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THE HIGH TEMPERATURE FAILURE OF CERAMICS* 

A.G. Evans 

Materials and Molecular Research Division, Lawrence Berkeley 
Laboratory and Department of Materials Science and Mineral 
Engineering, University of California, Berkeley, California 
94720, U.S.A. 

ABSTRACT 

This review describes the various cavitation mechanisms 
that operate in single phase and two phase ceramic poly-
crystals at elevated temperatures. Analysis of these 
mechanisms has been used to develop failure models and 
thereby, to provide failure time expressions suitable for 
the interpretation of rupture experiments and for the eventual 
prediction of failure. The failure processes have been 
distinguished on the basis of crack nucleation control and 
crack propagation control. The former yields either Monkman-
Grant failure expressions or probabilistic Orr-Sherby-Dorn 
failure relations, depending upon the cavitation homogeneity 
and the level of the applied loading. The available creep 
rupture data has been analyzed from-an informed perspective 
provided by the failure models. 

1. INTRODUCTION 

The mechanical failure of ceramics at elevated tempera-
tures is accompanied by permanent deformation andexhibits a 
strong dependence on temperature and-strain-rate (Fig. 1). 
The failure usually evolves by the nucleation, growth and 
coalescence of cavities at preferred microstructural sites 
(Fig. 1). The deduction of comprehensive engineering 
expressions for high temperature failure requires that the 
cavity evolution process be understood at the fundamental 

*This work was supported by the Director, Office of Energy 
Research, 'Office of Basic Energy Sciences, Materials Science 
Division of the U.S. Department of Energy under Contract No. 
DE-AC03-76SF00098. - 



level. This review describes the essential details that 
underlie the engineering analysis of failure. 

High temperature failure typically involves several 
sequential processes: cavity nucleation, cavity propagation, 
crack nucleation and crack propagation (Fig. 2). Each process 
must be comprehensively characterized in order to establish a 
generalized description of failure. Consequently, the first 
part of this review is concerned with a characterization of 
crack iaucleation (by a cavity nucleation, propagation and. 
coalescence sequence); while the second part is devoted 
primarily to crack propagation processes. The implicatons for 
iuicrostructural design are presented in the final section. 

The analysis of high temperature failure in ceramics must 
be cognizant of the variety of microstructures that may exist 
and their influence on the specific failure evolution mech-
anisms. The two most important classes of ceramic microstruc-
ture are emphasized in this paper: predominantly single phase 
polycrystals (albeit, in some instances, with small isolated 
second phase particles at two grain interfaces) (Fig. 2a), and 
two phase systems with a continuous second phase (Fig. 3). 
The former microstructur.e typifies, materials fabricated by 
solid state sintering, chemical vapor deposition etc., while 
the latter microstructure is characteristic of liquid phase 
sintered ceramics. An important theme of this paper will be 
the vital influence of second phases on the failure process at 
high temperatures. 

The creep deformation of most commercial ceramics occurs 
by diffusion, viscous flow or solution/reprecipitation and 
consequently, exhibits a stress exponent, n, in the range 
1 	n <2 (dislocation creep is rarely observed) [1,2]. The 
analysis of creep rupture in ceramics [3] is thus frequently 
based on a deformation linearity premise (which appears to 
provide an adequate first order characterization of the 
observed rupture behavior). The analytic simplicity afforded 
by linearity will be adopted in the present review. 

The paucity of comprehensive creep rupture data for 
ceramics, especially data accompanied by microstructural 
observations of failure evolution, limits the present ability 
to provide a well-balanced view of the creep rupture process. 
The intent of this review is thus to provide a description of 
the underlying failure phenomena that establishes the eventual 
basis for interpreting failure data and predicting failure. 

2. CRACK NUCLEATION CONCEPTS 

Crack nucleation during high temperature creep generally 
occurs by the nucleation, growth and coalescence of cavities 
[3-8]. Each of these processes requires separate consideration, 
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	A schematic of the temperature dependence of the 
strength of a typical ceramic polycrystal. 
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Fig. 2a. Scanning electron micrograph illustrating the 
processes of crack nucleation, involving nucleation 
and propagation. 
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Fig. 2b. Scanning electron mlcrograph illustrating the 
process of crack nucleation, involving cavity 
coalescence. 
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Fig. 2c. Scanning electron micrograph illustrating the 
process of crack propagation. 
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Fig. 3. 	TransrnissiDn ect 	 Si3N4 
material with a continuous second phase, trans-
mission electronmicrograph. 	XBB810-11470 

Fig. 4. 	A scanning electron micrograph of heterogeneous 
cavitation in polycrystalline A1203. xBB804-4499 
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as detailed in the following sections. A common theme will be 
the role of microstructural heterogeneity on the observed 
cavitation (Fig. 4) and on the resultant crack nucleation 
characteristics. The inhomogeneity undoubtedly exhibits a 
direct link with the probabilistic aspects of failure and thus 
constitutes an essential ingredient in the formulation of 
engineering failure relations. Additionally, inhomogeneous 
cavitation can result in appreciable changes in the local 
stress (constraint) that both modifies the cavity growth rates 
and exerts a strong influence on the cavity coalescence 
process. Constraint in the presence of inhomogeneous 
cavitation is thus afforded separate attention. 

2.1 The development of constraint 

When cavities form within an isolated microstructural 
region, the local volume change is constrained by the sur-
rounding material and induces modified local stresses 
[5,9,10]. The resultant stresses are dictated by the relative 
rates of cavity volume change and creep relaxation. The 
stress distributions in a polycrystalline aggregate are 
complex, and their rigorous determination requires extensive 
numerical computation. However, an approximate analytic solu-
tion pertinent to linear materials permits both the identifi-
cation of the important creep rupture parameters and eluci-
dates the essential trends. The analysis [5] is based upon a 
continuum solution for the transformation of a particle in a 
viscoelastic solid, and requires cavitation to occur within a 
zone of diameter d (Fig. 5), such thatmatter deposition on 
the interveningboundaries proceeds at a rate which differs 
from the average mass transport rate in the surrounding 
material (Fig. 5a). The enhanced matter deposition, 6, that 
occurs in time, At, induces rigid body displacements of the 
juxtaposed grains which, if unconstrained, would produce a 
shape change in the zone comprising these grains (Fig. 5b). 
The unconstrained shape change is analgous to a transformation 
strain, eijT , [11] as depicted in Fig. 5c. Maintaining 
conformance of the 'transformation' zone with the surrounding, 
'matrix' grains induces a constraint Pjj'  on the trans-
formation zone and corresponding stresses in the matrix 
(Fig. 5d). 

The constraint Pjj 1  is dictatedby the unconstrained 
transformation strain rate, 	and by the effective 
viscosities n of the transformation zone and matrix. The 
unconstrained strain-rate is the net cavity volume 'change that 
occurs within a specified time increment, At. Hence, since 
cavitation proceeds in response to, stresses normal 'to the 
cavitating boundary, the appropriate 	derives from 
the cavity volume change in the presence of the resultant 
normal stress acting during the interval, At. The transforma-
tion strain is partially accommodated by viscous relaxation of 
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Fig. 5. 	A schematic of the constraint developed by inhomo- 
geneous cavitation, (a) the initial condition, 
(b) the unconstrained strain, (c) the constrained 
strain, (d) the stress distribution. 
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the shear stresses during At (within both the transformation 
zone and the matrix). The resultant constrained stress 
determines Pij'. 

The viscous deformation involves grain boundary sliding 
and diffusive flow [12]. The viscosity assigned to this mode 
of deformation depends upon the number of grains participating 
in the relaxation process (especially those grains at the 
periphery of the cavitation zone, Fig. 5c, where the shear 
stresses are most intense). The viscosity approaches the 
continuum value for the polycrystalline aggregate, ri cofl t 
[121 when a sufficiently large number of grains are involved; 

71 cont 	a
Co 

Ic
Co = 3I3kT/14c2(ñLD X + lrDbISb) , 	( 1 ) 

where DbSb  is the grain boundary diffusion parameter, Dy.  
is the lattice diffusivity, Q is the atomic volume, £ is the 
grain facet length, a. is the applied stress and c, is the 
steady-state creep rate. It is assumed, for present purposes, 
that cavitation zones consisting of at least three grain 
facets (Fig. 5) embrace an adequately large number of peri-
pheral grains (30 peripheral grains for the three-dimensional 
zone subject to analysis). 

The transformation strain-rate 	is determined by 
the distribution of matter deposition within the cavitation 
zone. It is a function of both the total cavitation volume, 
zV, the distribution of grain boundary orientations within the 
cavitation zone, and the zone shape. The general solution, 
which contains both deviatoric and dilational components, is 
unwiedly. Hence, specific results are presented for the two 
limits of most significance. 

When the cavitation zone diameter is relatively small 
(such as the three cavitating facets depicted in Fig. 5), the 
constraint is essentially the same as that expected for a 
purely dilational transformation. The zone can therefore be 
considered subject to a dilation dictated exclusively by the 
cavitation volume, AV. Consequently, by equating the 
cavitation zone volume to that of a spheroidal region of 
equivalent size (Fig. 5c); 

V 	(ir/3)d 2 . 	, 	 (2) 

the transformation strain rate becomes; 

	

= 3V/7rd2 	. 	 (3) 



This dilational strain results in a shape independent, upper 
bound constraint, given by; 

	

p1 = _4Tfl/3 	
-4Va/wd 2Z 	, 	 (4) 

and the local tension a t i normal to the cavitating 
boundaries becomes; 

i 	 I 
= ao-p/3 , 	 (5 

where a is determined by the inclination of the boundary to 
the applied stress axis. Conservation of matter within the 
zone requires that; 

	

(w/3)d 2 6 	, 	 (6) 

where 6 is determined by the cavity growth mechanism. Hence, 

p1 = -46/3Zc 
	

(7) 

Specifically, for viscosities characterized by equation (1), 
the constraint becomes; 

2  I 	6I 	£cSkT 
p 	-(--r-) c(/D-4-Db6b) ' 
	 (8) 

and the local tensile stress normal to the cavitating 
boundaries depicted in Fig. 5 is given for fine grained 
materials (kDk << DbcSb) by 

i - 	3 	213 	2 26kT 
- 	7w QDb6b 

Other grain orientations yield slightly different results. 
The constraint reduces to a lower level than given by equation 
(9) when the zone approaches a free surface or, when an array 
of such zones, separated by <d, interact. 

When the cavitation zone enlarges, such that d > 6P, an 
appreciable deviatoric stress develops, and the problem 
resembles that of a crack, diameter d, subject to opening 
displacements that accommodate the enhanced matter deposition 
along the intervening grain facets. The crack solution, 
pertinent to the large zone size limit, provides a constraint 
along the applied stress axis [51; 
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I 	- 	 3Trfl5 
ll = 	2d 	- 

- 9V'3 	£ 
28 c2 D ID  S, 	

(10) 

The tangential stresses outside the original cavitation 
zone are enhanced by the constraint on the cavity volume 
change. The stresses on those boundaries contiguous with the 
cavitating boundaries are of principal interest, because these 
stresses dictate the zone expansion and cavity coalescence 
processes that result in eventual crack nucleation. The 
stresses relate to the continuum stresses, as redistributed by 
local grain boundary sliding and diffusion. It may be assumed 
that the stress redistribution is confined primarily to those 
boundaries immediately adjacent to the cavitation zone; such 
that the average stress on the peripheral boundaries is 
similar to the average continuum stress. Cavity growth in the 
peripheral zone can then proceed at a rate dictated by this 
average stress. The upper bound continuum stress for the 
small cavitation zone, subject to dilation, is; 

(p 1 /3)(LIx) 3  + (3/4)a 	, 	 (ha) 

where x is the distance from the center of the cavitation 
zone. The average stress on the first peripheral zone is 
thus; 

<,> 	p'/8 + (3/4)a 	. 	 (lib) 

The equivalent solutions at the large zone limit are; 

0 = 	
+

2 
p 
I 
	x[x —(d/2) 2 ] 2 } 	, 	 (12a) 

<a> 	= c00+p' 
- 	 11 

11 	
4i(+d) [2(d+2)/(i2+d) 

	

~ 
d2ln (d+2Z+2/(i+9.d))1 

. 	 (12b) 

2.2 Cavity nucleation 

In the absence of pre—existent porosity, the first step 
in the high temperature failure process consists of the 
nucleation of either cavities on grain boundaries or holes 
within viscous phases. The nucleation process is generally 
considered to involve a critical nucleus formed by the local 
accumulation of vacancies in a region subject to tensile 
stress. Cavity nucleation by vacancy coalescence can be 
treated using standard nucleation concepts [13] to demonstrate 
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that a critical stress a is needed to induce stable 
cavities and that this critical stress depends on the location 
of the nucleation site. The critical stress is determined by 
firstly identifying the condition, during cavity formation, 
that dictates the maximum change in thermodynamic potential. 
The potential contains terms due to the work done against the 
local stress during a cavity volume increment, iSV, and terms 
associated with the change in surface and grain boundary 
areas, AAS  and iAb,  respectively, such that 

-aW + y s s tA - yb b tA 	. 	 (13) 

A critical nucleus exists when A4 = 0, as given by; 

	

* 	 * 
r = 2y 

S 
 /a 

	

* 	 * 	 * 

	

a 	= y s 	s 	b 
(dA /dV) - y (dA /dV) 	, 	 (14) 

o 

where the asterisk indicates that parameters are evaluated at 
critical size r*.  The critical nucleus concept can be used to 
deduce the critical stress by obtainingthe cavity nucleation 
rate from the product of the number of nuclei at the critical. 
size and the probability that a vacancy will be added to tlu 
critical nucleus [13].  The general result for a grain 
boundary located cavity is given by [13]; 

