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Sequential Connectionist Networks for Answering Simple Questions
about a Microworld

Robert B. Allen
Bell Communications Research

Sequential back-propagation networks were trained to answer simple questions about objects in a
microworld. The networks transferred the ability to answer this type of question to patterns on which
they had not been trained. Morcover, the networks were shown to have developed expectations about the
objects even when they were not present in the microworld. A variety of architectures were tested using
this paradigm and the addition of channel-specific hidden layers was found to improve performance.
Overall, these resulls are directed to the approach of building language users with connectionist networks,
rather than language processors.

Introduction

Because neural algorithms such as back-propagation [9] are such effective techniques for machine
learning, it is now possible to seriously consider developing systems which learn to use language.
Moreover, neural networks have many other characteristics which make them especially suitable for such
an effort. They are sensitive to context, they can adapt to exceptions, and input from diverse sources can
be easily combined. The concept of developing a language user is an alternative to the usual approach in
artificial intelligence of attempting to process the components of language and then to synthesize an
"understanding” from those components. Rather, the approach suggested here is (o train networks under a
broad enough range of conditions to be able to understand and respond with language-like stimuli.
Polentially, this approach may provide a robust basis for linguistic processes ranging from translation [1]
to speech recognition. Of course, the extent to which these networks can be said to actually "have’
language may well be as difficult and controversial as the evaluation of linguistic capabilities of apes (see
(7).

In the research described here, sequential networks were trained (o accepl language-like stimuli which
refer to objects in the microworld. This paradigm is based on the assumptions that language is most
readily acquired through interaction with the world [1] and that language learning is essentally a
supervised learning process. Inputs of two types were employed, a coded microworld and sequential
verbal codes, which formed questions about the microworld. One type of sequential network which
might be applied lo this task is shown on the left of Fig. 1. This network, which may be termed an
oulpul-feedback network, was developed by Jordan [6] to model articulation. The output units from one
cycle feed “state’ units which are used as extended inputs for later cycles. As shown on the right side of
Fig. 1 a variation of that procedure, suggested by Elman [4], draws [eedback from the hidden layer rather
than the output layer. Fig. 2 presents a sequential network which may be termed a generalized
hierarchical-sequential network. In this network inputs are divided into separate channels and have extra
hidden layers for each of the sets of input units, as well as for the state units. This architecture has the
advantage of being modular, hence it might be readily adapted to multi-processor computers and perhaps
specialized perceptual hardware.
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Fig. 1. Simple sequential networks with feedback from output and hidden unuts.
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Fig. 2. Generalized hierarchical-sequential network.

Procedure

Coding

The verbal inputs were composed from questions from a vocabulary of 27 terms which were coded with
randomly assigned 6-bit -1/1 codes. There were 16 output terms and their coding was randomly selected
from 5-bit 0/1 codes. One set of inputs presented static codes which were characterized as objects in a
'perceptual’ field. The perceptual field was composed of 3 slots, each slot consisting of 5 bits, in which
any one of 8 objects could appear. 3 of these bits encoded the objects themselves and (wo additional bits
coded features. The objects themselves were coded with randomly selected -1/1 codes, while empty slots
were filled with nulls. In addition to the 3 bits which uniquely specified the objects, two additional bits
were correlated with each object in the proportions shown in Table 1. While the probabilistic features
will be more difficult to learn than perfectly correlated features, they are necessary lo guarantee that the
network attends to the microworld. On one hand, these bits might be considered to be an explicit feature
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such as color. For instance, it would be possible to say that object, had color,. Alternatively, these bits
could be thought of as context bits. For instance, some objects are highly correlated with places, while

other objects are less likely to be correlated. The additional bits were associated with the objects in the
following proportions:

object | feature
A B

1 9 9

2 8 9

3 J 9

4 6 9

5 4 1

6 3

7 %

8 A0

Table 1. Probability of object tokens having features A and B,
Question Construction and Sequential Presentation

