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QUANTAL FLUCTUATIONS AND INVARIANT OPERATORS 
FOR A GENERAL TIME-DEPENDENT HARMONIC OSCILLATOR 

E. S. Hernandez* and B. Remaud 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

a 	 Berkeley, California 94720 

AB STRACT 

The connection between quantal fluctuations and invariant oper-

ators for a general time-dependent oscillator is discussed. The 

ground-state of the invariant operator is explicitly displayed. The 

use of this invariant is illustrated with a simple derivation of the 

generalized Wigner distribution function. 
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Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, 
Argentina. 

Permanent address: Institut de Physique, Universite de Nantes, 
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Since the discovery by Lewis' of, the exact invariants of the 

time-dependent harmonic oscillator, there -has been a renewal of in-

terest in this ancient problem. The studies of such invariants have 

two main orientations: i) the-search of the solutions of the-time- 

2 
dependent quantal problem '3  and ii) the construction of generators 

of dynamical symmetry groups. 4  

The interpretation- of such invariants is not obvious and several 

suggestions have been put forward (see for example Ref. 3.) In an - 

earlier work, Symon 5  has shown that the invariant of the classical 

oscillator can be expressed through the amplitude of the motion; this 

has been generalized to the case of oscillations in presence of dissi-

pation mechanisms. 6  In this paper, we want to concentrate ourselves 

on the quantal problem and display the relationship between the in-

variant operator and the quantal fluctuations; these quantities are 

the second moments of coordinate and momentum operators and do not 

possess classical equivalence. We shall restrict ourselves to a one-

dimensional analysis, since generalization to several degrees of 

freedom is straightforward. 

Let us assume a quantal harmonic oscillator whose position is 

described by the following general time-dependent Hamiltonian 

H(t) = !m(t)Q2 (t) x2-+p2 	 (1) 
2 	- 	2m(t) 	 - 	 - 

where m(t), Q(t) are arbi-trary, although differentiable, functions of 

time 	The expectation values 	x = (x>,p = (p) satisfy the 

Ehrenfest limit, namely 



C) 	3 	£ C) / 3 9 9 
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ih, 	= ([x,H]) 	 (2a) 

ihp = ([p,H]) 	 (2b) 

The second moments of the motion are defined as 

x 	(x2 
	2 
) -x 	 (3a) 

= (p a ) - p 2 	 (3b) 

a = 1/2 (xp + px) - xp 	 (3c) 

Straightforward applications of the formula for the time- 

derivative of an operator lead to the following set of equations: 

2a/m 	 (4a) 

= -2m Q 2cy 	 (4b) 

= -m 2x + /m 	 (4c) 

Let us postulate that there exists an invariant hermitian operator 

I that is quadratic in coordinate and momentum, 
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(5) 

I = 1/2(c(t)(p-p )2 + (t)(x-x) 2  + y(t) {pp 0 ,qq0 }) 

10 

Here the symbol { } is the usual anti-commutator and 	are 

real differentiable functions of time. The time derivative of I: 

dt 	t 	
ih [IH 
	

(6) 

must vanish identically. This requirement leads to the following 

equation: 

(t +) (p-p) 2  + ( - 2mQ2y)(x - x ) 2  
0  	 (7) 

+ (' ,+ .- mQ2c) {p_p0,x_x0}+) = 0 	. 

If we compare with Eqs. (4), we realize that 	and - y respectively 

coincide with the second moments x,c,G except for a common scaling 

factor. So the invariant I reads: 6  

I = 	(x(p-p0)2 + (x-x)2 - G{p-p ,x-x } ) 	 (8) 
0 	'0+ 

Its constant expectation value is: 

(I) = x—G2 	 (9) 
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This is to be interpreted as accounting for a definite, constant 

value, for the determinant of the covariance matrix of the classical 

phase-space distribution f(x,p,t) whose second moments are, precisely, 

X,and a(seeEq. (23b) below) 

Notice that the Heisenberg uncertainty principle requires that <I) 

is always positive and verifies: 

(I> > fA 2 A 	 (10) 

If we introduce the reduced width of the quantal state whose first 

and second moments are given by Eqs. (2) and (3), respectively, 

	

2 	-1/2 

	

U 	M(I) 	X (11) 

we can decouple the set of Equations (4) and write a closed form 

equation for u: 

.2 (Q2 .
u + 	- - + 	u = - 	 (12) 2m 	4\m// 	3 

u 

We recognize the generalization to time-dependent mass of the auxil-

iary equation introduced by Lewis' in the classical case. It is 

worthwhile noticing that the principle of correspondence, when applied 

to the classical result of Symon, 5  entitles us to state that the 

amplitude of the x motion is solution of the Equation (12). We 

believe that the identification of the 	functions in Eq. 5 with 



the fluctuations of a quantal state with respect to the classical 

motion paves the way towards a better understanding of the invariant 

operator and its eigensolutions. 

