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California, San Francisco, San Francisco, CA, United States, 3Department of Bioengineering and
Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States, 4Eli and
Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco,
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The discovery of CRISPR has allowed site-specific genomic modification to

become a reality and this technology is now being applied in a number of

human clinical trials. While this technology has demonstrated impressive

efficacy in the clinic to date, there remains the potential for unintended on-

and off-target effects of CRISPR nuclease activity. A variety of in silico-based

prediction tools and empirically derived experimental methods have been

developed to identify the most common unintended effect—small insertions

and deletions at genomic sites with homology to the guide RNA. However,

large-scale aberrations have recently been reported such as translocations,

inversions, deletions, and even chromothripsis. These are more difficult to

detect using current workflows indicating a major unmet need in the field.

In this review we summarize potential sequencing-based solutions that may be

able to detect these large-scale effects even at low frequencies of occurrence.

In addition, many of the current clinical trials using CRISPR involve ex vivo

isolation of a patient’s own stem cells, modification, and re-transplantation.

However, there is growing interest in direct, in vivo delivery of genome editing

tools. While this strategy has the potential to address disease in cell types that

are not amenable to ex vivo manipulation, in vivo editing has only one desired

outcome—on-target editing in the cell type of interest. CRISPR activity in

unintended cell types (both on- and off-target) is therefore a major safety as

well as ethical concern in tissues that could enable germline transmission. In this

review, we have summarized the strengths and weaknesses of current editing

and delivery tools and potential improvements to off-target and off-tissue

CRISPR activity detection. We have also outlined potential mitigation

strategies that will ensure that the safety of CRISPR keeps pace with

efficacy, a necessary requirement if this technology is to realize its full

translational potential.
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Introduction

Gene therapy and off-target genome
editing

Gene therapy to correct, add, or modify genes holds great

promise for many genetic disorders, including

hemoglobinopathies, immunodeficiencies, and lysosomal

storage disorders. Historically, gene therapy referred to viral-

mediated gene addition, however this has the potential to disrupt

essential genes or activate oncogenes due to semi-random

genomic integration (Hacein-Bey-Abina et al., 2008). Gene

editing tools such as CRISPR-Cas, TALENs, mega nucleases,

or zinc finger nucleases have thus emerged as exciting

alternatives due to the ability to target them to specific sites in

the genome. Among these, the more straightforward and

modular design of CRISPR guide RNAs (gRNA), which

direct the Cas protein to a complementary site in the

genome, has made them the preferred tool for both

research and clinical applications. Ongoing clinical trials using

CRISPR-modified cells have published results without any

adverse events for both genome editing in T cells (Lu et al.,

2020; Stadtmauer et al., 2020) and hematopoietic stem

and progenitor cells (HSPCs) (Frangoul et al., 2021). In

addition, the first clinical trial using CRISPR-Cas9 to treat

transthyretin amyloidosis by editing hepatocytes in vivo has

reported disease phenotype improvements in a small group of

patients (Gillmore et al., 2021). These early clinical trials

highlight the immense potential of CRISPR-Cas9 to treat

disease, albeit lacking long-term follow-up data to support

safety in humans.

One concern of clinical genome editing is the potential to

cause unintended DNA alterations that may have a detrimental

effect on cellular function (Figure 1). These undesired

consequences can stem from on-target or off-target edits

causing unwanted insertions and deletions (indels) or larger

rearrangements (structural variants (SVs)) such as

translocations, inversions, and duplications. The field has

made great progress in developing methods to detect

undesired editing events in silico, in cell-free DNA in vitro,

and in live cells ex vivo (Blattner et al., 2020), but often it is

challenging to link genomic alterations to their impact on cellular

health and function. For example, off-target indels occurring in a

gene desert may have no phenotypic effect, while some indels at

the on-target site may lead to aberrant mRNA and protein

products (Tuladhar et al., 2019) that significantly impact cell

function (Lindeboom et al., 2019). As CRISPR-Cas9 genome

editing moves towards in vivo therapeutic applications, making

this link becomes even more critical as rare events could be

detrimental if occurring in an oncogenic context. In addition, in

vivo applications carry the risk of both on- and off-target genome

edits in an unintended cell type such as the germline or other

tissues.

