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Abstract—Deep modulation recognition has demonstrated high
classification accuracy when a neural network is trained on large-
scale datasets. However, when applied in an unknown environ-
ment where there are not any ground-truth labels in collected
data, its performance can be significantly degraded. In this paper,
we propose incorporating an adversarial discriminative neural
network to adapt the deep modulation recognition to an unknown
environment. Results show that, when the neural network is
trained under an AWGN channel but applied under a frequency-
selective Rayleigh fading channel, the adversarial network based
domain adaptation can achieve comparable performance with
that of the network trained with sufficiently large labeled data.

Index Terms—modulation recognition, unknown environment,
frequency-selective fading, neural networks, domain adaptation.

I. INTRODUCTION

Deep neural networks emerge as increasingly powerful tools
for end-to-end classification tasks in areas such as computer
vision and natural language processing. Motivated by this
remarkable success, deep neural networks have been applied
in modulation recognition, and have been shown to achieve
higher classification accuracy than conventional modulation
recognition [1] [2].

However, this is obtained by assuming that the collected
radio signal samples (also called data in this paper) used
for training the network are independent and identically
distributed with those used for testing. That is, there is a
sufficiently large amount of training data with ground-truth
labels for the scenario where the deep modulation recognition
is applied. When the test data follows a different distribution
from the training data, the performance of the deep modulation
recognition can be significantly degraded [3].

Wireless propagations can differ significantly in time, fre-
quency, and space. Accordingly, received radio signals vary in
distributions under different propagation conditions [4]. It is
difficult to obtain labeled data to train the network for all pos-
sible communications environments. So there naturally arises
a question: how to ensure the deep modulation recognition
performance when it is operating in an unknown environment
where there are no labeled training data.

In this paper, we propose unsupervised domain adaptation
[5] with an adversarial network [6] [7] [8] to address this
problem. For brevity, we use source domain to represent
the dataset used for training the neural network, and target
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domain to denote the dataset collected for testing, i.e., the
environment that the deep modulation recognition is applied.
We are interested in the scenario where the signal in the
target domain is collected in an unknown environment, and
is different from the source domain. In other words, there
is a domain shift between the source and target domain.
The adversarial domain adaptation architecture consists of a
discriminator, a source encoder and a target encoder [8]. The
source encoder is a convolutional neural network (CNN) that
is pre-trained by labeled source domain. The target encoder
is initialized with the same parameters as the source encoder,
and fine-tuned such that the discriminator could not reliably
distinguish between the encoded source and target data. In
this way, the target domain is adapted to the shared feature
space with the source by the target encoder. Note that we
use different CNN structures for modulation recognition here
than those used in [8] for image classification. Results show
that when the source domain is under an AWGN channel and
the target domain is under frequency-selective fading channel,
the proposed unsupervised domain adaptation can achieve
comparable performance with that of the network trained with
a sufficiently large labeled dataset in the target domain.

The rest of this paper is organized as follows. Modula-
tion recognition with deep neural networks is described in
Section II. In Section III, unsupervised domain adaptation is
given. Simulation results of deep modulation recognition in an
unknown environment where there are not any ground-truth
signal labels are presented in Section IV. Finally, conclusions
are discussed in Section V.

II. MODULATION RECOGNITION USING DEEP NEURAL
NETWORKS

Modulation recognition can be formulated as a classification
problem, where the number of modulation types corresponds
to the number of classes [9]. Recently, deep neural networks
have emerged as powerful tools for classification in image
processing [10], and also shown to exhibit potential in modu-
lation recognition [11]. In this paper, modulation recognition
is achieved using a deep neural network, which is described
in the following.

The received radio signals are filtered and down converted
to baseband with a carrier frequency roughly centered on
the carrier of interest, and then the in-phase and quadrature
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TABLE I
NEURAL NETWORK LAYOUT

Layer Kernel Size  Stride  Output Shape
Input [1,2,1024]
Convl 3%7 2 [32,1,512]
Conv2 13 1 [64,1,512]
Max Pooling 1%2 1 (64,1, 256]
Conv3 1%3 1 [128,1,256]
Max Pooling 1%2 1 [128,1,128]
Conv4 13 1 [256, 1, 128]
Max Pooling 1%2 1 [256, 1, 64]
Conv5 1%3 1 [612,1, 64]
Max Pooling 12 1 [512,1, 32]
Convé 1%3 1 [512,1, 32]
Average Pooling 1 * 32 1 [612,1,1]
FC [256]

FC [11]

components are sampled at discrete time steps to form a 1 x N
complex-valued vector [12]. This complex-valued vector is
further decomposed as a 2 x N real-valued vector, where
the first row corresponds to the in-phase components and the
second row as the quadrature components. Let x(¥) denote the
vector collected in the ¢-th observation interval for modulation
recognition, and y(?) be its corresponding label denoting the
particular modulation type. Then {x(", 3"} forms the input
to the deep neural network.

