
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Near Memory Processing in Hybrid Memory System: 3D-DRAM vs. 3D-NVM

Permalink
https://escholarship.org/uc/item/8144z1mz

Author
S. Hosseini, Maryam

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8144z1mz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Near Memory Processing in Hybrid Memory System
3D-DRAM vs. 3D-NVM

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Maryam S. Hosseini

Dissertation Committee:
Professor Nader Bagherzadeh, Chair

Professor Jean-Luc Gaudiot
Professor Philip Sheu

2021

Portion of Chapter 1 © 2021 IEEE
Portion of Chapter 3 © 2021 IEEE
Portion of Chapter 4 © 2021 IEEE
Portion of Chapter 5 © 2021 IEEE

Appendix A © 2018 IEEE & 2020 ACM
All other materials © 2021 Maryam S. Hosseini

DEDICATION

To
My dearest loving deeply missed Mom,

forever you remain in my heart and my soul

My loving husband Pooria,
for his true love and support

My dear Dad,
for always believing in me

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES xi

ACKNOWLEDGMENTS xii

VITA xiii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Dissertation Contributions . 5
1.2 Dissertation Organization . 6

2 Motivation 8
2.1 Emerging Data-Intensive Applications . 8
2.2 An Overview on Memory Technologies . 10

2.2.1 Volatile Memory Technology . 10
2.2.2 Non-Volatile Memory (NVM) Technology 13

2.3 Conventional Computing Architectures . 20

3 Background and Related Work 24
3.1 3D-Stacked Memory Technology . 24
3.2 Processing Using Memory (PUM) . 26
3.3 Processing In Memory (PIM) . 27
3.4 Near Memory Processing Based on 3D Stacking (NMP) 28
3.5 Summary . 31

4 Application Characterization for Near Memory Processing 33
4.1 Application Set . 33
4.2 Simulation Setup . 36
4.3 Characterization Methodology . 37

4.3.1 Roofline Analysis . 38
4.3.2 Temporal and Spatial Data Locality 43
4.3.3 Memory Access Behavior . 45
4.3.4 Read Disturbance . 50

iii

4.4 Insights and Discussions . 52
4.5 Summary . 54

5 Near Memory Processing in Hybrid Memory Systems 56
5.1 NMP Hardware Architecture in Hybrid System 57
5.2 Evaluation Methodology . 59

5.2.1 Simulation Models . 60
5.2.2 Memory Model Parameters in NVMain for DRAM and PCM Tech-

nologies . 63
5.2.3 Applications . 63

5.3 Evaluation Results . 63
5.3.1 Performance Comparison . 67
5.3.2 Memory Power Consumption Comparison 70

5.4 Summary . 71

6 Conclusion and Future Work 72
6.1 Put it All Together . 72
6.2 Summary of Contributions . 73
6.3 Future Work . 74
6.4 Concluding Remarks . 75

Bibliography 76

Appendix A Algorithmic Approaches to Accelerate Emerging Applications 89
A.1 Approach One: Heterogeneous TensorFlow Mapper 89

A.1.1 Introduction . 90
A.1.2 Background . 93
A.1.3 HTF-MPR . 96
A.1.4 Extract Operations . 98
A.1.5 Experimental Results . 105
A.1.6 Summary of Approach One . 109

A.2 Approach Two: Adaptive Heterogeneous TensorFlow Mapper 110
A.2.1 Introduction . 110
A.2.2 Background . 112
A.2.3 HTF-MPR . 118
A.2.4 Adaptive HTF-MPR . 124
A.2.5 Experimental setup . 133
A.2.6 Results . 136
A.2.7 Summary of Approach Two . 147

iv

LIST OF FIGURES

Page

1.1 Memory Wall problem and Moore’s Law. Figure is taken from [5]. 2
1.2 Micron’s Hybrid Memory Cube (HMC) chip architecture. Figure is taken

from [3]. 4

2.1 Architectural requirements for data-intensive applications. 10
2.2 The 6T SRAM cell structure: Access to a cell is enabled by the word line (also

called row) which controls the two access transistors in the cell. The bitlines
(also called columns), B and B, are used to transfer data for both read and
write operations. 11

2.3 The DRAM cell structure: Stored charge in the tiny cell capacitor is used to
store values. (a) Negative and (b) positive stored charge in the cell represents
’0’ and ’1’, respectively. 12

2.4 The PCM cell structure: A heater (resistor) and chalcogenide material are the
main components of the PCM cell. (a) High resistance of the chalcogenide
layer in the amorphous state, (b) Low resistance of the chalcogenide layer in
the crystallized state. 14

2.5 The STT-RAM cell structure: (a) The same polarization direction on free and
fixed ferroelectric layers leads to the low-resistance state of stacked ferroelec-
tric layers, (b) Different polarization directions leads to the high-resistance
state. 16

2.6 The ReRAM cell structure: (a) The conductive path inside metal oxide layer,
generated by applying voltage to the top and bottom electrodes, determines
the set state of ReRAM, and (b) the reset state. 17

2.7 The FeRAM cell structure: The applied voltage to top electrode and bottom
electrode can change the polarization of ferroelectric layer to positive (a) and
negative (b) polarization. 18

2.8 Conventional multi-core computing system architecture based on a CPU-
centric approach where data is moved to the core for processing. In this
architecture, DRAM as the predominant data storage technology is used to
build main memory. 21

2.9 DRAM improvements in terms of capacity, bandwidth, and latency over two
decades (from 1999 to 2017). Figure is taken from [106]. 22

v

3.1 The overall architecture of a system with NMP capability. An application
can run on the Host CPU system as in the conventional manner, or it can be
offloaded to the NMP subsystem in which data can be accessed more efficiently. 29

3.2 Conceptual view of a NMP architecture based on 3D die stacking. The most
bottom layer which is called logic layer can embed processing cores. Each
processing unit can utilize high-bandwidth, low-latency, and low-power TSV
connection to access data in memory with higher internal bandwidth. 30

3.3 Processing options (memory-centric versus computation-centric) in the mem-
ory hierarchy. Memory-centric approach can be applied to any level (main
memory or storage memory) and type (volatile or non-volatile, 2D planner
memory or 3D-stacked memory) of memory in the memory hierarchy. 32

4.1 Application characterization methodology with system architecture simula-
tion as a performance/power evaluation technique. 38

4.2 Constructed Roofline model for the modeled multi-core Host CPU system
with 8-core ALPHA processor running at 2 GHz frequency, peak floating point
performance of 240 GFlops/sec and peak memory bandwidth of 85.3 GB/s
(theoretical). For each application, Roofline data point is shown on the graph
based on its operational intensity and attainable performance. The minimum
operational intensity to get the maximum performance is π/β = 2.81 Flop-
s/Byte. As it is shown, applications with operational intensity less (more)
than 2.8 are categorized as Memory-bound (Performance-bound). 40

4.3 Application categorization based on OI and Roofline model of the simulated
Host processor analyzed in this dissertation. As it is depicted, applications
with OI less than 2.8 are categorized as memory-bound and applications with
OI greater than 2.8 are bounded by performance (Performance-bound). . . . 42

4.4 Temporal data locality sweeping LLC capacity 8-64MB with fixed cache-line
size of 64B across all compute-bound applications. 44

4.5 Spatial data locality sweeping cache-line (LLC) size 32-256B with fixed cache
capacity of 16MB across compute-bound applications with poor/no temporal
data locality. 44

4.6 Memory bank organization. Each bank in memory has a row buffer that
caches the last accessed row. A row buffer hit is much cheaper than a row
buffer miss. Figure is adopted from [106]. 47

4.7 Application characterization based on row buffer locality (RBL). Left y-axis
shows row buffer hit and miss counts, and right y-axis indicates RBL (RB
hit rate) for all the evaluated applications across all memory channels. Along
x-axis, applications are sorted based on their memory intensity, from highest
to least. 48

4.8 Application characterization based on average R-to-W ratio. Left y-axis shows
memory accesses (read and write accesses) across all evaluated applications.
Along x-axis, applications are sorted based on their memory intensity, from
highest to least. 49

vi

5.1 An envisioned hybrid processing system where a multi-core Host CPU with
large cache hierarchies is connected to a hybrid NMP subsystem. In each
NMP subsystem, multiple memory layers (composed of many memory banks)
are stacked on top of a logic layer that provides the computation ability with
high internal parallelism. In this architecture, an application can run on the
Host CPU system as in the conventional manner, or it can be offloaded to one
of the NMP subsystems in which data can be accessed more efficiently. . . . 58

5.2 Performance (speedup) comparison based on average IPC between Host CPU,
3D-PCM NMP, and 3D-DRAM NMP systems across all memory-intensive
applications. Along the x-axis, applications are sorted by memory-intensity
(LLC MPKI), from highest to least. IPC results are normalized to the Host
CPU system. 68

5.3 Memory access latency comparison between Host CPU, 3D-PCM NMP, and
3D-DRAM NMP systems across all memory-intensive applications, normal-
ized to the Host CPU system. Along the x-axis, applications are sorted based
on memory intensity (LLC MPKI) from highest to least. 69

5.4 Memory power consumption across all memory-intensive applications for Host
CPU and two different NMP execution cases, normalized to the Host CPU
system. 70

A.1 Artificial Neural Network and its TensorFlow depiction 91
A.2 Example of a model in TensorFlow, and of device-operation mapping 93
A.3 HTF-MPR workflow. 99
A.4 Examples of some initial mappings; a and b are homogeneous (single device),

c,and d are longest paths, e is non-longest path, and f is color-mapped. . . . 101
A.5 Cross-Validation using k-fold. 103
A.6 Breeding using a stochastic method. Newly generated mapping takes more

from the fitter mapping parent . 104
A.7 Breeding using Crossover points. In this case 2 crossover points resulting in

6 new mappings . 104
A.8 Predictive Model performance using k-fold (k=5) and different ML algo-

rithms. The chart shows the average from 5 runs and includes the standard
deviation of the 5 runs. SVR: Support Vector Regression, Ridge: Ridge
Regression,LARS: Least Angle Regression,OMP:Orthogonal Matching Pur-
suit,Kneighbor:Regression-based on k-nearest neighbors. 107

A.9 Relative training time . 108
A.10 Device distribution per benchmark. Weighted Average indicates all operations

across all benchmarks. 108
A.11 a) A simple two layer neural network. The value of each wij is tunable and

may change during training. While the hyperparameters stay intact and are
static. b) The Gradient Path of the model. t does not change in each iteration
(as long as device-mapping does not change) while w1 and w2 change. 113

A.12 Homogeneous Mapping: All the operations, by default, are mapped to GPU-0.
i) The model in TensorFlow. ii) The code to run the model in a Session. . . 115

vii

A.13 Heterogeneous Mapping. The code shows the addition of tf.device to enable
heterogeneous mapping. 116

A.14 HTF-MPR Overview: 1. N initial mappings are generated (Subsection A.2.3).
2. These mappings are then run on the TensorFlow graph where their makespans,
ft(m) −→ tm, are recorded. The number of iterations left to train the
model (and therefore get it closer to the final model fNN) is I − N . 3.
The input data X and output data Y are used to construct the predictive
model(Subsection A.2.3). 4. The predictive model as well as the mappings
are provided to the Genetic Algorithm (Subsection A.2.3). 5. Top mappings
are selected according to the predicted makespans. 6. The top mappings are
then run on the TensorFlow graph to obtain actual makespans ft(m). The
number of training iterations is advanced by K (the number of top mappings),
thus reducing the required runs to I −N −K. 6. Finally, the top mapping,
m∗ is found and used for the rest of the training i.e. for I −N −K iterations. 119

A.15 Crossover using a stochastic method whereby the number of mappings taken
from a particular parent is relative to how fit the parent is. In this case
ma is more fit than mb given the lower predicted makespan, i.e. t′ma

< t′mb
.

Therefore, more operation mappings are copied from ma than mb. Some
operations’ mappings also go through mutation, meaning it does not copy
from either parent. In this example op3 got mutated. 123

A.16 Crossover using a crossover-points. In this example, 6 new mappings are
generated from the parents ma and mb. 124

A.17 Adaptive HTF-MPR Overview: 1. N initial mappings are generated us-
ing Bayesian optimization (Subsections A.2.4 and A.2.4). 2. Mappings are
then run on the TensorFlow graph where their makespans, ft(m) −→ tm, are
recorded. The number of iterations left to train the model (and therefore get
it closer to the final model fNN) is I −N . 3. Input data X is turned to one-
hot encoding (Subsection A.2.4). Makespan predictive model is constructed
(Subsection A.2.3). 4. Genetic Algorithm is run (Subsection A.2.3) until pop-
ulation size is P . 5. Top mappings are selected according to the predicted
makespans. 6. The top K mappings are then run on the TensorFlow graph
to obtain the actual makespans ft(m). The number of training iterations is
advanced by K, thus reducing the required runs to I − N −K. 6. The top
mapping, m∗, is found and used for the rest of the training. The Monitor
triggers a rerun of the process if required (Subsection A.2.4). 126

A.18 Bayesian Optimization general method. 127
A.19 Encoding: ma is encoded using integer encoding where CPU-0−→ 0, GPU-

0−→ 1, GPU-1−→ 2, and GPU-2−→ 3. The integers are then normalized.
The top part illustrates one-hot encoding, where dummy variables are used.
This increases the number of features ; in this case a single variable is expanded
to four, since there are four devices. Note that CPU-0−→ 1000, GPU-0−→
0100, GPU-1−→ 0010, and GPU-2−→ 0001. 131

viii

A.20 a) MNIST Softmax computational graph. There are 10 mappable operations.
The top and bottom nodes are virtual operations and are not mapped to any
device. b) VGG-16 computational graph with 69 mapable operations. c)
AlexNet computational graph with 54 mapable operations 135

A.21 MNIST Softmax makespan distribution. x-axis shows the makespan and y-
axis shows the count for that makespan. Mean of the distribution is shown by
the red vertical line. Note that the figure caps at 0.002s, but the distribution
has a long tail that extends to 0.02s. Approximately 5% of mappings out-
perform the default Tensorflow mGPU−0 mapping in the Mnist Softmax case.
. 136

A.22 The three mappings to the left are the top three mappings in terms of makespan.
The top most has 7 operations mapped to CPU-0, and 3 operations mapped
to GPU-0, with a makespan of 0.484 ms per iteration. The three to the left are
the worst mappings, the worst mapping has a makespan of 20.2 ms, with 2 op-
erations mapped to CPU-0, 6 operations mapped to GPU-0, and 2 operations
mapped to GPU-1. The mapping mGPU−0 has a makespan ft(mGPU−0) =0.72
ms. Note that the worst mappings change devices after each operations in-
curring high communication costs overhead. 137

A.23 Configurations of initial mappings. a) is the Adaptive HTF-MPR approach
while b) is the HTF-MPR approach. N is equal for all configurations. The
number of mappings generated is N=700 in each case. 137

A.24 Makespan distribution for VGG-16. The x-axis is the makespan and y-
axis is the count of mappings. The vertical red line indicates the average of
the distribution. In the Bayesian figure, the Tensorflow default mapping’s
makespan is indicated with a black arrow labeled mGPU−0. 138

A.25 Makespan distribution for Alexnet. The x-axis is the makespan and y-axis is
the count of mappings. The vertical red line indicates the average of the dis-
tribution. In the Bayesian figure, the Tensorflow default mapping’s makespan
is indicated with a black arrow labeled mGPU−0. 139

A.26 The latest average with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the average makespan.
Note that the plot starts from iteration 50. the Bayesian improves with each
iteration, same for the GA method. 140

A.27 The latest minimum with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the minimum makespan.
Note that the plot starts from iteration 100. 141

A.28 Total time of first stage (Figure A.23) for a) VGG-16 and b) Alexnet. The
total time (seconds) is the sum of the overhead due to search and recon-
struction of the graph with each new mapping, and the actual run of the
fNN(contributes to the reduction of number of training iterations left). With
default Tensorflow there is no overhead since there is no reconstruction of the
graph given that the mapping is constant. Note that with N=700, there are
5 training iterations per evaluated mapping. Therefore, the Figures show the
time for 700x5=3500 training iterations of fNN 142

A.29 An example of the kendall values for 5 makespans. The resulting Knorm = 0.5. 142

ix

A.30 k-fold method of validation. The mappings (input) and the makespan timings
(labels) are shuffled. They are then split into k parts. A partition is selected
to be the test dataset while the rest of the partitions are used for training the
model using GBR. The resulting predictive model is then tested with the test
dataset partition. the Normalized Kendal tau ranking is taken and the process
is repeated but each time a different partition is used as the test dateset. . . 143

A.31 K-fold results. The y-axis is the normalized Kendall where a lower number
indicates a lower error rate. Note that N=700 (number of mappings) and
K=5 (number of folds). The bar indicates the average of 5 runs (Normalized
Kendall of 5 tested partitions) and the standard deviation shown is due to the
difference of the 5 runs. 144

A.32 Total training time (seconds). The Bayesian Optimization approach (Adap-
tive HTF-MPR) improved the overall time by 3.5% in VGG-16 and 18.7%
in Alexnet. The overhead in the Bayesian accounts 9.5% of the whole process
in VGG-16 while it accounts for 1.1% in Alexnet. Note that the Algorithmic
did not find a better mapping for VGG-16 as shown in Table A.3. As for
Alexnet, the overall improvement was by 12% and the overhead accounts for
5.6% using the Algorithmic approach. 146

A.33 The TensorFlow default mapping on a) VGG-16 b) Alexnet. The y-axis is
the makespan and x-axis is the iteration. The makespan changes when there
is high load (using Unigine’s SuperPostion benchmarking tool [140]) on the
GPU. The red-line shows the threshold for when Adaptive HTF-MPR would
be triggered if the default mapping was also the m∗ mapping. β = 10 in this
case. Note that we used different loads in both instances. Also, the load has
high variance in this case. 146

A.34 Alexnet makespan at each iteration a) without and b) with Adaptive HTF-
MPR. Note that GA happens offline (meaning the GA does not contribute to
the advancement of the training step) and therefore is not shown. The top K
of the resulting GA results are run on fNN and therefore are shown. In this
case K=100. The high load is applied for 30 minutes in both cases. 147

x

LIST OF TABLES

Page

2.1 Different memory material comparison [100] [91] [27] 19

3.1 Approximate Device Level Characteristics of DRAM and PCM [161] [100] [33] [91] 25

4.1 Evaluated applications and their description. 34
4.2 The key parameters of the simulated Host CPU system 37
4.3 Attainable performance (GFlops/sec) of each studied application running on

the modeled Host CPU system with peak performance of 240 GFlops/s. Ap-
plications with attainable performance less than 240 GFlops/s (BFS, HS-3D,
MO, BP, and SpMV) cannot exploit Host CPU processing power. 41

4.4 List of all evaluated applications and their memory access behavior. The re-
ported numbers are measured from Host CPU execution. Applications with
”High” and ”Middle” memory intensity are classified into memory-intensive
(highlighted in gray in the table) and other applications are labeled as memory-
non-intensive (compute-intensive). 46

4.5 List of all evaluated applications and their characteristics. Based on the rede-
fined metrics (data locality, operational intensity based on Roofline analysis,
memory intensity, R-to-W ratio, and row buffer locality), the best processing
unit (Host CPU, 3D-DRAM NMP or 3D-PCM NMP) is suggested for each
class of applications. 53

5.1 The key parameters of the simulated systems 62
5.2 Configuration of DDR4 Micron and PCM memory models: interface proper-

ties, memory system and memory timing [6] [35]. 64
5.3 Configuration of DDR4 Micron and PCM memory models: energy/power pa-

rameters, memory controller and memory endurance model [6] [35]. 65
5.4 Studied applications and their description. 66
5.5 List of memory-intensive applications and their memory access behavior. The

reported numbers are measured from Host CPU execution. 66

A.1 Benchmarks. 134
A.2 GA result using predictive model f ′t(m) on Alexnet. In this table, ”Bay”

refers to ”Bayesian” and ”Algo” refers to ”Algorithmic” model. 144
A.3 GA result using predictive model f ′t(m) on VGG-16. In this table, ”Bay”

refers to ”Bayesian” and ”Algo” refers to ”Algorithmic” models. 145

xi

ACKNOWLEDGMENTS

My journey towards Ph.D. at UCIrvine has been incredibly amazing and memorable. I am
thankful for all of the people who have helped me to go through all the challenges.

First and foremost, I am sincerely grateful to my Ph.D. advisor, Professor Nader Bagherzadeh,
for his guidance and patience over these years. His support and invaluable inspiration en-
couraged me throughout this research. He is also a mentor of life.

I would also like to specially thank my co-advisor, Professor Masoumeh (Azin) Ebrahimi,
for providing me insightful guidance, feedback, and advice on my research. She is the most
caring motivator and a dear friend on mine.

I would like to express my gratitude to Professor Jean-Luc Gaudiot and Professor Philip
Sheu for serving on my dissertation committee.

Many thanks to my colleagues at Advanced Computer Architecture Group, especially Dr.
Ahmad Albaqsami and my dear friend Zahraa Marafie. Cooperation and discussion with
them have been very helpful for my research. Also thanks to my other colleague Nezam
Rohbani for the collaboration we had in part of my research.

Finally, I would like to give my greatest gratitude to the most important person in my life,
my husband, Pooria. I am extremely grateful to his support during my Ph.D. study. He has
always been my source of happiness. My deepest appreciation goes to my family, especially
my dear parents for their endless love and support.

xii

VITA

Maryam S. Hosseini

EDUCATION

Ph.D. in Computer Systems and Software July 2021
University of California, Irvine Irvine, California

M.S. in Computer Systems and Software May 2017
University of California, Irvine Irvine, California

B.S. in Computer Engineering Sep. 2009
University of Mashhad Mashhad, Iran

RESEARCH EXPERIENCE

Graduate Student Researcher Oct. 2016–June 2021
University of California, Irvine Irvine, California

Research Intern May 2018–Sep. 2018
Western Digital Company Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2017–2021
University of California, Irvine Irvine, California

Instructor Summer 2017
University of California, Irvine Irvine, California

Lecturer 2018–Present
California State University, Long Beach Long Beach, California

RESEARCH INTERESTS
Computer architecture, Near memory processing, High performance computing, Hybrid
memory systems, Heterogeneous computing systems, Performance evaluation.

xiii

AWARDS

PhD Bridge Fellowship Oct. 2016
University of California, Irvine Irvine, California

Graduate Student Fellowship March. 2018
University of California, Irvine Irvine, California

Division of Teaching Excellence and Innovation Fellowship June. 2020
University of California, Irvine Irvine, California

PUBLICATIONS AND PRESENTATIONS

1. Maryam S. Hosseini, Masoumeh Ebrahimi, Pooria Yaghini and Nader Bagherzadeh,
“Application Characterization for Near Memory Processing”, in Parallel, Distributed,
and Network-based Processing (PDP) Conference, 2021.

2. Maryam S. Hosseini, Masoumeh Ebrahimi, Pooria Yaghini and Nader Bagherzadeh,
“Near Volatile and Non-Volatile Memory Processing in 3D Systems”, in IEEE Trans-
actions on Emerging Topics in Computing (TETC) Journal, 2021.

3. Maryam S. Hosseini, Masoumeh Ebrahimi, Nezam Rohbani, Pooria Yaghini, Nader
Bagherzadeh, “Near Memory Processing in Hybrid Systesm: 3D-DRAM vs. 3D-
NVM”, under review in Journal of Systems Architecture (JSA), 2021.

4. Ahmad Albaqsami, Maryam S. Hosseini, Masoomeh Jasemi and Nader Bagherzadeh,
“Adaptive HTF-MPR: An Adaptive Heterogeneous TensorFlow Mapper Utilizing Bayesian
Optimization and Genetic Algorithms”, in Transactions on Intelligent Systems and
Technology (TIST) Journal, 2020.

5. Ahmad Albaqsami, Maryam S. Hosseini and Nader Bagherzadeh, “HTF-MPR: A
heterogeneous TensorFlow mapper targeting performance using genetic algorithms and
gradient boosting regressors”, in Design, Automation, and Test in Europe Conference
(DATE), 2018.

6. Maryam S. Hosseini, “Reliability Enhancement of Many-core Processors”, Master
Thesis, University of California, Irvine, 2017.

xiv

ABSTRACT OF THE DISSERTATION

Near Memory Processing in Hybrid Memory System
3D-DRAM vs. 3D-NVM

By

Maryam S. Hosseini

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Professor Nader Bagherzadeh, Chair

The cost of transferring data between the off-chip memory system and compute unit is the

fundamental energy and performance bottleneck in conventional multi-core computing sys-

tems. Furthermore, in the era of big data and with the advent of emerging data-intensive ap-

plications, such as graph processing, machine learning, deep learning, media processing, data

mining, computer vision, computational biology, and speech recognition, this bottleneck has

continuously increased. For such applications, the expensive data movement between mem-

ory and compute unit dominates both execution time and energy/power consumption which

results in impeding future performance scaling. Moreover, the technology scaling (the end of

Moore’s law and failure of Dennard scaling) has made all compute units energy and power

constrained. In order to satisfy the energy and power constraints, researchers are forced to

stop further increasing the frequency and to reduce the chip utilization. Thus, to continue

scaling the performance, energy overhead must be minimized for every operation. To over-

come these difficulties, different approaches either algorithmic-level or architectural-level can

be applied. The later promising approach commonly referred to as Near Memory Processing

(NMP) has become a potential and practical technology to transform the computation-centric

systems towards memory-centric systems. The introduction of 3D die stacking technology

and more importantly hybrid memory systems have revolutionized the concept of NMP. 3D

xv

die stacking, built using Through-Silicon Via (TSV), offers higher bandwidth, shorter wire

lengths, lower power (due to short-length low-capacitance wires), and better performance

compared to traditional 2D planner memories. This memory technology allows architects to

implement practical NMP systems by vertically stacking multiple memory layers on top of

a logic die in the same package. The logic layer is typically the most bottom layer which

provides an area for adding a wide range of processing logic (general-purpose cores, FPGAs,

ASICs, or a combination of all types). It enables higher density many-core architectures to

happen and helps for improving the power-performance characteristics to increase capabili-

ties of modern integrated circuits.

The focus of this dissertation is to explore and evaluate the feasibility and efficacy of NMP

architecture constructed based on an emerging Non-Volatile Memory (NVM) technology in

a 3D structure. And to compare it with the conventional NMP architecture built based

on 3D-DRAM in terms of performance and power consumption. To this purpose, first,

a set of NMP-centric performance metrics are redefined in order to analyze the efficacy of

mapping a given processing unit to a specific application. Leveraging the proposed metrics, a

comprehensive characterization is conducted on a wide range of multi-threaded applications

(various computation and memory patterns) from different domains as a case study to reveal

their performance bottleneck. Then, two different NMP architectures are explored and

the impact of constructing NMP architecture based on an emerging non-volatile memory

technology (3D-NVM) is analyzed. Also the feasibility of having an NMP subsystem on

a hybrid 3D memory system is motivated in this dissertation. Finally, the experimental

results demonstrate that executing certain data-intensive (memory-intensive) applications

on the evaluated NMP architectures (3D-PCM and 3D-DRAM) improve the performance by

1.3x to 5x and reduce memory power/energy consumption by an average of 47% compared

to executing them on conventional multi-core Host CPU system. These improvements make

the hybrid NMP system a great design technique for acceleration in performance and power

across a wide range of data-intensive applications.

xvi

Chapter 1

Introduction

Over the years, memory technology has not been able to keep up with the improvements in

processor technology in terms of latency and energy consumption, which is referred as mem-

ory wall. The term “memory wall” goes back to 1994, when Dr. Wulf and Dr. McKee talked

about it in their short paper [152]. The whole idea was that the main memory will become

the bottleneck of the whole computing system, since there would be a diverging exponential

increase in performance of the processor and main memory. Based on Figure 1.1 which visu-

alizes the memory wall problem, multi-core CPU performance has been improving 60% per

year, while the improvement for the memory performance is less than 10% per year. There-

fore, the performance gap between memory and processor increases exponentially. This has

become a real challenge for today’s multi-core processors. Multi-level data and instruction

intelligent caching, utilizing large register files, and increasing off-chip DRAM row-buffer size

are as the main techniques to mitigate memory wall effect. However, the latency of off-chip

memory access due to cache misses, still limits the performance of processors.