This field is rapidly evolving and new technologies to

quantify unintended modifications are continuously being

developed and evaluated. Furthermore, there is no broad

consensus on the most appropriate measures needed to be

taken to comprehensively assess the frequency and risks of

CRISPR off-target activity, both for publication in high-impact

journals or pre-clinically for the FDA. This review will therefore

summarize the state of the field in terms of the current methods

to evaluate on- and off-target gene edits, recent advances in

method development for both ex vivo and in vivo editing

workflows, and strategies for mitigation and reduction of off-

target and off-tissue edits altogether.

Methods to find off-targets sites in
genome editing applications

One main advantage of CRISPR-Cas editing over viral

genome addition is that it is specifically targeted to a gene

locus rather than dependent on random integration. However,

as the genome encompasses billions of base pairs, it is possible

that the CRISPR-targeted sequence has a near-match

elsewhere. Indeed, it has been shown that Cas9 and other

FIGURE 1
Outstanding questions to ensure safety in therapeutic
genome editing applications. Indels: insertions and deletions; SVs:
structural variants. Created with BioRender.com.
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nucleases will often cut highly homologous sequences

depending on the location of the mismatch and the

genomic context (Mali et al., 2013a; Fu et al., 2013; Hsu

et al., 2013; Pattanayak et al., 2013). Finding these off-

target sites is critical so that the risk of unintended

genomic events can be assessed and minimized (Figure 2).

Many computational tools are available to identify highly

homologous genomic sequences and thus predict potential off-

target sites for CRISPR-Cas9 activity (Bae et al., 2014; Cradick

et al., 2014; Heigwer et al., 2014; Montague et al., 2014; Xiao et al.,

2014; Zhu et al., 2014; Singh et al., 2015; Stemmer et al., 2015;

Concordet and Haeussler, 2018; Aprilyanto et al., 2021). The

application of machine learning to large experimental datasets

has further improved the predictive power of these bioinformatic

tools (Allen et al., 2018; Shen et al., 2018; Xiang et al., 2021),

although these algorithms are biased towards the input gRNAs and

reference genomes used to build their predictions. After identifying

possible regions of off-target activity, screening must be done in

genome-edited cells to confirm whether these sites show signs of

CRISPR activity. This ismost often done using targeted sequencing

of candidate sites with standard sequencing panels achieving

detection of variants at or below 5% frequency (Starks et al.,

2021), while the detection limit for indels might be lower (0.2-1%)

depending on sequencing depth (Chaudhari et al., 2020).

Alternatively, a number of experimental methods have been

developed to find off-target sites that may not have been

bioinformatically predicted based on homology to the gRNA.

These methods vary widely in their approach and even starting

material, using cell-free genomic DNA in vitro (Kim et al., 2015;

Cameron et al., 2017; Tsai et al., 2017; Kim and Kim, 2018;

Lazzarotto et al., 2020), in intact live cells ex vivo (Crosetto et al.,

2013; Tsai et al., 2015; Yan et al., 2017; Wienert et al., 2019; 2020;

Zhu et al., 2019; Dobbs et al., 2022), and in vivo animal models

(Akcakaya et al., 2018; Wienert et al., 2019; Liang et al., 2022).

Methods that use cell- and nucleosome-free DNA generally

report the highest number of off-targets, many of which

cannot be verified in a cellular context (Cromer et al., 2022a).

Furthermore, methods such as GUIDE-Seq have been shown to

identify more off-target sites in immortalized cell lines than when

assaying primary cells (Shapiro et al., 2020). This highlights the

importance of chromatin context and DNA repair factors in

determining therapeutically relevant off-target activity. And even

when using intact cells as input into these assays, conclusions

drawn from immortalized cell lines with accumulated variants,

distorted karyotypes, and dysfunctional DNA repair pathways

(Mittelman and Wilson, 2013; Passerini et al., 2016) may

confound the clinical relevance of identified off-target edits.

