compared our method’s point estimate, which is the mean of the fiducial sample, against

the maximum likelihood estimate (MLE). We also evaluated our confidence intervals against

two predominant alternatives: the profile likelihood-based intervals, denoted by “Profile”,
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and the Wald confidence intervals, denoted by “Wald”. The results of this comparison are

detailed in Table 5.1.
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Figure 5.2. Performance of AutoGFI-B for logistic regression across varying
values of a and correlation levels ρ. (a) and (d): The average MSE of the
estimate of θ. (b) and (e): Target confidence levels versus average empirical
coverage probabilities of confidence intervals of θ. (c) and (f): Target con-
fidence levels versus the average interval widths of confidence intervals of θ.
The top row corresponds to ρ = 0.25, and the bottom row corresponds to
ρ = 0.75.

Figure 5.2 illustrates the robustness of our proposed method with respect to variations

in the scale parameter a. We observe that for values of a greater than 5, the outputs of

the method remain essentially unchanged. This observation aligns with the findings from

Figure 5.1, which reveals that the sigmoid function effectively approximates the indicator

function when a is larger than 5. In summary, our method is highly flexible with the choice

of a. Consequently, we selected a = 100 for the subsequent comparison of our method

with both the profile likelihood-based and Wald methods. As detailed in Table 5.1, our

proposed method demonstrates competitive empirical coverage probability when compared

to the other two methods, while also offering the advantage of narrower confidence interval
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widths. These results underscore the strength and reliability of our approach in the context

of logistic regression in low-dimensional settings.

Method MSE (SE)
Coverage (Width)

0.9 0.95 0.99

ρ = 0.25

AutoGFI-B 0.054(0.053) 0.896(0.746) 0.949(0.888) 0.989(1.16)
Profile 0.054(0.053) 0.899(0.754) 0.953(0.899) 0.990(1.19)
Wald 0.054(0.053) 0.905(0.751) 0.955(0.895) 0.991(1.18)

ρ = 0.75

AutoGFI-B 0.135(0.128) 0.885(1.15) 0.942(1.37) 0.985(1.79)
Profile 0.136(0.129) 0.883(1.16) 0.943(1.39) 0.989(1.83)
Wald 0.136(0.129) 0.891(1.16) 0.948(1.38) 0.991(1.81)

Table 5.1. Average MSEs, empirical coverage probabilities, and confidence
interval widths for the coefficients estimated using different methods, calcu-
lated over 500 simulated datasets in low-dimensional settings.

Case 2: High-dimensional settings. In this section, we conducted simulation studies

to assess the performance of AutoGFI-BR in high-dimensional settings that require regu-

larization in the model. Specifically, we set n = 200 while varying p across 100, 200, and

500. Assuming the true signal is sparse, we assigned θj = 1 for j = 1, 2, 3, with the remain-

ing coefficients set to 0. The covariates were independently generated from a multivariate

Gaussian distribution Np(0,Σ), where Σ is a Toeplitz matrix with Σij = ρ|i−j|. In this

case, we considered ρ = 0.25. We generated 200 datasets according to the model (5.1). For

each dataset, a fiducial sample of size 1000 was produced via Algorithm (4) to estimate the

model coefficients θ and to construct confidence intervals. The scale parameter a was set to

5. This small value was chosen because a larger value of a steepens the sigmoid function,

complicating the optimization process and making it harder to find the minimizer due to in-

creased gradient sensitivity. When employing the ℓ1 penalty, this sensitivity can easily cause

divergent behavior. To avoid such issues, we set the scale parameter as small as possible.

The penalty parameter associated with the ℓ1 norm was chosen by cross-validation. The

pseudo-inverse threshold c was set to 0.001.
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We compared the proposed method with several popular existing methods, including

the Lasso low-dimensional projection method (“Lasso-Proj”) proposed by van de Geer et al.

(2014) and implemented by the function lasso.proj in the R package hdi; the Ridge projec-

tion method (“Ridge-Proj”) proposed by Bühlmann (2013) and implemented by the function

ridge.proj in the R package hdi; and the link-specific weighting method (“LSW”) proposed

by T. Tony Cai and Ma (2023) and implemented by the function LR in the R package SIHR.

The summary statistics of the numerical results are presented in Table 5.2.

Method MSE (SE)
Coverage (Width)

0.9 0.95 0.99

p = 100

AutoGFI-BR 0.047(0.061) 0.912(0.758) 0.963(0.910) 0.993(1.205)
Lasso-proj 0.052(0.089) 0.887(0.683) 0.927(0.814) 0.983(1.069)
ridge-proj 0.070(0.107) 0.867(0.794) 0.923(0.946) 0.980(1.243)

LSW 0.064(0.079) 0.928(1.233) 0.957(1.469) 0.988(1.931)

p = 200

AutoGFI-BR 0.049(0.072) 0.922(0.823) 0.968(0.989) 0.995(1.317)
Lasso-Proj 0.048(0.070) 0.872(0.661) 0.930(0.788) 0.977(1.036)
Ridge-Proj 0.094(0.125) 0.872(0.937) 0.922(1.116) 0.985(1.466)

LSW 0.234(0.295) 0.888(1.412) 0.940(1.683) 0.983(2.212)

p = 500

AutoGFI-BR 0.079(0.118) 0.877(0.851) 0.952(1.024) 0.987(1.367)
Lasso-Proj 0.058(0.073) 0.803(0.662) 0.888(0.788) 0.980(1.036)
Ridge-Proj 0.062(0.082) 0.918(0.910) 0.965(1.067) 0.993(1.374)

LSW 0.150(0.529) 0.898(1.313) 0.927(1.565) 0.970(2.056)

Table 5.2. Average MSEs, empirical coverage probabilities, and confidence
interval widths for the coefficients estimated using different methods, calcu-
lated over 500 simulated datasets in high-dimensional settings.

When comparing the debiased estimators, AutoGFI-BR and Lasso-Proj achieve the low-

est average MSE for the parameter vector θ at dimensionalities p = 100 and 200. How-

ever, the performance of AutoGFI-BR slightly diminishes as the dimensionality increases

to p = 500. In terms of confidence interval analysis, Lasso-Proj tends to generate overly

optimistic results, characterized by intervals that are too narrow. This leads to consis-

tent under-coverage, particularly at higher dimensionalities. In contrast, the performance of

Ridge-Proj improves with increasing p, although it also exhibits lower coverage probabilities
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at lower dimensionalities. Both LSW and AutoGFI-BR attain desired coverage probabili-

ties across most tested scenarios. Notably, AutoGFI-BR maintains much narrower intervals

compared to LSW. These findings highlight AutoGFI-BR’s power in providing precise and

reliable inference across different dimensional settings.