A deep CNN is used for modulation recognition in this
paper, which consists of 6 convolutional layers followed by
two fully connected (FC) layers. The stride for the first
convolutional layer is 2, and 1 for the other convolutional
layers. Pooling is used after each convolutional layer except
the first one, where max pooling is used for layers from
the second to the fifth, and average pooling is adopted for
the last convolutional layer. Tanh activation is used for the
first convolutional layer, and ReLU activation is used for the
other convolutional layers. Batch normalization [13] is used
in convolutional layers for faster convergence. Dropout [14]
is used in the first FC layer to reduce overfitting, followed by
a SeLU activation function. The last FC layer has M neurons
corresponding to the M modulation classes. Table I illustrates
the artchitecture of the CNN used in this paper.

The CNN outputs the predicted class value §(). Then a loss
function (here we use categorical cross-entropy for modulation
recognition) can be calculated as

M

L=-+; ;[y“)log(ﬁ(“) + (1 —yD)log(1 =g (1)

An Adam optimizer is utilized with a learning rate of 0.001
to update the parameters by back propagation and gradient
descent for supervised learning.

Source Feature
Source Domain mmp Source
Data Encoder I
Indistinguishable Discriminator
Target
Encoder

Fig. 1. The deep domain adaptation process, the aim is to train target encoder
to make the source domain feature distribution and target domain feature
distribution as similar as possible.

III. DEEP MODULATION RECOGNITION IN AN UNKNOWN
ENVIRONMENT WITH UNSUPERVISED DOMAIN
ADAPTATION

We are interested in the scenario where the unknown
environment is different from the labeled data training the
neural network. That is, there is domain shift between the
target domain and the source domain. Further, it is assumed
that the data in the target domain is unlabeled. Given this
scenario, directly applying the neural network, which is trained
with a sufficient amount of labled data in the source domain,
would lead to modulation recognition performance degradation
due to the domain shift.

Unsupervised domain adaptation with an adversarial net-
work, also called adversarial domain adaptaion [7], is proposed
in this paper, which aims to adapt the target domain to the
same distribution as the source domain. As shown in Fig. 1,
the adversarial domain adaptation consists of a source encoder,
a target encoder and a discriminator [8].

The source encoder is from the CNN in Table I. Specifically,
we pre-train the CNN with sufficient labeled source data, and
then split it into two parts as shown in Table II: a source
encoder and a classifier, where the source encoder consists
of 6 convolutional layers and the first fully connected layer,
and the classifier corresponds to the second fully connected
layer. The target encoder has the same network structure as
that of the source encoder, and is initialized with the same
parameters as the source encoder. The discriminator, which is
used to discriminate between the source and the target feature
distributions, consists of three fully connected layers, where
the first and the second layer have 512 hidden neurons each,
and the last has 2 neurons.

We train the discriminator to maximize the probability of
assigning the correct label to both source encoder and target
encoder outputs. We simultaneously freeze the parameter of
source encoder and train the target encoder to minimize
the mapping loss from target domain to source domain. In
this way, the discriminator eventually could not distinguish
whether the input is from the source or the target encoder.

For better convergence of the adversarial training process,
the learning rate of the discriminator is set to 0.0001 and
that of the target encoder is 0.00005. Besides, the parameters
of the target encoder are updated every five updates of the
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TABLE II
DOMAIN ADAPTATION ARCHITECTURE

Layer Output Shape

Source/Target Encoder ~ Conv Layers

+1st FC Layer  [256]
Classifier FC [11]

FC [512]
Discriminator FC [512]

FC 2]

discriminator. It is expected that, after sufficient training,
the target feature representation and the source will not be
distinguishable.

Note that normalization is important for this unsupervised
domain adaptation, since the average receiving power of
signals due to different propagation conditions would vary.
In this case, we employ a data pre-processing algorithm to
normalize average power of input vector x(?). Specifically,
each sample in x(*) is divided by the square root of the average
power of x().

IV. RESULTS AND ANALYSIS

In this section, we present the simulation results for deep
modulation recognition in an unknown environment where
there are sufficient labeled source data but not any labels for
the target data. Specifically, the source domain corresponds
to the scenario where the signals are in the presence of an
AWGN channel, and the target domain is the scenario that the
signals experience different delay spread of multipath fading.