In spite of these myriad strategies for detection of off-target

indels, recent work has shown that ex vivo editing in HSPCs

elicits very few bona fide off-target sites (<1 true off-target site

per gRNA) when using clinically relevant workflows (Cromer

et al., 2022b). Of bona fide sites, all were highly homologous to

the target sequence and predicted by the majority of in silico

methods included in the study. However, several sources have

shown that genetic variation amongst people can impact off-

target activity (Lessard et al., 2017; Lazzarotto et al., 2020;

Cromer et al., 2022a). Therefore, implementing a personalized

patient-specific workflow in gene therapy products may be

needed to circumvent the issue. Common SNPs can be taken

into account for in silico prediction, in vitro methods could be

personalized by using genomic DNA extracted from a patient

sample (Tsai et al., 2017; Lazzarotto et al., 2020), and some

cellular methods are amenable to use on primary cells from

patients (Wienert et al., 2019). However, this type of personalized

FIGURE 2
Challenges and potential solutions of current off-target detection methods. Created with BioRender.com.
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off-target analysis is limited by cost, logistical feasibility, and the

availability of patient material.

Taken together, researchers have a broad range of tools

available that allow them to identify potential off-target sites

in silico, in cell-free DNA in vitro, in live cells ex vivo, and in

animal models. By applying these tools sensibly in the

experimental design of therapeutic genome editing strategies,

off-target gene editing can be identified, and measures can be

taken to minimize these unintended events.

Methods to detect structural variation at
double-strand breaks

While the off-target detection methods described above are

most useful for identifying localized effects of DNA double-

strand breaks (DSBs), larger scale off-target effects have been

observed. These include gross chromosomal rearrangements

such as translocations (Bothmer et al., 2020; Stadtmauer et al.,

2020; Samuelson et al., 2021), chromothripsis (Leibowitz et al.,

2021), and aneuploidy (Amendola et al., 2022; Nahmad et al.,

2022). Translocation events most often occur as a consequence

of: 1) on-target cleavage and recombination with a homologous

region of the genome (Turchiano et al., 2021); 2) simultaneous

cleavage at an on-target and off-target sequence (Lattanzi et al.,

2021); or 3) following multiple on-target cleavage events in

multiplexed editing workflows (Qasim et al., 2017; Bothmer

et al., 2020; Stadtmauer et al., 2020; Samuelson et al., 2021;

Diorio et al., 2022). In addition, large-scale deletions either

surrounding the cut site or of the distal end of the

chromosome can occur (Cullot et al., 2019), as well as copy-

neutral loss-of-heterozygosity (Boutin et al., 2021).

Although targeted amplicon sequencing is commonly used to

report on small indels at the cut site, most standard sequencing

methods only allow sequencing of relatively short amplicons

(hundreds of base pairs). Detecting and quantifying large-scale,

multi-kilobase events with PCR-based sequencing methods thus

remains challenging (Figure 2B). This is due to several reasons: 1)

any deletion that eliminates primer binding sites would not be

efficiently amplified with standard sequencing methods and

would be missed; 2) if the primer binding sites are preserved

larger deletions could skew the PCR reaction towards shorter

amplicons and overestimate deletion events; and 3) other

undesired on-target events may include inversions, gene

duplications, and large insertions (Skryabin et al., 2020) that

may also evade detection by PCR-based methods. New No-Amp

long-range sequencing protocols avoid PCR and instead use

CRISPR-Cas9 to enrich for the sequence of interest up to tens

of kilobases. This PCR-free strategy circumvents size bias and can

identify large deletions and other structural variants at the target

site. However, limited read depth can make it difficult to detect

and quantify low-frequency events and low base-calling accuracy

of some methods may not achieve single base pair resolution

(Lang et al., 2020). However, if these sequencing methods are able

to improve and become cheaper, they may become the standard

for evaluating structural variants after genome editing.

In addition to large deletions, other genomic abnormalities

remain technically challenging to capture, especially when

occurring at low frequency. To identify translocations of the

on-target site with other genomic regions, several assays have

been developed (Zheng et al., 2014; Hu et al., 2016; Qasim et al.,

2017; Giannoukos et al., 2018; Yin et al., 2019; Turchiano et al.,

2021) which use a sequence at the on-target site as “bait” and

next-generation sequencing and bioinformatics to identify the

“prey.” This allows identification of genomic sequences that have

been fused to the on-target site. Another bioinformatic approach

analyzes multiplexed-PCR data for on- and off-target sites using

a pipeline specific for translocation detection (Amit et al., 2021)

which could allow these events to be quantified from pre-

existing data.