Also, the end of Moore’s law [103] (the doubling of transistors on chip every 18 months) and

failure of Dennard scaling [41] are causing the computer performance to reach a plateau [47].

1

Figure 1.1: Memory Wall problem and Moore’s Law. Figure is taken from [5].

Based on Dennard scaling, system performance can improve with a constant power density

while maintaining the same cost in terms of power consumption and area. At the same

time, we are witnessing another challenge in today’s conventional computing systems. In

the era of big data and with the advent of emerging data-intensive applications, an enormous

amount of data is being generated across multiple areas such as health sciences, chemistry,

physics, IoT, etc. Processing this huge amount of data results in frequent data movement

between the memory subsystem and the processor unit, which incurs a heavy penalty in

terms of both performance and energy consumption on conventional CPU-centric processing

systems. Data-intensive applications also increase power and bandwidth pressures to the

memory system. Based on [89], the off-chip memory which includes last-level cache, DRAM,

memory controller and their interfaces can consume up to 41% of the total energy of a

computer system. This energy waste which is a huge burden, limits the performance and

efficiency of all modern computing systems. Tackling these challenges, novel alternative

approaches (either algorithmic-level or architectural-level) can be applied. Two algorithmic-

level approaches are also discussed in this dissertation (see appendix A), to demonstrate

2

the efficacy of these methods in increasing the performance of emerging applications in the

field of machine learning and deep learning [14] [15]. In the architectural-level approach,

researchers have proposed Near Memory Processing (NMP) based on 3D-stacked memory

technology that integrates processing units within memory package to offer higher memory

bandwidth with lower data access latency to the processing units. NMP architecture exhibits

a significant potential for performance and energy efficiency, since it reduces the aggregate

need for transferring data within large memory hierarchy.

3D-stacked memory technology is one of the most promising solutions to address the memory

wall problem in modern computing systems [151] [152]. 3D die stacking or vertical integra-

tion is an exciting path to boost the performance and extend the capabilities of modern

integrated circuits. These capabilities are inherent to 3D Integrated Circuits (3D ICs). The

former enhancement is due to the considerably shorter interconnecting wires in the vertical

direction. It is also worth noting that vertical integration is particularly compatible with

the integrated circuit design process that has been developed over the past several decades.

These distinctive characteristics make 3D die stacking highly attractive as compared to other

radical technological solutions that have been proposed to resolve the increasingly difficult

issue of on-chip interconnect [156] [157].

Micron’s Hybrid Memory Cube (HMC) [65] [4], JEDEC’s High Bandwidth Memory (HBM) [2],

and Samsung’s Wide I/O [72] are examples of 3D integration memory technology. Figure 1.2

shows a high-level view of Micron’s HMC chip architecture. This technology enables stack-

ing multiple high capacity memory layers vertically on top of a logic tier using short and

fast Through-Silicon Vias (TSVs) bus within one package and provides a massive internal

memory bandwidth with lower power consumption and latency [46] [88] [40]. The logic layer

can embed the processing elements. In particular, 3D die stacking technology is endorsed as

the true enabler of processing near to the memory (data). It supports new opportunities by

providing feasible and cost effective approaches for integrating heterogeneous cores to real-

3

Figure 1.2: Micron’s Hybrid Memory Cube (HMC) chip architecture. Figure is taken
from [3].

ize future computer systems. It supports heterogeneous stacking because different types of

components can be fabricated separately, and silicon layers can be implemented with differ-

ent technologies. This technology can be applied to both volatile and emerging non-volatile

memory technologies, which makes it more practical and beneficial to exploit the advance-

ments of emerging memory technologies. 3D-stacked memory system provides significantly

more internal and external bandwidth than conventional DDR modules while providing a

high-level vault (vertical partition composed of multiple memory banks) parallelism [65].

For instance, the memory bandwidth of HBM can reach up to 450 GB/s comparing with

19.2 GB/s per channel in DDR4 (2400 MHz) [147]. This value is 160-320 GB/s for HMC [4].

This is achieved by utilizing far larger number of connections between processing elements

and memory, since TSVs can be much more abundant than I/O pins.

The next promising innovation for the next generation memory systems is the use of byte-

addressable cutting edge Non-Volatile Memories (NVMs). Phase Change Memory (PCM) [87],

Spin-Torque Transfer Random Access Memory (STTRAM) [83], Resistive RAM (ReRAM or

memristor) [149], and Ferroelectric RAM (FeRAM) [28] [102] [99] are examples of emerging

4

NVMs with different characteristics which are explored by researchers and manufactures for

replacing DRAM at the main memory layer. These NVM technologies are attracting huge

attention as the promising candidates to be used together with DRAM to architect hetero-

geneous memory systems (next-generation memory systems) [161] [117]. The expectation

from NVM types is to provide larger capacity per chip, memory access latency and energy

consumption (low-power) competitive to the DRAM technology, and better technology scal-

ing. Across emerging NVM technologies, PCM is considered as the most mature one that

can benefit from more reduction in the switching power and can scale better than DRAM

technology [87] [32]. It has been reported that the PCM is expected to scale to 9nm in

the near future which introduces memories with higher density that can meet the capacity

requirements of many-core computing systems [42].

1.1 Dissertation Contributions

The focus of this dissertation is to motivate, explore, and analyze near memory processing

architecture based on 3D die stacking technology (NMP) in a hybrid memory system to

accelerate data-intensive problem caused by data movement (memory wall) bottleneck. This

work motivates the efficiency of NMP subsystems when 3D-NVM technology is employed.

With this goal in mind, the contributions of this dissertation can be summarized as follows:

• To redefine and investigate a set of NMP-centric performance metrics with the focus of

application characterization on conventional Host CPU system and NMP architecture.

• To perform a systematic and comprehensive characterization based on Roofline anal-

ysis, data locality (temporal and spatial) analysis, and memory access behavior anal-

ysis for various sets of multi-threaded applications (mixture of compute-bound and

memory-bound) as a case study in order to analyze the efficacy of mapping a processing

5

unit to a specific application and evaluate the potential benefits of NMP architecture

over conventional Host CPU to efficiently accelerate data-intensive problems.

• To explore two NMP subsystems based on different 3D-stacked memory technologies

(3D-DRAM and 3D-PCM) and to analyse the impact of constructing NMP architecture

based on an emerging NVM technology.

• To demonstrate that executing certain data-intensive (memory-intensive) applications

on NMP architecture based on 3D-NVM can improve performance and reduce memory

power consumption compared to 3D-DRAM based NMP and conventional Host CPU

executions which explains the benefits of processing near hybrid memory system.

1.2 Dissertation Organization

The rest of this dissertation consists of five Chapters and one Appendix section. This

dissertation is organized as follows:

• After the introduction to the research background of this work in Chapter 1, Chapter 2

discusses application and technology trends that motivate new computing devices (3D-

based NMP architectures) for data-intensive applications. Chapter 3 provides relevant

background and surveys related work.

• Chapter 4 describes the methodology used for application characterization with the

focus on NMP and how to leverage the proposed metrics to evaluate three studied

processing platforms. Chapter 5 presents an envisioned NMP architecture in hybrid

memory systems used to process data-intensive applications in an efficient way. The

evaluation methodology and experimental platforms are explained in Chapter 5. Data

analysis and results are presented at the end of this Chapter. Having reviewed all of

6

the Chapters, the conclusions and future work are given in Chapter 6. After this, there

are the references of all the Chapters including Appendix section.

• Finally, the last portion of this dissertation (Appendix A) is based on research work

which I previously published with my colleagues. This appendix discusses two algorithmic-

level approaches to accelerate emerging applications in the field of machine learning

and deep learning.

7

Chapter 2

Motivation

Almost all computing systems are built to efficiently support processing various software ap-

plications by leveraging modern technology innovations. To motivate research on near mem-

ory processing architectures for data-intensive applications, this Chapter explores emerging

data-intensive applications and technology trends, as well as the conventional processing

system architectures and their inefficiencies.

2.1 Emerging Data-Intensive Applications

As we go deeper into the “big data” age, we witness a huge growth in the volume, and variety

of data available around us. It has been reported that data is growing faster than before and

at the end of 2020, about 1.7 megabytes of new information was created every second for

every human being on the planet. Also, “with 75 billion IoT-connected devices (all generating

data) expected by 2025, there will be no shortage of data to analyze”. Such “data explosions”

which is growing significantly faster than Moore’s law has led to emergence of data-intensive

applications. These emerging applications including graph analytics, data mining, machine

8

learning, augmented reality, and deep learning scan through a massive datasets within careful

time limitations in order to extract meaningful and compact knowledge. For example, an

object classification algorithm in an augmented reality application typically uses millions

of example images and video clips for training the network and performs classification on

real-time high-definition video streams [61].

The common characteristics of data-intensive applications are summarized as follows:

• Highly parallel applications with opportunities to exploit data-level and thread-level

parallelism.

• Poor performance on conventional multi-level and large cache hierarchies because of

limited data locality (temporal and/or spatial locality) with a huge diversity in com-

putation patterns.

• Variety of challenging memory access pattern. Irregular memory access pattern (fre-

quent random memory accesses) for graph processing applications. Sequential and

stride memory accesses for deep neural networks compute on multidimensional ar-

rays [12].

To accelerate data-intensive problems, some architectural requirements are needed which are

summarized as follows:

• Support for high parallelism considering various memory access patterns (random,

sequential and stride data accesses).

• High performance computing (low latency) with low power/energy consumption, and

low area overhead.

• Support for high bandwidth, low latency, low energy, and low area overhead from

memory system.

9

Data-Intensive Applications

System Memory Logic

Different Access
Patterns

High Bandwidth High Performance

Low Latency

Low Energy/Area

Low Energy/Area

High Parallelism

Figure 2.1: Architectural requirements for data-intensive applications.

Figure 2.1 summaries the discussed architectural requirements for data-intensive processing.

2.2 An Overview on Memory Technologies

In this section, most popular memory technologies are shortly illustrated which are (or can

be) utilized as main memory in computing systems. These technologies are categorized in

volatile and non-volatile memories.

2.2.1 Volatile Memory Technology

In volatile memories, the stored data is erased when the power supply is disconnected from

the memory which makes the system susceptible to data loss due to power outage. Some

10

Figure 2.2: The 6T SRAM cell structure: Access to a cell is enabled by the word line (also
called row) which controls the two access transistors in the cell. The bitlines (also called
columns), B and B, are used to transfer data for both read and write operations.

modern memory technologies, like Dynamic RAM (DRAM) that store data for few millisec-

onds (in room temperature) after power disconnection, and Static RAM (SRAM) which is

typically used for the cache and internal registers of a processor, are categorized in volatile

memories.

Static Random Access Memory (SRAM)

SRAM is a major component of many digital systems. It is designed to provide a direct

interface with the processor at a fast speed. Fast access times and design for high density

are the most important features of this memory technology for many years. This technology

uses bi-stable latching circuitry to store data. Each SRAM cell consists of a bi-stable flip-flop

11

Substrate

N N

Word-Line V
ia

Top Electrode

Bit-Line

(b)

Dielectric

+ + + + + + + + +

(a)

V
ia

Substrate

N N

Word-Line V
ia

Top Electrode

Bit-Line

Dielectric

- - - - - - - - -

V
ia

Connected to
GND or VDD/2

Figure 2.3: The DRAM cell structure: Stored charge in the tiny cell capacitor is used to
store values. (a) Negative and (b) positive stored charge in the cell represents ’0’ and ’1’,
respectively.

which is connected to the internal circuitry using two access transistors. The structure of

a 6T SRAM cell is shown in Figure 2.2. Access to the SRAM cell is enabled by the word

line. To select a SRAM cell, the access transistors should be ”on”, so the flip-flop can be

connected to the internal circuitry. When the cell is not addressed, the access transistors are

closed (off) and the data is latched within the flip-flop. The flip-flop needs power supply to

hold the information. There is no refresh cycle in SRAM, since data does not leak away.

Dynamic Random Access Memory (DRAM)

DRAM is the mainstream memory technology used as main memory in computing systems

for decades which plays an essential role regarding the efficient data access. This is because

of low fabrication cost, low latency, maturity of technology, acceptable density and power

consumption, and very high endurance (> 1015). The structure of a DRAM cell is shown in

Figure 2.3. An access transistor connects corresponding bitline to the cell capacitor during

memory access. The stored charge in the cell capacitor represents the stored value. During

12

cell access, the stored charge, negative or positive (Figure 2.3a and Figure 2.3b, respectively),

is shared with the charge in the bitline and makes a voltage perturbation in the bitline which

can be detected by sense amplifier [64].

The main drawbacks of DRAM technology are physical limitations in scaling, low density

(since only one bit can be stored in a cell), need for refresh, and leakage power. DRAM

scaling affects all of its major characteristics such as capacity, latency, bandwidth, and cost.

Furthermore, access to a cell in DRAM is destructive, thus a power-hungry recovery phase

should be performed right after a cell access. The mechanism of periodic refresh in DRAM

technology incurs power consumption even if there is no activity in the memory. Also, the

background power which is related to the peripheral components is another concern for this

memory [49].

2.2.2 Non-Volatile Memory (NVM) Technology

Regarding the limitations of DRAM, i.e., scalability, density, and static power dissipation,

many research work are conducted to propose a proper replacement for DRAM as main

memory and last-level caches in computing systems. Between different storage technologies,

Non-Volatile Memories (NVMs) are expected to be the most promising ones for replacing

DRAM. These memories are named as storage class memories (SCM) and are trying to fill

in the latency gap between main memory and disk. They can scale better than DRAM at

smaller feature size that can satisfy the memory capacity and high density requirements of

multi-core systems. As an example, PCM is expected to scale to 9nm around 2022 [105].

Unlike DRAM that stores data in the form of charge, an NVM cell uses resistance to store

the data. Endurance and density have been conventional limitations in NVM technologies,

but recent technology trends encourages that these constraints can be addressed [118]. The

main advantages of NVMs are very low static power and smaller cell size than DRAM cells.

13

Substrate

N N

Word-Line H
e
at
er

Crystallized

GND

V
ia

Bit-Line

Substrate

N N

Word-Line H
e
at
er

GND
V
ia

Bit-Line

Chalcogenide
LayerAmorphous

(a) (b)

Figure 2.4: The PCM cell structure: A heater (resistor) and chalcogenide material are the
main components of the PCM cell. (a) High resistance of the chalcogenide layer in the
amorphous state, (b) Low resistance of the chalcogenide layer in the crystallized state.

Since each NVM technology has superiority and weaknesses in comparison with the others,

there is still no definite winner. Between the NVM technologies, PCM, STT-RAM, ReRAM,

and FeRAM are the most promising memory technologies which are shortly investigated in

this section.

Phase Change Memory (PCM)

PCM, also called PRAM, was first proposed by Gordon Moore in 1970 [109]. This technology

is constructed of a chalcogenide alloy layer and a heater that can be accessed through an

access transistor in a two-dimensional bitlines and wordlines array. By applying an electric

signal to the heater, the generated heat changes the alloy layer to an amorphous/crystallized

state based on the pulse shape. A short high-temperature (600 C) pulse resets the chalco-

genide layer to the amorphous state and a long low-temperature (300 C) pulse sets this layer

to the crystallized state [82]. Figure 2.4 shows a PCM cell in amorphous (a) and crystallized

(b) states. The resistance of the chalcogenide layer increases/decreases when it is in the

14

amorphous/crystallized state and these physical states can be used to store values. Since

the resistance of the alloy in the amorphous state is three to four orders of magnitude higher

than its resistance in the crystallized state, multiple bits can be stored in one PCM cell,

which is called Multi-Level Cell (MLC) PCM [163] [102].

The main challenges with PCM are alloy resistance drift, endurance, write disturbance error,

read disturbance, and high write latency. The crystallized state of the alloy returns to the

amorphous state over time which may lead to a read error. A PCM cell may only tolerate

about 108 to 1015 writes, making it essential to apply wear-leveling techniques to use it as

main memory. The generated heat to write on one cell can propagate to the adjacent idle

cells and change their states over time. This is while generated heat due to applying a higher

voltage to a cell for turbo read access can lead to bit-flip over time in that cell. Unbalanced

read and write latencies (about 20 ns and more than 150 ns, respectively) need a more com-

plex memory management unit. Besides, the memory performance drops for write-intensive

applications. However, the controllable data retention, high density, robust performance,

and fast read access are the outstanding advantages of this memory [119] [102] [73].

Spin-Transfer Torque RAM (STT-RAM)

In STT-RAM, Magnetic Tunneling Junction (MTJ) phenomenon is utilized to store data.

An STT-RAM cell is composed of two ferroelectric layers stacked on top of each other which

can be accessed through an access transistor. The structure of the STT-RAM cell is shown

in Figure 2.5. The polarization of one of these layers is fixed, while the polarization of the

other one can be changed by a higher current passing through the access transistor. When

both ferroelectric layers are in the same direction (Figure 2.5 a), the resistance of stacked

layers is minimum, and its resistance increases when the free layer orientation is opposite of

the fixed layer (Figure 2.5 b) [102] [101] [81].

15

Substrate

N N

Word-Line V
ia

V
ia

Bit-Line
Free

Ferroelectric
Layer

(b)

Barrier Layer

Source Line

V
ia

Substrate

N N

Word-Line V
ia

V
ia

Bit-Line

(a)

Barrier Layer

Source Line

V
ia

Fixed
Ferroelectric

Layer

Figure 2.5: The STT-RAM cell structure: (a) The same polarization direction on free and
fixed ferroelectric layers leads to the low-resistance state of stacked ferroelectric layers, (b)
Different polarization directions leads to the high-resistance state.

Read disturbance, write errors, and lower density are the main limitations of STT-RAM. By

shrinking the STT-RAM cell size, read current approaches the write current which can lead

to a bit-flip in a cell in the case of consequent read accesses. The stochastic characteristic of

MTJ during the free layer polarization change is another source for the faulty write operation.

The main advantage of STT-RAMs over other NVMs is a higher endurance.

Resistive RAM (ReRAM)

ReRAM technology goes back to 2003 and it is composed of a stacked metal-insulator-metal

that its resistance can be controlled by applying voltage through access transistor. This

structure stores data by changing the trapped ions in the insulator. The higher aggregation

of ions in the insulator (metal oxide layer) leads to lower Ohmic resistance between top and

bottom electrodes stacked on top of each other. The ions are generated by applying sufficient

high voltage to the stack. Excellent scalability, long endurance, and CMOS compatibility

are the main advantages of ReRAM. However, many companies are reluctant to fabricate

16

Substrate

N N

Word-Line V
ia

Top Electrode

V
ia

Bit-Line
Metal Oxide

Layer

(b)

Bottom ElectrodeSource Line

V
ia

Conductive
Path

Substrate

N N

Word-Line V
ia

Top Electrode
V

ia

Bit-Line

(a)

Bottom ElectrodeSource Line

V
ia

Figure 2.6: The ReRAM cell structure: (a) The conductive path inside metal oxide layer,
generated by applying voltage to the top and bottom electrodes, determines the set state of
ReRAM, and (b) the reset state.

ReRAM chips due to high-cost and complex etching process as its main drawbacks of this

memory technology [34] [98] [154]. Figure 2.6a and Figure 2.6b illustrate the set state and

reset state of a ReRAM cell, respectively.

Ferroelectric RAM (FeRAM)

In FeRAM, the hysteresis characteristic of the ferroelectric material as the dielectric in the

cell capacitor is used to store data. The structure of FeRAM is very close to DRAM and is

presented in Figure 2.7. For a write operation, a higher voltage pulse (than a read access) is

applied through the access transistor to the cell capacitor to modify the crystal orientation

of the ferroelectric material for program/erase operations. The direction of applied voltage,

to Bit-Line and Plate-Line, determines the stored value in the cell [139] [70]. Figure 2.7a

and Figure 2.7b show positive and negative polarization directions, corresponding to ’1’ and

’0’, respectively.

17

Substrate

N N

Word-Line V
ia

Top Electrode

V
ia

Bit-Line

Ferroelectric
Layer

(b)

Bottom ElectrodePlate-Line

V
ia

(a)

Polarization
Direction

Substrate

N N

Word-Line V
ia

Top Electrode
V

ia

Bit-Line

Bottom ElectrodePlate-Line

V
ia

Figure 2.7: The FeRAM cell structure: The applied voltage to top electrode and bottom
electrode can change the polarization of ferroelectric layer to positive (a) and negative (b)
polarization.

Beside the advantages of FeRAM such as low power consumption, high endurance (up to

1013), and high bandwidth read/write operations, the main disadvantage of FeRAM is that

the read memory access is destructive. Thus, read access should be accompanied by a

restoration phase.

Table 2.1 compares traditional volatile SRAM and DRAM technologies with a few popular

emerging NVM technologies, including PCM, STTRAM, ReRAM, and FeRAM. Across all

NVM types, their low leakage power is noted and it is because of not requiring any data

refresh mechanism to keep written values in memory. Among all NVMs, STTRAM is the

fastest in terms of access speed, while its cell area is larger. PCM, ReRAM, and FeRAM can

store multiple bits in a memory cell which indicates their superior density with technology

scaling. Furthermore, they inherently support parallel processing of data which is useful for

data-intensive applications. In this work, DRAM and PCM as the representatives of volatile

and non-volatile memory technologies are selected to enable near memory processing in a

hybrid 3D memory system.

18

Table 2.1: Different memory material comparison [100] [91] [27]

Metrics SRAM DRAM PCM STTRAM ReRAM FeRAM

Leakage High Medium Low Low Low Low
Power

Cell Size > 100 6 ∼ 10 4 ∼ 12 6 ∼ 50 4 ∼ 10 6 ∼ 40
(F 2)

Multibit No No Yes No Yes Yes

Access Bit-level 64 Byte 64 Byte 64 Byte 64 Byte 64 Byte
Granularity

Read 0.2 ∼ 2 20 ∼ 50 20 ∼ 50 2 ∼ 35 20 ∼ 50 20 ∼ 80
Latency (ns)

Write 0.2 ∼ 2 20 ∼ 50 50 ∼ 150 3 ∼ 50 ∼ 50 50 ∼ 75
Latency (ns)

Write ∼ > 10−15 ∼ > 10−14 ∼ > 10−11 ∼ > 10−13 ∼ > 10−13 ∼ > 10−13

Energy (J/bit)

Write 1016 > 1015 108 − 1015 > 1015 108 − 1012 1014 − 1015

Endurance

Maturity Mature Mature Test chips Test chips Test chips Manufactured

19

2.3 Conventional Computing Architectures

In conventional computing systems based on Von Neumann architecture (shown in Fig-

ure 2.8) usually memory hierarchy consists of multiple levels of caches, the main memory

and the storage. In this computing system, the processor is interfaced with a memory that

holds both instructions and data. In this organization, data shuttles back and forth between

the off-chip memory and the processing unit. This data movement has been revealed as a

crippling performance and energy bottleneck for rising data-intensive applications such as

media processing, data mining, computer vision, graph analytics, machine learning, deep

learning, and etc. It is noticeable that these bottlenecks will become more significant in

the future, since technology scaling will not help. From the processor side, various architec-

tural techniques such as Pipelining, Superscalar, and VLIW (very long instruction word) are

employed to increase the parallelism and hide the off-chip data access latency as much as

possible. Pipelined processors provide parallelism with smaller clock cycle time. However,

there is overhead in pipelining, both in terms of performance (extra delay interfacing with

pipeline latches) and area. Both Superscalar and VLIW processors exploit instruction-level

parallelism (ILP) by issuing more than one instruction at each clock cycle with a different

method for instruction scheduling. In VLIW model, the complexity is moved to the compiler

level with static scheduling of instructions and superscalar processor uses dynamic schedul-

ing at run-time which makes the hardware more complex compared to VLIW model. All

of these techniques may not be sufficient to provide continued demand in performance from

emerging applications.

On-chip SRAM caches, which are typically used in conventional processors, have high leakage

power and moving data across the large cache hierarchies consumes significant dynamic

energy. Therefore, novel alternative approaches are required to address these inefficiencies.

Based on [60], the energy overhead of accessing data from memory systems and moving

data across memory hierarchy dominates the cost of arithmetic operations. The huge cost of

20

Core 1 Core n ...

L1 Cache L1 Cache...

L2 Cache L2 Cache

L3 Cache

...

DRAM

NVM

Figure 2.8: Conventional multi-core computing system architecture based on a CPU-centric
approach where data is moved to the core for processing. In this architecture, DRAM as the
predominant data storage technology is used to build main memory.

data access and data movement which dominate the total cost of computation (in terms of

performance and energy) forces architects to reevaluate the fundamental design of computing

systems. In particular, this huge cost is a major problem for data-intensive applications that

have poor data locality to payoff the high overhead.

As data-intensive applications become more widespread, conventional computing architec-

21

Figure 2.9: DRAM improvements in terms of capacity, bandwidth, and latency over two
decades (from 1999 to 2017). Figure is taken from [106].

tures are not able to satisfy systems requirements of these applications. Thus, the need to

bring processing closer to the data (memory) will arise.

Following architectural needs for data-intensive applications in Section 2.1 (see Figure 2.1),

here I discuss the memory, logic and system inefficiencies of conventional computing systems

when dealing with data-intensive applications:

• Conventional computing system architectures with multi-core processors use off-chip

DRAM modules in their memory system. Huge data movement between computing

unit and off-chip memory in a long-distance results in high access latency with a sig-

nificant energy consumption. Further, it is also difficult to improve the bandwidth

between the processor and memory chip. Based on [106], between 1999 and 2017 (as

shown in Figure 2.9), while DRAM capacity and bandwidth has improved by 128x and

20x, respectively, its latency has remained almost the same which makes it a major

22

performance bottleneck for many emerging applications. Moreover, today’s bandwidth

demands of multi-core processor cannot be satisfied by the memory package. It is

worth mentioning that large cache hierarchies cannot reduce the discussed memory in-

efficiencies. Large multi-level cache hierarchies reduce the off-chip data access latency

and energy consumption by leveraging the data locality in the application access pat-

terns. Unfortunately, most data-intensive applications do not exhibit data locality to

exploit large cache hierarchies exist in conventional system architectures. Therefore,

the off-chip data accesses cannot be reduced and as the result, main memory system

must be optimized.

• Multi-core general-purpose processors in conventional computing systems support pro-

cessing different types of operations with significant energy and area overhead. So,

they may not be adequate to provide increase in performance continuously. It has

been reported that for a single in-order RISC-V processor, 43% of the total energy

consumption is because of programmability support. It has been also noted that this

overhead is much higher in out-of-order processors [50] [57]. Furthermore, scaling these

systems above hundreds of cores to support extensive data processing with coherent

cache hierarchies is costly and limits the system performance.

23

Chapter 3

Background and Related Work

This Chapter reviews the background and related work in 3D die stacking memory tech-

nology, processing using memory, processing in memory and near memory processing as

three different architectural-level techniques proposed to accelerate data-intensive problems

(latency and energy) caused by memory wall bottleneck in conventional computing system

architectures. The presented research contributions in the following chapters is built upon

the key insights of previous work in these areas.

3.1 3D-Stacked Memory Technology

Silicon wafer or die stacking is a promising solution to reduce interconnections signals length

and chip area. The stacked dies/wafers are interconnected to each other using short-length

and low-parasitic capacitance Through-Silicon Vias (TSVs) [104]. Beside numerous benefits

of stacking dies such as increase in capacity and bandwidth, increasing power density in

the stacked layers limits the number of possible stacked layers. However, since memory dies

generally have low power density and occupy a large area, 3D stacking of memory dies has

24

Table 3.1: Approximate Device Level Characteristics of DRAM and PCM [161] [100] [33] [91]

Characteristics DRAM PCM

Standby Power Refresh Power Very Low (∼ 0)

Leakage Power Medium Low

Cell Size (F 2) 6 ∼ 10 4 ∼ 12

Access Granularity 64 Byte 64 Byte

Read Latency 20ns ∼ 50ns 20ns ∼ 50ns

Write Latency 20ns ∼ 50ns 50ns ∼ 150ns

Read Energy Medium Medium

Write Energy Medium High

Write Endurance > 1015 108 − 1015

Power Consumption Very High Medium

3D die stacking Capability Yes Yes

TSV Power Saving Less More

Maturity Mature Test chips

considerable benefits and is less challenging.