3 
* 2 	4YFv() 	 * 4/3 

(a 	 kT 	£n [ 4 rrzyDbcSbfl/a 	] 	, 	(15) 

where z is Zeldovich's factor (102), 4 is the dihedral 
angle, F()  is a function that depends on the void location 
and no  is the number of available nucleation sites per unit 
area of grain boundary. For a nucleus located on a two grain 
interface (Fig. 6a) [13]; 

Fv() = (27T/3) [2-3 cos(/2) + cos 3 (/2)] 

A typical trend in the critical stress for nucleation on two 
grain interfaces in A1203 (plotted in Fig. 7) indicates 
that, for typical dihedral angles ( 5 w/2), the stress is 
many times larger than the applied stress levels (5 50 MPa) 
known to initiate cavities at grain boundaries during creep 
tests. The resolution of this dilemma probably resides in a 
combination of two effects. A substantial reduction in the 
critical nucleation stress can be obtained when nucleation 
occurs either at three or four grain interfaces, at inclusions 
or within second phases. Also, stress concentrations can 
develop in creeping solids in the presence either of grain 
boundary sliding transients or of microstructural inhomo-
geneity. 
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Fig. 6. 	Schematics of potential cavity nucleation sites in 
polycrystals, (a) cavities on grain interfaces, 
(b) a cavity at a grain boundary inclusion. 
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grain corners, plotted for several dihedral angles. 
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A reduced critical :nucleatjon stress is generally the 
direct consequence of a cavity morphology change that 
increases the relative change in volume to surface area during 
cavity enlargement (Eq. 2): as achieved by inducing maximum 
deviations from sphericity. Thus cavitation at three or four 
grain corners (Fig. 6 a ) often occurs more readily than on 
two grain interfaces. Additionally, the critical stress 
exhibits a strong dependence on dihedral angle. For example, 
cavities on four grain corners nucleate Ispontaneously (at zero 
stress) when 	= 700 and quite readily when 	< 90°  (Fig. 7), 
as expressed by the critical stress parameter [13];. 	- 

Fv(U) = 8r/3-cos 1[[(/2) (3-A2 )
1/2

}/A sin(/2)] 

+ A cos(/2)[(4 sin2(,2) - A2 ) 2  - A2 //2] 

- 4 cos(/2)[3-cos 2 (/2)] sin 1 [A/2 sin(/2)] 

(16) 
where, 

A = (2/3) [I(4 sin2/2-1)2 - cos(02)1 

Equivalently, inclusions can be a major source of premature 
cavity nucleation, whenever the inclusion has an associated 
dihedral angle appreciably smaller than the equivalent matrix 
angle (Fig. 6b). A typical nucleation stress in the presence 
of a grain boundary inclusion is given by the nucleation 
parameter [13]; 

F() 	(47r/3) {2- 3[cos(/2+8-)/2] + cos 3(p/2+-p)/2} 

where 

-1 	 -1 8 = cos 	 and ii = cos 	
b"2ib 	, 	(17) 

where yi is the energy of the inclusion free surface and 
lib is the energy of the inclusion/matrix interface. 

A continuous amorphous phase often provides an alternate 
source of premature cavitation in certain ceramics, by virtue 
of the relatively smaller surface energy of the amorphous 
phase p0.2 Jm 2  for many amorphous phases compared with 
1 Jul for crystalline phases). Nucleation occurs by the 

formation of holes with the amorphous phase. Such materials 
are a typical consequence of liquid phase sintering and the 
existence of amorphous enclaves at three grain channels is 
common [14,15] (Fig. 8)•(i) The amorphous pockets can be 

MThe enclaves are a consequence of anisotropy in the 
interface energy, resulting in facetted interfaces. 
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large enough to include a spherical hole of critical size 
(Fig. 8) and the critical stress becomes the stress needed to 
nucleate a hole in that volume of liquid encompassed by the 
amorphous pockets, as given by [15,161; 

5/3 2 

	

3 	 a 

	

2 	16iry 	 c 

	

a 	3kT 	in 	2 	
(18) 

8'y' kTV1 

where n is the viscosity of the amorphous phase and V is the 
volume concentration of amorphous pockets. In the absence of 
pockets at three grain channels, the holes must nucleate along 
two grain interfaces, which are frequently too narrow to 
support a spherical hole of critical size. The cavities then 
exhibit the morphology of oblate holes (Fig. 9), characterized 
by a volume/area ratio smaller than that associated with the 
spherical hole. The critical stress thus exceeds that 
required for spherical hole nucleation, as given by [15]; 

o 	
13Q5h'3 

c 	ir-8 	2kT 	I 	c 
-.= (--)+ 3 2in1 	* 

L 2ycSkTV5 

	

2 	 1/2 

+ 	
+ 2kT 	

(3 	o 	- 3 2 32
Xn  

4i 	 \2YkTVj / 	487 

(19) 

where f is the volume concentration of amorphous material 
within two grain channels. Some typical hole nucleation 
trends for a liquid phase sintered S13N4 are shown in 
Fig. (10). 

The reduced critical cavity nucleation stresses asso-
ciated with grain corners, inclusions or amorphous phases are 
generally still in excess of the applied stress levels at 
which cavities are observed to form. It is thus concluded 
that stress concentration effects are frequently involved in 
cavity nucleation. The dominant source of stress concentra-
tion during creep is the sliding of grain boundaries [17,18]. 
The relaxation of shear stress along sliding boundaries trans-
mits additional stress to the stationary boundaries. For 
example, in a simple hexagonal grain array (Fig. 11), when 
the sliding boundaries are fully relaxed, the stationary 
boundaries support an average stress that exceeds the applied 
stress, a., by 2 [19],  while the tension in the sliding 
boundaries is reduced to zero. However, transient stresses of 
larger amplitude may be of greater significance. Large 
stresses develop following relatively abrupt grain boundary 
sliding transients, with a peak tensile stress [18]; 

" 0.4a f (GDbSbct/(1-v)kT)6 , 	(20) 
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Fig. 8. 	A transmission electron micrograph of a hole formed 
within an amorphous pocket in Si3N4. (XBB810-11469) 

Fig. 9. 	A transmission electron micrograph of oblate holes 
within an amorphous phase along a two grain channel 
in Si3N4 (courtesy of D.R. Clarke). (XBB823-1951) 
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where £ is the length of the freely sliding boundary (i.e., 
either the total length of the sliding boundary or the 
distance between impeding ledges, or inclusions), C is the 
shear modulus, and t is the duration of the sliding 
transient. The maximum stress occurs at a distance [18], 
(Fig. 11) 

1.3(GDb6bc2t/(1_v)kT)3 , 	 (21) 

from the position (ledge or corner) that impedes the sliding. 
It is tempting to invoke these transient sliding induced 
stresses as the source of grain boundary cavities [1 7 ]. 
However, caution should be exercised in applying transient 
related nucleation concepts until adequate attention has been 
devoted to a comprehension of the mechanism and duration of 
grain boundary sliding transients and to the duration of thc 
stress concentration, 0 (vis-a-vis, the time needed to nucle-
ate a stable cavity). Neither of these topics has yet been 
examined in convincing detail. 

Although a reasonable comprehension of the important 
issues involved in cavity nucleation in ceramic polycrystals 
has recently been developed, a satisfactory quantitative 
interpretation does not exist (primarily by virtue of an 
incomplete knowledge of grain boundary sliding transients). 
Nevertheless, the strong effects of dihedral angle that 
result in relatively easy nucleation in the range 700 < 4 
< 1100 (Eq. (16)), have lead to suggestions that cavities 
nucleate readily in polycrystalline ceramics [4,5], on that 
proportion of grain boundaries that exhibit low dihedral 
angles. However, direct evidence for this hypothesis does not 
exist, and nucleation should be regarded as an unresolved 
issue until further study has been completed. 

The nucleation requirement can, of course, be negated if 
the as-sintered material contains appreciable remnant porosity 
at grain boundaries. In this context, it is interesting to 
note that the final removal of porosity during sintering 
becomes increasingly difficult when the dihedral angle 
approaches 70 ° . The tendency for porosity retention on low 
dihedral angle boundaries is consistent with the relative ease 
of cavity nucleation (and growth) along these same boundaries. 
The spectrum of dihedral angles in polycrystalline ceramics 
(and its dependence on the range of grain boundary and surface 
energies) thus emerges as a central feature of high tempera-
ture failure in ceramics. 

2.3 Cavity growth mechanisms 

The cavity growth rates in ceramics depend upon the 
spatial density and location of cavity nucleation sites and 
upon the mechanism of cavity growth. The cavity growth 
mechanisms are sufficiently distinct for materials that 
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include a continuous, amorphous phase that these materials are 
examined separately. All other materials are regarded as 
'single' phase with regard to their cavity growth behavior 
(inclusions, or precipitates, often dictate cavity nucleation 
propensities, but are presumed to exert a minimal influence on 
cavity propagation). 

Before embarking upon specific analyses of cavity growth, 
some general considerations are presented. Problems of cavity 
growth are invariably analyzed by performing a series of 
inter-related calculations. For diffusive cavitation, the 
diffusion equations pertinent to the atom flux over the cavit' 
surface (dictated by the curvature gradient) and along the 
grain boundary (determined by the normal stress gradient) are 
firstly solved, yielding the relations [5,20,21]; 

= 	s Fl L rID s s y /kT,,a,i] 	, 	 (22a) 

= [ai 	h(f)]F21cDb6b/kT,a,1 	, 	 (22b) 9_ 0 

where D55  is the surface diffusivity, cj is the 
sintering stress, h is a function of the relative cavity size 
and F are functions that depend upon the cavity morphology 
and spacing. A similar pair of equations pertain to hole 
growth by viscous flow (with the diffusivity terms replaced by 
a viscosity). Conservation of matter is then invoked, by 
allowing the atom flux leaving the cavity tip to equal the 
flux entering the grain boundary, to obtain [5,21], 

= 	cS F3 (a,2.) 	. 	 (22c 

Combining Eqs. (22) permits the cavity velocity to be 
expressed as; 

a = (F3 F2 /F 1 ) (ci-ah) . 	 (23) 

Finally, the local stress is obtained (Eqs. 5 and 7) as; 

a a-p'I3 = a[a-M1/cF4(d)1 , 	 (24) 

where 	is the volume of the cavitation zone. 

Combining Eqs. (23) and (24) the cavity growth rate 
becomes, 

a  I
F 
 i + / 
	\ F3F2 ] = F2 F3  

f-r---1 	 -ha ) 	. I 	\cI 	F 	F 	(a 0 
(25) 

L 	 4 	1 
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The second term in the parentheses on the left hand side is 
simply the modification to the velocity that derives from the 
constraint (i.e., a + à'1 ,the unconstrained velocity, as 
F4 + co and p' + 0). Hence, the cavity growth rate can 
invariably be expressed in the form; 

a = 	
+ (cii) (F2F3/F4)] 	.. 	 (25a) 

Consequently, the cavity propagation time, t, obtained by 
applying the integral, 

t 	= f (1/á)da , 	 (26) 
a 
0 

where a0  is the initial cavity size, always separates into 
two components [5,10]; 

t 	

=

(1/)da + (1 	(F1 /F4 ) [a-ah/ci1 '  da 

+ te , 	 (27) 
p 	p 

where tpu  is the propagation time in the absence of 
constraint and t' is the additional contribution to the 
propagation time provided by the constraint. Note that 
t' has the form; 

t c ~ =  T(ci,*,D S Qy /kT,2,a) 	. 	 (28) 
p 	 ss S 

The product 	emerges because relaxation of the 
volume strain within the cavitation zone is dictated by the 
creep rate (viscosity) of the surrounding material. Highly 
constrained cavitation thus anticipates Monkman-Grant behavior 
(t 

p 
e,. = constant) in a natural way, irrespective of the 

specific mechanisms of creep and cavitation. 

Comparison of t p u  with t pc  frequently indicates 
that the latter is large and dominates the failure process. 
The circumstances appropriate to such a comparison are 
afforded explicit attention in the following section. In the 
present section, tn'-' and the 'fully-constrained' t pC 
are presented for each cavitation mechanism. It is noted, 
however, that the F 2  independence of t 1,cL indicates 
that fully constrained cavity growth is dictated by cavity 
geometry and volume conservation requirements (invariant with 
the atom flow rate between cavities, which determines F2). 
Several different atom transport mechanisms can thus be 
expected to yield similar fully-constrained cavitation times. 
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2.3.1 'Single' phase materials 

Cavities in single phase ceramic polycrystals invariably 
form at grain boundaries, in accord with one of three morpho-
logical types: equilibrium, crack-like or finger-like. 
Equilibrium cavities prevail at low stresses and large cavity 
spacings, crack-like cavities develop at high stresses or 
small cavity spacings, while finger-like cavities become 
important at high cavity growth rates (especially in coarse-
grairied polycrystals). The specific rates of growth of cavi-
ties exhibiting these general morphological characteristics 
depend upon the cavity nucleation sites (at two, three or four 
grain interfaces). Observations performed on polycrystal 
ceramics suggest that cavity nucleation on three/four grain 
interfaces (Fig. 2a) prevails in fine-grained materials [ 4 ], 
whereas nucleation on two grain interfaces (Fig. 12) becomes 
increasingly important in more coarse-grained materials [221. 