The delivery modality of the genome editing tools can also

introduce unintended effects. For instance, if the nuclease or

DNA repair template is delivered by adeno-associated virus

(AAV), there is the possibility that non-homologous

integration of inverted terminal repeats (ITRs) could occur

(Hanlon et al., 2019; Nelson et al., 2019), however this may

have minimal effect on adjacent genes if the template is

promoter-less. The introduction of DSBs by a nuclease

increases the amount of non-homologous integration of AAV

vector sequences (Miller et al., 2003; Miller et al., 2004), however

the overall frequency seems to be determined by the genomic

context and can range between 0.06% and 12.5% of total events

(Hanlon et al., 2019). These rare events can be captured with

long-range sequencing methods or by a recently developed next-

generation sequencing method, named ITR-Seq (Breton et al.,

2020), which can identify and quantify ITR integrations on a

genome-wide basis independent of the on-target site.

In summary, the field has made great progress in developing

methods that can identify structural variants including deletions,

inversions, duplications, insertions, and translocations. However,

absolute quantification of these events remains challenging due

to their low frequency of occurrence. While promising, novel

long-range sequencing strategies are still lacking read depth and

quality compared to traditional sequencing methods. As

structural variants are diverse it is currently not possible for a

single assay to capture all possible events, but future advances in

sequencing technology could allow for this to become a reality.

Methods to identify unintended editing
events in vivo

Most CRISPR-based therapies currently in the clinic rely on

isolation of patient-derived stem cells, ex vivo modification, and

re-transplantation. This approach thereby addresses the limited

availability of matched donors and risk of immune rejection or
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graft-versus-host-disease associated with allogeneic

transplantation. However, these strategies are only compatible

with cell types that may be safely isolated, modified ex vivo, and

transplanted back into the patient, such as HSPCs. Therefore, the

next frontier will be to deliver genome-editing components to

modify cells directly where they reside in the body.

Toward this end, many delivery modalities have been

developed and optimized to transduce clinically relevant cell

types in vivo (Long et al., 2016; Goldstein et al., 2019; Mangeot

et al., 2019; Gillmore et al., 2021). These platforms are now being

used to package and deliver CRISPR-based editing tools in vivo,

which has shown initial success in the first human clinical trials.

One of the most prominent of these trials was conducted by

Intellia where a liver-tropic lipid nanoparticle (LNP) was used to

deliver Cas9 mRNA along with a gRNA specific to the TTR gene

in order to treat transthyretin amyloidosis (Gillmore et al., 2021).

This strategy effectively lowered serum TTR levels up to 87%

from baseline in human patients, serving as a landmark study for

efficacy of Cas9 to achieve a clinical endpoint. While in vivo

Cas9 delivery was found to be quite effective in this instance,

there was limited data collected to confirm safety aside from the

absence of severe adverse events in these patients.

When delivering editing tools in vivo, there is only a single

desired outcome—on-target editing at the intended CRISPR

cleavage site in the intended target tissue (Figure 3). However,

a number of unintended consequences can occur following

delivery of editing tools to patients in vivo, such as: 1) off-

target genomic activity in the intended target tissue (off-target,

on-tissue); 2) on-target genomic activity in unintended tissue

types (on-target, off-tissue); and 3) off-target genomic activity in

unintended tissue types (off-target, off-tissue). Off-tissue events

in the gonads are of particular clinical and ethical concern since

these could result in changes to the germline which may be

transmitted to a patient’s offspring (Turocy et al., 2021). Despite

these fears and the use of methods to detect off-target

Cas9 activity in vivo in animal models (Akcakaya et al., 2018;

Wienert et al., 2020; Liang et al., 2022), no study to date has

investigated the frequency of unintended events following

delivery of editing tools to human patients in a clinical

context in vivo. In the seminal TTR Cas9-LNP paper, the only

investigation into off-target activity was done by performing

GUIDE-Seq ex vivo in hepatocytes (Gillmore et al., 2021). While

this is helpful in locating sites of potential off-target activity in the

patient’s genome, these results were not validated in vivo. In the

simplest form, clinically routine liver biopsies could have been

performed pre- and post-delivery (perhaps at sites both near and

far from the hepatic artery where the LNPwould have entered the

liver) to quantify the frequency of on- and off-target activity at

the on-tissue site. However, this approach would yield little

insight into CRISPR activity outside the liver, even though

this LNP was reported to edit the spleen, adrenal glands, and

ovaries at detectable frequencies. While the liver may be easily

biopsied, this is not a routine procedure for many other tissues,

particularly the ovaries. This therefore presents a major barrier to

ensuring the safety of in vivo CRISPR delivery.