Fortunately die staking is applicable to almost all of the mentioned NVM technologies in

Section 2.2, as well as DRAM technology. In this dissertation, 3D-DRAM and 3D-PCM are

considered for main memory, as the representatives of volatile and non-volatile memory types

in the evaluations. It is obvious that the other memory types (such as ReRAM, FeRAM,

and etc) can be considered as main memory as well, but they are left for the future work.

Table 3.1 introduces some of the device-level characteristics of DRAM and PCM technologies

according to literature [27] [159] [162]. The reported numbers are representative (not the best

or the worst cases). It should be noted that in general at system-level, the interconnect used

25

for memory access has a considerable effect on the memory metrics. Based on Table 3.1, PCM

as an emerging NVM technology suffers from a very high write latency/energy comparing

to DRAM technology. It provides desirable properties such as satisfactory read latency

(comparable to DRAM), very low (close to zero) standby power, no refresh power (it does

not require any refresh mechanism to keep written values in memory), superior scalability,

CMOS process compatibility, higher memory capacity for the same chip area, 3D die-stacking

capability, and more benefit from TSVs in terms of power saving in the 3D structure [95] [161].

In die-stacked PCM design with TSVs, the resistance is reduced due to the short-length wires

which results in saving programming power. Based on [162], PCM can achieve less than 4F 2

through 3D integration. In the context of trends such as 3D die stacking, multi-core, and

improved networking, PCM technology can inspire more crucial architectural change for

data-intensive processing than conventional approaches that use such memory technology as

storage in the memory hierarchy [118].

3.2 Processing Using Memory (PUM)

The reason behind large amount of data movement is due to the heavily processor-centric

design approaches. Eliminating or reducing this massive data movement is crucial to make

computing systems high performance and energy-efficient [106]. Processing Using Memory

(PUM) which is an architectural-level approach utilizes the intrinsic properties and existing

peripheral circuits in memory cells to perform widely-used operations. There are many re-

search work in this area which indicate possibility of this approach using different memory

technologies such as Static-RAM, DRAM, PCM, and ReRAM [44] [92] [67] [127] [90]. PUM

architectures enable a wide range of operations, such as bulk bit-wise operations and simple

arithmetic operations, within memory cells with minimal changes [30] [107] [130] [19] [93] [128].

26

3.3 Processing In Memory (PIM)

The cost of moving data in an application continues to increase significantly as applications

process larger amount of data. Processing In Memory (PIM) chip that integrates processing

logic into memory devices provides an opportunity to eliminate unnecessary data movement

by bringing part of the computation into the memory, specially for applications with high

memory bandwidth demands. Start of PIM architecture proposals goes back to 1960s. Logic-

in-Memory computer is one of the earliest PIM architectures [137]. In this project, small

processing elements are combined with small amount of RAM to perform computation within

memory array. Approximately two decades ago (late 1990s and early 2000s), several research

studies continued investigating the integration of processing logic, which ranges from simple

cores to accelerators and FPGAs, and DRAM (or embedded DRAM) modules on a single

chip [53] [56] [68] [76] [112] [22]. In this type of architecture, a host processor was connected

to the PIM chip with a custom interconnect. Xi et al. in JAFAR project [153] includes

an accelerator in a DRAM module to implement the select operator. This implementation

only allows qualifying data to travel up to the host CPU. Alien et al. in MCN project [16]

integrates a lightweight processor with a buffer device on DRAM DIMM to enable processing

in memory for data-intensive applications. The integrated processor runs a simple opera-

tion system with network software layers for running a distributed computing framework.

Although it was reported that there was potential for a significant speedup in some classes

of applications (e.g, image processing, machine learning, and graph processing). There was

a limited success on the past PIM projects and the major reason comes from additional cost

(integrating logic and DRAM module) and density shortcoming of 2D chips.

27

3.4 Near Memory Processing Based on 3D Stacking

(NMP)

The most recent and promising innovation that can provide continued scaling of performance

is the ability to stack multiple memory layers on a multi-core processor die. In 3D-stacked

memory (e.g., HMC and HBM), a logic layer and multiple memory layers are stacked verti-

cally on top of each other using short and high bandwidth TSVs. TSV-based interconnection

provides a low latency and energy efficient data transfer between logic layer and memory

layers. Currently, this memory technology provides an opportunity to architects to embed a

wide range of computational logic in the logic layer considering the area, energy, and ther-

mal dissipation constraints. These benefits can potentially improve system performance and

energy efficiency in a practical manner, but only with careful design of NMP architectures.

It is reported that the 3D-stacked package can communicate with a maximum bandwidth

up to 320GB/s with internal memory layers through TSVs and external units through high

bandwidth links [4]. Unfortunately, today’s processors are not capable of taking full advan-

tage of the improvements offered by the 3D memory technology. NMP systems enabled by

3D-stacking can address one of the major reasons for the limited success of previous PIM

projects. This technique avoids additional cost of integrating processing cores with DRAM

on the same chip.

NMP systems are the biggest opportunity for emerging data-intensive applications. Such

applications scan through massive datasets with a very low temporal locality. As a result,

they cannot benefit from large and multi-level cache hierarchies and thus waste memory

bandwidth and energy.

Figure 3.1 depicts an abstract view of a system that is capable of processing close to mem-

ory in which the NMP subsystem is connected to the Host CPU through high-speed links.

28

NMP Subsystem

NMP-Cores

Host CPU

Host
Processor

L1 Cache

L2 Cache

High-speed
Links

a b

NMP Subsystem

NMP-Cores

Host CPU

Host
Processor

L1 Cache

L2 Cache

High-speed
Links

a b

NMP Subsystem

NMP-Cores

Host CPU

Host Processor

L1 Cache

L3 Cache

High-speed
Links

a b

NMP Subsystem

NMP-Cores

Host CPU

Host Processor

L1 Cache

L3 Cache

High-speed
Links

a b

L2 Cache

Figure 3.1: The overall architecture of a system with NMP capability. An application can
run on the Host CPU system as in the conventional manner, or it can be offloaded to the
NMP subsystem in which data can be accessed more efficiently.

Host CPU can offload kernel to the NMP subsystem. NMP transfers data through high-

bandwidth, low-latency, and low-energy 3D interconnects between memory layers and pro-

cessing cores in the logic layer. The NMP subsystem (Figure 3.1.b) consists of a 3D processor-

memory architecture, in which processing cores are embedded in the logic layer and memory

layers are stacked vertically on top of it. Figure 3.2 illustrates a conceptual view of a NMP

architecture which is based on 3D stacking. In this architecture, the logic layer composed

of multiple vault logic which are connected to each other through an interconnect network

such as Network-on-Chip (NoC). NoC is the dominant communication infrastructure which

provides a scalable efficiency in hardware area and power [129] [156]. The memory layer is

divided into multiple vertical partitions called vaults in which each vault has its own memory

29

Multiple
Banks

..
.

...

Vault logic

NMP
Core

NMP
Core

To other vaults via an
interconnection network

Vault controller

Vault router

...
TSV

M
e

m
o

ry
 la

ye
rs

Multiple
Banks

..
.

...

Vault logic

NMP
Core

NMP
Core

To other vaults via an
interconnection network

Vault controller

Vault router

...
TSV

M
e

m
o

ry
 la

ye
rs

Logic layer

High Speed

Links

NMP Subsystem NMP Subsystem Host CPU

Host
Processor

L1 Cache

L2 Cache

DRAM

NoC

Vault

Figure 3.2: Conceptual view of a NMP architecture based on 3D die stacking. The most
bottom layer which is called logic layer can embed processing cores. Each processing unit
can utilize high-bandwidth, low-latency, and low-power TSV connection to access data in
memory with higher internal bandwidth.

controller in the logic layer. Each of these vertical vaults can be accessed in parallel as they

have independent processing cores and memory controllers in the logic layer.

There are several research work on integration of the computation unit to the logic layer of

3D-stacked DRAM. Zhang et al. [160] proposed to integrate programmable GPUs to the logic

die of 3D-DRAM to offer high throughput. Pugslet et al. [55] created a near data computing

architecture for MapReduce workloads. In this work, a host processor is connected to many

daisy-chained 3D-stacked DRAM devices with energy-efficient processor cores in their logic

layer. Gao et al. [51] proposed a practical near-data processing architecture for in-memory

analytics frameworks where a high-end host processor with out-of-order cores is attached

to multiple 3D-stacked memory devices (e.g., HMC). In this work, near-data processing

cores are responsible for executing the portions of applications with a very low temporal

locality, and host processor is responsible for executing the portions of applications with

30

a significant temporal locality. Taeho et al. [71] proposed PicoServer which employs 3D

memory technology to build energy efficient servers. This work targeted server workloads

and key-value store which are not considered as memory-intensive. The Active Memory

Cube which is a processing near memory architecture embeds a set of processing units in

the logic layer of a 3D-DRAM. In this project, the tuned instruction set architecture and

microarchitecture of the processing units support vector processing in common scientific

applications and low power requirements of exascale computing systems [108]. However,

to the best of the our knowledge, this dissertation is the first to study a 3D-stacked NMP

architecture based on an emerging non-volatile memory technology (PCM).

3.5 Summary

This Chapter reviewed and organized the literature related to the 3D die stacking technology

and novel area of processing close to where data resides. Conceptually, this memory-centric

approach which includes processing using memory, processing in memory, and processing

near memory can be applied to any type and level of memory to improve the overall sys-

tem performance. Figure 3.3 concludes this Chapter by illustrating a high-level view of

classification for processing options which is based on the level in the memory hierarchy.

31

Processing Using
Memory

P
ro

ce
ss

in
g

 N
e

ar
 M

a
in

M

em
or

y

P
ro

ce
ss

in
g

N
ea

r
H

yb
ri

d
m

em
o

ry

NVM

Main Memory

Cache

Processor

P
ro

ce
ss

in
g

 N
e

ar
 N

V
M

Computation-centric

Memory-centric

Computation-centric

Memory-centric

Figure 3.3: Processing options (memory-centric versus computation-centric) in the memory
hierarchy. Memory-centric approach can be applied to any level (main memory or storage
memory) and type (volatile or non-volatile, 2D planner memory or 3D-stacked memory) of
memory in the memory hierarchy.

32

Chapter 4

Application Characterization for Near

Memory Processing

Due to the increasing number of data-intensive applications in the era of big data, application

characterization has taken an important role in system design. Application characterization

is used to extract meaningful information by using specific metrics to decide which architec-

ture could have the best performance and energy efficiency for a certain set of applications.

This Chapter characterizes various multi-threaded applications from different benchmark

suites for a set of performance and NMP-centric metrics to extract useful information. The

goal is to exploit the redefined metrics to evaluate the amenability of various sets of appli-

cations to conventional Host CPU processing and two different NMP architectures.

4.1 Application Set

Several multi-threaded applications from different benchmark suites (Rodinia [31], Par-

boil [7], PARSEC [25], and Starbench [9][18]) are selected to cover a wide range of com-

33

Table 4.1: Evaluated applications and their description.

Application Suite Name Description

Back Propagation Rodinia BP Pattern Recognition, Machine Learning

Breadth-First Search Rodinia BFS Graph Analysis

HotSpot 3D Rodinia HS-3D Physics Simulation

Sparse Matrix Vector Mult. Parboil SpMV Graph Analysis, Machine Learning

Myocyte Rodinia MO Biological Simulation

HeartWall Tracking Rodinia HW Medical Imaging

Stream Cluster PARSEC SC Data Mining

VASARI Image Processing Sys. PARSEC VIPS Media Processing

Kmeans Clustering Starbench Kmeans Artificial Intelligence, Data Mining

Ray Tracing Starbench C-ray Computer Graphics

Image Rotation Starbench Rotate Image Processing

Stencil Starbench Stencil Physics Simulation, Machine Learning

putation and memory patterns. Table 4.1 summarizes all the evaluated applications and

their description.

Here is a short description for each of the applications characterized in this Chapter:

• Back Propagation (BP) is a commonly used algorithm in neural networks which are

a widely used machine learning techniques. It is a training algorithm which takes

differences between output of the untrained data and the desired output (supervised

learning). Then it pushes the differences in the backward path through the network

and updates weight of the nodes proportionally as it goes.

• Breath-First Search (BFS) is a fundamental building block found in many graph algo-

rithms (path findings, network flow, and etc). Very large graphs which have millions

34

of vertices are common in scientific and engineering applications. BFS is known for

being memory-intensive with irregularly memory access pattern (poor data locality).

• HostSpot 3D (HS-3D) is a simulation tool which is used for estimating processor tem-

perature. It works based on an architectural floor plan and simulated power measure-

ments.

• Sparse Matrix Vector Multiplication (SpMV) is an important kernel found in many high

performance computing applications such as scientific computing, economic modeling,

and information retrieval. The computation is y = A× x, where A is a sparse matrix

and x and y are dense vectors. It is considered as a memory-intensive application that

solve large-scale linear systems and eigenvalue problems.

• Myocyte (MO) application models heart muscle cell (cardiac Myocyte) and simulates

its behavior based on work by [138]. The model integrates electrical activity of heart

muscle cell with the calcineurin pathway.

• HeartWall Tracking (HW) application tracks movements of a mouse heart over se-

quence of more than 100 ultrasound images. Image processing is performed in initial

stage of the program to detect partial shapes of inner and outer heart walls.

• Stream Cluster (SC) algorithm solves the online clustering problem. For a stream of

input points, the kernel finds a number of medians to assign each data point to its

nearest cluster.

• VASARI Image Processing System (VIPS) is an image processing application which

includes fundamental image operations such as convolution and transformation.

• Kmeans Clustering (Kmeans) kernel which is used extensively in artificial intelligence

and data mining domains executes K-means clustering algorithm. This clustering

application divides the cluster on sub-cluster and calculates the mean values of each

sub-cluster.

35

• Ray Tracing (C-ray) is a brute force ray tracer algorithm which exhibits data-level

parallelism. It renders an image in the PPM binary format from a scene description

file. Regardless of being a simple algorithm, C-ray considered to be a very compute-

intensive applications with a high computation to communication ratio.

• Image Rotation (Rotate) is an application that rotates an RGB image in binary rep-

resentation by some degrees (0, 90, 180 or 270). Similar to Ray Tracing application,

Rotate exhibits data-level parallelism. Comparing Rotate with Ray Tracing (C-ray),

it features lower computations with more stress on the memory subsystem.

• Stencil kernel represents an iterative Jacobi solver of the heat equation on a multidi-

mensional grid. Stencil computations are core components of many emerging applica-

tions. They are used in a wide range of domains from physical simulations to machine

learning.

4.2 Simulation Setup

The modeled conventional Host CPU system is evaluated using gem5-NVMain hybrid sim-

ulator [39]. This hybrid simulator integrates the full system gem5 simulator [26] with

NVMain 2.0 [116]. Full system gem5 simulator accurately evaluates the system perfor-

mance. It runs unmodified operating system and produces comprehensive execution statis-

tics. NVMain is an architectural-level memory system simulator for both DRAM and emerg-

ing non-volatile memory technologies. The Host CPU is modeled with an 8-core ALPHA

processor running at 2 GHz frequency with two levels of private caches (L1 and L2) and

a shared L3 cache. DRAM memory is modeled using Micron DDR4 timing parameters [6]

which includes four DDR4-2666 MHz memory channels with four banks per rank and four

ranks per channel. Each memory channel has a theoretical bandwidth of 21.3 GB/s. The

36

Table 4.2: The key parameters of the simulated Host CPU system

Host CPU System

Processor 8 ALPHA cores @ 2 GHz frequency
Caches per-core L1 (I): 32 KB, 2-way set associative

per-core L1 (D): 32 KB, 2-way set associative
per-core L2: 256 KB, 4-way set associative
shared L3: 16 MB, 8-way set associative
cache-line size: 64 B

DRAM Memory

DDR4-2666 MHz 16 GB: 16 Gb ×8
4 channels × 4 ranks × 4 banks
Row buffer size: 8 KB
Bandwidth: 21.3 GB/s per channel (theoretical)
15 GB/s per channel (empirical)

Timing Parameters tck = 1.25ns
tRAS = 42, tRCD = 19, tCAS = 10
tCCD = 4, tRP = 19, tWR = 210

application characterization is conducted on this system. The architectural details for the

simulated Host CPU system are summarized in Table 4.2.

4.3 Characterization Methodology

This section describes the general behavior of the studied applications and their performance

bottleneck by running them on the modeled Host CPU system. As a case study, a thor-

ough characterization (Roofline analysis, temporal and spatial data locality analysis, and

memory access behavior analysis) is conducted to illustrate the unique behaviour (memory

requirement and access behavior) of the studied applications and to justify the use of NMP

architectures in terms of performance and energy consumption.

37

A
p

p
lic

at
io

n

So
u

rc
e

C
o

d
e

Code
Instrumenatation

Application
Characteristics

Architecture
Parameters

Data Locality
Operational Intensity
Memory Access Behavior
 - Memory Intensity
 - RBL
 - R-to-W Ratio

Number of cores
Cache sizes
Roofline Analysis
 - Peak Performance
 - Peak Memory Bandwidth
...

Simulation Performance and
Power Estimation

Application
Architecture
Parameters

System Architecture
Simulation

Application
Characteristics

Performance/Power
Estimation

Application Characteristics:
✓ Data Locality
✓ Operational Intensity
✓ Memory Access Behavior
 - Memory Intensity
 - RBL
 - R-to-W Ratio

Architecture Parameters:
✓ Number & frequency of cores
✓ Levels of Caches & sizes
✓ DRAM Memory configuration
✓ Roofline Analysis
 - Peak Performance
 - Peak DRAM Memory Bandwidth

Figure 4.1: Application characterization methodology with system architecture simulation
as a performance/power evaluation technique.

Various evaluation techniques are used by architects to explore the design space of an ar-

chitecture. Based on the required details, architects usually use analytical models or cycle-

accurate simulators for performance and power evaluation [135]. Figure 4.1 illustrates appli-

cation characterization methodology with system architecture simulation as a performance

and power estimation technique proposed in this dissertation.

4.3.1 Roofline Analysis

By applying the Roofline model which is a throughput-oriented performance model for float-

ing point programs and multi-core CPU architectures, it can be found if an application lies in

the Memory-bandwidth-bound region or Performance-bound region of the underlying hard-

ware. This model combines floating point performance, operational intensity, and memory

38

performance all together in a 2-dimensional graph [148].

A Roofline model is constructed in this section which describes the theoretical limits (peak

theoretical performance and peak memory bandwidth) of the modeled Host CPU system.

Peak theoretical performance can be found from hardware specification or by running micro

benchmark such as STREAM benchmark [94]. Using the hardware specification method,

the peak theoretical performance (in GFlops) of the modeled Host CPU system is defined

as:

(CPU speed)×(number of CPU cores)×(CPU IPC)×(number of CPUs per node) (4.1)

Figure 4.2 presents the constructed Roofline model along with the Roofline data points for

all evaluated applications.

In this model, Host CPU system has the theoretical performance limit of 240 GFlops/sec

and peak memory bandwidth of 85.3 GB/s (21.3 GB/s per channel). The y-axis in this

graph shows the attainable performance for each application which is defined as:

Attainable Performance = min

Peak GFlops

Operational Intensity × DRAM GB/s

(4.2)

While an architecture has a fixed peak bandwidth and peak performance, Operational In-

tensity (OI) varies from one kernel to another. Table 4.3 shows the performance attained

(in unit of GFlops per second) by each application executing on Host CPU system.

The data points in the graph represent the OI of each application. OI is used by Roofline

to model the memory bandwidth an application uses. It provides a general overview of

an application by determining the number of floating point operations per byte of memory

39

1

2

4

16

32

64

128

256

1/8 1/4 1 2 4 32 12816 64 2561/8 1/4 1 2 4 32 12816 64 2561/8 1/4 1 2 4 32 12816 64 256

A
tt

ai
n

ab
le

 P
e

rf
o

rm
an

ce
 (

G
Fl

o
p

/s
e

c)

Operational Intensity (Flop/Byte)

π = Peak Performance
β = Peak Memory Bandwidth
π/β = Operational Intensity

85.3

π/β
240 GFlop/s

H
W

Ste
n

cil
K

m
e

an
s

SC

2.8

Peak GFlop/sec

Memory-bound Performance-bound

Figure 4.2: Constructed Roofline model for the modeled multi-core Host CPU system with
8-core ALPHA processor running at 2 GHz frequency, peak floating point performance of
240 GFlops/sec and peak memory bandwidth of 85.3 GB/s (theoretical). For each appli-
cation, Roofline data point is shown on the graph based on its operational intensity and
attainable performance. The minimum operational intensity to get the maximum perfor-
mance is π/β = 2.81 Flops/Byte. As it is shown, applications with operational intensity less
(more) than 2.8 are categorized as Memory-bound (Performance-bound).

40

Table 4.3: Attainable performance (GFlops/sec) of each studied application running on the
modeled Host CPU system with peak performance of 240 GFlops/s. Applications with
attainable performance less than 240 GFlops/s (BFS, HS-3D, MO, BP, and SpMV) cannot
exploit Host CPU processing power.

Applications
B

F
S

H
S
-3

D

M
O

B
P

S
p
M

V

R
o
ta

te

V
IP

S

H
W

S
te

n
ci

l

K
m

e
a
n

s

C
-r

a
y

S
C

Attainable 1.84 2.00 4.26 7.46 60.85 240 240 240 240 240 240 240
Performance
(GFlops/s)

traffic (Flops per Byte ratio). Using this metric, applications can be characterized into

Performance-bound (i.e., suitable for Host CPU processing) and Memory-bound (i.e., suitable

for NMP).

OI of an applications is defined as:

Number of F loating Point Operations

Total Bytes Transferred Between DRAM and LLC
(4.3)

In this formula, LLC refers to Last-Level Cache in the memory hierarchy. Applications with

a very low operational intensity (low FLOPs/Byte) cannot exploit host’s processing power.

Figure 4.3 shows the OI for all the evaluated applications. Application such as BFS, HS-

3D, MO, BP, and SpMV are characterized by extremely low OI (the byte ratio is less than

1) which makes them inherently memory-bound based on the Roofline model. For such

applications, data movement is the major performance bottleneck which causes excessive

cache misses. Rotate, VIPS, HW, Stencil, Kmeans, C-ray, and SC have OI greater than

2.8 Flops/Byte. These applications are categorized into Performance-bound that can fully

utilize the host processing power and large cache hierarchies (in case of having high data

41

Operational Intensity.

HS-3D
(0.02)

BFS
(0.01)

MO
(0.05)

BP
(0.08)

. .

Rotate
(4.99)

VIPS
(22.3)

. .

HW
(51.5)

Stencil
(62.1)

Kmeans
(81.2)

. .

C-ray
(135.6)

Memory-bound Performance-bound

< 2.8 Flops/byte > 2.8 Flops/byte

Minimum operational intensity for Maximum performance

2.8

SpMV
(0.7)

SC
(421.23)

.

Figure 4.3: Application categorization based on OI and Roofline model of the simulated Host
processor analyzed in this dissertation. As it is depicted, applications with OI less than 2.8
are categorized as memory-bound and applications with OI greater than 2.8 are bounded by
performance (Performance-bound).

locality).

Based on the Roofline analysis and applications’ OI (see Figure 4.2 and Figure 4.3), it can

be concluded that:

• The attainable performance of applications such as Rotate, VIPS, HW, Stencil, Kmeans,

C-ray, and SC is approaching the theoretical performance bound of the Host CPU

(240 GFlops/sec) which categories them into applications with high compute bound.

These applications have a high computation to communication ratio.

• BFS, HS-3D, MO, BP, and SpMV applications have a very low compute bound. These

applications are bounded by memory bandwidth, and they cannot fully utilize the Host

CPU processing power.

42

4.3.2 Temporal and Spatial Data Locality

The principal of locality of references justifies the use of large cache hierarchies in the Host

processing unit. Temporal and spatial data locality are intrinsic to the reference stream

which explains their in-dependency on cache parameters. In order to confirm the results

obtained by Roofline analysis (see Section 4.3.1), this section estimates the amount of data

locality (temporal and spatial) in compute-bound applications (Rotate, VIPS, HW, Stencil,

Kmeans, C-ray, and SC). Applications with high Flops/Byte ratio (high OI) and high data

locality can exploit benefits offered by Host processing power and large cache hierarchies.

Temporal data locality (locality in time) is the measure of how likely a data is to appear

again in a sequence of requests after being requested within a time span. This metric helps

to categorize applications in two classes:

• Applications with poor or no temporal data locality which cannot benefit from large

and multi-layer Host caches.

• Applications with high temporal data locality which can exploit large cache hierarchies

and are more suitable for Host CPU processing.

One way to estimate the temporal data locality of an application is to analyze how the cache

hit rate of a processor changes as we increase the last-level cache capacity with a fixed cache-

line size. Figure 4.4 shows temporal data locality sweeping cache size from 8MB to 64MB

with fixed cache-line size of 64B for applications with high compute-bound (see Figure 4.2).

Figure 4.4 illustrates that HW, VIPS, C-ray, and Stencil have enough temporal data locality

to leverage from cache hierarchies in Host CPU system. Kmeans and Rotate exhibit a

very small improvement in their cache hit rate which implies a poor temporal locality. SC

application with no improvement in the cache hit rate shows no temporal locality.

Spatial data locality (locality in space) is the phenomenon that if a program references a

43

0%

20%

40%

60%

80%

100%

HW SC VIPS Kmeans C-ray Rotate Stencil

LL
C

 H
it

 R
at

e 8MB

16MB

32MB

64MB

Figure 4.4: Temporal data locality sweeping LLC capacity 8-64MB with fixed cache-line size
of 64B across all compute-bound applications.

0%

20%

40%

60%

80%

100%

SC Kmeans Rotate

LL
C

 H
it

 R
at

e 32B

64B

128B

256B

Figure 4.5: Spatial data locality sweeping cache-line (LLC) size 32-256B with fixed cache
capacity of 16MB across compute-bound applications with poor/no temporal data locality.

44

particular data, then it is extremely likely that the program will also reference other data that

are nearby to the referenced data. This data locality determines sensitivity to the cache-line

size and can be estimated by sweeping the cache-line size with a fixed cache capacity [150].

Figure 4.5 shows spatial data locality for three compute-bound applications with poor/no

temporal locality (see Figure 4.4) by sweeping cache-line size from 32B to 256B with a fixed

cache size of 16MB. All of three compute-bound applications with poor/no temporal locality

(SC, Kmeans, and Rotate) have enough spatial locality. These applications can utilize the

benefits of large cache hierarchies provided by the Host CPU system.

4.3.3 Memory Access Behavior

Memory Intensity, Row Buffer Locality (RBL), and Read-to-Write (R-to-W) Ratio are three

components which are used to estimate the memory access behavior of each application.

Table 4.4 lists all applications used in this study (both memory-intensive (highlighted in

gray in the table) and compute-intensive) and their memory characteristics. The focus

of this section is on memory-intensive applications which have high and middle memory

intensity (memory intensity > 2).

Memory Intensity

Memory intensity is the frequency at which a request misses in the last-level cache which is

determined in the unit of misses per kilo instructions (MPKI) of LLC. LLC MPKI can be

defined as:

Number of Miss Memory Accesses

(Total Number of Committed Instructions / 1000)
(4.4)

Applications with memory intensity greater than two (LLC MPKI > 2) are classified into

45

Table 4.4: List of all evaluated applications and their memory access behavior. The reported
numbers are measured from Host CPU execution. Applications with ”High” and ”Middle”
memory intensity are classified into memory-intensive (highlighted in gray in the table) and
other applications are labeled as memory-non-intensive (compute-intensive).