5.4. Covariate-Assisted Ranking Estimation Model for Pairwise Comparison

5.4.1. Introduction. Ranking is fundamentally important in a wide range of real-world

scenarios, such as social science, psychology, recommendation systems, and many others.

Numerous models and methods have been developed specifically to address the ranking

problem across various fields, including statistics, machine learning, and operations research,

etc. See (Hunter, 2004; Richardson et al., 2006; Jang et al., 2018; Chen et al., 2022; Liu et al.,

2023) for more details. Pair comparison is one of the widely used methods for ranking which

simplifies the ranking process by presenting respondents with pairs of items to compare,

reducing cognitive burden and providing more information than other ranking methods.

Among the diverse models for pairwise comparison problems, the Bradley-Terry-Luce

(BTL) model (Bradley and Terry, 1952; Luce, 2005) stands out as the most famous one.

This model assumes that for n compared items, each item score, denoted as θi, is fixed and

does not take into account any covariate or feature information. The preference between any

two items, i and j, is modeled by:

P (item i is preferred over j) =
eθi

eθi + eθj
,

for all pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n}. Extensive studies have been done to the BTL

model, including analyzing the non-asymptotic statistical consistency of various estimators

for these underlying scores to achieve precise rank recoveries (Negahban et al. (2012); Chen

and Suh (2015); Chen et al. (2019, 2022)) and exploring the asymptotic distributions and

uncertainty quantification for ranking scores (Simons and Yao (1999); Han et al. (2020); Liu

et al. (2023); Gao et al. (2023)).
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However, in many real-world applications, the integration of covariate information is im-

portant. Addressing this need, Fan et al. (2024) introduced the Covariate-Assisted Ranking

Estimation (CARE) model. This model extends the BTL framework by assuming the un-

derlying score of the i-th item is composed of αi + x⊤
i β, where x⊤

i β captures the effect

of covariates and αi represents the intrinsic score not explained by those covariates. The

probability that item i is preferred over item j is modeled as:

(5.16) P (i is preferred over j) =
eαi+x⊤

i β

eαi+x⊤
i β + eαj+x⊤

j β
.

In their work, Fan et al. (2024) also analyzed the statistical rate for the maximum likelihood

estimator (MLE) of parameters α and β and explored their asymptotic distributions. This

work paves the way for uncertainty quantification within the CARE model, marking a sig-

nificant advancement in the field. To the best of our knowledge, their study is the first one

and remains the only one that rigorously examines the CARE model.

Our proposed method, AutoGFI-B, is designed to be versatile and applicable across a

spectrum of models, including the advanced CARE model. In the following subsections, we

delve into how AutoGFI-B integrates with the CARE model and provide empirical evidence

through a detailed simulation study. This study aims to demonstrate that AutoGFI-B not

only delivers competitive point estimates but also good at uncertainty quantification, offering

a robust alternative to the method introduced by Fan et al. (2024).

5.4.2. AutoGFI-B for CARE. In this section, we introduce the CARE model and

apply AutoGFI-B to it, noting that this model does not involve any regularization terms.

Letting xi ∈ R
d be the covariate observed for an item i ∈ {1, . . . , n}, the CARE model

assumes the outcomes of the pair comparisons between item i and item j as the Bernoulli

trials with probabilities as shown in (5.16). Further, in this model, it is assumed that

each pair of the items, say (i, j) ∈ {1, . . . , n} × {1, . . . , n} are compared at random with

probability p0, leading to the assumption that the underlying comparison graph resembles

an Erdős-Rényi random graph characterized by an edge probability of p0. Here we use
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G = (V , E) to represent this comparison graph, where V := 1, . . . , n and E are the collections

of vertexes (n items) and edges, respectively. More specifically, (i, j) ∈ E if and only if item i

and item j are compared. In addition, for any pair (i, j) ∈ E , K independent and identically

distributed realizations from the Bernoulli random variable are observed. In other words, if

i and j are compared, then they are compared K times. Letting Y
(k)
i,j represent the Bernoulli

variable where 1 indicates that i is preferred over j in the k-th comparison, then

(5.17) P (Y
(k)
i,j = 1) =

eαi+x⊤
i β

eαi+x⊤
i β + eαj+x⊤

j β
,

where β ∈ R
d is the feature coefficients and αi is the intrinsic score for item i. A natural con-

straint is proposed for this model by Fan et al. (2024) to overcome the identifiability problem

due to the overparametrizing. Let X = [x1, . . . ,xn]
⊤ ∈ R

n×d and α = (α1, . . . , αn)
⊤. The

CARE model assumes the parameter space is contrained in the set

(5.18) Θ = {(α,β) :
n∑
i

αi = 0 and X⊤α = 0}

to ensure the identifiability. This constraint aligns with the definition of αi, which represents

the intrinsic score of item i that cannot be explained by the covariates.

To accommodate our method to the CARE model, we define f in (5.2) as

f((xi,xj),θ) = (αi + x⊤
i β)− (αj + x⊤

j β),

where θ = (α,β) is the unknown parameter in the model. In addition, we constraint θ ∈ Θ

as defined in (5.18). The data generating equation for the CARE model is then

Y
(k)
i,j = 1{(αi + x⊤

i β)− (αj + x⊤
j β) + L

(k)
i,j ≥ 0} with (α,β) ∈ Θ,

for (i, j) ∈ E , k ∈ {1, . . . , K} and L
(k)
i,j

i.i.d.∼ Logistic(0, 1). Let y
(k)
i,j denote the observed

value of the random variable Y
(k)
i,j . Plugging f into the sigmoid approximation (5.6) and the

relaxed optimization problem (5.7), an approximate fiducial sample (α,β)∗ can be generated
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by

(5.19) (α,β)∗ = arg min
(α,β)∈Θ

−
∑
i>j,
i,j∈E

K∑
k=1

[
y
(k)
i,j log(y

(k) ∗
i,j ) + (1− y

(k)
i,j ) log(1− y

(k) ∗
i,j )

]

where y
(k) ∗
i,j = sigmoid((αi + x⊤

i β)− (αj + x⊤
j β) + l

(k) ∗
i,j , a) for some constant a and l

(k) ∗
i,j is a

realization from L
(k)∗
i,j , an independent copy of L

(k)
i,j . The optimization problem (5.19) can be

easily solved by the projected gradient descent algorithm introduced in Fan et al. (2024). By

substituting the optimization problem in Algorithm (3) with (5.19), an approxiamte fiducial

sample of (α,β) can be generated. This sample can then serve as a distribution estimate for

the true parameters. Accordingly, point estimates and confidence intervals can be calculated.