(a) Fine-grained materials 

• 	 Cavity nucleation in fine grained materials presumably 
initiates at those grain corners with low dihedral angles 
(section 2.2), especially when subject to the transient 
sliding of juxtaposed grain boundaries. The cavities 
initially extend from their nucleation sites to occupy a three 
grain channel (Fig. 13a). This process occurs relatively 
quickly. The resultant equilibrium-shaped cavities then 
expand (Fig. 13b) and retain their equilibrium morphology, 
while the cavity is small. Retention of the equilibrium shape 
requires that the surface flux be sufficiently large (by 
virtue of a large surface curvature) that attempted deviations 
from- curvature uniformity (as motivated by the atom flux into 
the boundary from the cavity tip) are instantly removed [201. 
Continued expansion of the cavity reduces the surface curva-
ture and eventually, attempted deviations from curvature 
uniformity are retained. Thereupon, a transition to a 
crack-like cavity morphology ensues, (Fig. 13c) and the 
resultant cavity extends preferentially along boundaries 
approximately normal to the applied tension [5,20]. The 
crack-like cavity continues to extend along the grain inter-
face, to form a full-facet cavity (Fig. 13d). The full-facet 
cavities are generally resistant to extension along the 
contiguous boundaries and consequently increase their volume 
by a thickening process [4].  The length stability of the 
full-facet cavities is presumably a consequence of the grain 
boundary sliding that occurs in response to the atom flux 
along the cavitating boundary. This reduces the normal 
tension on the sliding boundaries (section 2.2) and thus 
reduces the boundary flux at the grain corner to a level that 
can be accommodated by a surface flux acting over the full 
length of the cavity. 
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Fig. 12. Scanning electron micrograph of cavities on two 

grain interfaces in coarse grained (15 pm) A123 
(xBB813-2548) 
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from (a) nucleus on a three or four grain site to, 
(b) a cylindrical equilibrium cavity, (c) a crack-
like cavity, (d) a full facet cavity. 
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The growth rate of the equilibrium cavities can be 
deduced by firstly evoking matter conservation which, for unit 
width of the cavitation zone, requires that [5,21], 

V 	&9.  
eqm 	

, 	 (29) 

where V is the rate of volume change of an individual cavity. 
The volume of an equilibrium-shaped, cylindrical, triple 
junction cavity is (for unit width) [5] 

V e qm = 3/5
3 a2  F()/4 , 	 (30) 

where a is the distance of the cavity tip from the original 
site of the triple junction (Fig. 13b) and 

F() = 1 + V''[iIrit/3 - sin(-ir/3)] 	. 	(31) 
2 sin 2(/2-7r/6) 

The rate of volume change is thus; 

V  
eqm = 3I 
	

eqm 
a a 	(F(p)/2) . 	 (32) 

The cavity velocity is related to the additional matter 
deposition, from Eqs. (29) and (32), by; 

eqm 

where I = 2a/$. The matter deposition is also related to the 
level of the local stress over the intervening boundaries [5]; 

12D iS 	[1 
- ( 1-I)a I bb 	2 	o 

2 	 3 
kT9. 	(1-5) 

where a0 , the sintering stress, is given by; 

a = 2yh(*)// a 

h(*) = sin[4i/2 - ¶161 . 	 (35) 

The cavity velocity is thus, 

l6SlDbiSb [a - a (1-f)] 
a 	

= 	 . 	 (36) 
eqm 	I kT 2 	F() (i-f) 

The magnitude of the local stress pertinent to Eq. (36) is 
deduced by noting that the matter deposition given by Eq. (34) 
must be compatible with the development of the local stress 
induced by the constraint of the surrounding material. For 
example, using the upper bound constraint (Eq. 9) pertinent to 
a small cavitation zone (e.g., Fig. 5), the local stress 
becomes; 
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= [(3/4) (1 - )a + (24/7v) (1-f)a 

10_f)3 + (24//71r)1 	. 	 (37) 

Combining Eqs. (36) and (37) the final relation for the highly 
constrained cavity velocity, expressed in dimensionless form, 
becomes; 

a
c (kfl3  

eqm 2DbSby 

(16/V')[(3/4)(a 
CO 
 £/y )f - (4//)h(ip)(1-f)} 

= 	 F(*)1 2 [( 1-f) 3  + (24/7)] 
(38a) 

which reduces for a,. >> oc to; 

	

3 
 kTZ 

a:qm () 
	

F() 	
• 	 (38b 

For unconstrained conditions, the equivalent result 
(, >> 	) is; 

	

\ 	12 ___________ a 
(kT 
	i 	(-) 	 . (38c) 

	

eqm QDb6bJ 	 F(i)f(1-f)3 

The variations of the cavity velocity with cavity length and 
with the dominant variables (cyZIy 5 ,) are exemplified in 
Figs. 14a and 15. The corresponding change in the local 
stress is plotted in Fig. 14(b). 

The equivalent analysis of crack-like cavity growth can 
be conducted by noting that both the cavity profile and the 
atom flux at the tip of well developed crack-like cavities 
depend on the instantaneous cavity velocity; viz, the prior, 
equilibrium morphology of the cavity is of minor significance 
[23]. The growth process can thus be adequately treated by 
focusing on the tip region, and neglecting complex morpho-
logical changes that may be occurring in the vicinity of the 
cavity center. Commencing with the expression for the surface 
flux at the tip of a crack-like cavity [20 

2/3 Qj 	 = 
s 	

2sin(4,14)a crack s s (D S 
Q s 
y /kT) 1 " 3  , 	(39) 

and noting that the surface flux is related to the volume rate 
of matter removal, up to the zero flux position (Fig. 13c), 
by; 
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3 
S 

= V/2c2 , 	 (40) 
0 

and that the matter removed from the cavity tip must be 
deposited on the grain boundary, in order to satisfy matter 
conservation, 

0 	
(41) 

the boundary 'thickening' rate becomes; 

= 8 sin(,p/4)a 2'3 k(Dcy/kTL 3 ) 1I3  . 	(42) 

Combining Eq. (42) with the relations for the boundary 
transport problem (Eq. (34)) and for the upper bound local 
constraint (Eq. (9)) permits the cavity velocity to be 
derived. The velocity is given by [5]; 

v2/3h/3[(2/3)1fl3 + (16I3I7)] + 2v 3 (1_f)h/ 3  

= (3/4)a £/ 
S 

sin(i/4) 	, 	 (43) 

where 

V = A 	 (kT 3 /D S y ) 	and 	D 	ID 5 
crack 	b b s 	 s s b b 

For situations of practical interest, 

sin(p/4) > 1 

Hence, Eq. (43) reduces, for this highly constrained 
situation, to, 

	

0.15[/y sin(/4)1 	
1'3 

• 	(44a) 

An almost constant velocity is thus anticipated in the 
crack-like region during the highly constrained initial state 
of cavitation. However, when the constraint is reduced in the 
later stages of cavitation, cavity acceleration is antici-
pated, and the cavity velocity attains an unconstrained level 
given by; 

v "3 	(3/2) [at/y sin(*/4)] (1-f) 	1/3 	(44b) 

At very low stress levels (ci,,/y  sin(4/4) << 1), the 
unconstrained cavity velocity, given by, 

v"3 	(3/8) [/y sin(p/4)] 
( _ f) _1 -1I3 • 	(44c) 
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exhibits a stronger stress dependence (vu 	But, 
this regime is not likely to be encountered in most practical 
situations. The trends in the cavity velocity predicted by 
the above analyses ares plotted in Figs. 14a and 15, and the 
local stress is plotted in Fig. 14b.  The transition between 
the equilibrium and crack-like morphologies is considered 
favorable when the crack-like velocity exceeds that for 
equilibrium cavities, and the local stress is assumed to 
adjust to the crack-like value, over the transition range 
(Fig. 14b). 

The important trends in cavity velocity are illustrated 
in Fig. 15. Firstly, the strong influence of the constraint 
upon initial cavitation is noted (Fig. iSa). The effect is 
manifest at the very earlieststages of cavity growth and 
continues to be amplified as the extension proceeds. The 
magnitude of the applied stress (Fig. 15b) also has a substan-
tial effect on the cavity velocity, over.the entire range. 

The material parameters with the dominant influence upon 
inhomogeneous cavitation are the local values of the dihedral 
angle, 4i (Fig. 15c), and the ratio E of the surface to 
boundary diffusivity (Fig. 15d). Smaller values of these 
quantities encourage cavitation. This may account for the 
observation that crack-like cavities exhibit relatively small 
dihedral angles (Fig. 16). 

The time t taken for cavities to extend across grain 
interfaces can ge deduced from the cavity velocities using, 

= ff*dqf 	

ak 	
(45) 

a 	f 
Some typical propagation times for highly constrained cavita- 
don are plotted in Fig. 17. When the dihedral angle or the 
local surface diffusivity are small and/or the stress is 
relatively large, most of the time required to develop a full 
facet length cavity is dominated by the growth in the crack-
like mode (as might be anticipated from the velocity dia-
grams). The initial cavitation that occurs in local regions 
of a creeping polycrystal (due to small local values of or 
D5 ) can thus be approximately characterized for highly. 
constrained, localized cavitation by a constant cavity 
velocity, whereupon the propagation time (except at impracti-
cably low stresses, c,1/y 6  sin(/4) < 1) becomes; 

50 T ( y /a L) 12  s in(*/4) 31'2 j 2  . 	 (46) 

The equivalent propagation time, for uniform 
unconstrained cavitation is dominated (for most practical 
•stress levels) by equilibrium cavity growth (Eq. (38d)), and 
given (a >> c) by; 



0I 

0U5 SLR ADS DIFFUCFiT 

cI 

I EFFECTS OF 

I DIHEDRAL ANGLE 

32 L 
d 

OI6- 

CAVITY 
SURFACE 

BOR 

,011  

S 	
XBB823-1597 

Fig. 16. A transmission electron micrograph of a crack-like 
cavity in 	203. 

QI 
	

b) 
EFFECTS OF 

	

d 2b 
	 STRESS 

0!5 	80 
	

2b 
0 
	

80 

	

A05 
	

A 05 

OEO 

a 

- O.O5r 

Uneor Reqor 

0 	02 04 06 08 10 0 	20 40 60 

0 I 	I 
60 80 100 120 	0 	02 04 06 

' DEG 
XBL8010-6159 

Fig. 17. Cavity propagation times plotted as a function of 
(a) cavity length, (b) stress, (c) dihedral angle 
and, (d) diffusivity ratio. 



facD6\ 

t 3 b) 
	

F() [i - 10lol, 	(47 

where f is the initial cavity size (a 0/). The full 
facet cavities, once formed, exhibit a thickening rate, 
given by [4]; 

. 	3Db6bc 	c a00 	y s tan(/2-it/3) 

= 	2 	 (1-A) - 	
, (48) 

2 
kTb A[1 -A+A /] 	. 	 3 

where 2b is the spacing between neighboring full facet 
cavities and A = £/b. 

(b) Coarse-grained materials 

In coarse-grained ceramics, cavity nucleation on two 
grain interfaces becomes more prevalent [22] (Fig. 12). The 
source of these cavities has not been studied. Analogy with 
metallic systems [17] would suggest nucleation at grain 
boundary precipitates, especially on sliding boundaries. 
However, in sintered coarse-grained materials, the remnant 
porosity during final stage sintering occurs primarily along 
two grain interfaces (Fig. 18). The cavities in ceramics 
could thus be equally plausibly associated with fine residual 
pores. Cavity nucleation at grain boundary ledges that 
impede sliding '(Fig. 19) is another possibility [2 4 ]. This 
issue requires resolution, because the spacing between cavity 
sites, b, has a profound influence on the cavity growth rates. 

The cavities on two grain interfaces also exhibit 
equilibrium, crack-like and full-facet growth morphologies, 
but with different geometric characteristics [21] than the 
cavities at three-grain edges. However, the method of 
analysis essentially duplicates that described for cavities on 
three grain corners and hence, only the pertinent cavity growth 
expressions are presented. Of primary interest are the times 
required to coalesce adjacent cavities (spacing b) and 
thereby, to create a full-facet cavity. The principal 
difference between the full-facet cavity formation times for 
cavities on two and three grain Interfaces resides In the 
Interchange between the cavity spacing b and the grain facet 
length, I (the effective cavity spacing for three grain edge 
cavities). The geometric effects also result in important 
differences for equilibrium cavities at small dihedral angles 
( -ir/3). Otherwise the results generally deviate by less 
than an order of magnItude. For stress levels at which 
equilibrium cavity growth dominates, cpa/y < 1.9(1+b/a), 
the coalescence times (subject to the constraint derived from 
Eq. (10), with a = I) are given (for a >> c) by [10,21]; 
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Fig. 19. A transmission electron micrograph of strain 
contours in the vicinity of a grain boundary sliding 
impediment in A1203 (courtesy of J. Porter). 

(xBB82 3-1953) 
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t' 	(2ir/3) [1-(alb) 3 ] g() (b/9) 

t 
U
a 

b b 	0.07[1-(a lb) 2 ] 3  g(*) , 	 (49) 
kTb 

where, g() = cosec(l2)[(1+cos/2) 1 -(1/2)cosp/2]. 
Crack-like cavity growth has not yet been analyzed under 
constrained conditions. However, in the absence of 
constraint, at stress levels of most practical concern 
(Gb/Y 5sifl(*l4) > 10) the coalescence time due to 
crack-like growth is given by [21]; 

u 3/2 

	

taDbbQ 	
0.33 E l I2 sin3I2(/4) H(a/b) , 	(50a) 

kTy b 

where, 

H(a/b) = [1-a/b] 11-(a/b)(1+a/b) [19-16(a/b)-5(a/b 2 )1/161 

while at very low stress levels (ab/y 5sin/4 < 1), 
cavity coalescence in the crack-like mode occurs within a 
time [21]; 

t u aD 5 
p 	b b 	3.6 sin 3 (/4)H(a /b)(' . 	(Sob) 

	

kTib 	 ° 

Several remarks concerning the latter results are appro-
priate at this juncture. Similar expressions describe 
unconstrained crack-like cavity growth from three grain edges 
in fine grained materials (as derived from Eq. (44b) and (44c) 
respectively); but these expressions were not presented in the 
preceding discussion because, in that case, they do not appear 
to describe a behavioral realm of practical significance. The 
practical utility of Eq. (50) has yet to be adequately 
assessed. Nevertheless, the stress dependences provided by 
these growth processes are of interest. The non-linearity, 
which arises from a stress dependent cavity width (and extends 
into descriptions of constrained crack-like cavity growth, as 
evidenced by Eq. (46)) has been invoked [251 as a source of 
non-linear rupture behavior observed in the presence of 
(intrinsically linear) diffusive cavity growth mechanisms. 
However, some caution must be exercised, by recognizing the 
limited local stress conditions that must obtain when these 
modes of cavity growth operate. This issue will be more 
extensively addressed in a subsequent section. 
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(c) Finger-like growth 

Cavities propagating In the crack-like mode are capable 
of attaining velocity levels at which the cavity tip becomes 
unstable in the presence of small perturbations [26]. 
Subsequent cavity growth then proceeds at an accelerated rate 
by the growth of finger-like entities from the cavity front 
(Fig. 20). Analysis of this instability at the tip of a 
crack-like cavity provides information pertinent to the 
wavelength, A, of the fastest growth disturbance [261; 

A 	
27r (YSDb6b)1/3 -1/6 	

(51) kTA 

Presumably, therefore, a crack-like cavity is capable of 
developing instabilities when A c  is appreciably smaller than 
the total length, z, of the cavity front, e.g., when A c  < 
z/10. Hence, for cavities emanating from three grain corners, 
with a cavity front length z 	2., insertion of the highly 
constrained cavity velocity from Eq. (44) into Eq. (51) 
suggests that finger-like cavities develop when the grain 
facet length exceeds a critical value, 2.c'  given by; 

2.  
c a / s sin(/4) > 5.10. (52) 

Inserting some typical values for creep loading of ceramic 
materials (a,, 	108  Pa, is = 1 Jn7 2 ) indicates that 
finger-like growth under highly constrained conditions is 
unlikely in fine grained materials (2. < 5 	but probable in 
more coarse grained polycrystals. 

