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QUANTAL FLUCTUATIONS AND INVARIANT OPERATORS
FOR A GENERAL TIME-DEPENDENT HARMONIC OSCILLATOR

E. S. Hernandez* and B. Remaud®*
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’! Lawrence Berkeley Laboratory
. ' Berkeley, California 94720
ABSTRACT

The connection between quantal fluctuations and invariant oper-
ators for a general time-dependent oscillator is discussed. The
ground-state of the invariant operator is explicitly displayed. The

use of this invariant is illustrated with a simple derivation of the

generalized Wigner distribution function.
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Since the discovery by Lész? éﬁ the exact invariants of the
time—dependént1ﬁarmbnic oséillator,'there-has;beenﬂa renewal of in-
terest in this anciént pféblem;'rThé étudies of such invariants have
two main orientétions; i) the‘seérch of the solutiOnsfof the - time-
Adependent quantal p?oblém2’3iaﬁa.ii) fhe constfuction of generators
. of dynamical symmetry groups.4

TﬁeviﬁEerpretationzdf‘such invariants is not obvious and several
suggestibns have_Béen put fdéﬁafd (see for example Ref. 3.) In an
earlier work, Symon5 has shown that the invariant of the classical
oscillator can be expressed through the amplitude of the motion; this
has been generalized to the cage of oscillations in presence of dissi-
pation méchanisms.6 In this paper, we want to concentrate ourselves
on the'quanfal problem and display the relationship between the in-
variant operatorvand the quantal fluc;uations; these quantities are
the sécond momenté of coordinate and mémentum oberators and do not
possess classical equivalence. We shall restrict ourselves to a one-
dimensional analysis, since generalization to séveral degrees of
freedom is straightforward.

Let us assume a quantal hafménic oscillator whose position is

described by the following general time-dependent Hamiltonian

L1 2 2 1 2 oy
H(t) = -z‘m(t)Q (t) x -+ Ta(t) P _ ' . | o (1
where m(t), Q(t) are arbitrary, although differénfiéble,.functions'of
time. The expectation values X, = (x))po = {p) satisfy the

Ehrenfest limit, namely

v-"“ .
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ihx = ([x,H]) o (2a)
o _ ‘ .
ihﬁo = ([p,H]) 3 (2b)

The second moments of the motion are defined as

X = x?) - & o (3a)
o - .

¢ = > - p | (3b)

o =1/2 (xp + px) - X P, - _ ' - (Be)

Straightforward applications of the formula for the time-

derivative of an operator lead to the following set of equations:

X = 20/m | ’ | . (4a)
. 2 i ' . . :

o = -2m Qo _ ‘ (4b)

s _ 2 . v ' ,

0 = -mQ°y + ¢/m » . (4¢)

P !f i
S

Let us postulate that there exists an invariant hermitian operator

I that is quadratic in coordinate and momentum,



(5)

I=1/2(a(t)(pp ) + B (x-x )% + ¥(&) {p-p_,q9-q,},)

Here the symbol { }+ is the usual anti-commutator and q,f,7y are

real differentiable functions of time. The timg,derivative of I:

dr._ I . 1 S

q& o T BEL | (6)
must vanish identically. ‘This reqhirement leads to the following
equation:

2.2y _ 2 > 2 _ 2 '

(o + =) (p-p )" + (B - 2mQy)(x x) _ (7)

+ (y + E‘f m2? ) {p-po,x—xo}+) =0

If we compare with Eqs. (4), we realize that o, B and -y respectively
coincide with the second moments X,$,0 except for a common scaling

factor. So the invariant I reads:

I =-§- (x(p-po)2 + CD(X'XO)Z - c’{1"1’0”?""0}+) @

Its constant expectation value is:

(D) = xp—o> (9)



This is to be interpreted as accounting for a definite,-constant
value, for the determinant of tﬁe covariance matrix of the classical
phase~space distribution f(x,p,t) whose second moments are, précisely,
X, ¢ and o (see Eq (23b) below)

~ Notice that the Heisenberg uncertainty principle requires that (1)

is always pbsitive and verifies:
S g2 - o |
(D) =2 h7/4 ‘ (10)

If we introduce the reduced width of the quantal state whose first

and second moments are given by Eqs. (2) and (3), respectively,

u2 = m(I)_-l/2 X

(11)
we can decouple the set ofvKhations (4) and write a closed form
equation for u:

2m 4 3 (12)
u .