Memory Access Behavior
Application

Memory Intensity RBL R-to-W Ratio

BP 21.5 (High) 24.51% (Low) 1.63 (< 3)

MO 7.2 (High) 14.82% (Low) 1.33 (< 3)

BFS 2.4 (Middle) 76.5% (High) 3.93 (> 3)

HS-3D 2.3 (Middle) 75.61% (High) 4.26 (> 3)

SpMV 2.1 (Middle) 16.24% (Low) 4.48 (> 3)

Rotate 0.4 (Low) 28.80% 1.72

VIPS 0.21 (Low) 45.48% 1.86

HW 0.13 (Low) 5.94% 1.08

Kmeans 0.085 (Low) 75.53% 2.17

C-ray 0.07 (Low) 21.10% 1.41

Stencil 0.03 (Low) 58.91% 1.63

SC 0.006 (Low) 58.47% 3.47

memory-intensive and other applications (with LLC MPKI < 2) are labeled as non-memory

intensive (compute-intensive). Data shown in Table 4.4 confirms the results obtained by

Roofline analysis and data locality analysis. Rotate, VIPS, HW, Kmeans, C-ray, Stencil,

and SC have a very low memory intensity (LLC MPKI < 1) which lies them in the non-

memory-intensive category. BP, MO, BFS, HS-3D, and SpMV applications (highlighted

in gray in Table 4.4) with memory intensity greater than two are categorized them into

memory-intensive class.

46

Row Buffer

Data Bus

Row Buffer

Data Bus

M
e

m
o

ry
 A

rr
ay

 R
o

w

Figure 4.6: Memory bank organization. Each bank in memory has a row buffer that caches
the last accessed row. A row buffer hit is much cheaper than a row buffer miss. Figure is
adopted from [106].

RBL

Memory device organization includes a peripheral storage known as Row Buffer (RB) which

acts as a cache for memory array rows and is independent from the memory technology.

Figure 4.6 shows memory bank organization. As it is shown in this figure, each bank has

a row buffer that caches the last accessed row. This memory component is present in both

DRAM and PCM technologies. When content of a memory array’s row is placed in the row

buffer, successive memory requests to the same row are served immediately from the row

buffer. These memory accesses are called row buffer hits. If a memory request refers to a

row which is different from the latched one in the row buffer, then this request causes row

buffer miss. Based on [95], row buffer hits produce same latency and cost in both DRAM

and PCM technologies, while row buffer misses incur larger latency and cost in PCM than

DRAM. Examining this metric, a same style buffering and size is assumed for row buffer

47

3
0

2
5

2
3

2
7

3
4

2
5

8
4

1
7

0
1

3

1
6

6
9

9

7
2

5
3

6
4

1

4
5

4
6

4
0

2

5
2

1
5

9
7

4
6

9
9

9
5

7
6

1
4

0

1
0

1
3

8
9

1
4

1
6

2
4

2
8

3
5

1

9
3

2
0

0
9

0
2

1
9

6
9

4
5

7

5
2

2
6

5
0

9
8

3
7

4
1

2
6

1
9

1
1

2
3

9
9

5
2

6
2

5
2

6
2 7

4
3

8
4

6
0

2
4

6
6

2

3
7

9
1

7
2

9
8

7
7

6

2
0

1
3

5

2
4

.5
1

%

1
4

.8
2

%

7
6

.5
0

%

7
6

.6
1

%

1
6

.2
4

%

2
8

.8
0

% 4
5

.4
8

%

5
.9

4
%

7
5

.5
3

%

2
1

.1
0

%

5
8

.9
1

%

5
8

.4
7

%

0%

20%

40%

60%

80%

100%

1

10

100

1000

10000

100000

1000000

10000000

100000000

R
B

 H
it

 a
n

d
 M

is
s

C
o

u
n

ts
RB Hit Counts

RB Miss Counts

RBL

Figure 4.7: Application characterization based on row buffer locality (RBL). Left y-axis
shows row buffer hit and miss counts, and right y-axis indicates RBL (RB hit rate) for all
the evaluated applications across all memory channels. Along x-axis, applications are sorted
based on their memory intensity, from highest to least.

in both DRAM and PCM technologies. The RBL of an application is the average hit rate

of the row buffer across all memory channels and is considered as an important measure of

data locality in memory. Figure 4.7 shows row buffer hit and miss counts along with RBL

for all the studied applications across all memory channels.

Based on result shown in Table 4.4 and Figure 4.7 for memory-intensive applications, BFS

and HS-3D have high RBL (RB hit rate > 75%). BP, MO, and SpMV with RB hit rate less

than 25% are considered as applications with low RBL.

48

7
6

5
9

9
4

2
9

1
3

2
1

2
1

4

1
6

7
0

2

1
5

6
4

7

3
7

0
6

2
0

9
6

9
9

8
6

5
0

2

7
4

5
9

1
0 4
1

0
3

5
6

1

6
9

0
0

2 2
8

1
4

4
1

1
4

9
0

6
5

3
7

6
4

1

4
6

8
5

3
8

0
0

9
9

0
8

2
7

4
2

4
7

3
6

7
2

7
6

0
4

1
6

4

5
7

9
9

8
5

2

4
0

0
9

4
9 3

8
0

4
8

9
4

3
1

8
0

0 1
9

9
1

2
0

9
1

3
3

5

1
0

8
4

5

1
.6

3

1
.3

3 3
.9

3

4
.2

6

4
.8

7

1
.7

2

1
.8

6

1
.0

8 2
.1

7

1
.4

1

1
.6

3 3
.4

7

1

10

100

1000

10000

100000

1000000

10000000

100000000

M
e

m
o

ry
 A

cc
e

ss
e

s
Memory Read Instructions

Memory Write Instructions

R-to-W Ratio

Figure 4.8: Application characterization based on average R-to-W ratio. Left y-axis shows
memory accesses (read and write accesses) across all evaluated applications. Along x-axis,
applications are sorted based on their memory intensity, from highest to least.

R-to-W Ratio

R-to-W ratio metric is used to categorize Memory-bound applications into read-intensive

and write-intensive. Although PCM offers the read latency/energy close to DRAM technol-

ogy, it suffers from high write latency/energy which has an adverse impact on the system

performance. Based on different characteristics of DRAM and PCM such as read laten-

cy/energy, write latency/energy, and power consumption, it can be decided which NMP

subsystem (3D-DRAM or 3D-PCM) would perform better in terms of memory power saving

and potentially performance for Memory-bound applications.

49

R-to-W ratio of an application is defined as:

Number of Memory Read Instructions

Number of Memory Write Instructions
(4.5)

Figure 4.8 shows memory accesses (read and write) across all studied applications in this

dissertation (memory-intensive and compute-intensive). Along the x-axis, applications are

sorted based on their LLC MPKI (memory intensity), from highest to least (see Table 4.4).

The focus of this section is on applications with high and middle memory intensity (BP,

MO, BFS, HS-3D, and SpMV).

Based on multiple research work, while DRAM write latency is from 20ns to 50ns, PCM

write latency varies 50ns to 150ns (shown in Table 3.1). Average R-to-W ratio higher

than 3 (i.e., PCM to DRAM write latency ratio) is used to characterize Memory-bound

applications into read-intensive (R-to-W ratio > 3) and write-intensive (R-to-W ratio <

3). This approach helps to differentiate between NMP systems based on average R-to-W

ratio of each application. For memory-read-intensive applications, read energy/latency is the

dominant factor in determining the memory power consumption and performance. Thus,

such applications may benefit from 3D-PCM NMP.

4.3.4 Read Disturbance

Devoting the 3D-PCM to memory read-intensive applications with high RBL has major ben-

efits such as improving the PCM endurance and reducing memory access power dissipation

and delay. However, consecutive read accesses to NVMs, with no write operation in between,

may lead to a bit-flip in the accessed cells which is called read disturbance.

Among NVMs, STT-RAM is the most susceptible NVM technology to read disturbance due

to the close read and write currents in this technology. Although PCM is much more robust

50

against bit-flip due to read disturbance, turbo read accesses with high current on bit-lines,

to improve PCM performance, can lead to read disturbance fault and data loss.

There are various techniques to minimize or mask read disturbance effect which are applicable

in the proposed memory architecture:

• Error Correcting Codes (ECCs) are widely utilized to detect and correct bit-flip in

memories. Thanks to the process variation, aging, and susceptibility to transient faults,

the ECC unit is a popular component almost in all of memory structures. This unit can

be utilized together with the proposed technique to prevent read disturbance errors.

• In this study, 3D-PCM technology is selected which is the most robust NVM against

read disturbance faults. By avoiding turbo read accesses to PCM, this memory tech-

nology can well resist against read disturbance.

• Utilizing multi-level cache hierarchies and larger memory row buffers help to reduce

the read disturbance effect. Due to locality of read references, caches mask a large

number of memory accesses which reduces read disturbance error in NVMs.

In memory-read-intensive applications, the expectation of consecutive read accesses increases.

Thus, the average number of read accesses with no write access in between increases by only

storing memory-read-intensive applications’ data in 3D-PCM. However, this does not exac-

erbate worst-case consecutive memory read accesses. It is worth mentioning that for the

guaranteed operation of memory system, the worst-case stress condition should be consid-

ered. Thus, the proposed technique does not impose extra overheads in respect to the read

disturbance fault model, and the same considerations must be taken into account for any

NVM-based memory system.

51

4.4 Insights and Discussions

In order to assess computational demand and memory footprint and to suggest the most

suitable processing unit (Host CPU processing or NMP (3D-DRAM or 3D-PCM)) in terms

of performance and energy efficiency, a systematic characterization has been conducted on a

wide range of multi-threaded applications (mixture of compute-bound and memory-bound).

The characterization revealed the performance bottleneck of the studied applications. The

first three metrics (Roofline analysis, data locality (temporal and spatial) analysis, and mem-

ory intensity) classified applications into Performance-bound and Memory-bound. Then, by

estimating applications’ memory access behavior (R-to-W ratio and RBL), Memory-bound

applications are classified into write-intensive and read-intensive with high/low RBL to sug-

gest the most suitable NMP system based on 3D-DRAM and 3D-PCM technologies, re-

spectively. The read disturbance (as a memory metric) is also discussed to consider the

case when 3D-PCM, or in general non-volatile memory, is regularly chosen for read-intensive

applications.

Table 4.5 summarizes application characterization based on high-level (Data locality, Roofline

analysis with OI, memory intensity) and low-level (R-to-W ratio, RBL, and read disturbance)

metrics to suggest a suitable processing unit for each class of applications.

Application characterizations are summarized as follows:

1. CPU-Intensive (Performance-bound) class with high OI (high Flops/Byte

ratio), high data locality (temporal and/or spatial), and low memory inten-

sity (LLC MPKI < 2):

This class includes CPU-friendly applications that can fully utilize Host processing

power and large multi-level cache hierarchies. The attainable performance of these

applications approaches to the peak performance of the modeled Host CPU system.

52

Table 4.5: List of all evaluated applications and their characteristics. Based on the redefined
metrics (data locality, operational intensity based on Roofline analysis, memory intensity,
R-to-W ratio, and row buffer locality), the best processing unit (Host CPU, 3D-DRAM NMP
or 3D-PCM NMP) is suggested for each class of applications.

Application’s Class Name Best Processing Unit

Performance-bound:
? High Data Locality
? High OI
† (Roofline Analysis)
? Low Memory Intensity
† (LLC MPKI)

Rotate Host CPU
VIPS Host CPU
HW Host CPU

Stencil Host CPU
Kmeans Host CPU
C-ray Host CPU

SC Host CPU

Memory-bound:
? Low/No Data Locality
? Low OI
† (Roofline Analysis)
? High Memory Intensity
† (LLC MPKI)

Write-Intensive:
? R-to-W ratio < 3
? Low RBL

BP NMP (3D-DRAM)
MO NMP (3D-DRAM)

Read-Intensive:
? R-to-W ratio > 3
? High/Low RBL
(*Read Disturbance
Consideration)

BFS NMP (3D-PCM)
HS-3D NMP (3D-PCM)
SpMV NMP (3D-PCM)

53

Rotate, VIPS, HW, Stencil, Kmeans, C-ray, and SC are CPU-friendly applications

that can benefit more from Host CPU processing comparing to NMP systems.

2. Memory-Intensive (Memory-bound) class with low OI, poor/no data lo-

cality (poor/no temporal and spatial locality), and high/middle memory

intensity (LLC MPKI > 2):

This class of applications show a significant memory footprint (with high and middle

LCC MPKI) with Host CPU under-utilization. It includes NMP-friendly applications

that can be categorized into memory-write and memory-read intensive with high/low

RBL. The characterization is based on R-to-W ratio and RBL (RB hit rate) metrics.

BP and MO are memory-write-intensive applications with R-to-W ratio < 3 and low

RBL (see Table 4.4) that can be processed efficiently on 3D-DRAM NMP. BFS and HS-

3D are memory-read-intensive (R-to-W ratio> 3) applications with high RBL that may

benefit from 3D-PCM NMP architecture in terms of performance and power/energy

consumption. For SpMV application with R-to-W ratio > 3 (memory-read-intensive)

and low RBL, 3D-PCM NMP may outperform 3D-DRAM NMP in terms of power con-

sumption due to its read-intensive property. It should be noted that regular processing

of memory-read-intensive applications on a NMP subsystem based on 3D-PCM leads

to the read disturbance effect, which should be carefully taken into consideration.

4.5 Summary

Through detailed and comprehensive characterization conducted on each application, we

are ready to accelerate data-intensive problem caused by memory wall bottleneck of the

conventional processing architectures using architectural-level technique. NMP systems are

proven to be practical and efficient against memory-intensive applications and are specialized

towards this type of applications. In Chapter 5, a hybrid memory system composed of two

54

different NMP subsystems (3D-DRAM and 3D-PCM) is explored and evaluated in order to

process memory-intensive applications efficiently in terms of performance and memory power

consumption.

55

Chapter 5

Near Memory Processing in Hybrid

Memory Systems

Chapter 3 discussed near memory processing based on 3D stacking (NMP) as an effective

architectural-level approach to avoid expensive data movement between off-chip memory

and processing unit. With the advent of 3D die stacking technology and more importantly

hybrid memory systems, the long-wished NMP capability is enabled.

In Chapter 4, first, a set of NMP-centric performance metrics are redefined and investigated

in order to analyze the efficacy of mapping a processing unit (Host CPU system, 3D-DRAM

based NMP, and 3D-PCM based NMP) to a specific application. Then, leveraging the rede-

fined metrics, various set of application domains (memory-intensive and compute-intensive)

are characterized to estimate the efficiency of a processing unit in terms of performance and

power/energy consumption in order to suggest the most suitable architecture.

This Chapter introduces a hybrid processing architecture in which a multi-core Host CPU

system is connected to a hybrid NMP subsystem composed of two different 3D memory tech-

nologies (3D-DRAM NMP and 3D-PCM NMP). Based on results obtained from application

56

characterization in Chapter 4, data-intensive (memory-intensive) applications can be pro-

cessed using the proposed NMP architectures to evaluate the efficacy of constructing NMP

architecture when 3D-PCM or in general 3D-NVM technology is employed. Leveraging the

benefits offered by emerging non-volatile memory technology encourages architects to design

more efficient NMP systems in a hybrid 3D structure.

5.1 NMP Hardware Architecture in Hybrid System

NMP systems can be designed with different technology techniques such as processing on

buffer-on-board (BoB) devices [38], edge-bonding small processor dies on DRAM chips, and

3D stacking with TSVs [141][104]. In this dissertation, 3D die stacking technology with

TSVs is used to design efficient NMP subsystem.

Figure 5.1 shows an abstract view of the proposed architecture in which a multi-core Host

CPU (with large and multi-level cache hierarchies) communicates with the hybrid NMP

subsystem using high-speed links. The proposed architecture is similar to a conventional

system where the Host processor uses multiple DDR memory channels to connect to multiple

memory modules, but instead of DDR interface, high-speed links are used. In the NMP

subsystem, two different memory technologies (3D-DRAM and 3D-PCM) are selected to

enable the NMP capability. An application can run on the multi-core Host CPU or it can

be transferred to the NMP subsystem (3D-DRAM NMP or 3D-PCM NMP) where the data

can be accessed more efficiently.

An NMP stack (see Figure 5.1 (b)) is composed of several vertical vaults in which each vault

is equivalent to a channel in the DDR memory module. Each vertical vault includes multiple

partitions which are located in different story of memory layers and consists of many memory

banks. In this architecture, NMP cores are located in the logic layer (one or more per vault)

57

CPU

DRAM

Processing Units

NVM

Processing Units

Memory

CPU

Input Output

Memory +
Computation

CPU

Memory +
Computation

CPU

Memory

Processing Units

CPU

Multicore Host CPU

DRAM

Processing Cores

PCM

Processing Cores

Hybrid NMP Subsystem

3D-DRAM NMP 3D-PCM NMP

(a)

(b)

Stacked Memory Layers

Logic Layer

Stacked Memory Layers

Logic Layer

Stacked Memory Layers

Logic Layer

Vault

...

...

...

...
Stacked Memory Layers

Logic Layer

Vault

...

...

...

Figure 5.1: An envisioned hybrid processing system where a multi-core Host CPU with
large cache hierarchies is connected to a hybrid NMP subsystem. In each NMP subsystem,
multiple memory layers (composed of many memory banks) are stacked on top of a logic layer
that provides the computation ability with high internal parallelism. In this architecture,
an application can run on the Host CPU system as in the conventional manner, or it can be
offloaded to one of the NMP subsystems in which data can be accessed more efficiently.

58

and a total of {number of vaults × number of cores per each vault} cores constitute a NMP

processor.

Different evaluation techniques can be used to explore the design-space of an architecture.

Based on the level of information required, architects leverage “analytical model” or “cycle-

accurate simulators”. Analytical technique uses low-level system details and provides fast

estimations for performance and power at the cost of accuracy. Authors at [155] use ma-

chine learning techniques for designing an analytical model to estimate final architecture

performance. Cycle-accurate simulation-based techniques provide better performance and

power numbers in terms of accuracy. In this technique, the entire micro-architecture is mod-

eled precisely and compared to analytical mode, it is quite slow. There are many academic

efforts to build NMP simulators which are open-source. This dissertation uses simulation-

based modeling to evaluate the studied architectures more precisely in terms of performance

and power.

5.2 Evaluation Methodology

This section discusses the evaluation methodology and simulation configurations for three

different processing units (conventional multi-core Host CPU, 3D-DRAM based NMP, and

3D-PCM based NMP systems).

The study of identifying the potential of NMP subsystem to boost the performance and

power consumption of the memory-intensive applications (discussed in Chapter 4) is based

on matching the characteristics of these applications to NMP systems (3D-DRAM NMP and

3D-PCM NMP). Twelve real-world applications (presented in Section 5.2.1) are simulated

for the evaluation. The application characterization is conducted on conventional Host CPU

system (see Table 5.1 for Host CPU configuration) to define the unique behavior (e.g. com-

59

putational demand and memory footprint) of each application. Roofline analysis along with

data locality (temporal locality and spatial locality) analysis and memory intensity metrics

classify applications into Performance-bound and Memory-bound. Then by defining mem-

ory access behavior of Memory-intensive applications (applications with high and middle

memory intensity highlighted in gray in Table 4.4), their memory characteristics (RBL and

R-to-W ratio) can be matched to the two existing NMP systems.

5.2.1 Simulation Models

Conventional multi-core Host CPU system is evaluated using full-system (FS) gem5-NVMain

hybrid simulator [39]. The gem5 simulator [26] is a tool for computer system architecture

research which is widely used in industry and academia. Because of its high configurability

for a fine-grained architecture modeling, it evaluates system performance in an accurate

way. This simulator supports cycle-accurate emulation for most instruction set architectures

and a wide range of CPU models. Providing two system modes (full-system and system-

call emulation), it allows configurations for trade off between speed and accuracy. Even at

the micro-architecture level, this simulator provides thorough execution statistics for power,

processor, and memory [49]. The NVMain simulator [116] is an architectural-level and

cycle-accurate main memory simulator which models both DRAM and emerging non-volatile

memory technologies. It can be built as an executable to run trace-based simulations, or it

can be patched into a CPU simulator (such as gem5). The later implementation is used in

this dissertation.

Ramulator-Pim [8] [136], a processing-in-memory simulation framework, is used to evaluate

the NMP subsystems discussed in this dissertation. The framework is based on two simula-

tors, ZSim [124], a fast and accurate simulator for thousand core systems, and Ramulator [74]

which is a fast and cycle-accurate DRAM simulator. Dynamic execution traces of the in-

60

strumented code are collected from ZSim. Then, the acquired traces are fed to Ramulator.

Ramulator simulates the memory accesses of the Host cores and NMP cores using the traces

generated by ZSim.

Table 5.1 summarizes the key parameters and configurations of the simulated systems (Host

CPU system and two NMP systems). The Host CPU system includes a 8-core ALPHA

processor running at 2 GHz frequency with two levels of private caches (L1 and L2) per

core and a shared L3 cache. The memory subsystem (DRAM) is modeled using Micron

DDR4 timing parameters [6] which includes four DDR4-2666 MHz memory channels with

four banks per rank and four ranks per channel. Each memory channel has a theoretical

bandwidth of 21.3 GB/s. The application characterization (see Chapter 4) is conducted on

this system.

The evaluated NMP systems are based on two different memory technologies, 3D-DRAM and

3D-PCM, as the representatives of volatile and non-volatile types to construct a hybrid NMP

subsystem. DRAM has already adopted 3D staking technology and PCM also proved to be

3D stackable [69]. Micron and Intel revealed a 3D-stacked PCM-like memory product called

3D XPoint which is designed for memory hungry applications [66] [45]. The simulated NMP

systems extend the 3D memory systems by introducing a number of simple in-order cores

with caches into the logic layer. Out-of-order or wide-issue cores are not necessary because

of poor/no data locality and instruction-level parallelism in applications that execute near

memory. Table 5.1 includes more details regarding the simulated NMP systems. Table 5.2

and Table 5.3 show the values assigned to memory configuration parameters for modeling

DDR4 and PCM memory models.

61

Table 5.1: The key parameters of the simulated systems

Host CPU System

Processor 8 cores @ 2 GHz frequency
Caches per-core L1 (I): 32 KB, 2-way

per-core L1 (D): 32 KB, 2-way
per-core L2: 256 KB, 4-way
shared L3: 16 MB, 8-way
cache-line size: 64 B

DRAM Memory
DDR4-2666 MHz 16 GB: 16 Gb ×8

4 channels × 4 ranks × 4 banks
Row buffer size: 8 KB
Bandwidth: 21.3 GB/s per channel (theoretical)
15 GB/s per channel (empirical)

Timing Parameters tck = 1.25ns
tRAS = 42, tRCD = 19, tCAS = 10
tCCD = 4, tRP = 19, tWR = 210

NMP System

Cores 8 cores @ 1.8 GHz frequency
Caches per-core L1 (I): 32 KB, 4-way

per-core L1 (D): 32 KB, 4-way
cache-line size: 64 B
3D-stacked Memory

3D-DRAM
(HMC)

16 GB: 2 layers × 4 vaults × 4 rank
4 ranks/vault
2 cores per vault logic
Row buffer size: 256 B

3D-PCM 16 GB: 2 layers × 4 vaults × 4 rank
4 ranks/vault
2 cores per vault logic
Row buffer size: 256 B

62

5.2.2 Memory Model Parameters in NVMain for DRAM and PCM

Technologies

This section provides the different memory configuration parameters (interface properties,

memory system, memory timing, energy/power, memory controller, and memory endurance)

of NVMain used to model the memory technologies considered in this dissertation. Table 5.2

and Table 5.3 shows values assigned to those parameters for modeling the DDR4-2666MHz

(Micron) and PCM memory models [6] [35]. All results obtained in Chapter 4 and Chapter

5 are based on these memory configurations.

5.2.3 Applications

The applications used in this study are mixture of different benchmark suites, Rodinia [31],

Parboil [7], PARSEC [25], and Starbench [9][18], to cover a wide range of application domain.

Table 5.4 lists all of the evaluated applications with their domain. A short description for

each of the studied applications is provided in Chapter 4, Section 4.1. The focus of this

Chapter is on memory-intensive applications.

5.3 Evaluation Results

This section presents the experimental results from executing memory-intensive applications

(BP, MO, BFS, HS-3D, and SpMV) under three different processing architectures (Host

CPU system, 3D-DRAM NMP and 3D-PCM NMP). A summary of the experimental setup

for the conventional Host CPU and NMP systems is shown in Table 5.1. Unless otherwise

stated, all results are normalized to the Host CPU system.

63

Table 5.2: Configuration of DDR4 Micron and PCM memory models: interface properties,
memory system and memory timing [6] [35].

Parameters DRAM PCM

Interface CLK 2666 MT/s DDR 800 MT/s
MULT 4 8
Rate 2 2
BusWidth 64 64
DeviceWidth 8 8
BPC 8 8
CPUFreq 2000 2000

Memory system Banks 4 1
Ranks 4 4
Channels 4 4
Row 131072 16384
COLS 32 1024
MatHeight 131072 16384
UseRefresh true false
BanksPerRefresh 4 1
Delayed refresh threshold 8 8

Memory timing tBURST 4 4
tCMD 1 1
tRAS 42 0
tRCD 19 48
tAL 0 0
tCCD 4 2
tCWD 7 4
tWTR 5 3
tWR 210 0
tRP 19 1
tCAS 10 1
tRTRS 1 1
tRTP 5 3
tRFC 107 100
tOST 1 0
tRRDR 4 4
tRRDW 4 4
RAW 4 4
tRAW 21 20
tRDPDEN 14 5
tWRPDEN 19 68
tWRAPDEN 20 68
tPD 4 1
tXP 5 3
tXPDLL 16 200000
tXS 5 -
tXSDLL 854 -
tREFW 42666667 42666667

64

Table 5.3: Configuration of DDR4 Micron and PCM memory models: energy/power param-
eters, memory controller and memory endurance model [6] [35].

Parameters DRAM PCM

Energy/power UselowPower true -
PowerDownMode FASTEXIT -
EnergyModel current energy
Ewrpb 0.000202 0.000202
Erd 3.405401 7.1513421
Ewr 1.023750 44.123625
Eref 38.558533 0
Eleak - 3120.202
Eactstdby 0.090090 -
Eprestdby 0.083333 -
Epda 0.000000 0.000000
Epdpf 0.078829 0
Epdps 0.000000 0.000000
Voltage 1.2 1.5
EIDD0 59 -
EIDD1 76 -
EIDD2P0 22 -
EIDD2P1 22 -
EIDD2N 42 -
EIDD2NT 54 -
EIDD3P 33 -
EIDD3N 58 -
EIDD4R 145 -
EIDD4W 140 -
EIDD5B 66 -
EIDD6 25 -

Memory controller MEM CTL FRFCFS FRFCFS-WQF
CTL DUMP false -
ClosePage 0 0
ScheduleScheme 2 2
Address Mapping Scheme SA:R:RK:BK:CH:C R:RK:BK:CH:C
INTERCONNECT OffChipBus OffChipBus
ReadQueueSize 32 32
WriteQueueSize 32 32
HighWaterMark 32 32
LowWaterMark 16 16

Endurance model EnduranceModel NullModel NullModel
EnduranceDist Normal Normal
EnduranceDist Mean 1000000 1000000
EnduranceDist Variance 100000 100000
FlipNWrite Granularity 32 -

65

Table 5.4: Studied applications and their description.

Application Suite Name Description

Back Propagation Rodinia BP Pattern Recognition, machine Learning

Breadth-First Search Rodinia BFS Graph Analysis

HotSpot 3D Rodinia HS-3D Physics Simulation

Sparse Matrix Vector Mult. Parboil SpMV Graph Analysis, Machine Learning

Myocyte Rodinia MO Biological Simulation

HeartWall Tracking Rodinia HW Medical Imaging

Stream Cluster PARSEC SC Data Mining

VASARI Image Processing Sys. PARSEC VIPS Media Processing

Kmeans Clustering Starbench Kmeans Artificial Intelligence, Data Mining

Ray Tracing Starbench C-ray Computer Graphics

Image Rotation Starbench Rotate Image Processing

Stencil Starbench Stencil Physics Simulation, Machine Learning

Table 5.5: List of memory-intensive applications and their memory access behavior. The
reported numbers are measured from Host CPU execution.