A potential source of genetic material that could be obtained

in a minimally invasive fashion to determine the frequency of

intended and unintended editing events following in vivo

CRISPR delivery is cell-free genomic DNA (cfDNA). CfDNA

is primarily derived from dying cells that release their genomic

material into the bloodstream. Because of this, assaying cfDNA

may be a powerful approach for detecting potentially pathogenic

effects of CRISPR delivery, either in terms of genotoxic or

oncogenic editing events. While cfDNA has primarily been

used in the diagnostic space to detect occurrence/relapse of

cancer (Bronkhorst et al., 2019), this technology is sensitive

enough to sample maternal blood to discover de novo

mutations in the fetus during pregnancy (Kitzman et al.,

2012). In fact, a proof-of-concept study used cfDNA to map

insertion sites following in vivo delivery of lentiviral vectors

(Cesana et al., 2021). Therefore, a comparable strategy could

be employed to quantify the frequency of on- and off-target

cleavage activity following in vivo CRISPR delivery. However,

unlike the workflow developed for mapping lentiviral insertions

which relies on sequencing outward from the vector backbone,

mapping sites of CRISPR activity may be aided by defining high-

likelihood regions of activity. This could be done using in silico or

empirical off-target detection methods defined above, and

candidate regions could then be probed for indels by targeted

deep sequencing of cfDNA. An alternative approach that would

not require defining CRISPR off-target sites a priori could be to

use translocations as a surrogate for on- and off-target activity by

adapting technologies such as LAM-HTGTS (Hu et al., 2016),

CAST-Seq (Turchiano et al., 2021), or PEM-Seq (Yin et al., 2019)

to use patient cells or cfDNA as input. Furthermore, if using

FIGURE 3
Possible outcomes of in vivo genome editing.
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cfDNA isolated from peripheral blood is successful, a similar

approach could be used to detect occurrence of CRISPR activity

in cerebrospinal fluid (CSF) as well to quantify the ability of

genome editing tools to cross the blood-brain barrier and edit

cells residing in the brain, which may not be safely biopsied.

While cfDNA presents an opportunity to quantify on-target

and off-target editing, it may give little insight into the tissue of

origin. To shed light on this without invasive biopsies, the use of

cell-free RNA (cfRNA) is a possibility. Analogous to the use of

cfDNA, workflows to isolate cfRNA from the peripheral blood

have been developed that allow insight into the tissue of origin

due to the predominant expression patterns of cells releasing

DNA and RNA into the bloodstream (Cheung et al., 2019).While

the degree to which tissue-of-origin could be gleaned from this

approach has yet to be fully explored, the investigation of on- and

off-target CRISPR activity at expected cleavage sites in cfRNA

could determine whether intended or unintended genome

editing results in changes to the transcriptome. Since sites of

CRISPR off-target activity typically reside in intergenic regions of

the genome with no known functional significance (Cromer

et al., 2022b), it is possible that CRISPR activity will be

detected in cfDNA, but not in transcribed cfRNA. This could

be an important measure to assay efficacy and safety of in vivo

editing immediately following therapeutic delivery as well as over

time. The combined cfDNA/RNA approach could also be an

effective way to detect pathogenic clonal expansion of edited cells

following treatment. In this specific use case, it may not be

necessary to have identified the initiating driver genomic event,

but even oligoclonality of passenger events—such as a particular

indel at the on- or common off-target sites—could allow us to

infer that clonal expansion is occurring. Importantly, the

strategies proposed are most likely to capture and monitor the

frequency of small site-specific indels, and more sophisticated

methods (like those described earlier) may be needed to identify

large genomic aberrations in cfDNA/RNA.