T ST
. m _

We recognize the generalization to time-dependent mass of fhe-auxil—
iary equatioﬁ introducéd by Lewis1 ih the Qlassical case. It is
worthwhile noticing that the pfinciple'of'correspondence, when applied

L. 5 .. '
to the classical result of Symon,” entitles us to state that the

amplitude of the X motion is solution of the Equation (12). We

believe that the identification of the o,B,y functions in Eq. 5 with



the fluctuations of a quantal state»wiph_;espeqt to the classical
motion paves the way towards a better understanding of the'invariant
opefator and‘its eigensolutioné,v  ‘ _ ) -
As an illustration of the appearance of the invariaqt‘operator in .
actual applications, we sHéllvfocus on the'generalization of the
Wigner distribution function7 for a general-time dependent
) _ ,

oscillator.

__‘bur starting point is the observation that the Schodinger's
equation for the Hamiltonian (1) admits a non-stationary, gaussian

wave packet solution of the form_8’9

: | 2
-1\ 1/4 (x~-x) .
_'w_(x,t) = <§%%—-> exp}- ——-2-079-— + hi [po(x - xo)w + e] (13)

provided that the complex width o and the real phase § are solutions

of the following equations of motion,

- _dh i 22 |
o = E— g m? o (143)
. hz - L ' . -
0= L(Xo,po) - E Re((x ) . (].ZI-b)

In Eq. (l4b), L(xo,po) is the classical Lagrangian for the oscil-
lator undér consideration. It is also straightforward to establish
the relationship between the above defined fluctuations y, ¢ and ¢

(Eqs. 3) and the complex width a, that reads,



N — | ' (15a)

S a ¢=—2—— v , ] . (15b)

Im
e

Q

(15¢)

_ h
973

=
Q

An important consequence of Eqs. (15) is the fact that these three

.quantities are not independent, but fulfill the condition

xb - o% = h/4 - | o (16)
This corresponds to the absolute minimum of the constant'expéctation,v

value (I). Furthermore, it_can be easily checked that the wave packet

(13) is the ground-state eigenfunction of the I-operator, namely,
IW(x,e) = h2/4 W(x,t) ' —_— | (17)
The quantal state represented by the wave packet (13) can be

described through a density operator whose matrix elements in

configuration space read,

olx',x",t) = W(x ,t) U(x ,t) | a8



"This means,

] n - Re OL_l 1/2 (x'_xo)2 (x"nxo)2
p(x , x",t) —Q—__E"-> exp)-

2a

The evaluation of the Wigner distribution function7’10 associated
with this density operator is straightforward. We just resort to its

ce e 7
definition ,

N

dw(x,p,t) = é%g;[dzvéxp(ipz/h)p(x-% , X + 5, t) : ' ; . (20)

With the helﬁ of Eqs. (16) and (17), the value of the integral can be

cast into the form,

dw(x,p,xt‘) =

_ L 1.1 2 2 VI eI
= o exp l ;E [¢(? x )"+ x(p po) 20(x=x )(p Po?]} .

We recognize a gaussian -distribution function that can be

expressed, in matrix notation, in the compact way,
_ 1 1ot -l ,
dw(x,p,t) = =5 exp ( 5 V™™ ;>. | (22)
where: v = (%) ' ‘ (23a)
P'Po . . .

ana  w=(X9) (23b)

T - o+ B’k (19)

£



is the covariance matrix of this distribution. The argument of the
exponential is just the semiclassical version of the invariant derived
» * in Eq. (8). The appealing fact is that Eq.. (20) provides a general-

ization of the Wigner distribution function for an ordinary harmonic

A
i

. 11 . . . .
oscillator = (in the zero-temperature limit), namely,

. 1 -ZHO . .
dw (x,p) = — exp ' (24)
o : mh | hQy, .

Here Ho is given by Eq. (1), but the mass and frequency have been
‘taken as constants m s Qo’ respectively and‘xo =P, = 0.

Finally, Eq. (23) reads,

hm_Q
. 1 2 o'o 2 h 2
d = —— eXp{- _—-[ % + P ) (25)

The quantities accompanying the coordinate and momentum factor are
readily recognized as the fluctuations of momentum and coordinate in
the ground-state of the bscillator, respectiveiy. In this sense,
Eq. (25) provides the correct limit of the more géneral Eq. (21).

As a final remark, we believe that the connection between quantal
fluctuations and invariant operators can provide a uséful tool for the
description of a class of précesses (nuclear fission, relaxation of
collective degrees of freedom in heavy.ion reactions6) in which the

variable mass reaches a singularity.
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