5.4.3. Simulation Results. In this section, we evaluate the performance of AutoGFI-B

by comparing it to the method given by Fan et al. (2024).

We configured the simulations following the numerical experiments done in Fan et al.

(2024). In particular, we set n = 200 and d = 5. Each feature of the covariates xi was

independently generated from a uniform distribution, with xij ∼ U [−0.5, 0.5] for i ∈ 1, . . . , n

and j ∈ 1, . . . , d. The resulting matrix X = [x1, . . . ,xn]
⊤ ∈ R

n×d was normalized to ensure

a mean of 0 and a standard deviation of 1 for each column. Subsequently, each xi was scaled

by xi/K to achieve max1≤i≤n |xi|2/K =
√
(d+ 1)/n. The parameters αi were independently

drawn from U [0.5, log(5)− 0.5], and β ∈ R
d was uniformly generated from the hypersphere

defined by {β : |β|2 = 0.5
√
n/(d+ 1)}. Finally, the true parameter pair (α0,β0), used

for data generation, was obtained by projecting (α,β) onto the linear space Θ specified in

(5.18). The comparison graph E and the observed binary outcomes y
(k)
i,j , for k = 1, . . . , K

and (i, j) ∈ E , were generated for each pair of (p0, K) listed in Table 5.3. This setup of

simulations ensures different statistcal rates of the MLE estimator proposed in the paper

Fan et al. (2024).

For each pair of (p0, K), the graph E and data {y(k)i,j , k = 1, . . . , K, (i, j) ∈ E} were

simulated 200 times. A fiducial sample of size 500 was produced by Algorithm (3) for each
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p0 1 0.5 0.222 0.625 0.4 0.278

K 50 25 25 5 5 5

Table 5.3. Pairs of (p0, K) considered in the simulation studies.

dataset, with a specified as 100. The fiducial sample mean was used as a point estimate

for the parameters (α0,β0), and percentiles of the sample were used to construct confidence

intervals. The summary statistics of the numerical results from AutoGFI-B and the method

proposed by Fan et al. (2024), referred to as “MLE”, are reported in Tables 5.4 and 5.5.

Specifically, Table 5.4 presents the average point estimate error, defined as ∥α̂ − α0∥∞,

along with the confidence intervals’ empirical coverage probabilities and interval widths for

α0, across the 200 datasets. Table 5.5 illustrates the average point estimate error, ∥β̂ −

β0∥2/∥β0∥2, and the coverage probabilities with interval widths for β0.

The performance comparison between the two methods indicates very close results. They

produce similar errors for both α0 and β0, and their confidence intervals consistently achieve

the desired coverage probabilities, with AutoGFI-B often having slightly narrower widths.

This simulation result empirically demonstrates the potential of AutoGFI-B as a robust

alternative to the method introduced by Fan et al. (2024).

5.5. One-Parameter Logistic Item Response Model: The Rasch Model

5.5.1. Introduction. Item response theory (IRT) refers to a collection of latent variable

models and statistical methods used for assessing the likelihood of a specific response to a

test or questionnaire, based on the interaction of the examinee’s abilities and the item’s char-

acteristics. It serves as a powerful tool in many educational and psychological assessments,

enabling precise measurement of individual capabilities and facilitating the development of

effective testing approaches.

In scenarios where responses are binary, the model is called a dichotomous item response

model, in which the response distribution is typically modeled as a function of the exami-

nee’s ability and one or more item-descriptive parameters. The Rasch model, proposed by
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p0 K Method Error (SE)
Coverage (Width)

0.9 0.95 0.99

0.222 25
AutoGFI-B 0.1850.024 0.8950.199 0.9460.236 0.9870.308

MLE 0.1840.024 0.8970.200 0.9490.238 0.9900.313

0.278 5
AutoGFI-B 0.3670.052 0.8990.396 0.9480.472 0.9870.615

MLE 0.3680.047 0.8990.399 0.9500.476 0.9910.625

0.4 5
AutoGFI-B 0.3020.037 0.8940.328 0.9440.391 0.9860.509

MLE 0.3000.041 0.9020.331 0.9500.394 0.9900.518

0.5 25
AutoGFI-B 0.1190.016 0.8940.131 0.9450.155 0.9880.202

MLE 0.1190.016 0.9010.132 0.9510.157 0.9910.206

0.625 5
AutoGFI-B 0.2360.031 0.8970.261 0.9480.311 0.9880.405

MLE 0.2410.034 0.9000.263 0.9510.314 0.9900.412

1 50
AutoGFI-B 0.0590.027 0.8960.065 0.9460.077 0.9860.101

MLE 0.0580.007 0.9020.066 0.9510.078 0.9910.103

Table 5.4. The average point estimate error,∥α̂ − α0∥∞, and the coverage
probabilities with interval widths for α0, across the 200 datasets.

Rasch (1993), is one of the well-known dichotomous item response models. It uses a single

parameter, “difficulty,” to describe the item and assumes the probability that a person with

ability θ will give a “correct” response is given by:

P (θ) =
1

1 + e−(θ−bj)

where j ∈ 1, . . . , n is the item index and bj denotes the difficulty parameter of the item.

As a result, the Rasch model is also called the one-parameter logistic item response model.

Item response models, with the Rasch model as a particular case, have been extensively

researched for their effectiveness in measurement, covering various topics such as test cali-

bration, marginal and joint maximum likelihood estimation of ability and item parameters,

model adequacy testing, and asymptotic behavior of statistical inference techniques. In-

terested readers can refer to review papers and books, including works by Hambleton et al.