Memory Access Behavior
Memory-Intensive Applications

Memory Intensity RBL R-to-W Ratio

BP 21.5 (High) 24.51% (Low) 1.63 (< 3)

MO 7.2 (High) 14.82% (Low) 1.33 (< 3)

BFS 2.4 (Middle) 76.5% (High) 3.93 (> 3)

HS-3D 2.3 (Middle) 75.61% (High) 4.26 (> 3)

SpMV 2.1 (Middle) 16.24% (Low) 4.48 (> 3)

66

5.3.1 Performance Comparison

To study performance and perform speed up comparison between different processing units,

the execution stage average Instruction Per Cycle (IPC) of memory-intensive applications

is used as a performance metric. Ramulator [8] [74] is used in trace-driven mode with a

CPU model to estimate the average IPC when NMP systems are employed. To generate the

traces, Zsim [124] is used to identify region of interest (ROI) of one billion instructions for

each of memory-intensive applications.

Figure 5.2 shows a performance (speedup) comparison of memory-intensive applications (BP,

MO, BFS, HS-3D, and SpMV) under three different computing platforms: Host CPU system

with the conventional DDR4 memory and NMP systems with processing units embedded

in logic layer of 3D-DRAM and 3D-PCM. Along the x-axis, the applications are sorted by

memory-intensity (LLC MPKI), from highest to least (see Table 5.5) and average IPC results

are normalized to the Host CPU system.

Figure 5.2 illustrates that in both NMP systems (3D-DRAM and 3D-PCM) the average

IPC of target applications has improved by 1.31x to 5x compared to the Host CPU system.

Comparing two NMP systems, 3D-PCM NMP has a very negligible difference with 3D-

DRAM NMP in IPC improvement, which makes it a practical and efficient NMP architecture

to accelerate executing memory-intensive applications. Figure 5.3 provides further insights

into the performance comparison using memory access latency metric. In this figure, Along

the y-axis, represented values are normalized to the Host CPU system. Two findings can be

drawn out from this figure:

1. It depicts a significant performance benefit (memory access latency reduction) for BP,

MO, and SpMV applications when running them on two NMP systems (3D-PCM

NMP and 3D-DRAM NMP). As it is shown in Table 5.5 (which is also discussed in

Section 4.3.3), all three applications exhibit a low RBL (RB hit rate of 24.51%, 14.82%,

67

2
.8

2

2
.0

9

1
.3

1

5
.0

0

1
.6

9

2
.9

0

2
.2

1

1
.3

3

5
.0

2

1
.8

1

0

1

2

3

4

5

N
o

rm
al

zi
ed

 A
ve

ra
ge

 IP
C

Host CPU (DDR4) NMP (3D-PCM) NMP (3D-DRAM)

Figure 5.2: Performance (speedup) comparison based on average IPC between Host CPU,
3D-PCM NMP, and 3D-DRAM NMP systems across all memory-intensive applications.
Along the x-axis, applications are sorted by memory-intensity (LLC MPKI), from highest
to least. IPC results are normalized to the Host CPU system.

and 16.24%, respectively) on Host CPU system with DDR4 memory. Having poor data

locality at the memory array level, these applications can benefit from 3D-stacked

memories (3D-PCM and 3D-DRAM) which deliver higher bandwidth and memory-

level parallelism compared to DDR4 memory. Furthermore, NMP systems eliminate

data movement bottleneck which significantly improves the memory access latency for

such applications.

2. Though there is an improvement in average IPC of BFS and HS-3D applications (see

Figure 5.2), an increase can be observed in memory access latency of these applications

when NMP systems are employed (see Figure 5.3). To understand the reason, we look

at RBL locality of these applications when running them on Host CPU system with

DDR4 memory. As it is shown in Table 5.5, BFS and HS-3D have a high RBL (RB

68

0
.0

3
5

0
.0

6
7

1
.2

1
8

2
.6

7
4

0
.0

5
5

0
.0

7
6

0
.0

6
0

2
.0

6
8 2

.3
6

2

0
.0

5
4

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
e

d
 M

em
o

ry
 A

cc
e

ss
 L

at
e

n
cy

Host CPU (DDR4) NMP (3D-PCM) NMP (3D-DRAM)

Figure 5.3: Memory access latency comparison between Host CPU, 3D-PCM NMP, and
3D-DRAM NMP systems across all memory-intensive applications, normalized to the Host
CPU system. Along the x-axis, applications are sorted based on memory intensity (LLC
MPKI) from highest to least.

hit rate > 75%) which is exploited by DRR4 memory because of its large row buffer

size (8KB). Lower memory access latency (see Figure 5.3 for BFS and HS-3D) on Host

CPU with DDR4 is the result of exploiting high data locality at memory array row.

Running these applications on NMP system which is enabled by memory with very

small row size (256B) increases the memory access latency, since memory row misses

occur more frequently. High internal parallelism (bank-level parallelism) offered by

3D-stacked memories (which have processing cores in their logic layer) is exploited

by such applications. Thus, due to the high bank-level parallelism, BFS and HS-3D

exhibit a significant improvement in their IPC with NMP execution cases.

69

0
.5

3
0

0
.5

6
5

0
.5

7
9

0
.5

8
6

0
.5

6
4

0
.4

8
5

0
.4

8
1

0
.6

5
6

0
.6

3
9

0
.6

1
0

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

zi
e

d
 M

e
m

o
ry

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

Host CPU (DDR4) NMP (3D-PCM) NMP (3D-DRAM)

Figure 5.4: Memory power consumption across all memory-intensive applications for Host
CPU and two different NMP execution cases, normalized to the Host CPU system.

5.3.2 Memory Power Consumption Comparison

Power analysis for DDR4 memory in Host CPU system has been done using gem5-NVMain

simulator [26]. DRAMPower [1] [29] simulator is used for evaluating power consumption of

memory devices (3D-DRAM and 3D-PCM) in two NMP systems.

Figure 5.4 shows the memory power consumption of memory-intensive applications for Host

CPU system with DDR4 and two NMP systems with 3D-PCM and 3D-DRAM memories.

Memory power consumption values are normalized to the Host CPU system. The power

savings are realized across all memory-intensive applications with NMP execution which are

obtained having shallow cache hierarchy in NMP systems that avoids excess memory access

latency. Based on Figure 5.4, two interesting findings can be observed:

1. For BP and MO applications that have high LLC MPKI (see Table 5.5), NMP systems

70

(3D-PCM and 3D-DRAM) outperform the Host CPU execution by an average of 47%

and 51% in memory power saving, respectively. Other applications (BFS, HS-3D, and

SpMV) with middle MPKI (see Table 5.5) also experience power savings with NMP

execution, still significant but lower than BP and MO.

2. While 3D-DRAM NMP outperforms 3D-PCM NMP for BP and MO applications,

3D-PCM NMP exhibits more power saving compared to 3D-DRAM NMP for other

applications (BFS, HS-3D, and SpMV). This is due to the difference in applications’

average R-to-W ratio (Table 5.5). Considering that PCM technology suffers from

a high write energy/power, it can be inferred that for BFS, HS-3D, and SpMV, read

operations and for BP and MO, write operations are the dominant factor in determining

the memory power consumption. This explains the reason as to why some memory-

intensive applications see more power saving than others.

5.4 Summary

In this Chapter, two NMP computing devices which are constructed based on 3D stack-

ing technology (3D-DRAM and 3D-PCM) are studied to accelerate data-intensive problems

caused by memory wall bottleneck of the conventional processing architectures. In order to

reveal the performance and power bottlenecks, a systematic characterization is conducted

on a wide range of multi-threaded applications (compute-intensive and memory-intensive)

from different benchmark suites (Rodinia, Parboil, PARSEC, and Starbench). Overall, the

system-level evaluation demonstrates that the evaluated NMP systems (3D-DRAM NMP

and 3D-PCM NMP) improve the performance of memory-intensive applications by 1.31x

to 5x and reduce their total memory energy/power consumption by an average of 47%.

These improvements make the hybrid NMP system a great design technique for acceleration

in performance and power across a wide range of data-intensive applications.

71

Chapter 6

Conclusion and Future Work

6.1 Put it All Together

With the emergence of applications that work with very large datasets (data-intensive),

conventional computing systems are not efficient in handling such large-scale data. The

performance and energy cost of moving this large amounts of data between off-chip memory

and processing unit dominate the total cost of computation which is known as data movement

bottleneck. To mitigate this bottleneck, different architectural-level techniques (processing

using memory (PUM), processing-in-memory (PIM), and near memory processing based on

3D stacking (NMP)) are proposed, where excess data movement is reduced or avoided by

performing computation within memory or bringing computation close to memory (data).

3D die stacking is considered to be a practical solution for embedding processing cores

on the same package as memory dies which imposes a small foot print and better timing

performance comparing to 2D planar architectures. In a 3D package, multiple memory layers

(homogeneous or heterogeneous layers) are stacked vertically on top of a logic layer using

short-length, low-power and low-latency TSV bus. By placing memory dies on the same

72

substrate as the logic die with processing unit embedded in it, each part of the system can do

its job much more optimally than any previous technology. This technology is one the most

promising solutions to address the memory wall problem by allowing architects to enable

ability of processing near memory. The next major new approach is the development of

byte-addressable non-volatile memory that can be exploited with 3D die stacking technology

to conquer previous barriers to implementing practical and efficient NMP architectures.

6.2 Summary of Contributions

This dissertation presented practical and efficient NMP architecture in a hybrid memory

system. The goal was to identify potential reasons of data movement over a set of applica-

tions and to compare conventional computation-centric processing unit to a memory-centric

technique (NMP). In particular, the contributions of this dissertation are summarized in the

following sections:

• A set of NMP-centric performance metrics are redefined and investigated with the

focus of application characterization on conventional multi-core Host CPU system and

NMP architecture.

• As a case study, a comprehensive characterization is performed on a wide range of

application domains (mixture of compute-bound and memory-bound) from different

benchmark suites to reveal their performance bottleneck. The characterization is based

on Roofline analysis, data locality (temporal and spatial) analysis, and memory access

behavior analysis. Further, the efficacy of mapping a given processing unit to a specific

application is analyzed and the potential benefits of NMP architecture over conven-

tional Host CPU system is evaluated to efficiently accelerate data-intensive processing.

• Considering a hybrid NMP system, two NMP subsystems based on volatile and non-

73

volatile 3D-stacked memory technologies (3D-DRAM and 3D-PCM) are explored and

the impact of constructing NMP architecture based on an emerging NVM technology

is analyzed.

• Finally, it is demonstrated that executing certain data-intensive (memory-intensive)

applications on NMP architecture which is constructed based on 3D-NVM (3D-PCM)

can improve performance and reduce memory power consumption compared to 3D-

DRAM based NMP and conventional Host CPU executions.

6.3 Future Work

The research contributions in this dissertation introduce some promising directions for future

research work.

• On the memory side, two memory technologies (DRAM and PCM) can be combined

to have a heterogeneous 3D memory architecture for NMP system. This memory

architecture will have attractive properties. Performance of the memory system can

efficiently improve by stacking DRAM layers with PCM layers together on top of a logic

die in a 3D structure. This hybrid NMP architecture can provide excellent speedup

with smaller area, since it takes advantages of both DRAM and PCM technology in

one package. This architecture can be used for custom data-intensive applications such

as graph processing. Also, other non-volatile memory technologies (such as ReRAM

and MRAM) can be explored to architect hybrid NMP systems.

• Absence of coherency and virtual memory support makes programming difficult which

prevents advocacy of this computing model. Supporting both coherency and virtual

memory in this architecture can be considered as a future work. This type of challenges

requires organized work across both hardware and software.

74

• Concurrent execution of both host processor and NMP cores for processing hybrid

applications can be considered as an interesting future work.

6.4 Concluding Remarks

In conclusion, this dissertation provides an insight to computer architects to leverage from

emerging non-volatile memory technologies for improving performance and efficiency of data-

intensive applications. It helps the near memory processing researchers to rethink the design

of computing systems in a way to benefit from hybrid memory architecture in the NMP

context.

75

Bibliography

[1] Drampower: Open-source dram power & energy estimation tool. [online]. available:.
http://www.drampower.info.

[2] HBM. JEDEC Standard, High Bandwidth Memory JESD235B, 2018.

[3] HMC chip architecture:. https://community.cadence.com/cadence_blogs_8/b/

fv/posts/what-s-new-with-hybrid-memory-cube-hmc.

[4] HMC. Consortium, Hybrid Memory Cube Specification 2.0, 2014.

[5] Memory wall problem and moore’s law, figure is from:. Forget Moore’s law: Hot and
slow DRAM is a major roadblock to exascale and beyond.

[6] Micron ddr4 sdram, 16gb:. https://www.micron.com/-/media/client/global/

documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf.

[7] Parboil benchmarks:. http://impact.crhc.illinois.edu/parboil/parboil.aspx.

[8] Safari research group: Ramulator for processing in memory. https://github.com/

CMU-SAFARI/ramulator-pim.

[9] Starbench benchmark suite:. https://www.aes.tu-berlin.de/menue/forschung/

projekte/abgeschlossene_projekte/starbench_parallel_benchmark_suite/.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, and et. al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems, 2015.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 265–283, Savannah,
GA, 2016. USENIX Association.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, and et. al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

76

http://www.drampower.info
https://community.cadence.com/cadence_blogs_8/b/fv/posts/what-s-new-with-hybrid-memory-cube-hmc
https://community.cadence.com/cadence_blogs_8/b/fv/posts/what-s-new-with-hybrid-memory-cube-hmc
https://www.extremetech.com/computing/185797-forget-moores-law-hot-and-slow-dram-is-a-major-roadblock-to-exascale-and-beyond
https://www.extremetech.com/computing/185797-forget-moores-law-hot-and-slow-dram-is-a-major-roadblock-to-exascale-and-beyond
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://www.aes.tu-berlin.de/menue/forschung/projekte/abgeschlossene_projekte/starbench_parallel_benchmark_suite/
https://www.aes.tu-berlin.de/menue/forschung/projekte/abgeschlossene_projekte/starbench_parallel_benchmark_suite/

[13] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[14] A. Albaqsami, M. S. Hosseini, and N. Bagherzadeh. Htf-mpr: A heterogeneous ten-
sorflow mapper targeting performance using genetic algorithms and gradient boosting
regressors. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 331–336, March 2018.

[15] A. Albaqsami, M. S. Hosseini, M. Jasemi, and N. Bagherzadeh. Adaptive htf-mpr: An
adaptive heterogeneous tensorflow mapper utilizing bayesian optimization and genetic
algorithms. ACM Trans. Intell. Syst. Technol., 11(5), Aug. 2020.

[16] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang, T. Roewer,
A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim, W.-m. Hwu, and N. S. Kim.
Application-transparent near-memory processing architecture with memory channel
network. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-51, page 802–814. IEEE Press, 2018.

[17] S. Aminikhanghahi and D. J. Cook. A survey of methods for time series change point
detection. 51(2):339–367, 2016.

[18] M. Andersch, B. Juurlink, and C. C. Chi. A benchmark suite for evaluating par-
allel programming models. PARS: Parallel-Algorithmen, -Rechnerstrukturen und -
Systemsoftware, 28:7–17, 10 2014.

[19] S. Angizi and D. Fan. Graphide: A graph processing accelerator leveraging in-dram-
computing. In Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI
’19, page 45–50, New York, NY, USA, 2019. Association for Computing Machinery.

[20] T. T. Authors. mnist classifier using softmax in tensorflow. https://github.com/

tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/,
2017.

[21] T. T. Authors. tensorflow device factory. https://github.com/tensorflow/

tensorflow/blob/master/tensorflow, 2017.

[22] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and
S. Swanson. Near-data processing: Insights from a micro-46 workshop. IEEE Micro,
34(4):36–42, 2014.

[23] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In Proceedings
of the 30th International Conference on International Conference on Machine Learning
- Volume 28, ICML’13, pages I–115–I–123. JMLR.org, 2013.

[24] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
2546–2554. Curran Associates, Inc., 2011.

77

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow
https://github.com/tensorflow/tensorflow/blob/master/tensorflow

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Character-
ization and architectural implications. In PACT 2008, pages 72–81, New York, NY,
USA, 2008. ACM.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–
7, Aug. 2011.

[27] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. Emerging nvm: A survey on archi-
tectural integration and research challenges. 23(2), Nov. 2017.

[28] I. Chakraborty, A. Jaiswal, A. Saha, S. Gupta, and K. Roy. Pathways to efficient neu-
romorphic computing with non-volatile memory technologies. Applied Physics Reviews,
7(2):021308, 2020.

[29] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens. System and circuit
level power modeling of energy-efficient 3d-stacked wide i/o drams. In 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 236–241, 2013.

[30] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhi-
menko, S. Khan, and O. Mutlu. Understanding latency variation in modern dram
chips: Experimental characterization, analysis, and optimization. SIGMETRICS Per-
form. Eval. Rev., 44(1):323–336, June 2016.

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Rodinia:
A benchmark suite for heterogeneous computing. In IISWC, Oct 2009.

[32] A. Chen. A review of emerging non-volatile memory (nvm) technologies and applica-
tions. Solid-State Electronics, 125:25–38, 2016. Extended papers selected from ESS-
DERC 2015.

[33] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms for phase change
memory. In CIDR, January 2011.

[34] Y. Chen. Reram: History, status, and future. IEEE Transactions on Electron Devices,
67(4):1420–1433, 2020.

[35] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,
J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim,
Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T.
Lee, J. Yoo, and G. Jeong. A 20nm 1.8v 8gb pram with 40mb/s program bandwidth.
In 2012 IEEE International Solid-State Circuits Conference, pages 46–48, 2012.

[36] F. Chollet. keras. https://github.com/charlespwd/project-title, 2015.

[37] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 160–167, New York, NY, USA,
2008. ACM.

78

https://github.com/charlespwd/project-title

[38] E. Cooper-Balis, P. Rosenfeld, and B. Jacob. Buffer-on-board memory systems. In
2012 39th Annual International Symposium on Computer Architecture (ISCA), pages
392–403, 2012.

[39] Cyjseagull. gem5-NVMain hybrid simulator. https://github.com/cyjseagull/

gem5-nvmain-hybrid-simulator, Apr. 2016.

[40] W. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. Sule, M. Steer, and
P. Franzon. Demystifying 3d ics: the pros and cons of going vertical. IEEE Design
Test of Computers, 22(6):498–510, 2005.

[41] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5):256–268, Oct. 1974.

[42] B. DeSalvo, V. Sousa, L. Perniola, C. Jahan, S. Maitrejean, J. Nodin, C. Cagli,
V. Jousseaume, G. Molas, E. Vianello, C. Charpin, and E. Jalaguier. Emerging mem-
ory technologies: Challenges and opportunities. In Proceedings of Technical Program
of 2012 VLSI Technology, System and Application, pages 1–2, 2012.

[43] P. A. Diaz-Gomez and D. F. Hougen. Initial population for genetic algorithms: A
metric approach. In GEM, pages 43–49, 2007.

[44] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das. Neural cache: Bit-serial in-cache acceleration of deep neural networks.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 383–396, 2018.

[45] D. Eggleston. 3D XP: What the hell?!! https://www.flashmemorysummit.com/

English/Collaterals/Proceedings/2015/20150813_S301C_Eggleston.pdf.

[46] A. Eghbal, P. M. Yaghini, and N. Bagherzadeh. Capacitive coupling mitigation for
tsv-based 3d ics. In 2015 IEEE 33rd VLSI Test Symposium (VTS), pages 1–6, 2015.

[47] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In ISCA, pages 365–376, June 2011.

[48] J. H. Friedman. Stochastic gradient boosting. Computational Statistics and Data
Analysis, 38(4):367 – 378, 2002. Nonlinear Methods and Data Mining.

[49] A. Gamatie, A. Nocua, G. Sassatelli, D. Novo, M. Robert, and L. Tor-
res. D3.7 - final report on memory hierarchy investigations. https:

//www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D3.

7-Final-Report-on-Memory-Hierarchy-Investigation-1.pdf.

[50] M. Gao. Scalable Near-Data Processing Systems for Data-Intensive Applications. PhD
thesis, 2018. Copyright - Database copyright ProQuest LLC; ProQuest does not claim
copyright in the individual underlying works; Last updated - 2021-05-18.

79

https://github.com/cyjseagull/gem5-nvmain-hybrid-simulator
https://github.com/cyjseagull/gem5-nvmain-hybrid-simulator
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150813_S301C_Eggleston.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150813_S301C_Eggleston.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D3.7-Final-Report-on-Memory-Hierarchy-Investigation-1.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D3.7-Final-Report-on-Memory-Hierarchy-Investigation-1.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D3.7-Final-Report-on-Memory-Hierarchy-Investigation-1.pdf

[51] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory
analytics frameworks. In PACT 2015, pages 113–124. IEEE, 2015.

[52] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes, 05 2018.

[53] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively
parallel pim array. Computer, 28(4):23–31, 1995.

[54] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[55] S. H Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyukto-
sunoglu, A. Davis, and F. Li. Ndc: Analyzing the impact of 3d-stacked memory+logic
devices on mapreduce workloads. pages 190–200, 03 2014.

[56] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,
J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, and J. Park. Mapping
irregular applications to diva, a pim-based data-intensive architecture. In Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing, SC ’99, page 57–es, New York,
NY, USA, 1999. Association for Computing Machinery.

[57] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richard-
son, C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in general-
purpose chips. In Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, ISCA ’10, page 37–47, New York, NY, USA, 2010. Association for
Computing Machinery.

[58] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[59] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA, 1992.

[60] M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14, 2014.

[61] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu. Focus: Querying large video datasets with low latency
and low cost. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 269–286, Carlsbad, CA, Oct. 2018. USENIX Association.

[62] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[63] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

80

[64] K. Itoh. VLSI memory chip design, volume 5. Springer Science & Business Media,
2013.

[65] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture increases
density and performance. In 2012 Symposium on VLSI Technology (VLSIT), pages
87–88, 2012.

[66] L. Jiang, S. Mittal, and W. Wen. Building a fast and power efficient inductive charge
pump system for 3d stacked phase change memories. In Proceedings of the on Great
Lakes Symposium on VLSI 2017, GLSVLSI ’17, page 275–280, New York, NY, USA,
2017. Association for Computing Machinery.

[67] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz. An energy-efficient
vlsi architecture for pattern recognition via deep embedding of computation in sram.
In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8326–8330, 2014.

[68] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas.
Flexram: toward an advanced intelligent memory system. In Proceedings 1999 IEEE
International Conference on Computer Design: VLSI in Computers and Processors
(Cat. No.99CB37040), pages 192–201, 1999.

[69] D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz,
N. Leung, J. Wu, S. Lee, T. Langtry, K. wei Chang, C. Papagianni, J. Lee, J. Hirst,
S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini. A stackable cross point phase
change memory. In 2009 IEEE International Electron Devices Meeting (IEDM), pages
1–4, 2009.

[70] S. Kawashima and J. S. Cross. Feram. In Embedded Memories for Nano-Scale VLSIs,
pages 279–328. Springer, 2009.

[71] T. Kgil, A. Saidi, N. Binkert, S. Reinhardt, K. Flautner, and T. Mudge. Picoserver:
Using 3d stacking technology to build energy efficient servers. J. Emerg. Technol.
Comput. Syst., 4(4), Nov. 2008.

[72] J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J.-G.
Kim, H. Park, J.-W. Ryu, K. Park, S. K. Kang, S.-Y. Kim, H. Kim, J.-M. Bang,
H. Cho, M. Jang, C. Han, J.-B. LeeLee, J. S. Choi, and Y.-H. Jun. A 1.2 v 12.8 gb/s
2 gb mobile wide-i/o dram with 4 × 128 i/os using tsv based stacking. IEEE Journal
of Solid-State Circuits, 47(1):107–116, 2012.

[73] M. Kim, H.-J. Lee, and H. Kim. An on-demand scrubbing solution for read distur-
bance error in phase-change memory. In 2020 International Conference on Electronics,
Information, and Communication (ICEIC), pages 1–2. IEEE, 2020.

[74] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram simulator.
IEEE Computer Architecture Letters, 15(1):45–49, 2016.

81

[75] D. E. Knuth. Postscript about np-hard problems. SIGACT News, 6(2):15–16, Apr.
1974.

[76] P. M. Kogge. Execube-a new architecture for scaleable mpps. In 1994 International
Conference on Parallel Processing Vol. 1, volume 1, pages 77–84, 1994.

[77] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[78] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[80] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[81] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating stt-ram as
an energy-efficient main memory alternative. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 256–267. IEEE,
2013.

[82] T. Kwon, M. Imran, and J.-S. Yang. Cost-effective reliable mlc pcm architecture using
virtual data based error correction. IEEE Access, 8:44006–44018, 2020.

[83] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating stt-ram as
an energy-efficient main memory alternative. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 256–267, 2013.

[84] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[85] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05 2015.

[86] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[87] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger.
Phase-change technology and the future of main memory. IEEE Micro, 30(1):143–143,
Jan 2010.

82

[88] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. Simultaneous multi-layer
access: Improving 3d-stacked memory bandwidth at low cost. ACM Trans. Archit.
Code Optim., 12(4), Jan. 2016.

[89] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller. Energy
management for commercial servers. Computer, 36(12):39–48, 2003.

[90] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, and S. Kvatin-
sky. Logic operations in memory using a memristive akers array. Microelectron. J.,
45(11):1429–1437, Nov. 2014.

[91] B. Li, B. Yan, and H. Li. An overview of in-memory processing with emerging non-
volatile memory for data-intensive applications. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI, GLSVLSI ’19, page 381–386, New York, NY, USA, 2019.
Association for Computing Machinery.

[92] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

[93] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li,
and C. J. Radens. Challenges and future directions for the scaling of dynamic random-
access memory (dram). IBM Journal of Research and Development, 46(2.3):187–212,
2002.

[94] J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, Dec. 1995.

[95] J. Meza, J. Li, and O. Mutlu. Evaluating row buffer locality in future non-volatile
main memories. 12 2018.

[96] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[97] T. Mitchell. Machine Learning. McGraw-Hill Education, 1997.

[98] S. Mittal. A survey of reram-based architectures for processing-in-memory and neural
networks. Machine learning and knowledge extraction, 1(1):75–114, 2019.

[99] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE Transactions on Parallel and
Distributed Systems, 27(5):1537–1550, 2015.

[100] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE TPDS, 27(5):1537–1550, May
2016.

[101] S. Mittal, J. S. Vetter, and L. Jiang. Addressing read-disturbance issue in stt-ram
by data compression and selective duplication. IEEE Computer Architecture Letters,
16(2):94–98, 2016.

83

[102] S. Mittal, J. S. Vetter, and D. Li. A survey of architectural approaches for managing
embedded dram and non-volatile on-chip caches. IEEE Transactions on Parallel and
Distributed Systems, 26(6):1524–1537, 2014.

[103] G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits
Society Newsletter, 11(3):33–35, 2006.

[104] M. Motoyoshi. Through-silicon via (tsv). Proceedings of the IEEE, 97(1):43–48, 2009.

[105] O. Mutlu. Opportunities and challenges of emerging memory technologies 2017. ARM
research summit. [online] Available.

[106] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun. A Modern Primer on
Processing in Memory. arXiv e-prints, page arXiv:2012.03112, Dec. 2020.

[107] O. Mutlu and J. S. Kim. Rowhammer: A retrospective. Trans. Comp.-Aided Des.
Integ. Cir. Sys., 39(8):1555–1571, Aug. 2020.

[108] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y. Cher,
C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo,
L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis,
C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S.
Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam,
and Z. Sura. Active memory cube: A processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development, 59(2/3):17:1–17:14, 2015.

[109] R. Neale, D. L. Nelson, and G. Moore. Non - volatile and reprogrammable, the read
mostly memory is here. 1970.

[110] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. Chung. Acceler-
ating deep convolutional neural networks using specialized hardware, February 2015.

[111] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung. Ac-
celerating deep convolutional neural networks using specialized hardware. Microsoft
Research Whitepaper, 2(11), 2015.

[112] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A case for intelligent ram. IEEE Micro, 17(2):34–44,
1997.

[113] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[114] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Boa: The bayesian optimization
algorithm. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation - Volume 1, GECCO’99, pages 525–532, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

84

https://people.inf.ethz.ch/omutlu/pub/onur-OpportunitiesAndChallengesOfEmergingMemoryTechnologies-ARMResearchSummit-September-11-2017-unrolled.pdf

[115] M. Pinedo and K. Hadavi. Scheduling: Theory, algorithms and systems development.
In Operations Research Proceedings 1991, pages 35–42. Springer, 1992.