As an illustration of the appearance of the invariant operator in 

actual applications, we shall, focus on the generalization of the 

Wigner distribution function 7  for a general-time dependent 

oscillator. 

Our starting point is the observation that the Schrdinger's 

equation for the Hamiltonian (1) admits a non-stationary, gaussian 

wave packet solution of the form8 ' 9  

/ 	-1 1/4 	I 	(x .-  x 
0 

) 2 
ip(x,t) = 
	

ex_ 	2a 	+ I p ( x - x) + 	(13) 
IT 

provided that the complex width a and the real phase Q  are solutions 

of the following equations of motion, 

• 	ih 	i 	2
a  
2 

a = - - - 
in 	h 

(14a) 

2 
U = L(x 

o  )p  o 	2 ) - p-m  Re(a 1 ) 	 (14b) 

In Eq. (14b), L(x ) p) is the classical Lagrangian for the oscil-

lator under consideration. It is also straightforward to establish 

the relationship between the above defined fluctuations x 4 and a 

(Eqs.. 3) and the complex width a, that reads, 



'44 d 	1 ti I 1  0 

7 

1 
-1 	 (15a) 

2Rect 

=Mect 	 (15b) 

.h Imct CT 
= 2 Re a 

An important consequence of Eqs. (15) is the fact that these three 

quantities are not independent, but fulfill the condition 

- 2 = h 2 /4 	 (16) 

This corresponds to the absolute minimum of the constant expectation 

value (I). Furthermore, it can be easily checked that the wave packet 

(13) is the ground-state eigenfunction of the I-operator, namely, 

n(x,t) = 	(x,t) 	 (17) 

The quantal state represented by the wave packet (13) can be 

described through a density operator whose matrix elements in 

configuration space read, 

p(x',x",t) = (x ,t) i (x ,t) 	 (18) 



EI 

This means, 

1/2 	 2 	 2 

p(x', x",t) (Rea') 
	exp- 	

- 	
,, 

0 	
+ 	?( x '-x" ) 	(19) 

The evaluation of the Wigner distribution function 7 "°  associated 

with this density operator is straightforward. We just resort to its 

definition 7 , 

d(x,p,t) = .j 	,x 	, t) 	 (20) 

With the help of Eqs. (16) and (17), the value of the integral can be 

cast into the form, 

d(x,p,t) = 

exp 	L [(x-x)2 + xP-P02 - 2(x_x)(p_p)]1 	
(21) 

We recognize a gaussian distribution function that can be 

expressed, in matrix notation, in the compact way, 

W(X,P,t) = 	exp (- VtM_1V) 

where 	v = 
(Px

-x0  

(X CY) and 

(22) 

(23 a) 

 

(23b) 

 



U 	U 	U 	0 2 
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is the covariance matrix of this distribution. The argument of the 

exponential-is just the semiclassical version of the invariant derived 

in Eq. (8). The appealing fact is that Eq. (20) provides a general-

ization of the Wigner distribution function for an ordinary harmonic 

oscillator' 1 . (in the zero-temperature limit), namely, 

/ -2H \ 
d (x,p) 	.L exp ( 

irh 	hQO  
(24) 

Here H is given by Eq. (1), but the mass and frequency have been 

taken as constants m, Q, respectively and x = p 	0. 

Finally, Eq. (23) reads, 

d = 	exp- 
2 
 EhmoQO  2 + 2mQ 	

(25) 

The quantities accompanying the coordinate and momentum factor are 

readily recognized as the fluctuations of momentum and coordinate in 

the ground-state of the oscillator, respectively. In this sense, 

Eq. (25) provides the correct limit of the more general Eq. (21). 

As a final remark, we believe that the connection between quantal 

fluctuations and invariant operators can provide a useful tool for the 

(14 
description of a class of processes (nuclear fission, relaxation of 

collective degrees of freedom in heavy ion reactions6 ) in which the 

variable mass reaches a singularity. 
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