Linking genomic outcomes to off-target
significance

Even when we can successfully identify off-target CRISPR

effects, determining if an unintended editing event is of concern

to the patient’s health remains challenging (Figure 1). Broadly

speaking, off-target genomic events are most likely to either elicit

no effect or result in a loss or gain of fitness. While loss of fitness

will likely result in drop out of the cell carrying the undesired

event, gains of fitness are of greater concern due to the possibility

of oncogenicity. Although site-specific off-target effects are

infrequent (Cromer et al., 2022b), in the event that they do

occur, the likelihood of directly disrupting another gene is small

(only 1% of the human genome is coding DNA and only 7.2% of

predicted off-target sites for exon-targeting gRNAs fall in exonic

regions). And while modifications to non-coding DNA

sequences may alter gene expression patterns or modify

elements with as-yet-unknown important functions (ENCODE

Project Consortium, 2012) interpreting non-coding genomic

disruptions is difficult. As our understanding of the function

of non-coding regions of DNA improves, we may better predict

the impact of off-targets modifications in the future. Until then,

we must rely on methods that can measure oncogenicity and

toxicity from off-target modifications events in vitro or in vivo.

The most conventional approach to assess tumorigenicity of

cell products is implanting cells at an ectopic site in

immunodeficient mice followed by monitoring for tumor

growth and other adverse events (Human Gene Therapy

Products Incorporating Human Genome Editing | FDA). One

major caveat of this method is that it has limited sensitivity,

depends on the animal model used, and may miss low frequency

events (Sato et al., 2019). Alternative in vivo approaches have

developed technology to track clonality of cell-based products

following ex vivo HSPC editing and transplantation through

barcodes included in the HDR template (Ferrari et al., 2021;

Sharma et al., 2021) or by tracking indel diversity (Magis et al.,

2022). These technologies can identify clones that have expanded

abnormally and hint towards genomic events that led to the

oncogenic transformation. Currently these approaches have been

limited to research applications but could potentially also be

incorporated in therapeutic workflows in the future. However, in

vivo studies are time- and cost-intensive and can slow down the

drug development process immensely. Thus, in vitro studies that

measure oncogenicity or genomic instability would be preferred,

though these may not properly recapitulate in vivo activity.While

performing whole genome sequencing on every cell product for

every patient would ensure an unbiased approach of variant

discovery across the whole genome, the currently limited

coverage per base pair would miss low-frequency events.

Using an intermediate approach of exome sequencing the

most commonly mutated oncogenes and tumor suppressors

increases read depth significantly and could provide a feasible

alternative to assess the safety of ex vivo gene therapy drug

products (Cromer et al., 2022a).

While the above work focuses on unintended off-target

effects, even unintended on-target effects can lead to adverse

effects. For instance, when a therapeutic editing approach targets

a coding sequence—like knocking out a pathogenic gene to

correct a disease phenotype (Gillmore et al., 2021)—an array

of indels will form at the cut site. A recent report has shown that

Cas9-induced indels can result in the formation of disrupted,

non-natural mRNAs, which can be translated into aberrant

protein products (Tuladhar et al., 2019). This study found

that indels can induce internal ribosome entry sites to

produce alternative mRNAs or induce exon skipping by

disrupting exon-splicing enhancers. The same study also

provided a bioinformatic tool to help design gRNAs to avoid

such events (Tuladhar et al., 2019). Since truncated protein

products could exert a dominant negative function (Savas
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et al., 2006), potential undesired translated proteins should be

studied carefully. Properly characterizing the genome-edited cell

population by combining on-target amplicon sequencing with

mRNA sequencing and proteomics may allow us to identify and

develop strategies to reduce the occurrence of such events.

Taken together, linking genomic events to oncogenicity is

difficult and currently available in vitro and in vivo assays often

lack sensitivity. Progress has been made to develop barcoding

technologies that can track transformed cells and next-

generation sequencing methods such as exome and RNA

sequencing can also help identify oncogenic events.

Approaches to reduce off-target and off-
tissue editing

As we learn more about the types of editing events that can

occur at on- and off-target sites, many researchers are developing

methods to reduce off-target effects altogether. These efforts

range from protein engineering to make nucleases more

specific to the discovery of novel, more specific delivery

vehicles of genome editing reagents in vivo (Figure 4).