(1991); Fischer and Molenaar (1995); Baker and Kim (2004); Christensen et al. (2013); Bond

and Fox (2013), for further details.
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p0 K Method Error (SE)
Coverage (Width)

0.9 0.95 0.99

0.222 25
AutoGFI-B 0.06790.0204 0.8910.297 0.9550.353 0.9880.460

MLE 0.06870.0222 0.8950.300 0.9460.357 0.9900.469

0.278 5
AutoGFI-B 0.1360.0411 0.8930.594 0.9440.706 0.9890.921

MLE 0.1320.0399 0.9160.598 0.9570.713 0.9920.937

0.4 5
AutoGFI-B 0.1100.0375 0.9060.492 0.9480.585 0.9850.761

MLE 0.1090.0378 0.8970.495 0.9500.590 0.9870.775

0.5 25
AutoGFI-B 0.04390.0134 0.9010.196 0.9500.233 0.9930.303

MLE 0.04550.0142 0.8990.197 0.9420.235 0.9880.309

0.625 5
AutoGFI-B 0.08980.0284 0.8970.391 0.9460.465 0.9820.604

MLE 0.08720.0300 0.9070.394 0.9470.469 0.9890.617

1 50
AutoGFI-B 0.02120.0112 0.8990.0973 0.9560.116 0.9920.151

MLE 0.02130.00746 0.9120.0981 0.9550.117 0.9880.154

Table 5.5. The average point estimate error, ∥β̂−β0∥2/∥β0∥2, and the cov-
erage probabilities with interval widths for β0, across the 200 datasets.

Several works have be done to quantify the uncertainty of the parameters within the Rasch

Model. In particular, Klauer (1991) and Doebler et al. (2013) introduced exact confidence

intervals for the ability parameter in the Rasch model, where “exact” means the coverage

probabilities are guaranteed to be at least the specified nominal level. Mair and Strasser

(2018) studies the asymptotic properties of conditional maximum-likelihood estimators for

item parameters in the Rasch model as the number of items increases. Liu and Hannig (2016)

applies generalized fiducial inference to the two-parameter logistic item response models,

enabling the construction of confidence intervals from the generalized fiducial distribution.

Veronese and Melilli (2021) proposes the confidence distribution (CD) method for the ability

parameter in the Rasch model, providing an approach to quantify the uncertainty associated

with the ability estimates.

Given the extensive application and significance of Item Response Theory, we use the

Rasch model as our last example to demonstrate the versatility and effectiveness of our
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proposed AutoGFI-B. In the subsequent subsection, we integrate AutoGFI-B with the Rasch

model and conduct a comprehensive simulation study to evaluate its performance.

5.5.2. AutoGFI-B for Rasch Model. In this section, we show the detailed framework

of the Rasch Model, which notably does not include a regularization term. Then we discuss

the deployment of AutoGFI-B, Algorithm (3) within this context.

The Rasch model analyzes m examinees responding to n items. Each item is described

by a difficulty parameter bj ∈ R, for j = 1, . . . , n, and each examinee by an ability parameter

θi ∈ R, for i = 1, . . . ,m, which determines their position on a latent trait. The response

Yij of the i-th examinee to the j-th item is a bernoulli variable, with the assumption that

responses are independent across examinees for each item and across items for each examinee.

The probability of a correct response, Yij = 1, is modeled by

(5.20) P (Yij = 1) =
1

1 + e−(θi−bj)
.

Additionally, following the work of Veronese and Melilli (2021), we consider scenarios where

item difficulty parameters, bj, are treated as fixed. This implies that the values of bj are either

derived from previous tests or initially estimated from the current data, with these estimates

subsequently used for deducing θi. Adopting fixed item difficulty parameters is a standard

practice in the field when focusing on the ability parameter, as supported by references such

as Veronese and Melilli (2021); Klauer (1991); Doebler et al. (2013), and Ogasawara (2012).

However, this assumption entails a loss of variability in the estimates of bj. We revisit this

consideration is the simulation study, where we demonstrate the robustness of our proposed

method against variations in the standard errors of the difficulty parameters. Additionally,

we empirically show that our method is capable of simultaneously estimating bj when it is

not readily available.
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To adapt AutoGFI-B for the Rasch model, with observed data yij of the variable Yij for

(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, we need to define f in (5.2) as

f(bj, θi) = θi − bj.

The data generating equation for the Rasch model is then

Yi,j = 1{θi − bj + Lij ≥ 0},

where Lij ∼ Logistic(0,1) for i = 1, . . . ,m and j = 1, . . . , n. Therefore, with fixed difficulty

parameters, an approximate fiducial sample of θi for the i-th person can be generated by

solving

(5.21) θ∗i = arg min
θi

−
n∑
j=1

[
yij log(y

∗
ij(θi)) + (1− yij) log(1− y∗ij(θi))

]
,

with y∗ij(θi) = sigmoid(θi−bj+l∗ij, a) and l∗ij being a realization of L∗
ij which is an independent

copy of Lij, for i = 1, . . . , n. The optimization problem (5.21) is convex and can be easily

solved. By substituting the optimization problem in Algorithm (3) with (5.21), we can

generate a fiducial sample of θ = (θ1, . . . , θm)
⊤. This sample can then be used for computing

the point estimate and interval estimate.

5.5.3. Simulation Results. In this section, we evaluate the performance of AutoGFI-

B in point and interval estimation of the ability parameter θ under three different scenarios.

First, we assume that the difficulty parameters bj are known, and we examine the inference

performance of AutoGFI-B for various values of θ. Second, we investigate the robustness

of AutoGFI-B when the bj values are corrupted by noise. Finally, we assess AutoGFI-B’s

ability to simultaneously estimate bj and infer θ. For the first two scenarios, we compare

the performance of AutoGFI-B with that of other standard procedures to benchmark its

effectiveness.

In particular, we compared our proposed method with four competing approaches for

point estimation: the suitably adjusted maximum likelihood estimator (MLE), the weighted
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likelihood estimator (WLE) introduced by Warm (1989), the median of the Bayesian pos-

terior distribution using the well-known Jeffreys prior, and the mean of the confidence dis-

tribution (CD) proposed by Veronese and Melilli (2021). It is important to note that when∑n
j=1 yij = 0 or n, the MLE of θi does not exist, and special procedures are necessary, as

reviewed in Wright (1998). We adopt the strategy of adding or subtracting a constant c to

0 or n to adjust the extreme scores of
∑n

j=1 yij. The R package TAM (Robitzsch et al., 2024)

computes the MLE for item response models using this adjustment with c = 0.3, which we

followed in our subsequent simulation studies when solving for the MLE and addressing the

optimization problem (5.21). The WLE addresses the non-existence of the MLE for extreme

scores by multiplying the likelihood function by a weight function ω(θ). In the Rasch Model

with fixed item parameters, ω(θ) = In(θ)
1/2, where In(θ) denotes the Fisher information.