[116] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory simula-
tor to model (non-)volatile memory systems. IEEE Computer Architecture Letters,
14(2):140–143, July 2015.

[117] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page placement in hybrid memory
systems. In Proceedings of the International Conference on Supercomputing, ICS ’11,
page 85–95, New York, NY, USA, 2011. Association for Computing Machinery.

[118] P. Ranganathan. From microprocessors to nanostores: Rethinking data-centric sys-
tems. Computer, 44(01):39–48, jan 2011.

[119] S. Rashidi, M. Jalili, and H. Sarbazi-Azad. Improving mlc pcm performance through
relaxed write and read for intermediate resistance levels. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 15(1):1–31, 2018.

[120] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, Oct. 1986.

[121] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of
research. chapter Learning Representations by Back-propagating Errors, pages 696–
699. MIT Press, Cambridge, MA, USA, 1988.

[122] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, and et. al. Imagenet
large scale visual recognition challenge. arXiv preprint arXiv:1409.0575, 2014.

[123] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, and et. al. Imagenet
large scale visual recognition challenge. arXiv preprint arXiv:1409.0575, 2014.

[124] D. Sanchez and C. Kozyrakis. Zsim: Fast and accurate microarchitectural simulation of
thousand-core systems. SIGARCH Comput. Archit. News, 41(3):475–486, June 2013.

[125] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, Jan 2015.

[126] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[127] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. Rowclone: Fast and energy-
efficient in-dram bulk data copy and initialization. In 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 185–197, 2013.

[128] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. Buddy-ram: Improving the performance
and efficiency of bulk bitwise operations using dram, 2016.

85

[129] M. SeyyedHosseini. Reliability Enhancement of Many-core Processors. PhD thesis,
2017. Copyright - Database copyright ProQuest LLC; ProQuest does not claim copy-
right in the individual underlying works; Last updated - 2021-05-21.

[130] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 14–26, 2016.

[131] S. Shahhosseini, A. Albaqsami, M. Jasemi, and N. Bagherzadeh. Partition pruning:
Parallelization-aware pruning for deep neural networks, 2019.

[132] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, Jan 2016.

[133] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[134] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[135] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and
A.-J. Boonstra. Near-memory computing: Past, present, and future, 2019.

[136] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu,
and H. Corporaal. Napel: Near-memory computing application performance predic-
tion via ensemble learning. In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2019.

[137] H. S. Stone. A logic-in-memory computer. IEEE Transactions on Computers, C-
19(1):73–78, 1970.

[138] L. G. Szafaryn, K. Skadron, and J. J. Saucerman. Experiences accelerating matlab
systems biology applications.

[139] D. Takashima. Overview of ferams: Trends and perspectives. In 2011 11th Annual
Non-Volatile Memory Technology Symposium Proceeding, pages 1–6. IEEE, 2011.

[140] U. S. B. tool. SuperPosition Software. https://benchmark.unigine.com/

superposition/, 2017.

[141] A. W. Topol, D. C. L. Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar,
G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong. Three-dimensional integrated
circuits. IBM Journal of Research and Development, 50(4.5):491–506, 2006.

[142] J. van Leeuwen, editor. Handbook of Theoretical Computer Science (Vol. A): Algo-
rithms and Complexity. MIT Press, Cambridge, MA, USA, 1990.

86

https://benchmark.unigine.com/superposition/
https://benchmark.unigine.com/superposition/

[143] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks
on cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011,
2011.

[144] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks
on cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011,
2011.

[145] M. Vogt and H. Dette. Detecting gradual changes in locally stationary processes. Ann.
Statist., 43(2):713–740, 04 2015.

[146] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski. Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-based
approach. J. Parallel Distrib. Comput., 47(1):8–22, Nov. 1997.

[147] Z. Wang, H. Huang, J. Zhang, and G. Alonso. Shuhai: Benchmarking high bandwidth
memory on fpgas. In 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 111–119. IEEE, 2020.

[148] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual perfor-
mance model for multicore architectures. ACM 2009.

[149] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai. Metal–oxide rram. Proceedings of the IEEE, 100(6):1951–1970, 2012.

[150] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The splash-2 programs: char-
acterization and methodological considerations. In Proceedings 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24–36, 1995.

[151] Q. Wu, K. Rose, J.-Q. Lu, and T. Zhang. Impacts of though-dram vias in 3d processor-
dram integrated systems. In 2009 IEEE International Conference on 3D System Inte-
gration, pages 1–6, 2009.

[152] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, Mar. 1995.

[153] S. L. Xi, A. Augusta, M. Athanassoulis, and S. Idreos. Beyond the wall: Near-data
processing for databases. In Proceedings of the 11th International Workshop on Data
Management on New Hardware, DaMoN’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[154] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie. Understanding the trade-
offs in multi-level cell reram memory design. In 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2013.

[155] L. Xu, D. P. Zhang, and N. Jayasena. Scaling deep learning on multiple in-memory
processors. 2015.

87

[156] P. M. Yaghini. Resilient 3D Network-on-Chip Design and Analysis. PhD thesis, 2016.
Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in
the individual underlying works; Last updated - 2021-05-20.

[157] P. M. Yaghini, A. Eghbal, S. S. Yazdi, N. Bagherzadeh, and M. M. Green. Capac-
itive and inductive tsv-to-tsv resilient approaches for 3d ics. IEEE Transactions on
Computers, 65(3):693–705, 2016.

[158] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. Imagenet training in
minutes. In Proceedings of the 47th International Conference on Parallel Processing,
ICPP 2018, pages 1:1–1:10, New York, NY, USA, 2018. ACM.

[159] S. Yu and P.-Y. Chen. Emerging memory technologies: Recent trends and prospects.
IEEE Solid-State Circuits Magazine, 8(2):43–56, 2016.

[160] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski.
Top-pim: Throughput-oriented programmable processing in memory. In HPDC ’14,
pages 85–98, New York, NY, USA, 2014. ACM.

[161] W. Zhang and T. Li. Exploring phase change memory and 3d die-stacking for pow-
er/thermal friendly, fast and durable memory architectures. In PACT, pages 101–112,
Sep. 2009.

[162] W. Zhang and T. Li. Exploring phase change memory and 3d die-stacking for pow-
er/thermal friendly, fast and durable memory architectures. In 2009 18th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 101–
112, 2009.

[163] M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue. Slc-enabled wear leveling for mlc pcm
considering process variation. In Proceedings of the 51st Annual Design Automation
Conference, pages 1–6, 2014.

88

Appendix A

Algorithmic Approaches to Accelerate

Emerging Applications

A.1 Approach One: Heterogeneous TensorFlow Map-

per

TensorFlow [10] is a library developed by Google to implement Artificial Neural Networks us-

ing computational dataflow graphs. The neural network has many iterations during training.

A distributed, parallel environment is ideal to speed-up learning. Parallelism requires proper

mapping of devices to TensorFlow operations. We developed HTF-MPR framework for that

reason. HTF-MPR utilizes a genetic algorithm approach to search for the best mapping that

outperforms the default Tensorflow mapper. By using Gradient Boosting Regressors to cre-

ate the fitness predictive model, the search space is expanded which increases the chances of

finding a solution mapping. Our results on well-known neural network benchmarks, such as

ALEXNET, MNIST softmax classifier, and VGG-16, show an overall speedup in the training

stage by 1.18, 3.33, and 1.13, respectively.

89

A.1.1 Introduction

Machine Learning (ML) algorithms [97] have found a large number of applications in com-

puter vision, data tracking, recommender systems, search engines and Artificial Intelligence

(AI) in games. One notable advancement in ML algorithms is the use of Artificial Neural

Networks (ANNs) [84]. ANNs are constructs that mimic how the brain works. In their most

basic form, they consist of synapses and neurons, where the synapses are the weights and

neurons are the functions (see Fig A.1). Companies invest in improving and utilizing ANNs

for different tasks [37], leading to many applications applied to ANNs, creating deep and

complex ANN architectures, finding techniques and accelerating the training and the infer-

ence of ANNs [143, 62, 111]. A number of software libraries have been developed to ease the

construction of ANNs for end-users. One such library is TensorFlow [12]; a computational

graph and numerical models library developed by Google. The application programming

interface (API) makes it possible for data scientists to work with large models and many

data samples in a distributed system without prior knowledge of the hardware architecture.

The current state-of-the-art ANNs consist of hundreds of thousands of parameters, and

require large data sets to train. The number of layers, features (inputs) and interconnections,

result in a large number of parameters that require training, which prolongs the training

process.

Training in ANNs are iterative [120]; in each iteration, the process would require a feed-

forward step through the ANN, and a back-propagation that flows backwards. With each

iteration, a set of data-samples (batch, or mini-batch) are fed to the ANN. This modifies the

parameters (weights and biases) which reduces a given loss-function.

In TensorFlow, parameters, functions, and inputs are represented by computational graphs [10].

Computational graphs consist of edges and vertices in a Directed A-cyclic Graph (DAG).

Edges carry multi-dimensional arrays known as tensors, and vertices are the functions, known

90

Input

Hidden Layer 1

Hidden Layer 2

Output

a) Artificial Neural Network b) Tensorflow Graph

Hidden
 Layer 1

TF Operation

Hidden
 Layer 2

TF Operation

Input Output

Tensors

NeuronSynapse

Figure A.1: Artificial Neural Network and its TensorFlow depiction

as operations, applied to tensors. A simple translation from ANN to a TensorFlow compu-

tational graph is shown in Fig A.1b.

Speedup of these computational graphs is of importance. One such approach is to reduce

the number of parameters in a ANN [58]. In [58], the authors compressed the ANN by

pruning the number of neurons and synapses, which reduces the number of computations.

However, this would slightly change the accuracy of the prediction model [58]. In regards

to TensorFlow, pruning would require a lot of invasive changes such as changing tensors or

using sparse tensors. We intend to keep the prediction accuracy of the ANN intact.

Another approach is to allocate resources to operations efficiently in the TensorFlow compu-

tational graph, i.e., splitting up the ANN so that different processors may work in parallel.

In TensorFlow, the graph is constructed at design-time and then run [12]. After constructed

and runs for the first time, no modification is allowed to the structure of the computational

graph. A work around of such limitation to reconstruct the computational graph. Currently,

TensorFlow carries out the mapping in a simplified way as specified in device factory.cc [21].

Luckily, the TensorFlow API allows the programmer to override the default mapping in a

per operation manner. Note that scheduling is taken care of by the TensorFlow engine and

91

the API has no access to manipulate the scheduling.

With the above approach, there are two ways to get a better (faster runtime) mapping. One

is to use static-list-based mapping algorithms such as Heterogeneous Earliest Finish Time

(HEFT); a fast Heuristic greedy approach with a well proven record. To utilize HEFT, three

pieces of information are required; the operation dependencies (represented by the DAG),

the execution time of said operations on every device, and the communication cost between

each device given each operation. Unfortunately, the later two can not be obtained; both

are a limitation to the API, while communication cost would require a very large number of

mappings to be tested.

With the absence of the above mentioned pieces of information, another way would be to

use a meta-heuristic approach. In HTF-MPR, A genetic-algorithms-based [96] approach is

used. Genetic algorithms (GA) have been used in many combinatorial problems and have

provided good solutions in heterogeneous computing mapping problems [146].

In GA-based approaches, the following steps are taken: 1. initial population of mappings are

generated. 2. The fitness of each mapping is obtained. 3. The breeding of new mappings

according to crossovers.

steps 2 and 3 are repeated for a prescribed number of times, until a solution is found (or

stop due to time constraints).

To be able to generate many mappings and obtain their fitness, while bypassing the overhead

of actually running the TensorFlow computational graph of said benchmark, a predictive

model of the fitness is to be used. We use an ML ensemble algorithm, called Gradient Boost-

ing Regressors (GBR) [48], to construct the mapping-to-fitness predictive model. The initial

population of mappings and their actual fitness are used to construct the said predictive

model, and the accuracy of the model is tested using Kendall tau rank distance as a metric.

The metric takes into affect the pair-wise agreement between two lists (in this case between

92

Place
holder

Variable

mathmul add softmax

Variable

...

X

W

y_1 yy_2

b

GPU-1

GPU-0

GPU-2

CPU-0

CPU-0 CPU-0 GPU-1GPU-2 GPU-0 ...
X y_1 y_2 y W b

CPU-0

Tensors

Figure A.2: Example of a model in TensorFlow, and of device-operation mapping

the order of the actual fitness of the mappings versus the order of the predicted fitness of

the mappings). We used k-fold cross validation method [77] to validate the accuracy of the

Kendall tau rank distance of the mappings.

A.1.2 Background

TensorFlow

TensorFlow is a library for constructing machine learning algorithms [12]. One of the upsides

of TensorFlow is th ease of use and seamless integration into heterogeneous systems. Models

in TensorFlow are described with Directed Graphs, where the input/output to/from each

TensorFlow operation is zero or more tensors(see Fig A.2). The following is an example of a

simple code snippet that describes a TensorFlow dataflow graph in Python (taken from [20]

with slight modification): Code A.1 is represented in Fig A.2 (without the device mapping).

93

Code A.1: Model in TensorFlow

import tensorflow as tf

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

y_1 = tf.matmul(x, W)

y_2 = tf.add(y_1,b)

y = tf.nn.softmax(y_2)

...

The graph is then described but not yet constructed. To create and run the graph the

following is done (see Code A.2):

Code A.2: Run model in Session

...

sess = tf.Session()

sess.run(y,feeddict=...)

...

In Code A.2, a Session is created and the operation for which an output is desired is given

as the input argument to the session object’s run method (in this case y). A single run would

provide the actual makespan of the graph. The makespan is the time it takes to complete one

iteration (i.e run) of the graph. TensorFlow would take care of the rest; the Distributed

Master would take in the graph and evaluate the nodes and distributes the tasks. The

worker services would take in requests from the master and schedule the execution of the

tasks.

94

Task Mapping

TensorFlow uses dataflow graphs for the computation, in addition the design of most ANNs

is done in a DAG approach. In this work, we assume that the dataflow graphs are DAG, and

that no changes to the mapping may occur during runtime. Note that edges carry tensors,

and vertices are the operations. During design-time, the API user has the option of

assigning a device (CPU-0, GPU-0, GPU-1, etc) to each TensorFlow operation rather than

TensorFlow default mapping. No changes may occur while the TensorFlow graph is running.

The structure of a single mapping Mi is shown in the array in Fig A.2. Note that Mi ∈MP

where MP is the set of all mappings in a particular population, and MP ⊂MU where MU

is the set of all possible mappings within a given DAG, also described as the universal set

of mappings.

Fitness and Makespan

In order to evaluate the mapping’s performance a metric is required. In this case the

makespan is the metric of choice. The makespan is the total time it takes for a single

run of the TensorFlow graph, i.e. a single session run. The fitness is inversely proportional

to the makespan; The higher the fitness the shorter the makespan. Our target is to find

a mapping that results in a smaller makespan than the one provided by TensorFlow’s de-

fault mapping. Note that the makespan is dependent on several factors; operation-device

mapping,communication costs, and scheduling of operations.

Given the restrictions on the availability of communication cost and the scheduling, the

makespan value can only be found by a session run.

95

Meta-Heuristic Approach and Prediction Model

A session run is costly when considering the search space of finding a solution. An alternative

would be to use a predictive model to obtain the makespan (fitness), or rather, the relative

rank of a mapping in relation to other mappings. Such a model would then be used in a

meta-heuristic approach to navigate the search space and find the best possible mapping.

The choice of mappings used to train the fitness predictive model and used for the initial

search, in the meta-heuristic approach, is of importance [43]. In addition, the features that

are used for the training and the ML algorithm will determine the success of the predictive

model. We have found that the simplest feature selection (i.e the tasks) and the values (i.e

the devices) is sufficient. Feature extraction was used but did not result in a better prediction

model. We thus reverted to simple features. In terms of the initial population of mappings

(also used in the training) a restriction was made which will be elaborated in A.1.4.

A.1.3 HTF-MPR

System Model

Our framework targets TensorFlow dataflow models, which are numerical computations that

use dataflow graphs [10][12]. The Graph T = (V,E) consists of vertices V = {τi, τi+1, ...}

where τx is a TensorFlow operation and E = {(τi, τj), (τm, τn), ..} where (τi, τj) is a directed

edge from operation τi to τj . The directed edges in a TensorFlow graph carry tensors.

The list of devices is D = {dx, dy, ..}, where dx is a device (CPU-0, GPU-0, GPU-1 etc). Each

mapping Mi is a unique mapping of operations-to-devices (Mi = {(τ0, dx), (τ1, dx), (τ2, dy)..}).

Every Mi has a runtime (makespan) of ti and a fitness fi = 1/ti.

96

HTF-MPR Overview

The objective of the HTF-MPR is to create a modified Python file that contains the tf.with(..)

directive. This directive would allow the user, via API, to allocate a device to a particu-

lar operation or set of operations. In the HTF-MPR case, the Python file would have the

sub-optimal device allocated to each operation. An example of an output, a modified file, of

HTF-MPR:

Code A.3: Addition of tf.device

import tensorflow as tf

with tf.device(’/cpu:0’):

x = tf.placeholder(tf.float32, [None, 784])

with tf.device(’/gpu:0’):

W = tf.Variable(tf.zeros([784, 10]))

with tf.device(’/gpu:1’):

b = tf.Variable(tf.zeros([10]))

with tf.device(’/cpu:0’):

y_1 = tf.matmul(x, W)

with tf.device(’/cpu:0’):

y_2 = tf.add(y_1,b)

with tf.device(’/gpu:2’):

y = tf.nn.softmax(y_2)

...

Code A.3 is reflected in Fig A.2. An overview of HTF-MPR is shown in Fig A.3. First,

the TensorFlow operations from a Model.py file are identified. Then, to account for all the

hidden operations that are created by TensorFlow when the Task-graph is constructed, we

create and run a Session. The directed graph is then pruned to remove hidden operations

97

that cannot be assigned via API. This dependency graph structure will determine the initial

mappings that will be generated according to certain criteria which will be discussed in

section A.1.4. From the initial population of mappings, a predictive model of the mappings-

to-fitness is created using the modified TensorFlow file. This predictive model is then used

in the GA to search the for a better mappings. Finally once a mapping has been found a

mapped model file is created where the file will be run for the remaining number of iterations

while starting with the updated ANN parameters that were saved during the initial mappings

sessions run stage.

A.1.4 Extract Operations

First step in HTF-MPR framework is to identify the essential TensorFlow operations. Each

operation is assigned a name that coincides with its variable name.

Once those operations have been identified, a single Session is run in order to construct the

graph. Note that TensorFlow creates other operations not specified in the Python model

file.

Extract Task-Graph

Once operations are extracted, and one of the operations (the final operation in the DAG)

had been run on the Session, all the hidden operations are pruned because they cannot

be mapped. Hidden operations are mapped automatically by TensorFlow in accordance to

whatever the Master operation is mapped to.

98

Extract Task-
graph and
Operations

Generate n
Number of
mappings

Moddel.py

Modified_m
odel.py

Run GA to find
optimal
mapping

Create
predictive
model of
mapping :

fitness using ML

Mapped_m
odel.py

n iterations, update ANN parameters after each iteration

Run N-n iteration to complete ANN training

La
te

st
 A

N
N

 p
a

ra
m

et
er

s

Ex
tr

a
ct

 o
p

er
a

ti
o

n
s

to
 c

re
at

e
m

o
d

if
ie

d
 T

F
fi

le

Task graph

Create file

Mappings: fitness pairs

Figure A.3: HTF-MPR workflow.

Initial Mappings Generation

The initial mappings will serve two purposes; Training the fitness predictive model and initial

population in the GA stage.

The types of generated mappings are;

99

• Homogeneous mapping: single device for all operations. The number of mappings

will be ND.

• Longest Path mapping: single device on the longest path. #mappings=ND!.

• Random Homogeneous mapping: single device to a non-longest single path.

• Color-mapping:whenever possible, no two connected operations should be mapped

to the same device. #mappings=ND!.

An illustrative example of the mappings types is shown in Fig A.4. The initial mapping

types provide variety, useful in training the fitness predictive model, and are good initial

starting points for the GA. One of the mappings is the default mapping of heterogeneous

(GPU support) TensorFlow (all GPU-0). The other mapping is the default mapping of for

non-GPU supported TensorFlow (all CPU-0).

Prediction Model for Fitness

We use a fitness predictive model to obtain the proper ranking as compared to other map-

pings, rather than obtaining a highly accurate makespan (and therefore fitness). To evaluate

the accuracy of the model (which is done off-line, and is used as a justification for our choice

of GBR) we use the Kendall tau rank distance as a metric and the k-fold cross validation

method [77] .

Kendall tau rank distance: The Kendall tau rank distance is calculated by obtaining the

actual fitness fi and the predicted fitness f̂i of Mi for all initial MP . if the size of MP is n,

100

a cb

ee

GPU-0 GPU-1

d f

CPU-0

Figure A.4: Examples of some initial mappings; a and b are homogeneous (single device),
c,and d are longest paths, e is non-longest path, and f is color-mapped.

then there are n(n− 1)/2 ranking comparisons. The Kendall number between fi and fj is:

k(fi, f̂i, fj, f̂j) =

1, if fi < fj andf̂i > f̂j.

1, if fi > fj andf̂i < f̂j.

0, otherwise.

(A.1)

where i 6= j. The normalized Kendall tau ranking distance;

Knorm(FP , F̂P) =
∑
i

∑
j

2 · k(fi, f̂i, fj, f̂j)

n(n− 1)
(A.2)

Where FP and F̂P are the actual and predicted fitnesses of the mappings in the population,

respectively.

K-fold Cross Validation: The mappings M P and actual fitnesses FP are split into a

number of partitions (i.e. K-partitions). The samples are randomly partitioned, where

101

cross-validation is done K times. Each partition is set as the validation set and the others

are used in the training (see Fig A.5).

Given the training set {((M1, f1), (M2, f2), ..., (Mn, fn)} where Mi is the mapping and fi

is the actual fitness, a predictive model F(M) is to be found which minimizes the loss

function L(f,F(M)). Note F(M1) = f̂1. The loss function in use is the least square, i.e.

L(fi,F(Mi)) = (fi − F(Mi))
2 . After investigating several machine learning algorithms and

using different feature extraction methods, we settled on the Gradient Boosting Regression

(GBR) [48] algorithm. GBR consists of weak learners, in the form of decision trees, that are

added together (ensemble) to make a stronger prediction model. This is done by iterative

means. At each iteration, a weak learner is introduced that compensates for the shortcom-

ings of the previous iteration’s weak learner. The overall prediction model is updated by

the gradient descent method. The residual, also known as the negative gradient g(Mi) is

calculated as:

−g(Mi) =
δL(fi, F (Mi))

δF (Mi)
(A.3)

At each iteration, −g(Mi) is calculated and a regression tree hj is fit to the −g(Mi) updating

the overall predictive model:

F (M)← F (M) + h (A.4)

Search via Genetic Algorithm

When searching, the following factors are taken into consideration:The search space, the

method search, the crossover operation, and the fitness function.

102

..
.

..
.

Partition 1

Partition 2

Partition k

Shuffle

M.L
Predictive

model

Normalized
kendall tau

ranking
distance

MpMp FpFp Fpx

Mpx

Select

Select 1x partition

R
esu

lt fo
r

p
artitio

n x

Repeat k times

3

1

n

Select
(k-1) x

partition
for

training

2

..
.

..
.

Fpx
^

Figure A.5: Cross-Validation using k-fold.

Selection of mappings is proportional to the fitness; the higher the fitness the higher the

probability of selecting the mapping for breeding.

Once two mappings are selected for breeding, crossover takes place. We implemented two

types of breeding. The first looks at each individual τ mapped and stochastically decides

which parents τ is chosen(see Fig A.6). The second uses crossover points where the number

(between 1 and 3) and position of the crossover points are determined randomly within each

mappings pair. The number of crossover points determines the number of new mappings

generated from the parent pair (i.e. (NC + 1)2 − 2 where NC is the number of crossover

points). See Fig A.7. both breeding methods are used so that one provides randomness

during exploration (Fig A.6) while the other provides improved performance (Fig A.7).

The top x mappings (corresponding to the top f̂) are then run on TensorFlow to get the

actual fitness f . This is done to compensate for the error of the fitness predictive model.

103

1

1

1

2

2 2
1M 2M

newM

1f 2f>
^ ^

2f / 1f̂ 2f̂+()
1f /

1f
^

2f
^

+)(
^ ^

Number of
selected from

1M

Number of
selected from

2M

3 4 5 543

3 4 5

Figure A.6: Breeding using a stochastic method. Newly generated mapping takes more from
the fitter mapping parent

1 2
1M

1 2

2M

...
1newM

2newM 3newM 6newM

3 4 4 535

Figure A.7: Breeding using Crossover points. In this case 2 crossover points resulting in 6
new mappings

Once the top mapping corresponding to the highest f is found, the ANN training continues

with said optimal mapping.

104

A.1.5 Experimental Results

Experimental setup

To test our framework, we used a system that consists of a multi-core CPU (Intel(R)

Core(TM) i7-7700 CPU 3.60Ghz), and 2x GPUs (Nvidia GeForce GTX 1050 Ti). The

TensorFlow version used is 1.1 with GPU capability (using Nvidia CUDA 8.0 and cuDNN

v5), and Python version is 2.7.12. For constructing the predictive model of the makespan,

we used the Python-based library scikit-learn version 0.19.0. The following benchmarks were

tested: ALEXNET [79] and VGG-16 [133], are convolutional neural network used to classify

images from ImageNet [122]. MNIST softmax classifier [20], a very simple image classifier

used for characters.

The benchmarks are run on TensorFlow without explicit mapping where the total execution

time of the benchmark is observed. The same benchmarks are then run through HTF-MPR.

Bellow is a summary of the benchmarks. Note that the learning process is an iterative

process. Thus, the DAG is run several times.

Benchmark Mapped Operations Total Operations Iterations

ALEXNET 55 295 12800

MNIST softmax 10 99 60000

VGG-16 69 376 12800

The majority of operations are not dealt with directly in HTF-MPR; this is because these

operations are generated by TensorFlow, thus, the user may not explicitly assign a mapping

via a tf.device. With these hidden operations, TensorFlow handles the mapping via its default

mechanism, which is to assign these operation to the device of their master operation.

105

Predictive Model Analysis Results

To validate the effectiveness of our predictive model, we used k-fold cross validation (see

Fig A.5) across a number of ML algorithms. The number of mappings used is different for

each benchmark while the value of k = 5 is used for all benchmarks:

Benchmark Mp Size M Size Training Size Testing Size

ALEXNET 105 55 84 21

MNIST softmax 135 10 108 27

VGG-16 105 69 84 21

The average results are shown in Fig A.8. GBR outperforms all other ML algorithms across

the board. In MNIST benchmark, GBR error is considerably higher than in the other

benchmarks. So, for the GA stage, we took the top 50 f̂ mappings to be run while in the

other two benchmarks we only took the top 10 f̂ mappings.