Careful nuclease selection and gRNA selection is often the

first step when designing a de novo genome editing strategy (Lee

et al., 2016). While a number of CRISPR nucleases have been

discovered (Swarts and Jinek, 2018; Li and Peng, 2019), the

majority of clinical efforts to date have used one of the original

enzymes characterized, Streptococcus pyogenes Cas9 (SpCas9)

(Jinek et al., 2012). This nuclease is one of the most common

due to its relatively unrestrictive protospacer adjacent motif

(PAM) and its high frequency of cleavage activity at a wide

variety of loci in a range of cell types across a number of

organisms, from humans to Arabidopsis (Mali et al., 2013b;

Miki et al., 2018). While this nuclease typically has few

genomic sites of off-target activity, some of these can be cut at

high frequencies (>30% of alleles harboring indels), depending

on the specificity of the particular gRNA (Cromer et al., 2022a).

To address this, more specific versions of Cas9 have been

engineered which reduce off-target activity by > 20-fold (Chen

et al., 2017; Vakulskas et al., 2018; Bravo et al., 2022; Kulcsar et al.,

2022). In doing so, incorporation of these higher-fidelity

Cas9 variants has been shown to reduce the risk of large-scale

genomic rearrangements (Turchiano et al., 2021). In addition to

engineering more specific nucleases, a study that fused Cas9 to

the exonuclease TREX2 in order to prevent perfect DNA repair

reported significantly fewer large deletions and nearly eliminated

chromosomal translocations during multiplex editing in T cells

(Yin et al., 2022).

The format in which Cas9 is delivered—most often DNA,

mRNA, or ribonucleoprotein (RNP)—will alter

Cas9 expression and duration of exposure. This in turn has

been shown to impact off-target activity, with short half-life

RNP and mRNA resulting in lower off-target activity than

longer-lived DNA formulations (Cameron et al., 2017; Lu

et al., 2019; Zhang et al., 2021). In addition, tunable/

inducible control strategies have been incorporated to

regulate CRISPR expression using bioavailable small

molecules, (Truong et al., 2015; Zhao et al., 2018), light

(Nihongaki et al., 2015), and even magnets (Hsu and Hu,

2019). Similarly, other groups have developed self-inactivating

Cas9 and AAV delivery vectors that may prevent prolonged

exposure to genome editing tools and therefore reduce the

likelihood of unintended activity or genomic events (Li et al.,

2019; Ibraheim et al., 2021). However, depending on the tools

these strategies are applied to, there remains the potential for

off-target activity or large-scale genomic rearrangements

following creation of DSBs. Furthermore, in their current

forms, most approaches are only compatible with ex vivo

editing workflows where high efficiency delivery of large

payloads is possible.

All nuclease-based genome editing applications rely on DSB

resolution, therefore modifying the cell’s natural DNA damage

repair pathways has emerged as a strategy for increasing the

ratio of intended to unintended genomic events (Yeh et al., 2019;

Xue and Greene, 2021). For example, transiently inhibiting non-

homologous end joining (NHEJ)-mediators such as 53BP1 orDNA-

dependent protein kinase catalytic subunit can decrease indels and

increase precise genome editing outcomes through homology-

directed repair (Robert et al., 2015; Canny et al., 2018;

Riesenberg and Maricic, 2018; Riesenberg et al., 2019). While

some work has been done to determine which DNA repair

enzymes are responsible for the formation of small indels

(Hussmann et al., 2021), less is known about the factors that

promote large deletions. Recently, a study that used a clonal

library of embryonic stem cells deficient for DNA repair genes

FIGURE 4
Strategies to reduce unintended genome editing events.
Created with BioRender.com.
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found that inhibition of NHEJ-mediating enzymes increased

frequencies of large deletions, while inhibition of

microhomology-mediated end joining-mediating proteins

decreased them (Kosicki et al., 2022). Of course, it is crucial to

ensure that temporarily inhibiting DNA repair enzymes does not

affect other regions of the cell’s genome. Another study has shown

that the presence of an HDR template such as a single-stranded

oligodeoxynucleotide or AAV donor can reduce the frequency of

large deletions by 50%–80% (Wen et al., 2021), emphasizing the

importance of testing unintended editing outcomes in the context of

both the nuclease and the DNA donor.