The Jeffreys prior in our settings is πJ(θ) ∝ In(θ)
1/2, coinciding with ω(θ) when θ ∈ R.

Thus, under these conditions, the WLE is essentially the mode of the Jeffreys posterior

distribution. According to our experiments, the median of the Jeffreys posterior is more

stable than the mean; therefore, we considered using the median as the point estimator for

this method. The CD method addresses the boundary values of
∑n

j=1 yij in the definition

of the confidence distribution with a hyperparameter β. We adopted β = 0.8 for our sim-

ulation studies, following the suggestion in Veronese and Melilli (2021). When employing

AutoGFI-B, we chose the scaling parameter a as 100, as we did in the CARE model. For

interval estimation, we compared our proposed method with the Wald interval based on the

MLE, the Wald interval based on WLE, the equal-tailed interval derived from the Jeffreys

posterior, and the equal-tailed interval based on CD.

Scenario 1: Inferring θ with known bj. In this scenario, we set up the simulation

studies following the configurations in Veronese and Melilli (2021). We considered a test

with n = 15 items, where the difficulty parameters are given by

(5.22) b = (−0.5,−0.5,−0.5,−0.5,−0.5, 0, 0, 0, 0, 0, 0.34, 0.34, 0.34, 0.34, 0.34).
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For the examinees, we considered ability parameters ranging from -4 to 4 with an increment

of 0.1, resulting in a total of m = 81 examinees with abilities θi = −4 + 0.1(i − 1), for i =

1, . . . ,m. We then generated the observed response data y = {yij} for (i, j) ∈ {1, . . . ,m} ×

{1, . . . , n} 2000 times from the Rasch model (5.20). For each generated dataset, we estimated

θi assuming the item difficulty parameters bj were known. To compare the point estimators,

we calculated the bias, θ̂i−θi, and the MSE, (θ̂i−θi)2, over the 2000 datasets for each θi. These

results are presented in Figures 5.3a and 5.3b, respectively. For interval estimators, Figure

5.4 displays the empirical coverage probabilities of the 95% confidence intervals obtained

from different methods for each θi, while Figure 5.5c shows the widths of these intervals.

To summarize the results, Figures 5.5a and 5.5b present boxplots of the average MSEs and

empirical coverage probabilities, respectively, across all 81 values of θ.
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Figure 5.3. Biases (a) and MSEs (b) of each θj estimates for j = 1, . . . , 81,
across different methods.

Figure 5.3 demonstrates that AutoGFI-B performs exceptionally well when the largest

and smallest values of θ are excluded. AutoGFI-B’s point estimator achieves the smallest

MSE for non-central values of θ and exhibits an MSE comparable to the smallest one observed

with WLE for central values. While WLE is optimal for central values of θ, its performance

diminishes as θ deviates from 0. MLE and Jeffreys posterior exhibit similar behaviors,

showing greater deviations from the true values as θ moves away from the central region.

CD’s performance is very close to that of AutoGFI-B but with a slightly larger MSE for

non-central values of θ. Interestingly, the biases of AutoGFI-B and CD’s estimators behave
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Figure 5.4. Empirical coverage probabilities of 95% confidence intervals for
each θj, j = 1, . . . , 81, across different methods.
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Figure 5.5. (a) Boxplots of MSE for each θj estimate, j = 1, . . . , 81. (b)
Boxplots of empirical coverage probability for each θj, j = 1, . . . , 81, targeting
95% confidence level. (c) Interval width for each θj, j = 1, . . . , 81.

in opposite ways, with AutoGFI-B’s being slightly larger than CD’s due to the biases, θ̂i−θi,

being calculated without uniformly adjusting the sign. The plotted values, averaged over

2000 datasets, may reflect the offsetting effects of positive and negative biases. Figure

5.5a provides a summary plot of the MSEs, clearly demonstrating that AutoGFI-B’s point

estimator generally offers a smaller MSE for most values of θ compared to other methods.

Regarding empirical coverage probabilities, Figure 5.4 reveals that AutoGFI-B, CD, and

Jeffreys posterior generally over-cover for non-central values of θ. In contrast, WLE tends to

under-cover these values while over-covering for central values. MLE consistently over-covers
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across all values of θ. These trends are corroborated by Figure 5.5b, which indicates that the

methods tend to over-cover for more than half of the θ values. However, AutoGFI-B remains

the method closest to the target level. Furthermore, according to Figure 5.5c, AutoGFI-B

consistently provides narrower confidence intervals compared to other methods.

Scenario 2: Inferring θ with noisy bj. In this scenario, we investigated the robustness

of the methods when the item difficulty parameters bj are subject to variability. Following

the studies described by Veronese and Melilli (2021) and references therein (Ogasawara,

2012; Lord, 1975), we modeled bj using a truncated normal distribution N(0.5, 1), bounded

between −1.5 and 2.2, to mimic real-world data. We independently generated bj values from

this distribution for the n items and simulated the observed response data y = {yij} for

(i, j) ∈ {1, . . . , 8} × {1, . . . , n} using the model specified in (5.20), assuming the true ability

parameters θ = (−3.5,−2.5,−1.5, 0, 1.5, 2.5, 3.5, 4.5). The selection of θ, not symmetrical

around zero, accommodates the asymmetry in bj. This procedure was replicated 1000 times

for two small sample cases, n = 10 and n = 20.

Tables 5.6 and 5.7 present the summarized results for n = 10 and n = 20, respectively,

including the average MSE, empiriccal coverage probability, and interval width with a 95%

confidence level for each θi across the datasets. The results reveal that AutoGFI-B achieves

the smallest average MSE for estimating θ when the extreme values are excluded. Moreover,

the empirical coverage probabilities exhibit similar trends to those observed in Scenario

1, with AutoGFI-B, CD, and Jeffreys posterior over-covering for non-central values of θ,

while MLE and WLE tend to under-cover. Remarkably, AutoGFI-B’s confidence intervals

average closest to the target level of 95% and consistently provide the narrowest interval

widths compared to other methods. These findings highlight the robustness of AutoGFI-B

in accommodating potential variations in the estimates of bj. Despite the introduction of

noise in the item difficulty parameters, AutoGFI-B maintains its performance in both point

and interval estimation.
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When the item difficulty parameters bj are unknown in practice, well-established methods

such as the Conditional Maximum Likelihood (CML) estimator and the Nonparametric

Marginal Maximum Likelihood (NP-MML) estimator can be employed to estimate them.