The sequential presentation of verbal information is illustrated in Table 2. In the example two objects are
in the perceptual field, object, in slot, and object, in slot,. Across the four intervals, the coded forms of
the words is, this, object,, and fA  are presented. Because the input is sequential, correct outpul
responses were generally not known until the question was complete. Before the correct output is known
error values of zero were back-propagated. (A similar procedure in which there was no back-propagation
on those trials produced similar, but slightly worse results.) These cycles are indicated by *** in the table
and termed don't care cycles afler the don’t care units of Jordan.

perceptual verbal verbal

interval input input output
1 o,/fA,/fB,  o/fA /(B null | is ey
2 o,/fA/fB, o /tA /(B null | this A%
3 \ 0,/fA/fB,  o/fA /B, null | object, || ***
4 || o,/fA/IB, o/fA /B, null | fA, yes

Table 2. Sequences of codes for typical question answering procedure.

Input/output patterns were prepared from the templates shown in Table 3. With the excepltion of a few
very simple commands (e.g., repeat, describe), the input patierns were questions. A question such as
What fA is the objX, might be read, with nouns inserted, as What color is the car? While the answer,
fAX,, might be read blue. Clearly, the templates are somewhat ad hoc and stylized. The questions were
associated with appropriate perceptual inputs; thus, the 8 objects could appear in 3 slots of the perceptual
field. In cases with two objects in the perceptual field and only one of them was necessary to answer the
question, the second object was randomly selected and its features were constrained so as not to conflict
with the question. When questions could be answered yes/no, equal numbers of yes and no questions
were prepared. 3242 unique inputs were generated, and from this set 25 were randomly chosen for
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transfer.

Network Parameters

The weights from the hidden unils to the state units were fixed at 1.0 and the self-weights on the state
units were 0.5. All of the other weights were adaptive with N=0.01 and =0.9. The networks described
below were trained for 200K pattern presentations. Except as noted below, the simple networks had 15
perceptual units, 6 verbal input units, 50 state units, 50 hidden units, and 5 output units. In addition, the
hierarchical networks had 15, 6, and 50 units in the perceptual, verbal, and state-hidden layers
respectively. At the beginning of each question the state units were reset 10 zero; lests demonstrated that

: Obj_e_Cl absent

Allen

verbal input

repeat objX
repeat fAX,
repeat BX,

one object present

repeat objX,

repeat fAX,

repeat BX,

what do you see
describe what you see
is this the objX,

do you see the objX,
is this objX, fAX,

is this objX | fBX
what fA is the objX
what 1B is the objX

what is the fA of the objX
what is the B of the objX

is the objX in the slotS1

two objects present

is the objX, fAX,

is the objX, 1BX,
which is fAX
which is (BX,

what fA is the objX,
what {B is the objX

what is the fA of the objX,

what is the {B of the objX,
is the objX, in the slotS1

is the objX over/under the nijz
which is over/under the objX |

) \rerbai_oﬂl_éul |

objX,
fAX,

TAX
BX
fAX
fBX,

yes/no
yes/no
objX,

1
1
|

Table 3. Input/output templates.

learning occurred without reset, although it was faster and belter with resets.
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Results

The transfer set consisted of 25 questions and because each question required a one word (5 bit) response,
a total of 125 bits had to be generated. The sequential network with feedback taken from the output (left
side of Fig. 1) made errors on 29 bits (12 words). The hidden layer feedback network (right side of Fig.
1) performed somewhat better, with 23 bit errors and 9 word errors. Indeed, more complex networks
(e.g., the PVS, see Table 4) made as few as 6 bit errors and 2 word errors (see below). It is perhaps
remarkable that these networks can learn this task because they rarely get explicit training for storing
words in the early part of the sentence. For instance, in questions such as the one shown in Table 2, the
network has to remember that the question concerns object,.

Architecture Manipulation

The hierarchical-sequential network (Fig. 2) can be thought of as a family of networks which may be
tested separately. The errors for the 8 possible networks (formed by all possible combinations of the
presence/absence of the perceptual, verbal, and siate hidden layers) is shown in Table 4. As a short
notation, these networks may be referred to with three-letter codes for instance, a PNS network would
have a perceptual hidden layer, no verbal hidden layer, and a state-hidden layer. The NNN network is the
network shown at the right side of Fig. 1. All of the other networks perform better than the NNN
network, and the best is the PVS network.