Less stringent limitations on finger formation obtain for 
unconstrained conditions, because the cavity velocity becomes 
unbounded as I + 1. For this case, the transition to finger-
like growth occurs when; 

2. a /1  sin(p/4) 5 5.102(1_1)3 
c 	S 	

. 	 ( 53) 

Hence, finger-like growth should be observed, under 
unconstrained conditions, even in very fine grained materials 
(2.. —1 )jm), when the cavity size I> 1/2. The observation of 
finger-like entities should thus provide an indication of 
locally unconstrained cavitation. 

2.3.2 Materials with a continuous amorphous phase 

The critical stress levels for hole formation within an 
amorphous phase at three and two grain channels (Eqs. (18) and 
(19)) provide the basis for interpreting and predicting high 
temperature failure in liquid phase sintered ceramics [15]. 
At stress levels below the stress needed to nucleate holes at 
three grain channels, no known failure mechanism exists and 
the.,material should deform continuously, without failure, by a. 
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solution/reprecipitation mechanism [27].  The lower critical 
stress thus constitutes a failure threshold. The practical 
utility of this threshold is dictated by the magnitude of the 
tensile stress concentrations that develop at three grain 
channels, in response to grain boundary sliding and grain 
rotation. Any tendency toward local dilation by a combination 
of sliding and rotation substantially enhances the tension 
within the amorphous pockets and inevitably nucleates holes 
[28]. However, the detailed analyses (of sliding, viscous 
flow and solutlon/reprecipitation that accompany deformation 
in these materials) needed to compute the magnitude and dura-
tion of the stress concentration have yet to be performed. 
The existence of a practical threshold will thus be regarded 
an ambiguous issue until further theoretical and experimental 
work has been conducted. Nevertheless, it is interesting to 
note that abrupt grain boundary sliding events introduce 
highly transient tensile stress concentrations (Fig. 11) that 
are relieved by viscous flow within the pocket and that the 
net hydrostatic stress within symmetric pockets (Fig. 21a) is 
zero [181.  Net  dilational stresses only occur in certain 
assymetric pockets (Fig. 21b).  The resultant stress duration 
is dictated by the rate of flow of amorphous material from the 
neighboring two grain channels. The morphology of the 
amorphous pockets and the thickness of the two grain channels 
thus exert an important influence on the failure threshold. 

At stress levels above that needed to nucleate holes 
within two grain channels (Fig. 10, Eq. (19)), facet-sized 
cavities can develop by the growth and coalescence of the 
oblate holes within the channel (Fig. 22a). The specific hole 
growth rate can be computed from standard expressions for the 
pressure distribution that develops within a parallel sided 
channel containing a floiing viscous fluid [29]; 

= l2itS/6 3 	 (54) 

where iS is the thickness of the fluid channel. When the fluid 
perfectly wets the solid (as required for liquid phase 
sintering) and contains an array of holes with spacing 2b and 
radius a, the boundary conditions needed to solve Eq. (54) can 
be specified as follows: symmetry at the mid position between 
holes requires that da/dr = 0 at r = b (r is the distance from 
the center of the hole) and chemical potential continuity at 
the hole surface demands that a = y(l/a + 2/6) at r = a. 
Then, imposing volume conservation; 

V 	= 6(2ñ 2 b - na 2) , 	 (55) 

where VX  is the fluid volume in the region between 
prospective cavities, the solution to Eq. (54) can be 
expressed in terms of the hole growth rate as [15,29]; 
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(_s 	(l_O.9a2) [a-y(1/ctb+2/S)(l-0.9a2)] 

a = \5b2n J a (1.1-a 2 ) [O.96a2 -na-0.72-0.23a4 ] 
(56) 

- 	 where a = a/b (a o  is the initial value at hole nucleation) 
and 6 0  is the initial channel thickness. The local stress 

- 	 can be deduced by firstly differentiating Eq. (55), 

	

2ltVta& - 	4/3na& 

	

= _____________ - 	 (57) 
2 	- 

(2v'-itcz )
2 2 

b 	(2/-wa 2 ) 2  

and combining with Eq. (7) to obtain (for a boundary normal to 
the applied stress); 

2 
= 1 - 16riT 6 a&/9.Z(2/-lTa 2 ) 	. 	(58) 

£ 	 o 

Inserting the local stress into Eq. (56) and integrating 
between a0  and 1 gives the fully-constrained time; 

= (8I/9rr) ( R) Tc  (a /b,o5 Li ) 	, 	( 59a) 
p 	 0 	1 	o 	0 S 

where, for the impo -rtant case 	< a0 , 

T 	={4.6y/d-11' (i.i2)_ 10 + [(2.3c/2i11 

[(22-5/i) (1. 1-a2) 1 
I 

L 1.2+a 2 -0.Sci 	/y 	J 0 	 O S 

which reduces for a6 0 /y 5  >> 1 to 

= 10 - [1.1 - a 2 1 
or 

(8or3) (0) {i
- 0.1 [1.1_( a0 /b) 2 } 

Note that the hole spacing b has a relatively minor 
influence on tc (at least when a 0  << b) and that 
tcL increases as So  increases. (However, t,C 
may not increase as 6 0 increases because 	may exhibit 
an inverse dependence on 6 0 , e.g., for diffusion limited 
solution/reprecipitation creep [271). The equivalent result 
for unconstrained hole growth is [15]; 
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t a i 	T (b/'$ ,a/b) 	, 	 (59b) 
p 	.1 	0 

where T1U is the function plotted in Fig. (23). 

At stress levels below that required to nucleate holes on 
two grain interfaces, but above that needed to nucleate holes 
within amorphous pockets, the first event to initiate during 
creep rupture is the viscous expansion of the hole within the 
pocket. This leads to the essential depletion of the pocket 
(Fig. 22b) by viscous flow of the amorphous phase into the 
surrounding two grain channels (resulting in an increased film 
thickness along the two grain interfaces). The process is 
controlled either by the stress at the hole surface or by the 
flow rate into the channel. Specific results can be obtained 
by considering a triangular channel(h1) and rigid displace-
ments of the grain in the direction of the applied stress. 
Viscous flow along the boundary channel is characterized by 
the two-dimensional equivalent of Eq. (54); 

d2a(x) - -12cS 

dx 2 
	- 	3 
	 (60) 

Symmetry requires that da/dx = 0 at the grain facet center 
(x=L/2); while the stress at the mouth of the channel (x=d) is 
governed by the stress at the surface of the hole, 

a(a) 	By/r 
	

(61) 

where r is the radius of curvature of the hole and p ranges 
between 2 (when the hole is spherical) and 1 (when the hole 
becomes cylindrical); this stress prevails at the channel mouth 
provided that viscous flow within the pocket occurs at a 
sufficiently rapid rate that the stresses in the region 
between the hole and the channel opening are equilibrated. 
Integration of Eq. (60) subject to these boundary conditions 
gives the stress distribution within the channel as; 

21 L 
a(x) - 	[(d2 -x2 ) + (x-d)} +- . 	(62) 

- 	3 	 r 

and the separation rate becomes, 

3 r i 
1 0-8i( 1-2 i)/rJ 

= 9 	 (63) 
nk 2[16c+9f24f31 

()me channel slope in the presence of complete wetting 
between the solid and liquid phases must be dictated by 
anisotropy of the solid/liquid interface energy. 
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where f = d/L. The surface tension term, is of 
significant magnitude (relative to the local stress) during 
the two extremes of the depletion process: both immediately 
after nucleation of the hole and as complete hole depletion is 
approached. In the presence of stress concentrations (section 
2.2) the initial expansion of the cavity occurs rapidly. 
Hence, it is surmised that the surface tension term does not 
significantly affect the depletion rate until depletion of the 
channel is nearly complete (when the surface tension stress 
increases continuously as the second phase is drawn into the 
mouth of the two grain interface, Fig. 22b). This process 
exhibits a relaxation time [15], Td 	2flt(tan4 -4>)/ai. 
Hence, when t << 	and the retardation effects that occur 
in the final stage can be neglected, the time td for 
'depletion' of the pocket can be expressed directly in terms 
of the displacements, from Eq. (7) and (63), as (y/r 	0) 

[151; 

C. 
t c 	= (4/9) d 

U 	, 
td,Ifl 

= 	2 [1-65 + 952 - 4531 11/62 - 1/6] 	, 	(64) 

where 6d is the thickness of the two grain channel at 
depletion; 

6d 05 	0 
6 + d 2  tan4>/9(1-f) 

and 4> is the angle contained by the triangular pocket (Fig. 
22b). The 'depletion' time, td, is the time that expires 
while sufficient material is removed from the pocket that the 
increase in curvature of the liquid surfaces causes the sur-
face tension stress to increase to a significant fraction of 
the local stress. It should thus be recognized that a small 
quantity of residual liquid may remain within the pocket, for 
a period t >>td 	Td. In fact, the presence of residual 
liquid, as influenced by the level of the local stress, has a 
direct association with the next step in the failure sequence: 
which may occur either by viscous hole extension into the two 
grain channel or by solution/reprecipitation. 

When the local stress after hole depletion exceeds 
the liquid nieniscus can be drawn into the channel 

mouth (Fig. 22b), by allowing a positive pressure gradient to 
- - 

	

	 be retained within the liquid. Under theseconditions, the 
thickness of the liquid film increases, as the meniscus enters 

• 	 the channel, causing both the stress at the meniscus to 
decrease and allowing nucleation of holes within the two grain 
channel (Eq. (19)). A combination of finger-like hole growth 
from the channel mouth (see Eq. (75)) and expansion of oblate 
holes (Eq. (59)) then permits full-facet cavitation to proceed 
at a rate presumably in excess of that attained by solution/ 
reprecipitation. 
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Fig. 23. A plot of the unconstrained hole coalescence time as 
a function of the initial film thickness for several 
choices of the hole nucleation size. 

Fig. 24. A transmission electron micrograph of a thin 
amorphous film over a cavity surface observed in 
Si3N4. 	 (xBB823-1954) 
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However, when the local stress is not--high -enough to 
induce full-facet cavitation by visous flow mechanisms, the 
depleted holes extend (more slowly), by a solution/ 
reprecipitation process. Solution/reprecipitation is 
motivated by a stress difference between the liquid film 
at the cavity surface(hui. and the liquid within the 
channel, and entails the transport of the solid phase, through 
the liquid, from the cavity surface onto the grain surfaces 
within the channel. Hence, further redistribution of the 
liquid phase is not necessarily involved. The process can be 
either diffusion controlled or interface controlled; both 
possibilities will be examined. Before proceeding, it is 
noted that solution/reprecipitation can occur concurrently 
with pocket depletion (by viscous flow) and hence, that a 
rigorous analysis would examine this concurrence. But, for 
simplicity, solution/reprecipitation is considered to initiate 
when hole depletion is essentially complete because, for most 
practical systems, the solution/reprecipitation process is the 
most time-consuming constituent in full-facet cavitation (as 
substantiated in the subsequent analysis). 