The radio signals for both the source domain and the
target domain are generated in the same way as those in the
GNU Radio ML dataset RML2016.10a [15], and 11 different
modulations including both analog and digital modulation
types are generated: BPSK, QPSK, 8PSK, PAM4, QAMI16,
QAM64, GFSK, CPFSK, WBFM, AM-DSB, and AM-SSB.
A square root raised cosine filter is used for pulse shaping,
and 2 x N real samples are collected to form one example,
where the first and second column correspond to the in-phase
and quadrature samples for the received signal, respectively,
and N is set to 1024. We generate 1000 examples for each
SNR and for each modulation format in both source and target
domains.

For clarity of descriptions, notations used hereafter are
elaborated in the following:

e “Source domain model” corresponds to the performance
when the network is trained by the source domain but applied
in the target domain.

e “Target domain model” means the network is trained using
the target domain dataset with sufficient ground-truth labels
and also tested in the same domain.

e “Domain adapted model” represents the performance
when the network is trained using the source domain dataset
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Fig. 2. Deep modulation recognition accuracy under different SNRs in flat
fading channel.Source domain: AWGN channel, target domain: flat fading
channel.
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Fig. 3. Deep modulation recognition accuracy under different SNRs in
frequency-selective fading channel. Source domain: AWGN channel, target
domain: frequency-selective fading channel.

and adapted for the target domain using our proposed adver-
sarial discriminative domain adaptation. This adaptation does
not require any labels for the target domain dataset.

The classification accuracy versus different SNR is plotted
in Fig. 2, where the source domain signal is under AWGN
and the target domain signals experience flat fading with 3
discrete paths. It is shown that directly using the network
trained by the source domain leads to the worst performance,
and the classification accuracy is below 75%, even when the
SNR is higher than 10dB. The performance using the proposed
unsupervised domain adaptation method achieves performance
very close to the target domain model, i.e., the upper bound
on what the deep neural network can achieve.

We increase the domain shift by increasing the delay
spread to be much larger than that in Fig. 2 with the same
number of discrete paths to simulate a frequency-selective
fading environment, and the results are shown in Fig. 3.
Similar observations can be made that the performance with
domain adaptation can also approach that of the target domain

1047

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2020 at 19:45:51 UTC from IEEE Xplore. Restrictions apply.



T e - §
o Ry F, - " * . &
[ ™ g £ ‘ % £ )

(a) Before domain adaptation (b) After domain adaptation

Fig. 4. t-SNE embedding of source and target domain data for before and after
domain adaptation, where the blue dots represent the source domain feature
embedding and the orange dots represent the target domain feature embedding.
(a) source and target data visualized by t-SNE before domain adaptation (b)
source and target data visualized by t-SNE after domain adaptation.

model, and outperforms the source domain classifier results.
Meanwhile, it is shown that directly using the network trained
by source domain leads to the worst performance.

Deep Modulation recognition seems to be a black box due
to the use of a deep neural network. To better understand the
domain adaptation results for deep modulation recognition, we
visualize both the source domain data and the target domain
data using t-distributed stochastic neighbor embedding(t-SNE)
[16]. t-SNE is commonly used in machine learning for visual-
ization and is a nonlinear dimensionality reduction technique
well-suited for embedding high-dimensional data in a low-
dimensional space of two or three dimensions.

For a more clear visualization, we choose the source data
and the target data with an SNR of 20dB for the 11 different
modulation types. The t-SNE embedding is illustrated in
Fig. 4, where the blue and orange dots represent the embed-
ded source domain and the target domain data, respectively.
Fig. 4(a) illustrates the t-SNE embedding before domain
adaptation. It is seen that, without domain adaptation, the
target domain feature distribution is not aligned with the source
domain. In this way, the network trained with source domain
data results in significant performance degradation when tested
in the target domain. With the proposed domain adaptation
method, as illustrated in Fig. 4(b), the blue dots and the
orange ones are significantly more aligned together than that
in Fig. 4(a). This coincides with the results in Fig. 3 that the
modulation recognition performance with domain adaptation
is significantly improved as compared with the “source domain
model”.

V. CONCLUSIONS

An unsupervised domain adaptation with an adversarial net-
work is proposed to address the problem of deep modulation
recognition performance degradation, which arises when the
neural network trained using source domain data is tested in a
new radio propagation environment, and when there are only
unlabeled data in the new environment. Results have shown
that, with the proposed method, the modulation recognition
performance is comparable with that of the network trained
with a sufficiently large labeled dataset.
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