Results and Discussion

Given the small overhead of running HTF-MPR, we were still able to accomplish an average

speedup of 1.18 with ALEXNET, 3.33 with MNIST softmax classifier, and 1.13 with VGG-

16. The overhead of identifying the operations, pruning the DAG, generating the initial

mappings, performing ML to obtain the fitness predictive model, searching using GA, and

construction of the TF graphs for the various mappings (to obtain the actual fitness) is

less than 3% for ALEXNET, 10% for MNIST softmax, 2% for VGG-16. The increased

overhead for MNIST softmax is due to the increase in TF graph constructions (135+50+1)

in addition to the GAs stage of generating mappings (5400). The choice for increasing is

due to the performance of the fitness predictive model with MNIST softmax. The speed up

106

0

0.1

0.2

0.3

0.4

0.5

0.6

S
V

R

R
id

g
e

LA
R

S

O
M

P

K
n

e
ig

h
b

o
r

D
e

ci
si

o
n

 T
re

e

A
d

a
b

o
o

st

G
B

R

S
V

R

R
id

g
e

LA
R

S

O
M

P

K
n

e
ig

h
b

o
r

D
e

ci
si

o
n

 T
re

e

A
d

a
b

o
o

st

G
B

R

S
V

R

R
id

g
e

LA
R

S

O
M

P

K
n

e
ig

h
b

o
r

D
e

ci
si

o
n

 T
re

e

A
d

a
b

o
o

st

G
B

R

ALEXNET MNIST VGG-16

N
o

rm
a

li
ze

d
 K

e
n

d
a

ll

Normalized Kendall tau Rank Distance

Standard Deviation

Figure A.8: Predictive Model performance using k-fold (k=5) and different ML algorithms.
The chart shows the average from 5 runs and includes the standard deviation of the 5
runs. SVR: Support Vector Regression, Ridge: Ridge Regression,LARS: Least Angle
Regression,OMP:Orthogonal Matching Pursuit,Kneighbor:Regression-based on k-nearest
neighbors.

was higher due to the fact that the search space is much smaller (size of MU for MNIST

softmax is NNV
D = 310). As a side, we used brute force to find the percentage of mappings in

MNIST softmax that outperform the TF default mapping (all GPU-0). 13% of all mappings

are better than the TF default. HTF-MPR did not favor GPU for every operation as can

be seen by the device distribution of the mappings (see Fig A.10). With such mapping, the

performance was improved (see Fig A.9).

107

Figure A.9: Relative training time

Figure A.10: Device distribution per benchmark. Weighted Average indicates all operations
across all benchmarks.

108

A.1.6 Summary of Approach One

In this work, we presented our HTF-MPR framework to optimize the mapping of devices

to TensorFlow operations. The HTF-MPR uses a genetic algorithm approach to search the

mappings space, utilizing a fitness prediction model to evaluate each searched mapping.

The fitness prediction model is trained by using an initial population of mappings that are

generated in a directed manner. Compared to the default TensorFlow mapper, our results

show an overall speedup in the benchmarks, where ALEXNET, MNIST softmax classifier,

and VGG-16 show a speedup of 1.18, 3.33, and 1.13 respectively.

109

A.2 Approach Two: Adaptive Heterogeneous Tensor-

Flow Mapper

Deep Neural Networks (DNNs) are widely used in many Artificial Intelligence (AI) applica-

tions. They have demonstrated state-of-the-art accuracy on many AI tasks. For this high

accuracy to occur, DNNs require to have the right parameter values. This is achieved by a

process known as training. The training of large amounts of data via many iterations comes

at a high cost in regards to computation time and energy. Optimal resource allocation would

therefore reduce the training time. TensorFlow, a computational graph library developed by

Google, alleviates the development of Neural Network models as well as providing the means

to train these networks. In this article, we propose Adaptive HTF-MPR to carry out the

resource allocation, or mapping, on TensorFlow. Adaptive HTF-MPR searches for the best

mapping in a hybrid approach. We applied the proposed methodology on two well known Im-

age Classifiers; VGG-16 and Alexnet. We also performed a full analysis of the solution-space

of MNIST Softmax. Our results demonstrate that Adaptive HTF-MPR outperforms the de-

fault homogeneous TensorFlow mapping. In addition to the speed up, Adaptive HTF-MPR

can react to changes in the state of the system and adjust to an improved mapping.

A.2.1 Introduction

Machine Learning (ML), and more recently Deep Learning (DL), has been utilized as a

powerful tool in many fields including computer vision, finance, recommender systems, search

engines, and games. ML is a rather dominant branch of Artificial Intelligence (AI) based

on the idea that a system uses algorithms to learn from data, identify patterns, and make

decisions rather than being explicitly programmed via a Rule-based approach. This paradigm

shift in AI has required systems to be engaged in learning.

110

Deep Neural Networks (DNNs) [125], are the latest iteration in ML tool-sets. In their simplest

form, they were inspired by the human brain and thus were developed to mimic the human

brain’s synapses and neurons; the neurons in this case are the functions and the synapses

are the connections that carry the information from one neuron to the next. The strength of

the connections, also known as the synaptic weights, dictates how the neural network would

perform and function. The values of these weights in turn need to be learned via training.

This happens with experience, which would also be described as data. The amount of time

it takes to train a neural network model is very much correlated to the amount of data as

well as the number of weights that need to be adjusted.

Previous efforts were made to accelerate the execution times of both training and infer-

ence [144, 63, 110, 131]. Additionally, works have been done in speeding up the modeling,

design, and prototyping of complex neural networks. State-of-the-art neural networks have

million of weights that need to be adjusted through training. DNNs are structured in layers,

where the layers have differing types. Convolutional neural networks (CNNs) for example,

known for their use on images data, have convolutional layers that contain weights bundled

up to function as filters on images. Due to structure and number of parameters, training

would take a considerable amount of time.

In this work, we target reducing the time it takes to train a neural network via resource

management approach, i.e. finding a better mapping for devices to operations. The training

time is highly dependent on what device is used on what operation, in addition to the

inter-communication between said devices. Our framework provides a strategy to find a

better mapping that would outperform the current TensorFlow mapping. Note that this

optimization approach will also work on deployed neural networks, i.e. a trained neural

network ready for inference. Our results will focus on some well known CNN benchmarks,

but the method may be applied to any type of neural network.

The work is organized as follows: Section A.2.2 covers the background, where the concept of

111

deep learning is explained followed by an introduction to TensorFlow’s computational graph.

We then describe mapping followed by a description of the target optimization problem, i.e.

improving performance via heterogeneous mapping. In Section A.2.3, we describe in detail

the original HTF-MPR Framework. In Section A.2.4, we define adaptivity in the context of

the framework. In Section A.2.4, we introduce the Adaptive HTF-MPR Framework, where we

explain the added features to the original Framework as well as the changes to further improve

performance. Our experimental setup is described in Section A.2.5. In Section A.2.6,we

present the results of the evaluation of our approach compared to the default TensorFlow

device mapper and the original HTF-MPR. Finally, the work is concluded in Section A.2.7.

A.2.2 Background

Deep Learning

Neural networks contain parameters that need to be tuned which are referred to as weights of

the model. In contrast, other parameters such as the structure of the neural network model,

the number of layers, the activation functions, the size of the layers, and the connections

between layers are fixed and are not tuned during the learning process. These are referred

as hyperparameters (see Figure A.11a). The values of the tunable parameters are changed

during training according to the input data. This training takes place insofar to be later

used for inference. Note that an untrained neural network may be used for inference but is

not optimized for its intended purpose and will perform poorly.

Prior to deploying any machine learning model, to be used for inference, the model should

be trained. In the case of supervised learning, the input x and the intended output y are

provided which subsequently produce a trained model fNN . It is intended that for any given

input data xi, fNN(xi) −→ ŷi where the predicted ŷi ≈ yi. The untrained model would most

likely produce a ŷ that is not close to the intended y. To evaluate this discrepancy a loss

112

Figure A.11: a) A simple two layer neural network. The value of each wij is tunable and
may change during training. While the hyperparameters stay intact and are static. b) The
Gradient Path of the model. t does not change in each iteration (as long as device-mapping
does not change) while w1 and w2 change.

function L is used. One such metric in deep neural networks is the L2 norm loss function;

L(y, ŷ) =
N∑
i=1

(yi − ŷi)2 (A.5)

In the case of classification problems, where the output is a category rather than a specific

number (as is the case of regression problems), the cross-entropy function is therefore used;

L(y, ŷ) = − 1

n

∑
i

ln

(
eyi∑
j e

ŷj

)
(A.6)

The objective of training is to find a model fNN where the finally tuned weights would

ideally result in a fNN that is L ≈ 0, i.e. the objective is to minimize the loss function L.

A method that is employed to train deep neural networks is known as stochastic gradient

descent (SGD). SGD provides the direction in which to change ŷ to be closer to y. ŷ is not

changed directly, but rather, the weights are changed which affects ŷ. This change happens

using a technique known as backpropagation [121]. Simply put, backpropagation adjusts the

113

weights resulting in a ŷ closer to y. Therefore, in each training iteration, using a subset

or mini-batch of input data x, ŷ is the resultant and L is the assessment. Backpropagation

updates the weights, and the process is repeated. This whole process in deep neural networks

is referred to as deep learning [85, 126]. The number of times, or training iterations, is related

to many factors including the dataset size, the number of features per data-point, the desired

accuracy, etc.

Figure A.11b illustrates a two-weight model and the loss L as an example of the training

path and the updating of the model’s parameters until a satisfactory L is reached. The

training process can take a long time given the number of parameters, size of dataset used

for training and the number of epochs, which is the number of times we run the same dataset.

Each training iteration takes t time. In this work, our target is to reduce t, while keeping the

path intact, i.e. the target of this work is neither changing the path taken, nor increasing

the accuracy nor modifying the structure of the model. We change the device-mapping to

reduce t, i.e. improving the hardware utilization.

Computational Graphs and TensorFlow

TensorFlow [13, 11], is a library that is heavily used in industry and academia for building

and training machine learning models. Keras [36], a high-level application programming

interface (API) runs TensorFlow as it’s defacto library. TensorFlow uses the computational

graph approach: Each node in the TensorFlow graph G, is an operation opi, and the vertices

are tensors, i.e. multi-dimensional matrices. Figure A.12 illustrates a directed graph in

TensorFlow. The dataflow graph in Figure A.12 shows the dependencies; meaning certain

operations will not execute unless all data dependencies are executed. Let G = (Op,E),

where Op = {op1, op2, ..opNop} are the operations, and E = {(opa, opb), (opc, opd)...} are the

directed edges where ei = (opa, opb) is a tensor from opa −→ opb and a 6= b. Note that the

TensorFlow graph G is assumed to be an a-cyclic dataflow graph.

114

Figure A.12: Homogeneous Mapping: All the operations, by default, are mapped to GPU-0.
i) The model in TensorFlow. ii) The code to run the model in a Session.

The operation execution order is handled by the TensorFlow scheduler; The Distributed

Master would evaluate the TensorFlow Graph G’s nodes, i.e. the Worker Services schedules

the operations according to the Distributed Master’s request.

In TensorFlow, the programming paradigm requires a construction of a model (Graph) where

the hyperparameters are set before the model is run. A model run could either be for training

or inference. Figure A.12i shows the code of the model, while Figure A.12ii shows the script

required to run the model: A Session is created and the last operation in G, in this case

op6, is passed on as a parameter to the Session.

Mapping

TensorFlow, by default, maps all the operations to a single device. If GPU-enabled Ten-

sorFlow is installed and the hardware is supported, then all the operations in a TensorFlow

graph are mapped to a single GPU. Otherwise, all the operations are mapped to a CPU. A

workaround to defining your own mapping is to use the tf.device directive. An illustration

of a mapped TensorFlow graph and its accompanying code is shown in Figure A.13.

115

Figure A.13: Heterogeneous Mapping. The code shows the addition of tf.device to enable
heterogeneous mapping.

Given a set of devices D = {d1, d2, ..dND
}, and a set of operations Op = {op1, op2, ...opNop},

a particular mapping is defined as mi = {(op1, dx), (op2, dy)...(opNop, dz)}. Note that the size

of mi,|mi| = |Op| = Nop. The mapping of devices to operations is one-to-many, meaning

that several operations could be mapped to a single device in any particular mapping, while

the opposite is not true (see Figure A.13).

In our notation mTF = mgpu−0 = m2 is the GPU-0 mapping which is the default TensorFlow

mapping (as shown in Figure A.12), while mcpu = m1 is the homogeneous CPU mapping

and mgpu−1 = m3 is the homogeneous GPU-1 mapping. The rest of the mappings, mi|i > 3,

are different heterogeneous mappings (an example of a heterogeneous mapping shown in

Figure A.13). No two mappings are the same i.e mi 6= mj|i 6= j where mi,mj ∈M .

Optimization

The objective is to find a mapping m that results in a faster execution time than the default

TensorFlow mapping. This would thus speed up the whole training time. The optimization

116

problem is therefore;

m? =m∈M ft(m) (A.7)

where ft(m) is the makespan (execution time) of a single training iteration of the TensorFlow

graph using mapping m. m∗ is any mapping that outperforms TensorFlow’s mapping. Note

that possible mappings of G is represented by M , which has a size of |M | = N
Nop

D , where

ND and Nop is the number of devices and operations, respectively. The search for an optimal

mapping in the search space is thus considered an NP-hard [115, 75, 142] problem. The

mapping problem could be reduced to NP-Complete by relaxing the condition, i.e. by finding

a mapping that outperforms the default homogeneous TensorFlow mapping rather than

finding the global optimal mapping. i.e, M∗ ⊂ M and m∗ ∈ M∗|ft(m∗) < ft(mTF) . Some

of the characteristics of the makespan ft(m);

• It is a continuous function, i.e. the execution time is a real number.

• The input data m is a tuple of categorical data, i.e. the values of the operations are

device labels which are discrete.

• A single evaluation is expensive, meaning that an actual run of the graph has to occur

to find the makespan value.

• It is a black-box function, i.e. its structure is unknown (not convex nor linear etc).

• Given it is a black-box function, therefore it is non-differentiable. Neither the first nor

the second-order derivative may be utilized.

For this to be worth-while, the whole training time needs to be less than the training time

of the default homogeneous TensorFlow mapping;

Ft(π, ohπ) < Ft(πmTF
, 0) (A.8)

117

Where Ft(π, ohπ) is the sum of execution times plus overhead given a policy of mappings π =

ma,mb, Note that generating such policy is an overhead, represented by ohπ. Fτ (πmTF
, 0)

is the TensorFlow total training time with a policy of using a single type of mapping which

is a homogeneous mapping, mTF and no search overhead.

Ft(πmTF
, 0) =

I∑
i=1

ft(mTF) (A.9)

Where I is the number of training iterations it takes to reach the final desired model fNN .

Regardless of policy used, and as long as the number of iterations is I, the desired fNN is

unchanged, i.e. the path as described in section A.2.2, remains the same regardless of the

mappings policy (See Figure A.11b).

A.2.3 HTF-MPR

HTF-MPR [14] is a framework that finds a better device-to-operations mapping in-order to

speedup execution times of TensorFlow computational graphs. Mappings are evaluated by

measuring the execution’s runtime using a particular mapping, i.e. ft(m) −→ tm. Once a

reasonable sized sample of mappings and their speeds are collected, a predictive model f ′t(m)

is produced. The reason for the use of a predictive model, rather than the actual run, is

that the amount of time it takes to return the makespan of a certain mapping is almost 750

times faster. In other words, 750 mappings would be analyzed using the makespan predictive

model compared to one mapping using the actual run. Note that there are accuracy issues

with the predictive model, as is the case with any model, therefore the best mappings,

according to f ′t(m), are run again, i.e. we evaluate their ft(m). An overview of HTF-MPR is

shown in Figure A.14. The following Subsections will go into further detail of the HTF-MPR

framework.

118

Generate N initial
mappings

e

GPU-0 GPU-1CPU-0

Best m*

Genetic Algorithm

Return
best m

according
 to

Run
using m*
until training
is completed

...

Initial
population

Function

Select mutate
crossover

1

2

3

Y

X ML
algorithm

for
training

C
re

at
e

p

re
d

ic
ti

ve

m
o

d
e

l

...

Select top K

mappings,
according to

a b c

d e f

I iterations required for training

I – N

iterations left

I - N - K iterations left

Figure A.14: HTF-MPR Overview: 1. N initial mappings are generated (Subsection A.2.3).
2. These mappings are then run on the TensorFlow graph where their makespans, ft(m) −→
tm, are recorded. The number of iterations left to train the model (and therefore get it closer
to the final model fNN) is I − N . 3. The input data X and output data Y are used to
construct the predictive model(Subsection A.2.3). 4. The predictive model as well as the
mappings are provided to the Genetic Algorithm (Subsection A.2.3). 5. Top mappings are
selected according to the predicted makespans. 6. The top mappings are then run on the
TensorFlow graph to obtain actual makespans ft(m). The number of training iterations is
advanced by K (the number of top mappings), thus reducing the required runs to I−N−K.
6. Finally, the top mapping, m∗ is found and used for the rest of the training i.e. for I−N−K
iterations.

Initial Mappings

The initial mappings are used for two purposes; to create the predictive model and as an

initial population to the genetic algorithm which is shown in Figure A.14. Briefly, the initial

mappings are generated with the following characteristics:

• Homogeneous mapping: A single device for all operations. Figure A.12 shows an

119

example of homogeneous mapping. The number of mappings is proportional to the

number of devices, i.e. ND. (Figure A.14, in the initial mappings, shows two examples

in a and b).

• Longest Path mapping: A single device mapped to the operations making up the

longest path in the graph. While the other operations are mapped to different de-

vices than the one on the longest path. The number of mappings in this case is ND.

(Figure A.14, in the initial mappings, shows two examples in c and d).

• Random Path Homogeneous mapping: A single device mapped to a non-longest

single path. While the rest of the operations are mapped to different devices than the

one on the designated path. (Figure A.14, in the initial mappings, shows an example

in e).

• Color mapping: No two neighboring operations (operations that share a tensor)

should be mapped to the same device. The number of mappings is ND. Note that in

terms of makespan these would result in the worst possible performance. (Figure A.14,

in the initial mappings, shows an example in f).

The initial mappings are the training dataset of the predictive model. A varied dataset

would make the predictive model more robust. In addition, more points in the search space

will be evaluated, using the predictive model, due to the varied initial mappings.

Note that a large variety in the initial mappings leads to a more versatile generalized pre-

dictive model, but a less accurate model given a search on a concentrated region.

Makespan Prediction

The purpose of a makespan predictor f ′t(m) is to speed up the overall training time Ft. By

having a reliable makespan predictor, it is possible to perform a search on M in a fraction of

120

the time that is required when using the results of ft(m), i.e. the actual run. The training

set for building the predictor is therefore {(mi, tmi
)}Ni=1. After investigating several machine

learning algorithms, the Gradient Boosting Regression (GBR) [48] algorithm outperformed

those that were tested when it came to the Kendall tau rank distance [78] metric. GBR

consists of weak learners that are assembled together and made into an ensemble of a strong

prediction model. This ensambling of weak learners happens after each iteration where the

new weak learner improves upon the whole predictive model. Therefore, the weights, as well

as the hyperparameters, are adjusted during training:

f ′t,k+1(m) = f ′t,k(m) + h(m) = tm (A.10)

Where f ′t,k+1(m) is the makespan predictor at step k + 1 of it’s training, which is made

up of the previous predictor f ′t,k(m) and an estimator h(m). Therefore, the final makespan

predictor f ′t(m) is made up of many weak predictors:

f ′t(m) =
n∑
j=1

hj(m)γj + const. (A.11)

Where n is the total number of training iterations to construct the predictive model. Training

happens in an incremental manner, initially set as:

f ′t,0 =γ

N∑
i=1

L(ti, γ) (A.12)

Where ft(m) −→ tm, and during the training of the predictive model. N mappings are

used as input X, and N timings are used as the output Y (see Figure A.14, ML algorithm

for training). Subsequently, the makespan predictive model is updated by computing the

residual :

rj(mi) = −
[
δL(tmi

, f ′t(mi))

δf ′t(mi)

]
, for i = 1, ..N (A.13)

121

Then, the base learner, i.e. estimator hj(m), is constructed using the residual rj(m) and

input m. Therefore the training set for hj(m) is {(mi, rj(mi)}Ni=1. Afterwards the γj is

updated:

γj =γ

N∑
i=1

L(ti, f
′
t,j−1(mi) + γhj(mi)) (A.14)

The model is then updated as referred to in Equation A.10:

f ′t,j(m) = f ′t,j−1(m) + γjhj(m) (A.15)

This whole process is repeated n times resulting in a final predictive model f ′t(m) which is

used by the Genetic Algorithm.

Search with Genetic Algorithm

Genetic Algorithms (GAs) [96] are an optimization technique that are metaheuristic, mean-

ing they are designed to work on non-deferential and non-linear search spaces [54]. They are

known for solving task-mapping [59] problems. In HTF-MPR, the GA uses f ′t(m) as the in-

verse fitness of a particular solution, i.e. mapping. The fitness of a solution is proportional to

how probable it would be chosen as one of the parents to generate a new solution. This new

solution is assessed using f ′t(m) and added to the population. The search process is shown in

the Genetic Algorithm’s part of Figure A.14. Initially, the algorithmically generated map-

pings are provided to the GA, where the t′m of each mapping is calculated. Then, selecting

two parents with a probability proportional to the fitness, i.e. inverse of t′m, whereby these

two parents generate a new mapping via crossover. In our approach we have used two meth-

ods for crossover (Figure A.15 and Figure A.16). Figure A.15 shows a stochastic approach

122

of how a new mapping is generated. The fitness of the parent will dictate the percentage

of operations-mapping the new mapping will inherit from that parent. Figure A.16 shows

<

Number of ops
selected from

OP1 OP3 OP4 OP5 OP6OP2 OP1 OP3 OP4 OP5 OP6OP2

OP1 OP3 OP4 OP5 OP6OP2

Number of ops
selected from

Mapping from Mapping from Mutated mapping

Figure A.15: Crossover using a stochastic method whereby the number of mappings taken
from a particular parent is relative to how fit the parent is. In this case ma is more fit than
mb given the lower predicted makespan, i.e. t′ma

< t′mb
. Therefore, more operation mappings

are copied from ma than mb. Some operations’ mappings also go through mutation, meaning
it does not copy from either parent. In this example op3 got mutated.

another approach, where the crossover points dictate the number of new generated map-

pings. For example, if there were 2 crossover points, then at most 6 new mappings would be

generated from the parents (see Figure A.16). If there were three crossover points, then at

most 14 new generated mappings would occur, i.e. at most 2Nc+1 − 2 generated mappings,

where Nc is the number of crossover points.

Final Selection

P new mappings, and their predicted makespans t′m, are generated by the GA as shown in

Figure A.14. These mappings are then sorted in t′m ascending order. The Top K mappings

are then chosen and run on the TensorFlow graph to get the actual makespans tm. The

top mapping m∗, according to tm, is then run until the training of the TensorFlow graph is

123

...

OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2

OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2

Figure A.16: Crossover using a crossover-points. In this example, 6 new mappings are
generated from the parents ma and mb.

completed, thus reaching the final state of the model fNN . Note that the training advances

when the model is run. During a run, regardless of the mapping used, we get the added

benefit of acquiring ft(m) while not affecting the training’s path. This indicates that the

final destination of fNN is the same, the only difference is how fast we get there.

A.2.4 Adaptive HTF-MPR

Adaptivity

The training time for some state-of-the-art neural networks could take up to hundreds of

thousands of iterations [158], each iteration would take some time depending on the em-

ployed hardware and the batch-size of the input data. There is no guarantee that the state,

or performance, of the system remain consistent throughout the training, i.e. parts of the

system’s hardware, CPUs or GPUs, could have different loads at different times due to exter-

nal processes. This would affect the makespan and thus the training time. To combat this,

the makespan time has to be monitored. The monitoring module would detect any drastic

performance changes from the average performance, whether it be improved performance or

124

degraded performance. If one of the systems’ components, i.e. one of the device’s load has

increased or decreased, it would affect ft(m) and thus changes what could be considered m∗.

In this work, we have added, among other things, a monitoring mechanism and a way to deal

with and adapt to these changes in the system. Adaptive HTF-MPR would take corrective

measures to find a new m∗, once the monitoring module sets a trigger. Our monitoring

module works with both gradual slow changes [145] and abrupt changes [17].

Overview of Framework

Adaptive HTF-MPR uses the similar methodology as HTF-MPR with some modifications

(see Figure A.17). One modification is the introduction of the Bayesian Optimization [114]

step using ft(m) as the function for performance evaluation. The point of the Bayesian

optimizer is to find the local, or neighborhood of the best mappings via intelligent search.

Thus, the resulting mappings will be used to construct the makespan predictive model f ′t(m).

Another modification is the removal of the initial mappings via Algorithmic approach . This

is due to using the results of the Bayesian optimizer as input to the ML to create the

makespan predictive model as well as the initial population for the GA. The input or initial

start of the Bayesian optimizer is the homogeneous mappings.

Initial Mappings

Homogeneous mappings are used as an initial step instead of the algorithmically generated

mappings (as was described in Subsection A.2.3). The reason is that the Bayesian optimizer

will generate those initial mappings required for search. The Bayesian optimizer will therefore

construct a less robust model given the more concentrated dataset provided. On the other

hand, the model will preform better due to the fact that only data-points (mappings) in the

more optimized locale will be generated by the GA and therefore only the makespans of said

125

Generate
homogeneous

mappings

Best m*

Genetic Algorithm

Return
best m

according
 to

Run
using m*

Initial
population

Function

Select mutable
crossover

1

2

3

Y

X ML
algorithm

for
training

Create
predictive

model

...

Select top K

mappings,
according to

I = I - C iterations required for training

I = I - N

iterations left

I = I - K iterations left

GPU-0CPU-0

a b

GPU-1

c

...

Initial
search

Find
next m

1

2

3

Baysian opt

Monitor

C
o
n

ti
n

u
e

Is training
completed?

Yes

End

No

Trigger (C runs)

One-hot
encoding

I = I - n where n <= N

if m* is found

Figure A.17: Adaptive HTF-MPR Overview: 1. N initial mappings are generated using
Bayesian optimization (Subsections A.2.4 and A.2.4). 2. Mappings are then run on the
TensorFlow graph where their makespans, ft(m) −→ tm, are recorded. The number of itera-
tions left to train the model (and therefore get it closer to the final model fNN) is I −N . 3.
Input data X is turned to one-hot encoding (Subsection A.2.4). Makespan predictive model
is constructed (Subsection A.2.3). 4. Genetic Algorithm is run (Subsection A.2.3) until pop-
ulation size is P . 5. Top mappings are selected according to the predicted makespans. 6.
The top K mappings are then run on the TensorFlow graph to obtain the actual makespans
ft(m). The number of training iterations is advanced by K, thus reducing the required runs
to I −N −K. 6. The top mapping, m∗, is found and used for the rest of the training. The
Monitor triggers a rerun of the process if required (Subsection A.2.4).

mappings will be predicted by the more concentrated f ′t(m). It is noted that the target of

HTF-MPR and Adaptive HTF-MPR is to beat the default homogeneous mapping, thus the

homogeneous mappings are a good starting point for the Bayesian optimizer. Figure A.17

shows the generation of homogeneous mapping of CPU-0 (m1), GPU-0 (m2), and GPU-1

(m3), i.e. ND = 3.

126

Bayesian Optimization

Bayesian Optimization is based on Bayesian reasoning where the reconstruction of the ob-

jective function ft(m) is updated based on new evidence, i.e. due to evaluation of new data

points in ft(m). The more data-points are evaluated the closer the surrogate function is to

ft(m). The Tree Parzen Estimator (TPE) [24, 23] is one of the methods for constructing the

surrogate function. The target of the Bayesian optimizer is to find the data-point (input)

that would result in the minimum of the function. This is done by choosing the next input

to be evaluated according to the surrogate function and past results. The surrogate function

is described by a probabilistic model approach:

P (t|m) ∼ N (µ(m), σ(m)2) (A.16)

Where N (µ, σ2) is the Normal distribution with µ as the expected mean function and σ2 as

the expected variance function.

.. .
.

After 3 evaluations After 3+5 evaluations

.

.

.

.
.

 : Point evaluated.

.

 to evaluate according to

..

Figure A.18: Bayesian Optimization general method.

The surrogate function is optimized via Bayesian methods by selecting an m that will perform

well on P (t|m). Figure A.18 shows a general overview of how increased evaluations affect

P (t|m). As an overview, the steps taken by the Bayesian optimizer are:

1. Build P (t|m) according to the already evaluated ft(m). In our case, the homogeneous

127

mappings m1,m2,..mND
and their results on ft(m) result in an initial P (t|m).

2. Then, the Bayesian optimizer chooses the next m that would be assumed to perform

well on P (t|m).

3. The chosen m is evaluated with ft(m).

4. P (t|m) is updated based on the results of m on ft(m).

Steps 2 - 4 are repeated several times. The reason for the use of ft(m) rather than f ′t(m) is

that Bayesian Optimization is an expensive approach, namely the construction of P (t|m),

from history, and choosing the next m to evaluate are expensive. Therefore, the Bayesian

optimizer would perform well on expensive functions such as ft(m), given how the whole

Bayesian process is expensive. Using f ′t(m) in the Bayesian optimizer would not be beneficial

time wise. Bayesian optimizers are expensive when it comes to computation time yet they

require less calls to the objective function compared to other optimizers since they reason

on what to evaluate next, i.e. use P (t|m), to choose the next m to evaluate.