Diffusion controlled solution/reprecipitation requires 
that a chemical potential gradient exists along the channel to 
motivate migration of the solid phase. This can only be 
achieved in the presence of a pressure gradient within the 
liquid. A suitable pressure gradient exists if the liquid 
phase continues, to flow within the channel, throughout the 
process; suggesting that viscous flow is a necessary 
accompaniment to solution/reprecipitation. However, it is 
also noted that the viscous flow prerequisite may be obyiate 
in the presence of grain boundary ledges that substantially 
impede viscous flow through the channel. In the absence of an 
appreciable spatial density of ledge-like impediments, the 
stress distribution within the channel (Eq. (62)) dictates the 
mass transport rate along the channel. The specific rate of 
diffusion is given by the differential equation 

kTh 
(65) 

dx2 	- 	DLC 6  

(iii)The complete wetting requirement for liquid phase 
sintering suggests that a liquid film is likely to exist 
over the cavity surfaces, as generally observed (Fig. 
24). However, it is emphasized that the complete wetting 

• 	 between solid and liquid required for sintering only 
specifies a zero dihedral angle. pertinent to the liquid 
along a grain boundary within the solid and does not 
relate to solid, liquid, vapor equilibrium. 
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where i is the rate of separation of the grain centers -induced 
by matter deposition on the grain surfaces, Dt  is the 
diffusivity of the solid phase in the liquid and C is the 
solubility of the solid in the liquid. Integration of Eq. 
(65), subject to the same boundary conditions pertinent to 
viscous flow in the channel, gives; 

• 
c(x) 	

kTh 	
[(d 2-x 2) + (x-d)} + - . 	(66) = 20D , C6 	 r 

Comparison of Eqs. (62) and (66) indicates that; 

Li 

 

12f2 DLCtrl 

kT6 

This result illustrates that cavity growth by diffusion 
controlled solution/reprecipitation is likely to proceed most 
rapidly when the liquid film thickness is small, contrary to 
intuitive expectations (a tendency that will not, of course, 
apply when appreciable ledge-like impediments exist along the 
grain interfaces). Additionally, solution/reprecipitation 
cavity growth is encouraged by a high diffusivity (as 
expected) and a high liquid viscosity. Combining Eqs. (7), 
(63), and (67) and recognizing that the local stress (Eq. (7)) 
is dictated by the sum, S + , the differential equation 
describing the grain separation rate due to matter deposition 
can be derived as, 

(t) 
5z 2kT11_61 t +952 t _45 3 t 1 + 	+ kT 2 (t) 

12c2DC6(t) 	 9 	L 	120DC 

= 	- y(1-2f)/r 
	

(68) 

Cavity growth is controlled in this instance by the rate of 
transport of the solid phase through the liquid that exists 
within the two grain channel and along the cavity surface. 
Specifically, domination of the cavity growth rate by 
diffusion through the liquid over the cavity surface, 
vis-a-vis diffusion along the channel, is presumed to be 
dictated by the relative film thickness, tSs/5b, at the two 
locations (the role of 6s/6b being analagous to that of 
the diffusivity ratio Ds 6 s/Dbb  in the previously 
discussed cavity growth problem for single phase systems). 
However, for the present problem, the requirements on the 
contained angle, 4, are not readily specified and an exact 
solution for the cavity growth rate awaits further considera-
tion of this issue. Several simplifying assumptions (concern-
ing the trends in 	with cavity expansion) can, of course, be 
made in order to obtain preliminary solutions. In this 
context, it is tempting to propose that diffusion through the 
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fluid film over the cavity surface is rapid enougth to main-
tain a constant contained angle, 4,, during cavity growth. 
However, this assumption yields an inadmissible solution for 
unconstrained cavity growth; as well as being at variance with 
available observations (Fig. 25), which suggest that 4) 
decreases as the cavity expands. Instead, the observations 
are used to suggest the assumption that the cavity only 
extends along the boundary normal to the applied stress and 
does not progress along the inclined boundaries. Then, volume 
conservation of the solid phase (the liquid phase volume is 
necessarily constant) permits E. to be expressed as; 

= if 	. 	 (69) 
0 

A solution for t can, in principle, be obtained by combin-
ing Eqs. (63), (8) and (69). However, the solutions are 
unwieldy. Hence the only results presented herein pertain to 
the case, t >> 6 (as dictated by Eq. (67)) and for a >> 

the implied loss of driving force (that accompanies an 
Increase in 6) and neglect of the stress at the channel mouth 
results in lower bound cavitation times; 

c. 	>(2/9) (d /2..) [1-2d hi (71) 
p 	 0 	 0 - 

2. 
to I 

kT2.

£2.  

\ 	3 	
) > (1/192) (dli) 

{1-16(d/0+48(d/&) 2-48(d/i) 3+16(d/0 4 } 

The constrained time tc  (being Insensitive to the 
atom transport rate) can be expected to exceed the lower bound 
by up to -2, (as obtained when 6 	); while the unconstrained 
time could be substantially in excess of the lower bound. 

Cavity growth by solution/reprecipitation could be 
interface limited [2 7 ]. Then, the stress within the liquid 
layer at the grain interface can equilibrate at the level of 
the locally applied stress; except near the cavity tip where 
the stress must decrease to 'O as the cavity surface is 
approached. Assuming that the stress gradient with the liquid 
can be supported by fluid flow into the channel mouth and over 
the cavity surface, the matter deposition rate along the grain 
interface is simply; 

AV 	 a
mt 	2. 

2k 
 1 £(z-d)IkT 

, 	 (72) 
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where k1 is the rate of .ondensation of atoms trom the 
liquid film onto the grain surface: a parameter that can be 
determined from crystallization or creep studies [27]. Then, 
subject to volume conservation (Eq. (69)), the cavitation time 
for equilibrium shaped cavities, when A >> 5, becomes, 

c. 
t c 	= (2/9) (d IL) [1-2d IL] 

p 	 0 	 0 

t "  a k c2/kT = z[1- (d IL)] . 	 ( 73) 
p1 	 0 

Note that the constrained result is necessarily the same as 
that for the diffusion controlled process. 

Comparison of the cavitation times for each of the 
prospective processes suggests that, under fully-constrained 
conditions (when only the cavity morphology and matter 
conservation requirements are important) the cavitation times 
are similar for all processes; with distinctions between 
mechanisms depending on specific hole spacings, pocket shapes 
and sizes, film thicknesses etc. Some typical choices for 
liquid phase sintered S13N4 (Table I), indicate that the 

Table I 

Constrained Processes for Si34 

20A , i. 	1 urn, d0  - 0.1 Urn 

Process 

Oblate Hole 
Coalescence 

_.10 2  

Pocket Depletion x iO 

Solution/Reprecipitation -2 x 10 2  

fastest constrained process for this material is pocket deple-
tion, while solution/reprecipitation is the slowest. This is 
consistent with the frequent observation of both hole 
depletion (Fig. 24) and of cavity expansion by solution/ 
reprecipitation (Fig. 25), and the infrequent detection of 
holes along two grain interfaces (Fig. 9). When the 
constraint relaxes, during subsequent cavity growth, 
appreciably different cavitation rates can be attributed to 
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Fig. 25. A transmission electron micrograph of a cavity in 
SI3N4 extended by solution/reprecipitation. 

(xBB823-1955) 

000 

THE SLIONG AND CRACKtNG PROCESS 

t e 

- h/) 

ELASTIC OPEMNG (hh) 

THE MECHANICAL MODEL 

XBL822-52 71 

Fig. 26. A schematic of the grain boundary sliding and brittle 
cracking process, (a) the stress field, (b) the 
mechanical model. 
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the various growth mechanisms, depending primarily on the 
viscosity of the amorphous phase and the diffusivity of the 
solid in the liquid. 

Finger-like hole growth 
amorphous layer at high hole 
wavelength for this process 

= 
C 

can also initiate within the 
growth rates. The critical 
is given by; 

/ 2\1/2 
.g: 	 (74) 

\31,a / 

For unconstrained growth of a hole, by viscous flow, from a 
three grain corner, finger-like growth will occur when; 

0 	

$ 	
2/4 	 75) 

2.3.3 The role of grain boundary sliding 

Brittle cracking or cavity growth along grain boundaries, 
motivated by the sliding of neighboring grain boundaries, may 
occur during creep (Fig. 26a). However, this process is 
confined to the limited set of situations for which appre-
ciable mass transport by diffusion or viscous flow is pro-
hibited [30]; because grain boundary and surface diffusion 
modify both the surface profile [20] and the stress state 
ahead of the crack and thereby •create a diffusive cavity that 
propagates in acord with the mechanisms described in the 
preceding sections (with grain boundary sliding as an inci-
dental, rather than a motivating, process, c.f. diffusive 
creep [12]).  When significant diffusion or viscous flow is 
not admitted, and the only permissable viscous motion occurs 
by grain boundary sliding, brittle cracks are tenable. The 
occurrence of this condition must be limited (since grain 
boundary sliding itself usually involves diffusive processes 
[12], because of the presence of ledges and of nonpianarity). 
Nevertheless, important situations can be conceived wherein 
the proposed process might be encountered. For example, 
ceramics prepared by liquid phase sintering (e.g., S13N4) 
often have planar boundaries, and contain a second phase at 
the boundaries that is too narrow (a few lattice spacings, 
Fig. 8) to admit significant viscous modifications of the 
crack tiU'),  but wide enough to facilitate boundary 
sliding. 

If diffusion or viscous flow are excluded, grain boundary 
sliding will result in elastic stress concentrations at grain 
triple points. The stress concentration (in the absence of 
dislocation plasticity) has the square root singularity 

(iv)The brittle cracking in this instance refers to fracture 
of the thin amorphous phase in a manner analagous to the 
fracture of liquids. 
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dislocation plasticity) has the square root -singularity 
typical of shear cracks [30].  A crack will develop from the 
triple point either if the singularity attains the critical 
level required for grain boundary (or second phase) fracture, 

or if a defect of sufficient size pre-exists at the 
grain boundary. The onset of cracking will thus depend on the 
local conditions at individual triple points. 

The presence of the crack will relax the elastic stress 
concentration at the triple point and permit the adjacent 
boundaries to slide; thereby producing an opening displacement 
at one end of the crack. As the sliding progresses, the 
stress intensity factor at the micro-crack tip (Fig. 26a) 
increases, causing additional crack extension and further 
sliding. Also, the stress concentration at the neighboring 
triple points becomes enhanced, leading to an increased 
probability of microcrack initiation at these locations. Once 
the crack reaches the opposing triple point, the singularity 
at its tip will begin to relax, by sliding of the intersecting 
boundaries, and further crack extension will be suppressed. 
The ultimate formation of open facet-sized cracks is thus to 
be anticipated. Failure will presumably occur when sufficient 
contiguous boundaries have developed cracks (forming a 
macrocrack of critical size) [31]. The interaction of 
propagating cracks with performed cracks is thus undoubtedly 
involved in the failure process. 

The extension of a wedge crack the emanates at a triple 
point can be analyzed using a cracked dislocation solution, 
[30,321 	 _______ 

K 	o/n(a/2) + hE/f2(1-v2 ) , 	(76) 

where 2h is the wedge opening, a is the crack length, K is the 
stress intensity factor, E is Young's modulus and a n  is the 
component of the applied stress normal to the crack. The 
first term is due to the normal opening of the crack and the 
second derives from the wedge opening produced by sliding. 

A crack will propagate whenever the stress intensity 
factor K exceeds the critical value 	The motion of 
a crack on a susceptible boundary can thus be directly 
obtained from Eq. (76) once the time dependence of the opening 
h has been established. The resultant crack propagation 
exhibits the general characteristics depicted in Fig. (27). 
The initial growth is constrained by the grain boundary slid-
ing rate. However, when the crack reaches a critical length 
a*, at which it can continue to propagate at a fixed wedge 
opening h*  (due to the action of the normal stress, an), the 
constraint imposed by the boundary sliding rate becomes 
relaxed and the crack will extend catastrophically up to the 
stable length X. The propagation time t is determined by 
the time taken for the crack to attain the critical length 
a*. Hence, t can be ascertained if both a*  and the driving 
force for sliding in the range 0 < a < a* can be deduced. 



The critical length a*  is given by the coupled 
requirement that K increases with crack length at a fixed 
wedge opening h, i.e., the' crack is driven by the normal 
stress, and that K at this condition, K*,  is equal to 
Kg 1b. The first condition is established by determining 
when K, for a fixed h, is a minimum; because, upon exceeding 
the minimum, K will increase monotonically with crack length 
and the crack will become unstable. Hence, differentiating 
Eq. (76) with respect to a at fixed h and setting to zero, 
gives 

* 	* 	2 
a 	= h E/a n 

 ir(1-v ) . 	 (77) 

Substituting h*  from Eq. (77) into Eq. (76), and requiring 
that the resultant K = K8 b , then gives; 

/ g.b\2 
* 	lIc 	1 

a 	=- 	I 	. 	 (78) 2ff' 
\ n 

The rate of wedge opening h is determined by a 
conventional spring, dashpot approach; wherein the opening is 
motivated by the elasticity of the material and resisted by 
the viscosity nb of the sliding boundary (Fig. 26b). The 
wedge opening permitted by the elasticity of the material is 
governed exclusively by grain boundary sliding and therefore 

	

relates to the resolved shear stress 	The normal stress 
is not involved.because it generates an opening at the crack 
center but not at the wedge. The problem is most conveniently 
posed using the illustration shown in Fig. 26b. The wedge 
crack releases the constraint of the surrounding grains on the 
triple point and the grain on one side of the sliding boundary 
exerts an elastic force on the triple point. As the crack 
extends and the wedge opening increases the force decreases, 
and must reduce to zero at elastic equilibrium, i.e., at the 
stable value of the elastic wedge opening, h (Fig. 26b). 
The reduction in force occurs in accord with the linear 
elastic properties of the grain, such that the average 
effective shear stress TD  acting on the boundary at any 
instant is 

T B = t (1 - h/h ) . 	 (79) 

But, the average sliding rate <ii> can be related to the 
average effective stress TB by: 

= r/n 	(t/)(1 — h/h) . 	(80) Bb b 	sb b 	 w 

Hence, noting that; 

= 	h cosec4 , 	 (81) 
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Fig. 27. The growth characteristic of a brittle crack 
restricted by the sliding rate of the neighboring 
grain boundary. 
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Fig. 28. A plot of the normalized stress intensity factor 
pertinent to grain boundary sliding and brittle 
cracking. 
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the wedge opening becomes; 

4sin4r 
sb h = 	 [1 - h/h wI . 	 ( 82) 

The equilibrium elastic opening h  (at which the 
elastic driving force is zero) is dictated exclusively by the 
grain boundary sliding and represents the opening at which 
sliding would cease. The equilibrium opening will depend on 
both the instantaneous crack length and the in-plane shear 
stress [301; 

'/T—Tr 	1KT(a/,$) - 
I 	sin2] , 	(83,) h 	

E 	L ,T7j 

where K T  is plotted in Fig. 28. The instantaneous wedge 
opening h prior to catastrophic extension is determined by 
applying the crack extension requirement (K = Kg*b) to 
Eq. (76), giving 

h =
*'Ti-t(1_v2)a [(K8.b,r) - ( 	a )J . 	( 84) E 	c 	 n 

Differentiation then yields the opening rate h, as 

	