Cohen et al. (2008) reported that these two estimators yield nearly identical standard errors

for bj. For a set of 15 items based on 200 observations, the average standard error is

approximately 0.2. As the number of observations increases to 1000, the standard error

decreases to 0.09, as demonstrated in Table 2 of Cohen et al. (2008). The simulated case

in Scenario 2 showcases the robustness of AutoGFI-B to the randomness in bj. Even when

a noise of magnitude 0.2 was added to the bj values in (5.22), the results remained largely

unchanged and are therefore omitted here for brevity.

θ -3.5 -2.5 -1.5 0 1.5 2.5 3.5 4.5 mean

MSE

AutoGFI-B 2.131 0.534 0.434 0.647 0.657 0.626 0.389 0.907 0.791

CD 1.897 0.541 0.511 0.607 0.626 0.633 0.471 0.840 0.765

Jeffreys 0.874 0.849 1.234 0.624 0.653 0.977 1.125 0.721 0.882

MLE 1.076 0.554 0.869 0.655 0.678 0.851 0.756 0.581 0.752

WLE 1.922 0.722 0.668 0.495 0.523 0.635 0.692 0.981 0.830

Coverage

AutoGFI-B 0.989 0.934 0.971 0.926 0.921 0.963 0.963 0.967 0.954

CD 0.985 0.952 0.975 0.962 0.952 0.971 0.966 0.968 0.966

Jeffreys 0.988 0.962 0.982 0.953 0.945 0.960 0.965 0.967 0.965

MLE 0.960 0.934 0.970 0.973 0.974 0.967 0.963 0.967 0.964

WLE 0.844 0.928 0.959 0.981 0.979 0.961 0.946 0.937 0.942

Interval Width

AutoGFI-B 4.999 4.771 4.155 2.872 2.782 3.425 4.271 4.825 4.012

CD 5.802 5.430 4.516 2.984 2.952 3.725 4.833 5.612 4.482

Jeffreys 8.195 7.414 5.569 3.074 2.967 4.006 5.900 7.439 5.570

MLE 6.801 6.265 4.971 3.008 2.958 3.915 5.401 6.516 4.979

WLE 5.678 5.279 4.324 2.902 2.867 3.562 4.649 5.482 4.343

Table 5.6. MSEs, empirical coverage probabilities, and interval widths for
different values of θ with random bj, using a 95% confidence level, in the case
n = 10.
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θ -3.5 -2.5 -1.5 0 1.5 2.5 3.5 4.5 mean

MSE

AutoGFI-B 0.702 0.352 0.584 0.296 0.295 0.480 0.487 0.326 0.440

CD 0.664 0.440 0.570 0.289 0.289 0.454 0.517 0.394 0.452

Jeffreys 0.674 1.172 0.849 0.272 0.277 0.498 0.989 0.952 0.710

MLE 0.491 0.772 0.748 0.291 0.291 0.509 0.792 0.604 0.562

WLE 0.895 0.624 0.529 0.249 0.255 0.375 0.552 0.627 0.513

Coverage

AutoGFI-B 0.967 0.950 0.963 0.939 0.922 0.950 0.978 0.975 0.955

CD 0.965 0.956 0.965 0.948 0.938 0.973 0.983 0.979 0.963

Jeffreys 0.965 0.957 0.959 0.948 0.934 0.948 0.979 0.977 0.958

MLE 0.965 0.940 0.960 0.961 0.950 0.968 0.973 0.971 0.961

WLE 0.938 0.933 0.949 0.966 0.958 0.962 0.954 0.899 0.945

Interval Width

AutoGFI-B 4.825 4.336 3.250 1.961 1.929 2.492 3.570 4.410 3.347

CD 5.412 4.645 3.813 7.144 2.028 2.609 3.832 4.977 4.308

Jeffreys 7.512 5.964 3.614 2.050 1.986 2.616 4.285 6.319 4.293

MLE 6.339 5.235 3.442 2.020 1.989 2.642 4.134 5.708 3.939

WLE 5.152 4.354 3.067 1.996 1.970 2.490 3.569 4.706 3.413

Table 5.7. MSEs, empirical coverage probabilities, and interval widths for
different values of θ with random bj, using a 95% confidence level, in the case
n = 20.

Scenario 3: Inferring θ with unknown bj. A notable feature of AutoGFI-B is its

ability to simultaneously provide inference for θi and estimate bj when a sufficient num-

ber of examinees are available, distinguishing it from the other methods previously con-

sidered. This can be achieved by generating fiducial samples for both θ = (θ1, . . . , θm)
⊤

and b = (b1, . . . , bn)
⊤ through minimizing the objective function in (5.23) for both θ and b

simultaneously:

(5.23) −
m∑
i=1

n∑
j=1

[
yij log(y

∗
ij) + (1− yij) log(1− y∗ij)

]
,

where y∗ij = sigmoid(θi − bj + L∗
ij, a), and L

∗
ij is an independent copy of Lij ∼ Logistic(0, 1).

This optimization problem can be effectively addressed using an alternating optimization

strategy, where item and person parameters are updated sequentially—optimizing one while

holding the other fixed—to iteratively converge on stable estimates. Inference for θi is then
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conducted by analyzing the fiducial distribution formed by the samples, and bj is estimated

by its fiducial sample mean. We conducted simulation studies to evaluate the performance

of AutoGFI-B in simultaneously estimating bj and inferring θi. We considered n = 15 items

with bj defined in (5.22) andm examinees with ability parameters θi independently generated

from a standard normal distribution N(0, 1). The observed data yij were generated from the

model (5.20) for i = 1, . . . ,m and j = 1, . . . , n. We considered three cases for m: m = 100,

500, and 1000, with 200 replicated datasets generated for each case. A fiducial sample of

size 500 for (θ, b) was produced for each dataset, with the scale parameter for AutoGFI-B

chosen as 100.

The sample mean was used to estimate b, and the average MSE of each value of bj over

the 200 datasets is reported in Table 5.8. It is evident that AutoGFI-B provides highly

accurate estimates of item difficulty parameters with very small MSE.

b

m -0.5 0 0.34

100 0.0612 0.0570 0.0643

500 0.0113 0.0134 0.0174

1000 0.0060 0.0097 0.0125

Table 5.8. Average MSE for bj with different number of examinees m.