S

o F 1 N L
N[ 239 74) | 178) 12(6)
VII86) 145) | 140D 62)

Table 4. Bit errors (word errors) for different networks.

Additional tests showed that these results replicated, essentially following the pattern in Table 4.
However, with other data sets the PVS network is not consistently found to be best. Moreover,
considerable caution must be exercised in comparing the different architectures in Table 4 because they
include different numbers of neurons and weights. As a control for this, several other networks were
tested. First, an output feedback network (left side of Fig. 1) with 100 hidden units was tested; this
performed relatively poorly, 26(13). As a second test, a NNN network with 65 units in both the hidden
and state layers was tested, this had 13 bit errors and 9 word errors.

Several other architectures, related to hierarchical-sequential network described above, may also be
considered. For instance, a network was invesligated in which the state units and a state hidden layer
were attached to the verbal hidden layer. With 30 hidden units, 20 verbal hidden units, 20 state units, and
20 state-hidden units, this network performed the task with 11 bit errors and 6 word errors.

Semantic Memory and Categorization

Previous connectionist research on semantic memory [5, also Rumelhart unpublished] may be extended
by considering semantic memory in this paradigm with explicit verbal training. Thus, the PVS network
trained above was presented with the question What fA/B is the object,? when the object was absent
from the perceptual field. The decoded responses are shown in Table 5, where 1 or 2 indicates one of the
features belonging lo that feature type, and X indicates an apparently meaningless answer. For 7 of the
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objects the network learned the correct values of fB, which is more consistently associated with the

objects than fA (see Table 1). However for fA, the network consistently assumed that all objects had one
feature value with the exception of object, which caused an error.

object | featre

imqa\mhmm—}
mmmwwwmx!}
MMNN—-——Xiw

Table 5. Responses to feature questions with the object absent.

Additional tests have demonstrated that networks can learn about features although the features are
never presented in the microworld. Moreover, the networks have been found to readily learn category
names for grouping objects. On the other hand, a network in which the microworld was entirely absent
showed only a small improvement above chance performance.

An Extended Generalization Test

When working with complex stimuli such as the questions and microworlds used here it is possible to
consider generalization at many levels. While the transfer test described above consisted of randomly
selecting test cases from a corpus in which the same question was often asked about several different
configurations of the perceptual field, the test described here completely dropped training on one question
and then tested that question during transfer. Specifically all 41 questions were removed from the corpus
which asked whether object; had fA,. Although other questions asked whether object, had fB, and
whether other objects had fB,. A PVS nectwork trained on the patterns which were not deleted,
transferred quite well with 6 bit errors and 4 word errors.

Discussion

Networks were shown 1o learn and transfer the ability to answer questions in which coded "verbal’
questions and objects are presented sequentially. Morcover, evidence was presented for the utility of
hierarchical-sequential networks. Nalturally, this research may be extended in many ways. For instance
in the sequential verbal input paradigm, linguistic constructs such as plurals or negation could readily
incorporated. Indeed [8] reports the comprehension of pronouns which refer to objects in the microworld.
In addition, the contribution of the hidden layers might be investigated through either analysis of the
activations or parametric manipulation of the numbers of units. Presumably the additional hidden layers
in the hierarchical network transform the input encoding to an encoding which is more easily intergrated
with the other sources of information. In the case of the perceptual inputs this suggests that language can
alfect perception, in other words a type of linguistic relativity.

The research described here has focused on the task of answering questions as a means of generating

feedback for language training. While this may seem restrictive at first, it is possible to imagine many
variations in which the training would be less explicit. For instance, the questions might not be directed

494



Allen

to the network. 1f the question were posed 1o a different agent which made the response, the agent which
is acquiring language might learn pairings of input and output from observation and perhaps imitation of
the other agent. Furthermore, aside from answers (o explicil questions there are many types of feedback
for language use such as correctly completing a verbal command or instruction.

Finally, the strategy of developing language users which interact with a microworld may be extended
beyond sequential verbal inputs. Additional work is underway in which verbal and microworld
information is combined to produce language-like behavior, for instance networks which generate
sequential outputs and manipulate the microworld [2] and multiple networks which communicate to
complete tasks [3].
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