=(1-v2)â [(Kb,/) - a )J . 	( 85) E 	c 	 n 

Substituting the above results for h, hw. and h into Eq. (82) 
and rearranging gives 

- 
a(1-v 

	

2, b 	4sinqw'a 
= 	2 

b/ 	it 

[v'-2v' 	+ ( it Ia )(KV'2/T-c sin2cf)} 
S fl 	

. 	( 86) 
(K12Zfw-I sin24)(/*_v') 

The significant features of Eq. (86) to note are: (a) there 
is a threshold for crack development (obtained by setting the 
numerator to zero) given by the condition 

Kr/fl
> 	g.b 51 a0 	C 

(b) the velocity becomes unbounded as a + a*, (c) the velocity 
above the threshold condition is zero at a0. The general 
trends are complex. However, some conditions wherein simpli-
fied crack velocity relations pertain can be explored by 
re-expressing Eq. (86) in terms of a threshold stress, through 
the term 

* 
a 	£(r Ia )22/2 	= (/2)(K8b/ 	2 

	

th 	s n 	 c 	nth 	
(87) 
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to obtain: 

•( 	
2 )  /b\ 

- 	Eb) 

*  
= 4 	 1/2 

s1n4(a/a ) 
2 

it 

[(a/a*)h/2(1_8 sin2)+2(ath/a)1/2_2} 

	

* 	* 1/2 	* 1/2 	 * 1/2 	31  
{ 2 (ah/a ) 	—(a/a ) 	sin24}[l—(a/a ) 	] 

 

where B = T 5/0. For stresses considerably in excess of 
the threshold, such that a* << ath and for a values typical 
of crack-susceptible boundaries (B - 1), Eq. (88) reduces to: 

	

(1_v2)(nb/E6b) 	4 sinB(a/a* 1/2 ) 	/ Tr 2[1_(a/a*)1/2] 

 

Note that the facet length £ does not enter this limit 
solution. 

The time of propagation t of a crack across the 
boundary facet can be obtained by direct integration of the 
velocity relation. For the limit solution, Eq. (89), the 
following simple result obtains: 

	

ir(1 2 
	

/ b \ ) 	 C  

= 	8 sin 	a T 	Eb) • 
	 (90) 

ss 

This result provides useful insights into the relative roles 
of the important microstructural variables, i, cS,, 

$, and of the relative stress conditions an, 

	

r. For a uniaxial tension 	inclined at an angle 	to 
the sliding boundary, 

t
S 
 = ac. sincosi, 

a 	= asin2(+4) 
n 

Equation (90) becomes; 

LK •b  
____ 	bj[sin sin cos 	 )} 

= 	
2 	E 	

sin2( 
,T(1v) 	) 

(91) 
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The non-linear stress dependence is significant: a result 
that essentially derives from the condition that the crack 
length at critically a* is proportional to the inverse square 
of the normal stress. Differentiation of Eq. (91) with 
respect to 4) and i suggests that the most fracture susceptible 
boundaries (those with minimum t) pertain for the condition 
ip = 350 , 	= 550, yielding 

\2 
I c (t) 	 I - pmin 	
\a/-/ 	

E  

An extension of this analysis to incorporate limited 
diffusion or viscous flow can be contemplated. In the 
presence of limited atom transport rates along the cavitating 
boundary, the neighboring grains can deform in a predominantly 
elastic manner and a behavior analagous to brittle cracking 
results. This mode of cavitation is tenable whenever the atom 
transport rate is small enough to prohibit the rigid 
separation of grains bordering the cavitating interface. 
Consideration of relaxati9n times for grain boundary diffusion 
over the cavitating facet', in the presence of elastic 
deformation, reveals that elastic cavity growth prevails 
when2 ' 

(<a>IG) >> a/(Z-a) 

where <a> is the average stress between the cavity tip and the 
adjacent three grain corner. Such behavior only occurs, 
therefore, at high stress levels (e.g., in the vicinity of a 
macrocrack tip). When these conditions are satisfied, solu-
tions for the propagation time can be deduced for specific 
cavity growth mechanisms. This is achieved by invoking a 
relation between a and K characteristic of the operative 
mechanism (for example, Eq. (112), pertinent to elastically 
driven cavity growth by grain boundary diffusion) and insert-
ing into an expression for K deduced from Eqs. (76), (82), and 
(85); 

____ 	[1-ex 
K = a /ira/2 + Eh 
	P(_t/Tb)] 

 

where r = lTnbhW/ 4  sin4)Ts5b. Integration of the 
resultant differential equations yields t. However, 
specific solutions remain to be determinea. 

(v)A diffusion process confined to the cavitating facet is 
probably appropriate in the presence of grain boundary 
sliding. 
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A simplified procedure for estimating t,..suggested by 
Tsai and Raj [28], is based on a constant cavity velocity 
assumption and a cavity growth rate 	1(2. Applied to 
viscous hole growth motivated by grain boundary sliding, this 
procedure yields; 

t 
p 

Ps 10 4 (Z1)3 (E/a) 2  . 	 (94) 

2.4 Cavity Coalescence 

The ultimate failure of polycrystalline ceramics occurs 
when facet-sized cavities coalesce to form an identifiable 
crack, which then extends to a critical dimension. Cavity 
coalescence is thus an important phase in the high temperature 
failure process. The coalescence process is sensitively 
dependent upon the existence of constraint. Two extremes are 
amenable to analysis and provide a useful basis for the 
interpretation of experimental results. When the cavities are 
very narrow, as pertinent either to crack-like cavities or to 
cavities formed by hole growth (within a thin viscous grain 
boundary phase) at high local stress levels, the small cavity 
volume may be elastically accomodated, by the sliding of the 
contiguous boundaries [31]. Then, the cavities may be 
regarded as independent statistical entities subject to a 
stress at the level of the applied stress (Fig. 29). 
Similarly, when many cavities develop simultaneously along 
planar zones within the microstructure (as apparently occurs 
in certain ceramics), the matrix constraint is small (large d 
in Eq. (10)) and cavity growth independence can again be 
regarded as an approximately valid basis for analysis. The 
independent formation of facet-sized cavities, and their 
coalescence to form a crack, can be treated using standard 
probabilistic procedures to obtain expressions relating the 
crack nucleation time to stress and microstructure. The 
resultant failure time expressions are necessarily 
specimen-size dependent. 

When inhomogeneous cavitation occurs within small 
microstructural regions (of the order of several grain 
dimensions) at low stress levels, such that the cavity widths 
are large enough to exclude elastic volume accomodation, 
constraint exerts an important influence on the cavity 
coalescence mechanism [5].  In this instance, the tensile 
stress concentrations that develop outside the initial 
cavitation.zone inducea zone spreading process along planes 
normal to the applied stress (Fig. 30). Analysis of the zone 
spreading conditions provides the basis for predicting 
specimen-size independent crack nucleation times. 
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2.4.1 Probabilistic cavity coalescence 

The development of a probabilistic model for the failure 
time requires that a critical size, ac, be defined at which 
a coalesced array of cavities constitutes a macrocrack. This 
is, in general, a rather nebulous concept, because the criti-
cal size depends on the microstructure, and on the size of the 
crack tip 'process zone' (i.e., the enhanced cavitation zone 
created by the crack). The zone size depends, in turn, on the 
level of the applied stress or, more likely, on the stress 
intensity factor K. The simplest approach capable of yielding 
useful results is to assume that a macrocrack has developed 
when K attains a specified level; namely, when K reaches a 
certain fraction Kf of the critical stress Intensity factor 
Kc• The critical size for a penny-shaped crack can then be 
written as; 

ac = 7rK 
2 
Aa. 	 ( 95) 

The formation of a macrocrack of size ac will be determined 
by the distribution of times, t, for the development of 
facet-length cavities (section .3). This time is statisti-
cally distributed, because of the variability of grain 
boundaries with regard to second phase content and composi-
tion, boundary energy, diffusivity, etc. It is required for 
present purposes that a distribution function be assigned to 
this propagation time; namely, a function that can be expected 
to accurately describe the grain boundary variability typical 
of ceramics. This decision is facilitated by noting that only 
a small fraction of the boundaries usually cavitate prior to 
failure: these being the boundaries with the greatest cavita-
tion susceptibility. When such conditions pertain, a distri-
bution that characterizes the large extreme of cavitation 
susceptibilities should apply. There are only three extreme 
value distributions [31] and therefore the choice of functions 
can be considerably restricted by applying the extreme value 
condition. Initially, a distribution based on the second type 
of extreme value function is selected, because this distribu-
tion has previously been found to describe extreme value 
characteristics of ceramic mIcrostructures [31].  An addi-
tional rationale for the chosen distribution is provided 
later. The assumed cumulative probability, p(t) of observ-
ing facet sized cavities at time t is, 

= 1 _[exp - (t/t)m] , 	 (96) 

and for t < to , 

p(t) = (,)m 
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where m is the shape parameter and to  IS the scale para-
meter. The scale parameter t o  will depend on the specific 
mechanism of cavity growth, and will be a function of the 
stress level, viscosity, (diffusivity), boundary energy, etc. 
All cavity growth mechanisms yield times that are stress 
dependent and proportional to an Arrhenius factor (through a 
diffusivity or viscosity). Hence the scale parameter can be 
expressed by the general relation; 

-n 
t

0 	
?a 	exp(Q/kT) (97) 

where Q is the activation energy for the cavity growth 

	

process, n is the stress exponent (1 < n < 3) and 	is the 
parameter that contains the remaining cavity growth variables. 

Analysis of the macrocrack formation process can now 
proceed by assuming that t is not appreciably influenced by 
the prior existence of cavities on adjacent facets. Then, the 
probability P of forming contiguous facet-sized cavities of 
sufficient extent to produce a macrocrack of length a 
(Fig. 30) can be obtained from McClintock's result [33], 

7/znp \ 

= 	2 	 exp[a/.Q) 2 np1 	, 	(98) 
\ (0.5np-1)/ 

where p is the probability that a given facet has cavitated at 
time t and AT is the total grain boundary area subject to 
the stress 0,0 . For small p (the case of present interest) 
combining Eqs. (96) and (98) gives the probability P(t1) of 
macrocrack formation at time t i  as; 

= (i P(t 	 ) 	 (99) 

m [0.5+ TI/4 a 2 J 

.) 	

2 
( t.  

1 

 It ) 1 	 0 

At a specific probability level, e.g., the median level 
(P = 0.5), the macrocrack incubation time becomes; 

£(Z 2/4A) 

	

n(t1/t0) = 
m(0.5+itK/4a2R) 	

. 	 (100) 

For most conditions of interest in ceramics K C 2  >> 
whereupon Eq. (100) reduces to; 

f42 \ 

	

= £nt_(\ 	2) £n(4AT Xnt
w 	

/i2) 	. 	 (101) 
mK5 
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Invoking the general requirement that t o  -be proportional tc 
an Arrhenius and a stress term (Eq. (97)), Eq. (101) can be 
written as; 

£n[t i 
 exp (—Q/kT)] = Ln-nina-a2(42./1rm K)in(4AT/i2) 

(102a 

or 

mO 	B - nine - Ca 2  , 	 (102b) r co 

where Or is the Orr-Sherby-Dorn rupture parameter, C is a 
parameter that depends on the grain size and toughness and on 
the sample size (through AT/i 2 ), and B and n are constants 
that depend on the details of the cavity propagation process. 

The appearance of Orr-Shelby-Dorn behavior is satisfying 
because it implies that all of the temperature effects, 
correlated by other investigators through this parameter, will 
also apply to the present model. The general shape of the 
failure time, stress curve predicted by Eq. (102b) is plotted 
in Fig. 31a. The general utility of the predicted failure 
time relation can be explored by plotting the logarithm of the 
rupture parameter O r  as a function of a, and treating 
A, n and C as adjustable parameters (with n being confined to 
the range, 1 < n < 3). The results of Walles [34] on 
A120 3  and SiC fibers (the only comprehensive data present- 
ly available) taken from the correlation developed by Charles 
[35] are plotted in Fig. 31b,c. The correlation is very 
good. Such a correlation does not, of course, substantiate 
the validity of the model, because alternate models can pro-
vide correlations of nearly equal quality. It does, however, 
permit the model to be regarded as a serious candidate. 
Further experimental comparisons are presented in a subsequent 
section. 

2.4.2 Zone spreading 

The incidence of zone spreading is contingent upon the 
presence of appreciable constraint and the resultant develop-
ment of enhanced tensions around the periphery of the initial 
cavitation zone. If cavitation firstly occurs along several 
contiguous boundaries, for which one of the parameters that 
dominate the cavitation rate (, D5 ) deviates from the 
average value, the local stress outside the cavitation zone, 
on the contiguous boundaries, then exceeds the applied stress 
(Fig. 30). The cavitation rates in this peripheral zone are 
presumably non-uniform and hence a complete solution of 
peripheral cavity growth constitutes a formidable problem. 
Nevertheless, the essence of the process can be established by 
adopting a simplified, intermittent spreading procedure. 
Cavity growth in each peripheral zone is assumed to occur 
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uniformly (i.e., two uniformly approaching-cavities on-each 
peripheral boundary, Fig. 30) at a stress equal to the average 
stress over that boundary (Eq. (lib)), while cavitation on the 
original boundary continues at the initially deduced local 
stress. Then, at a time when the cavity lengths in the 
cavitation zone and in the peripheral zone become equal, the 
cavitation zone is considered to advance to the boundary of 
the first peripheral zone. The process is continued by 
considering the growth in the next peripheral zone, with a new 
value of the local stress assigned to the cavitation zone 
(based on the increase in the zone size, d). Proceeding in 
this way the time ti  needed to form a discrete macrocrack 
can be deduced [5]. 