Similarly, a point estimate and a 95% confidence interval were constructed for each θi.

The average MSE of the point estimate and the average empirical coverage probabilities

with interval widths for the confidence intervals are summarized in Table 5.9. Figure 5.6

specifically presents the boxplot of the empirical coverage probabilities across θi, for i =

1, . . . ,m. Both Table 5.9 and Figure 5.6 demonstrate that AutoGFI-B consistently achieves

the desired confidence level in its confidence intervals for the ability parameter.

These findings demonstrate the versatility and robustness of AutoGFI-B in handling

situations where both item and person parameters are unknown. By leveraging an alternating

optimization strategy and generating fiducial samples for both θ and b, AutoGFI-B is able
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95% CI

m MSE Coverage Width

100 0.542 0.940 2.629

500 0.490 0.947 2.551

1000 0.483 0.948 2.537

Table 5.9. Average MSE, empirical coverage probability, and interval width
for θ when bjs are unknown.
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Figure 5.6. Boxplot of empirical coverage probabilities for θi, i = 1, . . . ,m,
across three sample sizes: m = 100, 500, and 1000, all targeting a 95% confi-
dence level.

to offer a comprehensive solution for simultaneously estimating item difficulty and inferring

individual abilities in the Rasch model.

5.6. Conclusion

In this chapter, we introduced AutoGFI-B and its regularized version, AutoGFI-BR.

These two algorithms serve as an extension of the AutoGFI algorithm, adapting its benefi-

cial properties from additive noise models to binary response models. This extension greatly

simplifies and broadens the application of GFI in real-world scenarios involving binary data.

We conducted numerical studies on three challenging binary problems: (high-dimensional)

logistic regression, the covariate-assisted ranking estimation (CARE) model, and the Rasch

model. The results demonstrated the competitive performance of both AutoGFI-B and

AutoGFI-BR compared to established methods in terms of point estimation accuracy, con-

fidence interval coverage, and interval width. These findings highlight the potential of
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AutoGFI-B and AutoGFI-BR as powerful and flexible tools for inference in such binary

models. Moreover, the results further showcase GFI as a promising alternative to tradi-

tional methods for addressing important and practical inference problems. With AutoGFI,

AutoGFI-B, and AutoGFI-BR, we provide accessible implementations of GFI, facilitating

its application in complex analytical scenarios.
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CHAPTER 6

Summary and Future Prospects

In this dissertation, we have presented three novel approaches designed to streamline and

simplify the implementation of GFI in modern statistical problems. First, we introduced

AutoGFI for additive noise models, followed by Fiducial Selector for high-dimensional linear

regression problems. We then presented AutoGFI-B for binary response models and its reg-

ularized version, AutoGFI-BR. The key innovation of these methods lies in transforming the

traditional sampling process of GFI, which typically involves complex mathematical deriva-

tions and MCMC techniques, into a series of optimization problems. This transformation

significantly improves GFI’s accessibility for researchers and practitioners working with com-

plex models. The theoretical and empirical evaluations presented in this dissertation have

validated the effectiveness of these new approaches, showcasing the substantial potential of

GFI in addressing modern inference challenges. In summary, by streamlining the adoption of

GFI, this work expands the toolkit available for robust statistical inference in many modern

problems.

However, we believe that this work is just the beginning of simplifying the adoption of

GFI. To make GFI accessible to more researchers, we need to adapt it to more application

scenarios and further improve its performance. Potential future work includes extending

AutoGFI to handle more types of data, such as count data, accommodating different model

structures, and refining the de-biasing procedure within the algorithm. With continued

efforts to refine and extend these methods, we hope that GFI will be more widely adopted

and utilized by researchers and practitioners in tackling modern statistical problems.
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APPENDIX A

Appendix for Chapter 3

This appendix outlines the proofs for Theorems 3.3.2 to 3.3.6 in Chapter 3.

Proof for Theorem 3.3.2. Select ϵ > 0 and set C = min(h(ϵ)/2, ϵ). By Assump-

tion 3.3.1(c),

P

(
n−1 sup

θ∈K
∥

n∑
i=1

−∇θG(Xi,θ)Ui + ξn(θ)∥ ≥ C

)
→ 0.

Since (3.5) is equivalent to

n−1

n∑
i=1

∇θG(Xi, θ̂)(G(Xi,θ0)−G(Xi, θ̂)) = n−1ξn(θ̂)− n−1

n∑
i=1

∇θG(Xi, θ̂)Ui,

there is a solution θ̂ ∈ K with probability going to 1 by Assumption 3.3.1(a). At the same

time, if θ̂ ∈ K and ∥θ̂ − θ0∥ ≥ ϵ, then

n−1∥
n∑
i=1

∇θG(Xi, θ̂)(G(Xi,θ0)−G(Xi, θ̂))∥ ≥ h(ϵ)

with probability going to 1. By the union bound P (∥θ̂ − θ0∥ ≥ ϵ) → 0.

The same argument also shows that P (∥θ∗ − θ0∥ ≥ ϵ) → 0. □

Proof for Theorem 3.3.4. The same argument as in the proof of Theorem 3.3.2

shows that θ̂0
P−→ θ0.

Rewrite (3.5) using (3.7) to obtain

Tn(θ̂0)n
1/2(θ̂ − θ̂0) + n1/2Rn(θ̂, θ̂0) = n−1/2

n∑
i=1

∇θG(Xi, θ̂)Ui.

By Theorem 3.3.2 θ̂ − θ̂0
P−→ 0 and therefore Assumption 3.3.3(b) implies that

n1/2Rn(θ̂, θ̂0) = op(∥n1/2(θ̂ − θ̂0)∥). Finally, Assumptions 3.3.3(a) and 3.3.1(c) and Slut-

sky’s lemma imply that n1/2(θ̂ − θ̂0)
D−→ N(0,T−1

∞ S(θ0)T
−1⊤
∞ ). The second part of the

theorem is proved similarly. □
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Proof for Theorem 3.3.6. Notice that

n1/2(θ∗
de − θ̂de) = n1/2(θ∗ − θ̂)

+ n1/2
(
H(θ∗)pinv −H0(θ

∗)pinv
)
ξn(θ

∗)

+ n1/2
(
H0(θ

∗)pinvξn(θ
∗)−H0(θ̂)

pinvξn(θ̂)
)

+ n1/2
(
H0(θ̂)

pinv − Ĥ(θ̂)pinv
)
ξn(θ̂).