While Cas9 nuclease technology continues to improve,

recent editing tools replace this nuclease with a nickase to

introduce single base pair changes or small site-specific

modifications, most commonly in the form of single or dual

nickase editing (Ran et al., 2013), base editing (Komor et al.,

2016), or prime editing (Anzalone et al., 2019). Although these

tools avoid formation of DSBs and likely reduce the frequency of

large-scale genomic rearrangements, there is still the possibility

of unintended off-target activity. In the case of base and prime

editors, this arises from the tethering of Cas9 with deaminases

and reverse transcriptases, respectively. In fact, some studies have

reported that base editors can initiate off-target activity at sites

with little homology to the gRNA (Jin et al., 2019; Zuo et al., 2019;

Lei et al., 2021) and in a significant proportion of cellular mRNA

(Grünewald et al., 2019a). In addition, base editor-induced

modifications are often single nucleotide variants which are

more difficult to detect by next-generation sequencing than

localized indels introduced by traditional CRISPR nucleases.

Ongoing efforts continue to engineer improved versions of

these base editors to reduce off-target activity (Rees et al.,

2017; Grünewald et al., 2019b; Li et al., 2022).

The above advances primarily concern the editing tools

themselves, which is most likely to boost on-target effects and

reduce unintended off-target consequences. However, these

improvements will likely have limited impact on the ratio of

on-tissue to off-tissue activity following in vivo delivery of editing

tools. Toward this end, many groups are working to improve

specificity of the delivery modalities themselves. This includes

screening for vectors or nanoparticles that have specific tissue

tropisms, such as those optimized to cross the blood-brain-

barrier, to transduce vascular tissue, and more (White et al.,

2004; Choudhury et al., 2016; Sago et al., 2018; Boehnke et al.,

2022). There also are efforts to conjugate cell type-specific

antibodies to delivery vectors to improve targeted in vivo

delivery (Tombácz et al., 2021). While preliminary, this

approach may be an effective means to improve on-tissue

editing when injecting delivery vectors systemically.

In the early stages of development, but with great translational

potential, are strategies to encode logic into cells (i.e., to introduce

DNA code capable of responding to a given cellular state). As with

CRISPR,many of these efforts use RNA-based homology to facilitate

downstream expression of transgenes in the presence of a user-

defined RNA sequence (Green et al., 2014, 2017; Kaseniit et al.,

2022). Several proof-of-concept studies demonstrated that this

technology could be used to encode complex logic into cells,

such as multi-input OR, AND, and NOT gates. While much of

this work was done in E. coli or human cell lines, if an analogous

system was ported to clinically relevant primary cells it could allow

genome editing tools to only be expressed in cells with a particular

gene expression profile—effectively reducing or eliminating off-

tissue activity.

Concluding remarks

All the above efforts have been aimed at reducing unintended

off-target and off-tissue activity. However, because millions or

billions of cells are transplanted with ex vivo therapies, and

billions or trillions of cells may be transduced with in vivo

delivery vectors, any degree of unintended activity has the

potential to be deleterious. Jennifer Doudna stated that

one day she hopes to see CRISPR become a “standard of care”

(Jennifer Doudna andWilliam Kearney). If this is ever to become

a reality, how do we make these therapies safe enough to be

delivered routinely to patients?

While anymanipulation to the genome opens the possibility for

unwanted genetic events, we believe advances in off-target/off-tissue

detection methods and improvements in genome editing tools and

delivery modalities will ultimately allow personalized medicine to

become a reality. As the development of advanced tools allows us to

introduce increasingly complex features (and even logic) into cells,

we will likely have to establish increasingly complex safety

mechanisms as well. These may include automatic or inducible

safety switches that provide a necessary safeguard in the instance of

adverse clinical events (Di Stasi et al., 2011; Liang et al., 2018;Martin

et al., 2020). And while initial data from CRISPR-based therapies in

the clinic (both ex vivo and in vivo) has shown incredible promise, as

greater numbers of patients receive genome editing treatments, we

must ensure that editing safety keeps pace with efficacy. If CRISPR is

ever to become the standard-of-care, then all of us—basic biologists,

synthetic biologists, bioinformaticists, and clinicians—will have to

combine efforts to ensure that genome editing therapies are as safe

as possible.
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