The zone spreading problem is illustrated for the case of 
a single phase polycrystal, for which preferred cavitation is 
based on local deviations in 	or D5  (Fig. 32). The zone 
spreading process can be conveniently separated into three 
regimes. Firstly, large local deviations in the dihedral 
angle and in the diffusivity appear to be relatively 
innocuous, because cavity extension along the grain facet can 
proceed without the generation of appreciable stress in the 
peripheral zone. Hence, the cavity extends fully along the 
grain facet before inducing significant cavitation on the 
contiguous boundary (Fig. 32a). This cavitation behavior is 
likely to pertain in isolated regions during the early stages 
of failure, and explains the observation of, premature 
full-facet sized cavities [4]. 

Secondly, when cavity propagation occurs in regions 
containing several contiguous boundaries with significant 
(but not large) deviations in dihedral angle, the trends in 
constraint (Fig. 32b) suggest continuous zone spreading. The 
failure time is then dictated by the spreading process and 
occurs relatively rapidly. Such regions consequently exert 
the primary influence on high temperature failure. In this 
circumstance, a large proportion of the failure time is 
consumed while cavitation is confined to a small numberof 
contiguous grain facets. A strong interdependence of the 
failure time on the steady state creep rate (Monkinan-Crant 
behavior) is thereby, anticipated, and the distribution in 
failure times is related primarily to the creep rate 
variability of the surrounding material. 

Finally, it is noted that in regions of relative 
uniformity, cavitation develops homogeneously, by virtue of a 
rapid zone spreading process (Fig. 32c). The stress thus 
remains at a level essentially similar to the applied stress, 
and the unconstrained failure time relations pertain. 
However, failure does not evolve quickly. This behavior is 
not well understood; but presumably, the long failure times 
obtain either because cavity nucleation is inhibited in these 
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regions (by the larger ) or because the larger cavitation 
times associated with the larger it or Ds  are not counter-
acted by the loss of constraint (Fig. 32c). 

3. 	CRACK PROPAGATION 

3.1 Morphological observations 

Observations of the crack tip region at relatively high 
applied loadings in materials subject to crack growth under 
creep conditions indicate the concurrent existence of a damag'.. 
zone and of crack tip blunting [3,36] (Fig. 33). The damage 
zone, which consists of individual and coalesced cavities, is 
undoubtedly a consequence of enhanced cavitation rates in the 
crack tip stress field. The crack advance under this circum-
stance appears to be incremental [3]. Specifically, the crack 
tip remains stationary and blunts until the damage level 
attains a sufficient intensity that the adjacent cavities 
merge with the crack. This constitutes a crack advance. 
The process then repeats, and a quasi-steady-state velocity 
results. The most intense damage is generally not coplanar 
with the crack (Fig. 33) and consequently, the crack path is 
typically quite irregular (relative to the more planar crack 
surfaces created during brittle fracture). 

At lower applied loadings the damage rate ahead of the 
crack decreases relative to the crack tip blunting rate. A 
condition is then reached wherein the crack continues to blunt 
without perceptible crack advance (Fig. 33), resulting in an 
apparent creep crack growth threshold [3,37]. The existence 
of the threshold is an important concept in creep crack 
growth. Finally, at very low load levels, crack healing may 
occur [36,38] (Fig. 33), by a diffusion mechanism, involving 
neck growth within segments of the crack surface in mutual 
contact. 

The crack opening and blunting processes are accompanied 
by surface displacements that form a impression ahead of the 
crack (Fig. 34) and a ridge over the crack surface (Fig. 34) 
[3]. These displacements are related to the stress fields 
around the crack and thus, provide a means of characterizing 
the crack tip field under creep conditions. 

3.2 Crack tip fields 

The characterization of crack extension-rates is 
typically determined by the parameter that dictates the ampli-
tude of the singular field near the crack tip. For example, 
stress corrosion cracking rates in elastic materials are 
adequately characterized by the stress intensity factor, K 

The situation is more complex under creep conditions 
The important singularity depends upon the manner in 

which the crack growth proceeds. For present purposes, it is 
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required that the crack advance incremently. Hence, imme-
diately following a crack advance, the crack tip zone is 
subject to primary creep, characterized by 

op 
= 	(a/a )P (C/C)m 	, 	 (103) 

where flp  and m are primary creep exponents and C 
a o  nd 	are primary creep coefficients. The crac tip field op 
under primary creep conditions is given by; 

(m+1)/(m-4-n +1) 

ajjI'c o 	[C(t)/r1 	
p 	 (104) 

where r is the distance from the crack tip and c(t) is the 
stress field amplitude. If the primary creep field is 
embedded in an elastic field (a likely situation following a 
crack increment), then; 

2 
1- 
 2 1 	11/(m+1) 

K( v)1 	 1 	 105 
p' / - 	E 	(m+n+1)tj 

where E is Young's modulus and v is Poisson's ratio. The 
aipp]4tude is thus expressible in terms of a time modified 
K' 11 . Hence, if crack advance occurs while primary creep 
prevails at the crack tip, and before the creep front advances 
to the specimen boundaries, the crack velocity should be 
adequately chatacterized by K. 

For larger intervals following crack advance, the primary 
creep region will extend to the specimen boundaries and 
secondary creep will prevail at the crack tip, 

= 
	 1 	(106) 

where j and c os are the secondary creep parameters. The 
crack tip field is then characterized by 

1/(1+n ) 
[C(t)/r]  

where 

+m+1)C (t)l sp 	I ._m/(m+i) 
S 
C (t) = 
	

(m+s)(n +1) 	Ij 
(vi)j would be more appropriate if the far field were 

subject to plastic deformation. 
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However, the far field isdic-tated by a primarycreep-region 
rather than an elastic region and K is thus an inadequate 
loading parameter. The crack growth behavior is best approxi-
mated by the asymptotic value of 

* (m+n +1)/(m+1) 

p 
C = Aaa  

where 	is the applied stress, a is the crack length and A 
is a proportionality constant that depends on the primary 
creep parameters and the far field loading. 

Ultimately, for long crack advance waiting periods, as 
pertinent to low -crack velocities, steady-state creep prevails 
throughout the specimen. The crack tip field is still charac-
terized by Eq. (107), but now Cs can be related to the 
applied loading by the time independent parameter; 

1+n 
C = Fa 	aa,a 

S 	SSOS 	0 
) 

 
 

where F5  is a parameter that depends on the specimen geome-
try and loading. 	Note that, for ns = 1, 

* 	2 C 	ac 	K2 /ir 
S 

 

and the stress amplitude at the crack tip is uniquely deter-
mined by K. For typical practical ceramics, 1 < n s  < 2 
[1,24]; hence K should be a reasonable correlating parameter 
for most crack growth data. However, some non-uniqueness 
should be expected at low crack velocities, where C 5  
provides a more appropriate association between the crack tip 
field and the applied loading. 

3.3 Crack growth data 

Most high temperature crack growth data for ceramics have 
been evaluated using K as the appropriate loading parameter. 
The uniqueness of K has been confirmed at high crack veloci-
ties [ 4 1], but its utility at low velocities has yet to be 
fully explored. However, crack opening and surface displace-
ment measurements performed on polycrystalline A1203 [36] 
suggest the approximate validity of K (and of the linear 
stress field amplitude) at relatively low applied loadings; as 
demonstrated by good correlations with the crack tip displace-
ment field expected for a linear material (Fig. 35); despite 
the non-linearity of the creep rate (n 	1.8) measured at low 
strain rates. 

(Vii)The equivalent parameter for elastic loading is, 
FE = 



Several interesting features emerge from the existent 
crack growth data. The critical stress intensity factor for 
single phase materials, KIC, decreases with increase in 
temperature, but can increase in materials that contain a 
continuous amorphous second phase at the grain boundaries 
[42]. The crack growth susceptibility increases as the 
temperature increases or as the viscosity of amorphous second 
phases decreases [43].  Consequently, the exponent nv  that 
characterizes the crack velocity, v, 

n 
v/v0  = ( K/K IC 

)V 	
(111) 

ca exhibit a wide range of values (typically 6 < nv 
10 ), dependent upon temperature and composition [3 7 ]. 
Adequate crack growth models must account for this range of 
possibilities. Finally, an apparent crack growth threshold is 
observed [37], and probably relates, as noted above, to 
dominance of the crack tip blunting rate (relative to the 
damage rate ahead of the crack). 

3.4 Crack growth models 

Explicit crack growth models exist for cracks extending 
along the boundary between two grains by a process involving 
surface and grain boundary diffusion [44] (Fig. 36) 

	
The 

analysis predicts that [44] 

where 

K/K0  = 0.85 '(v/v
mm  ) 1"12+(v/ V

mm 

 ) -1/12 
I  

= E( 2y s yb)( 1 _v 2 ) 

v 	= 8(D 5 )4 c2[E/(1_v2)Dbb13/kT-r2 mm 	s s 

(112) 

This relation anticipates a threshold K (Fig. 36), as well as 
conforming with selected data. However, the mechanism is not 
representative of the crack growth behavior in polycrystallmne 
aggregates; a process which involves incremental crack advance 
into a damage zone. An alternate, damage-zone, model is thus 
required. 

A comprehensive damage zone model should incorporate the 
following features. The crack tip field in the absence of 
daage should be expressible in terms of K, C or 
C , depending upon the waiting period for crack advance. 
The damage should reduce the stress in vicinity of the crack 
tip by virtue of constraint on the local volume expansion by 
the surrounding material. The stress at the crack tip should 
be consistent with chemical potential continuity where grain 
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boundaries emerge at the crack surface. The damage should be 
in the form of grain boundary cavities activated by the normal 
stress; a requirement which would induce non-coplanar 
cavita tion ,(nhh 1 ) in accord with observation. Opening of 
the crack and coalescence with the cavities (to constitute a 
crack advance) should incorporate grain boundary sliding. 
Such a comprehensive model has not been developed. However, 
certain of the important requirements have been invoked in 
several recent attempts. Bassani [40] has examined the growth 
of an individual coplanar cavity within the various important 
singular fields. However, constraint effects have not yet 
been incorporated. Raj and Baik [45] have developed a 
bi-crystal model with coplanar damage (Fig. 37). The stress 
field amplitude is considered to be dictated by K and the 
growth of the damage is allowed to relax the stress near the 
crack tip. The crack is assumed to advance when the cavities 
coalesce with the crack tip. A threshold is also invoked, 
based on the threshold stress for cavity nucleation. 

Finally, Tsai and Raj [28] have developed a generalized 
damage zone concept. The elements of this model undoubtedly 
provide the closest available representation of creep crack 
growth by a damage mechanism. The model invokes a damage zone 
size, zd,  that exists in quasi-steady state when the crack 
is propagating at a velocity v. 	The crack growth 
rate can consequently be expressed in terms of the time, t g  
taken to form full-facet cavities of the zone periphery, 
because steady state requires that the crack tip advance by 
one facet length, £, when the time t 2  has expired (v = 
£Itg )• The time tg  may be computed y determining the 
stress at the damage zone boundary and inserting this stress 
into the specific relation that characterizes the active 
cavity growth mechanism (section 2.3). This procedure 
requires recognition of the effect on the stress at zd of 
both the principal crack and the intervening damage. For a 
linear material, the stress is given by; 

T 
GJZ[K//2Tzd] g Ce..j 	, 	 (113) 

where g is a function of the cavitation strain eijT within 
the damage zone. 

(viii)The  maximum tension ahead of a crack occurs at an 
orientation 0 	713. 
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Precise determination of at are mechanism dependent. 
For example, mechanisms involving the growth of very narrow 
crack like-cavities (section 2.3) allow the intervening 
material to be analyzed as an elastic body containing an array 
of microcracks. The stress field may then be computed using 
one of several established techniques that allow for the 
interaction between the principal crack and the microcrack 
damage [46,47]. 

Damage zone size determination is also mechanism 
dependent. The most plausible determinant of the zone size 
is the level of the local stress (or strain) vis-a-vis the 
critical cavity nucleation stress (section 2.2). An 
approximate solution for zd, based on the assumption of a 
Dugdale zone [48] within a linear material, subject to a 
initial stress ac, yields a stress independent zone size, 

Zd 	(rr/8) (K* h/a) 2 
	

, 	 (114) 

where Kth*  represents the threshold stress intensity at 
whih damage begins to form ahead of the crack tip. Both 
Kth and cc  are mechanism dependent. More precise 
formulations based on a variable stress within the damage zone 
would result in a stress dependent damage zone size. 

Combining the zone size relation (Eq. 114) with the local 
stress (Eq. 113) gives; 

01 

(as/a) 	(2/ir) (K/Kh)8(ej) . 	(115) 

Inserting Eq. (115) into the appropriate cavity growth 
relation (section 2.3) yields tg  and hence, v. The presence 
of an extended damage zone minimizes the constraint at the 
zone boundary. Hence, expressions for unconstrained cavity 
propagation can be applied. For example, if cavitation is 
dominated by the equilibrium growth of the cavity from a three 
grain corner, Eq. (47), the crack propagation rate becomes; 

= 	160/ (cDbba8(4.)) K . 
	 (116) 

71 	
kTt F(4)Kth 
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This result illustrates that the assumption of a Dugdale zone 
yields a stress intensity factor exponent, nv,, similar(1X) 
to the stress exponent for the underlying cavity growth 
mechanism. It is thus unlikely to account for the large range 
in nv  that obtains for crack propagation in ceramic 
polycrystals. A more comprehensive treatment of the stress 
within the damage zone would thus appear to be a prerequisite 
for the adequate modelling of creep crack growth in ceramics. 
(Unless the range of n, is associated with asymptotic 
approach to the threshold). 