The claimed asymptotic normality now follows using Slutsky’s lemma, Theorem 3.3.4

and Assumption 3.3.5. The argument for n1/2(θ̂de − θ̂0,de) is analogous.

Next, Taylor’s theorem and (3.6) imply

−ξn(θ̂0) =

(∫ 1

0

H0(vθ̂0 + (1− v)θ0) dv

)
(θ̂0 − θ0).

Consequently,

∥θ̂0,de − θ0∥ ≤ Rn ∥θ̂0 − θ0∥.

This concludes the proof. □
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APPENDIX B

Appendix for Chapter 4

This appendix outlines the proofs for Theorems 4.3.2 and 4.3.3 in Chapter 4. Additionally,

it includes supplementary simulation results for Fiducial Selector, further illustrating its

performance and applicability.

B.1. Theoretical Proofs

We first cite the following two theorem from Zhao and Yu (2006).

Theorem B.1.1 (Small p and s). For fixed s, p and βn = β, under the strong irrep-

resentable condition (Definition 4.3.1) and regularity conditions (4.13) and (4.14), lasso is

strongly sign consistent, i.e. for ∀λn s.t. λn
n

→ 0 and λn

n
1+c
2

→ ∞ with 0 ≤ c < 1, we have

P (β̂n(λn) =s β
n) = 1− o(e−n

c

),

where =s stands for sign equivalence, i.e. a =s b ↔ sign(a) = sign(b).

Theorem B.1.2 (large p and s). Assume the error term has finite 2k-th moment for

an integer k > 0. Under the strong irrepresentable condition (Definition 4.3.1) and reg-

ularity conditions (4.15), (4.16), (4.17) and (4.18), lasso is strongly sign consistent for

pn = o(n(c2−c1)k). To be more specific, for ∀λn s.t. λn√
n
= o(n

c2−c1
2 ) and 1

pn
( λn√

n
)2k → ∞, we

have

P (β̂n(λn) =s β
n) ≥ 1−O(

pnn
k

λ2kn
) → 1 as n→ ∞.

Proof of Theorem 4.3.2. In the fiducial sample generation procedure described in Sec-

tion 4.2.2, each β∗ in the biased fiducial sample is derived using the lasso estimator applied

to (y′,X), where y′ comes from the equation

y′ = Xβ + ϵ,
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with ϵ = e− e∗. Here, e represents the i.i.d. random normal errors from the original obser-

vations, and e∗ = σu∗, which follows the normal distribution N(0, σIn), is the random term

introduced during the fiducial sample generation. Note that e remains the same throughout

the fiducial sample generation process, while e∗ keeps changing.

By applying Theorem B.1.1 and Theorem B.1.2, given the corresponding conditions listed

in the theorems are satisfied, we have the following equation hold for both ‘small p and s’

and ‘large p and s’ cases:

P (β∗ =s β) → 1 as n→ ∞,

where β∗ represents an arbitrary copy in the un-debiased fiducial sample of the fiducial

selector.

Since P (β∗ =s β) ≤ P ({j : β∗
j ̸= 0} = A), where the subscript j represents the j-th

element of the vector. Therefore, we have,

(B.1) P ({j : β∗
j ̸= 0} = A) → 1 as n→ ∞.

Denote P ({j : β∗
j ̸= 0} ≠ A) = α. We have α → 0 as n → ∞. Recall that we use 50% as

the threshold to identify the set of significant parameters. Thus

(B.2)
P (Â = A) ≥ P (ΣN

k=11({j : β∗
(k), j ̸= 0} ≠ A) ≤ ⌊N

2
⌋)

= 1− P (ΣN
k=11({j : β∗

(k), j ̸= 0} ≠ A) ≥ ⌈N
2
⌉),

where Â is the identified significant set defined in (4.10), β∗
(k), j stands for the j-th element of

the k-th copy in the biased fiducial sample of fiducial selector, 1(·) is the indicator function.

Let Ψ = (ψ1, . . . , ψ( N

⌈N
2 ⌉)

), where each ψi is a combination of indexes from {1, . . . , N}, such

that |ψi| = ⌈N
2
⌉, i = 1, . . . ,

(
N

⌈N
2
⌉

)
. Then we have

(B.3)

P

(
ΣN
k=1I

(
{j : β∗

(k), j ̸= 0} ≠ A
)
≥ ⌈N

2
⌉
)

≤
( N

⌈N
2 ⌉)∑
j

P
( ⋂
k∈ψj

({j : β∗
(k), j ̸= 0} ≠ A)

)
≤

( N

⌈N
2 ⌉)∑
j

α = α

(
N

⌈N
2
⌉

)
.
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From (B.2) and (B.3), we have

(B.4) P (Â = A) ≥ 1− α

(
N

⌈N
2
⌉

)
→ 1 as n→ ∞,

which completes our proof. □

Proof of Theorem 4.3.3. :

From (4.11) we have

(B.5)
β̂Â = (XT

ÂXÂ)
−1XT

Â(XÂβÂ +XÂcβÂc + e) + σ̂(XT
ÂXÂ)

−1/2Ŝ
−1/2
β∗
Â

(β∗
Â − β

∗
Â)

= βÂ + (XT
ÂXÂ)

−1XT
Âe+ σ̂(XT

ÂXÂ)
−1/2S

−1/2
β∗
Â

(β∗
Â − β

∗
Â),

which implies that,

(B.6) E[mean(β̂Â)] = βÂ.

□

B.2. Supplementary Simulation Results

Building on the analysis initiated in Section 4.4, this appendix further explores the re-

lationships previously examined between signal magnitude and bias, signal magnitude and

empirical coverage probabilities, signal magnitude and interval widths, as well as empirical

coverage probabilities and interval widths. While the main text focused on the most chal-

lenging scenarios involving n = 300, p = 1000, s = 5 and s = 15 with ρ = 0.5, here we

present additional cases with n = 300, p = 400, 600, s = 5, 15, and ρ = 0.5 to provide a

comprehensive view of the observed trends across different settings.
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Figure B.1. Scenario: n = 300, p = 400, ρ = 0.5 and s = 5.
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Figure B.2. Scenario: n = 300, p = 400, ρ = 0.5 and s = 15.
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Figure B.3. Scenario: n = 300, p = 600, ρ = 0.5 and s = 5.
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Figure B.4. Scenario: n = 300, p = 600, ρ = 0.5 and s = 15.
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