To decide on which m to evaluate next (step 3), a utility function known as the acquisition

function [132] is used;

EI(m) = E[max
m

(0, ft(m)− ft(mbest))] (A.17)

mnext =m EI(m) (A.18)

EI is the Expected Improvement, a type of acquisition function. mbest is the current best

solution while mnext is the next m that would be evaluated. EI(m) is analytically evaluated

128

as follows:

EI(m) =

(µ(m)− ft(mbest))Φ(Z)

+σ(m)φ(Z) σ(m) > 0

0 σ(m) ≤ 0

(A.19)

where Z =
µ(m)− ft(mbest)

σ(m)
(A.20)

Where µ(m) and σ(m) are the mean and the standard deviation of the distribution of P (t|m)

at point m, respectively (as was mentioned in Equation A.16). While Φ and φ are the

cumulative distribution function and probability density function of the normal distribution,

respectively. Note that the acquisition function is less costly computation wise compared to

f(m), i.e. µ(m) and σ(m) are very inexpensive to evaluate. EI would have a high value

if the evaluated m is in a known neighborhood that outperforms mbest (high µ(m)), or we

evaluate in an unknown territory (high σ(m)). Both approaches of exploitation (high µ(m))

and exploration (high σ(m)) are used. For categorical data [52], which is the case with the

mapping where the values are devices, the best way to construct the probabilistic surrogate

function, and thus evaluate and search, is to use TPE. TPE is used by constructing (step 4)

the surrogate function P (t|m) by using Bayes rule;

P (t|m) =
P (m|t)P (t)

P (m)
(A.21)

Where P (m|t) is the probability of a mapping m given an actual makespan t.

P (m|t) =

l(m) t < tth

g(m) t ≥ tth

(A.22)

129

tth is the makespan threshold of the two distributions. l(m) and g(m) both have a normal

distribution. With that said, EI would be;

EI(m) =
l(m)

g(m)
(A.23)

A selection strategy would be to select m more towards the l(m) distribution given mEI(m).

As the Bayesian Optimizer progresses in number of iterations, EI converges more towards

exploitation rather than exploration, given that P (t|m) gets closer to ft(m). An overview of

the Bayesian Optimizer shown in Figure A.18.

Note that once an m∗ is found where ft(m
∗) < ft(mTF) via Bayesian Optimization, the

Adaptive HTF-MPR bypasses all the other steps and continues execution using m∗, i.e. Run

fNN (see Figure A.17).

One-Hot Encoding

In one-hot encoding, a variable is expanded to multiple variables. The variables take in either

a 0 or a 1. Exactly one of the expanded variables from the original variable has value of 1

while the rest are set to 0. In the case of a mapping m where the size of m, or number of

variables ofm, without the one-hot encoding is |m| = Nop. If one-hot encoding is applied then

the size would be the multiple of the number of values each non-one-hot encoding operation

would take, i.e. the number of devices. More formally, |mone−hot| = NopṄD. Figure A.19

illustrates the difference of integer encoding, as is the case in with HTF-MPR, and one-hot

encoding, as is the case with Adaptive HTF-MPR.

Categorical variables have nominal values, meaning that the values have a qualitative prop-

erty rather than a quantitative property. With integer encoding (as is the case in HTF-MPR,

see Figure A.19) it assumes order, that is numbers have order in relation to each other. Thus,

130

1 0 1 10 0 0 0 0 0 0 0

Op1
GPU0

Op1
CPU0

Op1
GPU1

Op1
GPU2

Op2
GPU2

Op2
GPU0

Op2
GPU1

Op2
CPU0

0 1 30 2 0 ...

0 0.33 10 0.66 0 ...

CPU-0 ...CPU-0 GPU-0 CPU-0 GPU-1 GPU-2

op1 op2 op3 op4 op5 op6

0 0 0 01 0 1 0 0 0 0 1 ...

Op4
CPU0

Op4
GPU0

Op4
GPU1

Op4
GPU2

...

H
T

F-
M

PR
(I

n
te

ge
r

en
co

d
in

g)
A

da
p

ti
ve

 H
T

F-
M

PR
(o

n
e

-h
ot

 e
n

co
d

in
g)

1 0 1 10 0 0 0 0 0 0 0

Op1
GPU0

Op1
CPU0

Op1
GPU1

Op1
GPU2

Op2
GPU2

Op2
GPU0

Op2
GPU1

Op2
CPU0

0 1 30 2 0 ...

0 0.33 10 0.66 0 ...

CPU-0 ...CPU-0 GPU-0 CPU-0 GPU-1 GPU-2

op1 op2 op3 op4 op5 op6

0 0 0 01 0 1 0 0 0 0 1 ...

Op4
CPU0

Op4
GPU0

Op4
GPU1

Op4
GPU2

...

H
T

F-
M

PR
(I

n
te

ge
r

en
co

d
in

g)

A
da

p
ti

ve
 H

TF
-M

PR
(o

ne
-h

ot
 e

n
co

d
in

g)

Figure A.19: Encoding: ma is encoded using integer encoding where CPU-0−→ 0, GPU-
0−→ 1, GPU-1−→ 2, and GPU-2−→ 3. The integers are then normalized. The top part
illustrates one-hot encoding, where dummy variables are used. This increases the number of
features ; in this case a single variable is expanded to four, since there are four devices. Note
that CPU-0−→ 1000, GPU-0−→ 0100, GPU-1−→ 0010, and GPU-2−→ 0001.

CPU-0 does not have a closer relationship to GPU-0 than it does with GPU-1. If the integer

0 is assigned to CPU-0, 1 is assigned to GPU-0, and 2 is assigned to GPU-1 etc, we have

implicitly assigned relations. These relations have an affect when used mathematically in the

machine learning models. Since no ordinal relationship between the devices exists, one-hot

encoding is more befitting.

Training the Predictive Model

As in HTF-MPR, we train a surrogate function f ′t(m) to be used in the GA. Using the

mappings that were generated by the Bayesian optimization evaluations, we train, and thus

create a makespan predictive model f ′t(m) using GBR as explained in Subsection A.2.3. Note

that the two main differences between the predictive model used in HTF-MPR and Adaptive

131

HTF-MPR are:

• The training dataset uses mappings that are skewed more towards better performing

makespans, i.e.

∑
m∈MBayesian

ft(m) <
∑

m∈Minitial

ft(m) (A.24)

Where MBayesian and Minitial are the mappings generated by the Bayesian optimizer

(Adaptive HTF-MPR) and the Initial Mappings (HTF-MPR), respectively. In addi-

tion, |MBayesian| = |Minitial|, so as to make the comparison from Equation A.24 fair.

• One-hot encoding is used rather than normalized integer encoding. This is a better fit

given the nature of the datatype of the values in the mapping; non-ordinal categorical

data.

Genetic Algorithm Search

As in HTF-MPR, GA is used to search for an optimal mapping that outperforms Tensor-

Flow’s default GPU homogeneous mapping using the makespan predictive model f ′t(m) as

the surrogate function to evaluate performance of a given solution. The difference here is

that:

• The initial population is the mappings from the Bayesian optimizer, meaning a more

concentrated search space.

• A makespan predictive model f ′t(m) that is designed to work well within the neighbor-

hood of the search space of the initial population.

132

Adaptive-run

During the run on m∗, the average as well as a the standard deviation is taken for a window

size of Q iterations of ft(m
∗). If after the Q iterations ft(m

∗) changes to be higher or lower

than βx of the standard deviation then that would cause a trigger to occur. The trigger

would start the Adaptive HTF-MPR process again. Note that the number of iterations left

for training and reaching the final trained model fNN would be reduced (see Figure A.17).

Initialization:
let µwin = 1

Q

∑Q
i=1 ft(m

∗)i;

let σwin =

√∑Q
i=1(ft(m

∗)i−µwin)2

Q
;

P trigger = µwin + βσwin;
N trigger = µwin − βσwin;
i = Q + 1;
Trigger=False;

while fNN still training do
Advance fNN training;
i=i+1;
if N trigger< ft(m

∗)i < P trigger then
Trigger=True;
Break from while loop;

end

end
if Trigger then

run Adaptive HTF-MPR on fnn from
iteration i

end
Algorithm 1: Monitoring Algorithm: The average makespan of each run is taken for a
window size of Q. The standard deviation is recorded and the triggers are set. While
running the Neural Network on mapping m∗, we check the current makespan. If the
makespan is above the P trigger or lower than the N trigger, a trigger is set and Adaptive
HTF-MPR is run again.

A trigger would indicate that there was a change in the hardware state; either a drop in

performance (gradual or abrupt) or an improvement in performance (again, either gradual

or abrupt). In either case this would require a reassessment of the values of ft(m) and

therefore a search for a new m∗. Algorithm 1 shows the monitoring mechanism.

A.2.5 Experimental setup

In order to evaluate the proposed method, a multi-core CPU (Intel(R) Core(TM) i7-7700

CPU 3.60Ghz) and 2 GPUs (Nvidia GeForce GTX 1050 Ti) were used. For the implementa-

133

tion, we used Python 2.7.15 using Anaconda bundled package of libraries. The benchmarks

were implemented in GPU-supported TensorFlow 1.9.0, running on CUDA 9.1 and CuDNN

v7.1. The GBR makespan predictive model was implemented using scikit-learn 0.19.1 [113]

. The Bayesian optimizer was implemented using Hyperopt 0.2 [23].

To evaluate the proposed method three state of art benchmarks were run on HTF-MPR,

Adaptive HTF-MPR and default TensorFlow mapper. Table A.1 shows the benchmark list,

number of eligible operations for mapping and number of training iterations per benchmark.

Benchmark Mapped Operations Total Operations Training Iterations
MNIST Softmax 10 99 60K

ALEXNET 54 294 500K
VGG-16 69 376 500K

Table A.1: Benchmarks.

Unigine’s SuperPostion benchmarking tool [140] was used to stress-test the system in order

to test out the adaptive feature of Adaptive HTF-MPR.

Mnist Softmax

The MNIST Softmax used in our experiment is a simple TensorFlow implementation [20]

that trains a classifier for ten-digit grayscale image dataset MNIST [86]. The dataset contains

60,000 training and 10,000 testing images. Each image is 28x28 grayscale and, as the dataset

suggests, the classifier has 10 classes. Figure A.20 a shows the graph representation.

Given that the mappable operations (operations in the computational graph that are explic-

itly mentioned in the Python TensorFlow code) are only ten, the total number of possible

mappings in this case are NNOP
D = 310. With this small number of mappings, it is possible

to generate and evaluate the whole search space and therefore conduct a brute-force analysis

to find the global optimal mapping. In this section, we will compare the m∗ of HTF-MPR,

134

Figure A.20: a) MNIST Softmax computational graph. There are 10 mappable operations.
The top and bottom nodes are virtual operations and are not mapped to any device. b)
VGG-16 computational graph with 69 mapable operations. c) AlexNet computational graph
with 54 mapable operations

Adaptive-HTFMPR, mTF , and the global optimal. In addition, we will compare Ft (see

Equation A.8) of the policy followed by the three previously mentioned methods.

AlexNet and VGG-16

AlexNet [80] and VGG-16 [134] are deep convolutional neural networks (CNNs) that are

designed to classify images from the ImageNet [123] dataset. The ImageNet training dataset

contains 1.2 million labeled images of 1000 labels, i.e. classifications. The input to the

neural network is a 3-channel rescale image resolution of 224x224x3. HTF-MPR as well as

Adaptive HTF-MPR is tested on both Neural Networks to gauge and evaluate the speedup

where we compare the respective ft(m
∗
htf.mpr) and ft(m

∗
A.htf.mpr). Also, the total training

time of Ft(πhtf.mpr, oh) and Ft(πA.htf.mpr, oh) are measured. The computational graphs for

VGG-16 and AlexNet are shown in Figure A.20. For 500,000 training iteration we used batch

sizes of 64 and 32 for Alexnet and vgg16.

135

A.2.6 Results

Mnist Softmax Analysis

We generated all NN
D op = 310 = 59049 mappings for Mnist Softmax. Figure A.21 shows part

of the distribution of the makespan, as well as marks the average makespan and the mGPU−0

homogeneous mapping’s makespan. The makespan values extend to 0̃.02 seconds. Makespan

distribution beyond 0.002 is not shown in the figure. The three best mappings and three

worst mappings are shown in Figure A.22 along with the value of the makespan.

Figure A.21: MNIST Softmax makespan distribution. x-axis shows the makespan and y-axis
shows the count for that makespan. Mean of the distribution is shown by the red vertical
line. Note that the figure caps at 0.002s, but the distribution has a long tail that extends to
0.02s. Approximately 5% of mappings outperform the default Tensorflow mGPU−0 mapping
in the Mnist Softmax case.

Initial and Bayesian Mappings

We generate 700 mappings (N in Figure A.17) through Bayesian Optimization, where the

input to the Bayesian Optimization are the homogeneous mappings. We compared the

136

Figure A.22: The three mappings to the left are the top three mappings in terms of makespan.
The top most has 7 operations mapped to CPU-0, and 3 operations mapped to GPU-0,
with a makespan of 0.484 ms per iteration. The three to the left are the worst mappings,
the worst mapping has a makespan of 20.2 ms, with 2 operations mapped to CPU-0, 6
operations mapped to GPU-0, and 2 operations mapped to GPU-1. The mapping mGPU−0
has a makespan ft(mGPU−0) =0.72 ms. Note that the worst mappings change devices after
each operations incurring high communication costs overhead.

generated mappings of the Bayesian Optimization approach (a), the Algorithmic approach

(b),the Genetic Algorithms approach (c), and the Random approach (d) (see Figure A.23).

Note that the number of training runs per mapping is equal to 5 in our case, this is in order

to mitigate the time overhead due to reconstructing the graph with a different mapping.

Figure A.23: Configurations of initial mappings. a) is the Adaptive HTF-MPR approach
while b) is the HTF-MPR approach. N is equal for all configurations. The number of
mappings generated is N=700 in each case.

In each case, we show the final distribution of makespans of the mappings generated by

the different methods and show the the final average of each method. Figure A.24 and

137

Figure A.25 show the distribution for VGG-16 and Alexnet, respectively, with N=700. Note

the Bayesian Optimization method has an overall lower mean and the distribution is skewed

to lower makespans.

Figure A.24: Makespan distribution for VGG-16. The x-axis is the makespan and y-axis is
the count of mappings. The vertical red line indicates the average of the distribution. In the
Bayesian figure, the Tensorflow default mapping’s makespan is indicated with a black arrow
labeled mGPU−0.

Figure A.26 shows further insight into how the averages of the makespan distribution changes

with time. The default mapping in this case is best, for now, given that this the first stage.

The Bayesian shows a steady improvement meaning that with each iteration better mappings

are found. Same, but slower, trend can be seen by the GA’s method. The Algorithmic

method starts off with relatively good mappings, but with each iteration does not show

much improvement (but finds a good mapping later on which is not shown by the latest

average but can be observed in the latest minimum figure), this is indicative of running out

of good mapping ideas, where intuition does not pan out much further.

138

Figure A.25: Makespan distribution for Alexnet. The x-axis is the makespan and y-axis is
the count of mappings. The vertical red line indicates the average of the distribution. In the
Bayesian figure, the Tensorflow default mapping’s makespan is indicated with a black arrow
labeled mGPU−0.

Figure A.27 shows the latest minimum at each iteration. Note that Genetic, Algorithmic

and Bayesian all eventually converge within the same neighborhood. Genetic seems to get

there quicker while Algorithmic, and Bayesian get there later on iterations.

An important consideration for training time is not only the final makespan that is achieved

i.e. ft(m
∗), but the whole process Ft(π, ohπ). Figure A.28 shows the overall time it takes for

the first stage (before the ML stage and running the GA with the predictive model function).

Note that in the initial stage the default outperforms the other methods, but when used in

conjunctions with the later stages a better mapping is found and therefore a faster overall

training time (as shall be shown in Subsection A.2.6) .

139

Figure A.26: The latest average with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the average makespan. Note that the
plot starts from iteration 50. the Bayesian improves with each iteration, same for the GA
method.

The GA overhead is comparable to that of the Random method i.e. low overhead. While the

Bayesian method is higher than genetic and random. This indicates that when optimizing

and searching using the predictive model of the makespan, f ′t(m), it is better to utilize a

low-expense optimization method to reduce overhead. Evaluating f ′t(m) is much faster than

evaluating ft(m) by a magnitude of 7̃00 and thus it is imperative that many evaluations occur

vs smarter evaluations. If Bayesian were to be used on f ′t(m) the benefits would vanish due

to the costly overhead.

Makespan Prediction

In this section we compare the performance of using one-hot encoding and integer encoding

using the dataset generated by Bayesian and Algorithmic to create the predictive model

f ′t(m). To evaluate the performance we use the Kendall tau rank distance and used k-fold

cross validation method [78] to test the performance . The relative ranking of the mappings,

in terms of makespan, and not the actual makespan value is the metric of measurement.

140

Figure A.27: The latest minimum with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the minimum makespan. Note that the
plot starts from iteration 100.

Given two mappings ma and mb, the Kendall number is calculated as follows:

k(ta, tb, t
′
a, t
′
b) =

1, if ta < tb and t′a > t′b.

1, if ta > tb and t′a < t′b.

0, otherwise.

(A.25)

Where ft(ma) −→ ta and ft(mb) −→ tb are the actual makespans of mapping ma and mb,

respectively, and f ′t(ma) −→ t′a and f ′t(mb) −→ t′b are the predicted makespans of ma and

mb respectively. A value of 1 indicates a mismatch in the pair-wise order between the actual

and the predictive makespans, and 0 indicates a preserved ordering. The normalized Kendall

tau ranking distance is thus;

Knorm =
∑
i

∑
j<i

2 · k(ti, t
′
i, tj, t

′
j)

N(N − 1)
(A.26)

Figure A.29 shows an example; five mappingsm1,m2,m3,m4,m5 where the actual makespans

are t1 < t3 < t5 < t4 < t2 and the predicted makespans are t′3 < t′4 < t′5 < t′2 < t′1.

141

Figure A.28: Total time of first stage (Figure A.23) for a) VGG-16 and b) Alexnet. The
total time (seconds) is the sum of the overhead due to search and reconstruction of the
graph with each new mapping, and the actual run of the fNN(contributes to the reduction
of number of training iterations left). With default Tensorflow there is no overhead since
there is no reconstruction of the graph given that the mapping is constant. Note that with
N=700, there are 5 training iterations per evaluated mapping. Therefore, the Figures show
the time for 700x5=3500 training iterations of fNN .

Figure A.29: An example of the kendall values for 5 makespans. The resulting Knorm = 0.5.

The K-fold method used to validate the predictive model shown in Figure A.30. The

mappings-fitness pairing are shuffled then partitioned into k parts. The predictive model

f ′t(m)i is trained using all the partitions except for partition i. Partition i is then used as a

validation to observe the normalized Kendall tau ranking distance. This process is repeated

k times, each time we use a different partition i for the validation. Figure A.30 shows how

this process is carried out.

142

M.L
(GBR)

Normalized
kendall tau

ranking
distance

Makespans from partition i

Mappings from partition i

R
esu

lt fo
r p

artitio
n

 i

Repeat k times (i.e. i= i+1)
..

.

..
.

Partition 1

Partition k

Shuffle

1

2

..
.

..
.

Figure A.30: k-fold method of validation. The mappings (input) and the makespan timings
(labels) are shuffled. They are then split into k parts. A partition is selected to be the
test dataset while the rest of the partitions are used for training the model using GBR. The
resulting predictive model is then tested with the test dataset partition. the Normalized
Kendal tau ranking is taken and the process is repeated but each time a different partition
is used as the test dateset.

The results are shown in Figure A.31. Note that in each case the one-hot encoding outper-

forms the integer encoding. The performance will affect how many mappings will be chosen

to be evaluated. That is, the top K mappings after the GA stage.

Genetic Algorithm on Predictive Model

In this section the results of the GA on the predictive model are presented. The factors that

are essential in evaluating the performance of this part are the following;

• The time it takes to search using the GA on the makespan predictive model f ′t(m).

That time is indicated by TN+P , while the size of the search is N + P .

• The results of the search; The first occurrence of a mapping that has a makespan

ft(m
∗) better than the default mapping ft(mTF) makespan.

143

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Integer One-hot Integer One-hot Integer One-hot Integer One-hot

Bayesian Algorithmic Bayesian Algorithmic

VGG-16 Alexnet

Standard Deviation

Figure A.31: K-fold results. The y-axis is the normalized Kendall where a lower number
indicates a lower error rate. Note that N=700 (number of mappings) and K=5 (number of
folds). The bar indicates the average of 5 runs (Normalized Kendall of 5 tested partitions)
and the standard deviation shown is due to the difference of the 5 runs.

• What number of evaluations K, using ft(m), are needed to find the best possible

makespan ft(m
∗∗) among the resulting GA results. Number of evaluations is correlated

to time TK . Note that ft(mTF) > ft(m
∗) ≥ ft(m

∗∗).

Model N + P TN+P K TK i∗ ft(mTF)
ft(m∗) rank′(m∗) rank(m∗) i∗∗ ft(mTF)

ft(m∗∗) rank′(m∗∗)

Bay 10000 25.7s 1000 770s 1021 1.04 6 12 7836 1.205 16

Bay 100000 1012s 1000 768s 74611 1.04 1 521 10026 1.209 9

Bay 10000 25.36s 100 77.6s 7428 1.036 2 37 7290 1.201 69

Algo 10000 22.22s 1000 769s 2935 1.04 4 89 9342 1.19 58

Algo 100000 1099s 1000 743s 8002 1.038 7 51 10247 1.204 81

Table A.2: GA result using predictive model f ′t(m) on Alexnet. In this table, ”Bay” refers
to ”Bayesian” and ”Algo” refers to ”Algorithmic” model.

As indicated in [43], the initial population is an important metric to the GA. Table A.2

and Table A.3 show that the initial population generated by the Bayesian optimizer in both

instances outperformed the Algorithmic initial population. As for the size of the search,

10,000 searches in the GA and 100 evaluations was enough to find the best mapping in

Alexnet. For VGG-16, the search space is larger and therefore a search of 150,000 is required

144

Model N + P TN+P K TK i∗ ft(mTF)
ft(m∗) rank′(m∗) rank(m∗) i∗∗ ft(mTF)

ft(m∗∗) rank′(m∗∗)

Bay 100000 1014s 1000 752s 1 1.00 1 1 1 1.0 1

Bay 150000 1806s 1000 765s 100179 1.06 56 3 130775 1.14 87

Algo 100000 920s 1000 698s 1 1.00 112 1 1 1.00 112

Algo 150000 1846s 1000 703s 1 1.00 18 1 1 1.00 18

Table A.3: GA result using predictive model f ′t(m) on VGG-16. In this table, ”Bay” refers
to ”Bayesian” and ”Algo” refers to ”Algorithmic” models.

mTF .

Run and Adaptivity

In this section the full run of the TensorFlow default mapper, the HTF-MPR, and the

Adaptive HTF-MPR, are presented. In addition, a stress-test is applied on the system and

the changes of the makespan are observed. We see how Adaptive HTF-MPR reacts and how

it affects the overall training time. The total training time for VGG-16 and Alexnet are

shown in Figure A.32. The overhead with Alexnet is low due to the fact that the GA part is

not run for long (only 10,000 mappings). The GA gets slower with time and does not have a

linear relationship with number of iterations as can be seen from Table A.2 when comparing

10,000 runs and 100,000 runs; the increase in TNP
is 40x while the number of GA iterations

increased by only 10x.

Figure A.33 shows what happens to the makespan when a high load is applied.

We applied a high load on GPU-0 for a 30 min duration. The makespan per iteration is

shown in Figure A.34. The performance of the predictor went down when Adaptive HTF-

MPR was triggered (due to the GPU-0 high load). The reason for the low performing

predictor is the high variance of the makespan (see Figure A.33).

Depending on the load duration and how sporadic the load is, the adaptive part would

perform accordingly. In the case of high variance (sporadic) the makespan predictor will not

145

Figure A.32: Total training time (seconds). The Bayesian Optimization approach (Adaptive
HTF-MPR) improved the overall time by 3.5% in VGG-16 and 18.7% in Alexnet. The
overhead in the Bayesian accounts 9.5% of the whole process in VGG-16 while it accounts
for 1.1% in Alexnet. Note that the Algorithmic did not find a better mapping for VGG-16 as
shown in Table A.3. As for Alexnet, the overall improvement was by 12% and the overhead
accounts for 5.6% using the Algorithmic approach.

Figure A.33: The TensorFlow default mapping on a) VGG-16 b) Alexnet. The y-axis is
the makespan and x-axis is the iteration. The makespan changes when there is high load
(using Unigine’s SuperPostion benchmarking tool [140]) on the GPU. The red-line shows the
threshold for when Adaptive HTF-MPR would be triggered if the default mapping was also
the m∗ mapping. β = 10 in this case. Note that we used different loads in both instances.
Also, the load has high variance in this case.

be able to get a single point prediction. In case of a bump over or bellow the P trigger and

N trigger, respectively, Adaptive HTF-MPR would perform as usual.

146

Figure A.34: Alexnet makespan at each iteration a) without and b) with Adaptive HTF-
MPR. Note that GA happens offline (meaning the GA does not contribute to the advance-
ment of the training step) and therefore is not shown. The top K of the resulting GA results
are run on fNN and therefore are shown. In this case K=100. The high load is applied for
30 minutes in both cases.

A.2.7 Summary of Approach Two

In this work, we presented Adaptive HTF-MPR to optimize the mapping of devices to oper-

ations in order to improve performance. The proposed framework uses Bayesian Optimiza-

tion as well as a predictive model on the GA to search for a mapping that outperforms the

TensorFlow default mapping. The predictive model is trained using the Bayesian Optimiza-

tion resulting mappings and makespan observations. The predictive model is constructed

using GBR. Experimental results show a substantial overall speedup for the investigated

benchmarks. In addition, we presented our analysis of the solution-space using the small

benchmark MNIST-softmax. We observed that only a small percentage, 5%, of mappings

outperform the default TensorFlow mapping indicating that a successful search scheme is

difficult in a large computational graph. The proposed search technique was able to find a

mapping that outperforms the default TensorFlow mapping. We also presented the adap-

tivity mechanism; how it reacts when the system experiences stress.

147

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Contributions
	Dissertation Organization

	Motivation
	Emerging Data-Intensive Applications
	An Overview on Memory Technologies
	Volatile Memory Technology
	Non-Volatile Memory (NVM) Technology

	Conventional Computing Architectures

	Background and Related Work
	3D-Stacked Memory Technology
	Processing Using Memory (PUM)
	Processing In Memory (PIM)
	Near Memory Processing Based on 3D Stacking (NMP)
	Summary

	Application Characterization for Near Memory Processing
	Application Set
	Simulation Setup
	Characterization Methodology
	Roofline Analysis
	Temporal and Spatial Data Locality
	Memory Access Behavior
	Read Disturbance

	Insights and Discussions
	Summary

	Near Memory Processing in Hybrid Memory Systems
	NMP Hardware Architecture in Hybrid System
	Evaluation Methodology
	Simulation Models
	Memory Model Parameters in NVMain for DRAM and PCM Technologies
	Applications

	Evaluation Results
	Performance Comparison
	Memory Power Consumption Comparison

	Summary

	Conclusion and Future Work
	Put it All Together
	Summary of Contributions
	Future Work
	Concluding Remarks

	Bibliography
	Appendix Algorithmic Approaches to Accelerate Emerging Applications
	Approach One: Heterogeneous TensorFlow Mapper
	Introduction
	Background
	HTF-MPR
	Extract Operations
	Experimental Results
	Summary of Approach One

	Approach Two: Adaptive Heterogeneous TensorFlow Mapper
	Introduction
	Background
	HTF-MPR
	Adaptive HTF-MPR
	Experimental setup
	Results
	Summary of Approach Two