3.5 Crack propagation times 

Experimentally determined relations between the crack 
growth rate and the stress intensity factor (Eq. (111)) can be 
used to predict that component of the failure time attributed 
to macrocrack propagation [421. This is achieved by noting 
that the stress intensity is related to the applied loading by; 

K = 	, 	 (117) 

where Y is a geometric parameter (2//i for a penny-shaped 
flaw). Differentiating to obtain; 

dt = 
	

2 

	
dK 

22  
00  a 

(118) 

and integrating between Kf (the stress intensity that 
characterizes the occurence of a discrete macrocrack) and the 
critical stress intensity factor, K., then gives the crack 
propagation time; 

K 
2 	

c 	
dK . 	 (119) t =  - 

c 	ff  av 
Inserting the crack growth rate relation given by Eq. (111), 
the crack propagation time at constant stress becomes, 

n 
2K 

c 
t 	= 
c 	22 a Y v (n-2) 

00 	0 

1 1  1 1 
I n -2 	- n -2 I 
L KJ" KV 	

j 

(120) 

which, for large nv  and Kc  >> K becomes; 

(KcG  \2(KC)  n-2 
V

2  
tc 	v (n -2) 	YI K

0 V 	 / 	f 
(121) 

(ix) e T exhibits some dependence on K and may thus 
cause the K exponent in Eq. (116) to deviate from unity. 
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An accurate definition of K 5  is •thus of crucial import-
ance to the prediction of crack propagation times. Specif i-
cally, if the nucleation process yields a discrete crack when 
Kf is a specified fraction of I(  (as proposed in section 
2.4.1), the the stress dependence of the propagation time must 
be uniquely characterized by the simple proportionality; 

-2 
t 	a 	. 	 (122) c 

Alternatively, in the presence of pre-existent cracks with an 
initial stress intensity, K > Kth, the crack propagation 
time becomes; 

t 

-(n-2) 'K 

J 	
(123) c 	

2a 

v (n -2) \a y 
0 V 

A much larger stress exponent, tc 	a n thus obtains 
and the failure time depends upon the initial magnitude, aj, 
of pre-existing cracks (as characterized by proof testing or 
NDE). 

4. PREMATURE FAILURE FROM LARGE SCALE INHOMOGENEITIES 

There are several important microstructural sources of 
premature high temperature failure in ceramics; especially 
zones of exceptional grain size and isolated amorphous regions 
in otherwise single phase material. A large grained region in 
a fine-grained solid subject to creep deformation has a higher 
viscosity than the matrix, because of the strong grain size 
dependence of the creep rate (either Herring-Nabarro or Coble 
creep). This region, and the surrounding fine-grained matrix, 
must therefore experience stresses in excess of the applied 
stress, by up to 2cia,  [22] (Fig. 38). This enhanced tension 
can accelerate the cavity propagation process and thus pre-
maturely initiate a crack. The magnitude of the effect can be 
discerned by incorporating the stress concentration factor 
into the cavity propagation times derived in section 2. 
Generally, the maximum reduction in crack nucleation times is 
in the range, 2-4, depending upon the stress dependence of the 
dominant cavitation mechanism [22].  Fine grained, or amor-
phous, zones can also induce stress concentrations of similar 

* 

	

	 magnitude within the surrounding material and reduce the crack 
nucleation time to a comparable extent (2-4). Additionally, 
however, the potential for a reduced cavity spacing in fine-
grained or amorphous zones (vis-a-vis the surrounding matrix) 
can cause rapid internal failure of these zones, despite the 
reduced local stress level. For example, cavitation occurring 
from three grain edges within a fine grained zone can cause 



74 

internal failure of the zone at times up to an -order of 
magnitude less than the time needed to induce a crack in the 
coarse grained matrix. The maximum reduction in local rupture 
time occurs when the grain size ratio is 0.2 and the stress 
within the fine grained region is 0.1 a. However it is 
emphasized that internal rupture of this region does not 
necessarily result in premature failure because the rupture 
must be capable of extending into the matrix. This topic has 
not yet been addressed. But, presumably, the stress intensity 
associated with the local rupture should exceed Kth in order 
to induce eventual failure. 

Large amorphous regions may exert an additional detri-
mental influence on the high temperature failure resistance of 
ceramics: especially when the amorphous phase exhibits good 
wetting characteristics and is capable of rapid viscous flow. 
Then, the amorphous material can flow into cavities created 
within the solid phase and accelerate their growth. This may 
be achieved by reducing the dihedral angle (based on good 
wetting characteristics) and enhancing the matter transport 
rate from the cavity surface to the cavity tip (i.e., an 
effective increase in D55 ). For example, noting that 
the crack-like cavity propagation times at high stress levels 
(Eqs. (46) and (50a)) are characterized by, t 	sin3 ! 2  (/4) 
(Ds 6s/Db6b) 1 / 2 , a perfectly wetting amorphous phase 
( 	0) is predicted to reduce the propagation time to "-0 by 
allowing the formation of crack-like cavities of negligible 
width. The propagation times are then limited by the flow 
rate of the viscous material into the cavity, in accord with 
the principles discussed in section 2.3.2. This process would 
allow the amorphous zone to spread along a plane normal to the 
applied tension and thereby induce a substantial reduction in 
the failure time. The details of this process have not yet 
been evaluated. 

5. INTERPRETATION OF EXPERIMENTAL RESULTS 

Plots of the available creep rupture data for ceramics, 
using logarithmic scales, (Fig. 39) indicates that the 
temperature dependence of the failure time can be adequately 
incorporated into an Arrhenius parameter, as anticipated by 
both the Monkman-Grant and Orr-Sherby-Dorn parameter. The 
stress exponents, n, are mostly in the range 3-6, except for 
sintered Sic [49] which has an exponent of -30. The latter is 
undoubtedly a consequence of crack propagation controlled 
failure [50]; while the smaller n values are probably asso-
ciated with crack nucleation controlled failure. However, 
explicit correlations with the failure models pertinent to 
nucleation controlled rupture are limited by the paucity of 
ancilliary data, such as creep rates and diffusivities. 
Before embarking upon a closer scrutiny of specific rupture 
results, it is appropriate to recognize the data correlation 
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scheme devised by Charles 1351. Based upon an assumption of 
crack propagation controlled failure and a hypothesized crack 
growth rate relation, 

= (D/a) exp[B(2c7I7 -  yip)] , 	(124) 

where D is a diffusivity, 8 is a coefficient and p is the 
crack tip radius, the rupture time tr was derived as; 

-Q/kT = 	3 	2 2 	3 	4 	3 	
2 6N+6) 1  , (125) t e 	0 (N /R+3N /R +6N +6/R ) (N +3N + 

r 	 o 

where 00 and N are fitting parameters unique to a specific 
material and R is the ratio, 	where & is the intrinsic 
(zero time) strength of the material. All available creep 
rupture data for ceramics can be fitted by Eq. (125), which 
thus presents a useful basis for comparing the creep rupture 
performance of different materials. However, more specific 
inferences, concerning data extrapolation and underlying 
mechanisms, should be treated with caution. 

A mechanistic interpretation of the rupture data 
ultimately requires subsidiary microstructural information. 
Interpretation attempted in the absence of such information 
should be regarded as speculative. It is tempting to account 
for the observed stress rupture exponent by invoking the 
unconstrained, low stress, crack-like cavity growth process 
(n = 3). However, the experimental results have been obtained 
in a stress range (i 591y 5  sin(/4) > 10) that appreciably 
exceeds the stresses at which this mechanism ostensibly 
operates. An interpretation based on crack-like cavity growth 
should thus be regarded cautiously, in the absence of discrete 
information concerning cavity shapes. An alternative inter-
pretation, based on the Monkman-Grant relation, is also with-
out basis, because creep rate information has not generally 
been obtained on the same materials used to determine rupture 
characteristics. In the one instance (fine grained A120 3 ) 
where comparative creep rate and creep rupture data has been 
acquired the creep exponent (n5 = 1.8) is not large enough 
to account for the stress dependence of the rupture time 
(n m 5) and a simple Monkman-Grant relation (e.g., based on 
highly constrained equilibrium cavity growth) does not appear 
to rationalize the data. 

The compatibility of the available failure data with the 
probabilistic model of unconstrained cavity growth and 
coalescence (Fig. 31), Is not a sufficient basis for accept-
ance of a probabilistic interpretation; the parameters of the 
model must also be consistent with the basic mechanisms of 
cavity growth. Also, the predicted existence of specimen size 
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effects requires substantiation. -The necessary mechanistic 
information is exemplified by attempting to interpret the 
rupture data obtained for the A1203 fibers. Assuming that 
the A1203 contains a continuous thin amorphous phase 
(typical of liquid phase sintered A1203) and that failure 
occurs by hole growth within the second phase, the probabil-
istic model predicts [31] 

In 0r = £n[0.3n(/)2] - Lna-o2(4/1nnKf2)2.n(4AT/Z2) 

(126) 

where ri is the viscosity coefficient (=0e-Q /kT 
Correlation of Eq. (126) with the test data for A1203 
fibers (Fig. 31b) is achieved by firstly evaluating the 
mechanistic parameters from the test data; 

	

(4/7rr)K) £n(4AT/92) = 3 x 10 16  N2m' , 	(127a) 

log [0.3n(11) 2 J = -5.5 . 	 (127b) 

Then, by inserting 5 th pertinent dimensional information (area 
tested, 1.2 x 10 	m , grain facet length, 5jnn) the 
consistency of the remaining microstructral parameters can be 
assessed. For example, assuming that in 	1 (as determined 
from creep tests on liquid phase sintered Si3N4) [31], 
Eq. (127a) gives K5 	0.5 MPaIm; which compares with K c  ra 2 
MPaI for typical polycrystalline aluminas at comparable test 
temperatures. Additionally, by assuming that 6 0 5 nm (as, 
again, observed for Si3N4) Eq. (127b) yields a viscosity 
coefficient 0 	10-1  poise, which in conjunction with 
the experimentally determined activation energy (Q = 115 
kcal/mole), gives a resultant viscosity [31] within an order 
of magnitude of the viscosity of SiO2 (a predominant second 
phase constituent in liquid phase sintered A1203). This 
correlation is, of course, based on too many assumed para-
meters (although, all of the parameters exhibit reasonable 
values); but it illustrates the detailed microstructural 
information needed to substantiate failure models and 
consequently, to develop a prediction capability. 

6. IMPLICATIONS AND CONCLUSIONS 

The observations and analysis of high temperature 
cavitation summarized in the present review indicate the 
inhomogeneous nature of high temperature failure in ceramics. 
A possible consequence of the inhomogeneity (and the resultant 
development of constraint) is the inverse dependence of the 
failure time on the steady-state creep rate of the material 
(Monkman-Grant behavior). Under crack nucleation controlled 



Wl 

conditions within this regime, any microstructural inodifica-
tion that reduces the creep rate should thus produce a propor -
tional increase in the failure time. This correlation pro-
vides an invaluable basis for the design of failure resistant 
microstructures. 

Monkman-Grant behavior may be violated under certain 
conditions; notably especially in the presence of a high 
proportion of cavitation susceptible boundaries. Constraint 
effects are then minimal and crack nucleation controlled 
failure is based on the statistical accumulation of contiguous 
cavities. A probabilistic analysis of this process indicates 
that failure in this instance is governed by an 
Orr-Sherby-Dorn parameter, such that the activation energy 
term in the parameter is related to that for the dominant 
cavitation process. 

The failure times in both the Monkman-Grant and Orr-
Sherby-Grant regimes are predicted to depend on several micro-
structural characteristics. In single phase materials, low 
values of the dihedral angle and of surface diffusivity are 
found to be deleterious. Low dihedral angles (high grain 
boundary energies) may be inevitable in ceramics (by virtue of 
covalent or ionic bonding characteristics). However, there 
may be important influences (both beneficial and deleterious) 
of solutes, which merit further study. A low surface diffusi-
vity may also be inevitable for typical ceramics, as required 
for the initial stage sintering. But again, explorations of 
the temperature dependence of the diffusivity and of solute 
effects may indicate situations which retard cavitation 
without detracting from the sinterability. 

In two phase materials with a continuous second phase, 
the predominant material variables are the thickness of the 
second phase, its viscosity,, and the diffusivity of the major 
second phase constituent. Large values of the second phase 
thickness and diffusivity, or low viscosities, encourage 
rupture, as might be intuitively expected. Chemical control 
i's thus a central concern for the creep rupture of these 
materials. 

It also has been demonstrated that,several important 
sources of premature crack nucleation can exist in typical 
ceramics:"' in particular, zones of amorphous material in 
otherwise single phase materials and atypically grained zones. 
Premature failure results from the development of stress 
concentrations and/or region of high local cavitation 

(x)It is notable that these heterogeneities differ in 
character from those that typically dictate the brittle 
fracture process at lower temperatures. 
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susceptibility. The elimination of large scale hetero-
geneities is thus an essential requirement for the prevention 
of premature failure. 

Crack nucleation controlled creep rupture is expected to 
pertain to long lifetime behavior, particularly at elevated 
temperatures. However, the conditions that cause failure to 
be dominated by crack nucleation, rather than crack propaga-
tion, are still rather nebulous; although, observations of 
crack propagation thresholds begin to suggest crack tip 
blunting effects which distinguish nucleation control from 
propagation control. 

When crack growth controls failure (as might be expected, 
for example, in the presence of surface cracks subject to 
stress intensity levels in excess of the threshold), a 
characterization of the crack growth rates in term of C s  
(or K) provides a basis for predicting failure. However, 
effects of microstructure on the observed crack growth rates 
have yet to be adequately modelled. 

The paucity of comprehensive creep rupture data, and of 
concomittant microstructural information, obtained on ceramic 
polycrystals has limited the present ability to distinguish 
the conditions of stress, temperature and microstructure that 
dictate the dominant operative realms of the various cavita-
tion mechanisms. Future study should focus upon the acquisi-
tion of reliable creep rupture data and the concurrent 
determination of the important microstructural parameters. 
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