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ABSTRACT OF THE DISSERTATION 

 

Systematic interrogations of biological functions 
 

 
by 

 

Samson H. Fong 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2022 

Professor Trey Ideker, Chair 
Professor Prashant Mali, Co-Chair 

 

A grand challenge in biology is to unravel the complex relationship between genotype 

and phenotype. Here, I describe a systematic genotype-to-phenotype mapping platform based 

on combinatorial CRISPR/Cas9 to identify genetic interactions in cancer cells and a 

biologically inspired, deep learning method to predict and generalize these data types. 



xiii 
 

First, we interrogate essential functions and their context dependencies using ~6 

million combinatorial gene disruptions in breast, lung, and oropharyngeal tumor cells. 

Approximately 1,800 synthetic-essential gene combinations, of which 34% are penetrant 

across tumor types, converge on 49 multi-gene systems. Most essential systems are identified 

by interactions with outside functions.  

Second, we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive 

network of functional interdependencies among CDKs and related factors, identifying 43 

synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-

cell RNAseq, for which we develop a novel computational framework to precisely quantify 

cell-cycle effects and diverse cell states orchestrated by specific CDKs.  

Finally, I present a visible neural network model called DCell that couples a neural 

network to a hierarchical structure of a cell. Trained on several million genotypes, DCell 

simulates cellular growth nearly as accurately as laboratory observations. During simulation, 

genotypes induce patterns of subsystem activities, enabling in silico investigations of the 

molecular mechanisms underlying genotype-phenotype associations. These mechanisms can 

be validated, and many are unexpected; some are governed by Boolean logic.  

Together, these works describe a framework to systematically interrogate the 

complexity and diversity of biological functions. 
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INTRODUCTION 

A grand challenge in biology is to unravel the complex relationship between genotype 

and phenotype (Przybyla & Gilbert, 2022; Steinmetz & Davis, 2004). The field of modern 

genetics began with Gregor Mendel’s work on plant hybridization in which he showed that 

heredity is based on a discrete, fundamental unit (Stern et al., 1967). Since his work, much of the 

field has sought to discover the genetic basis of human traits and diseases. Generally, this work 

was done by studying the allele frequencies in the human population (Risch, 2000).  

However, recent advances in genome sequencing and editing (Mali et al., 2013; Ran et 

al., 2013) and the blossoming of compute power have enabled the field of functional genomics, 

which aims to systematically interrogate the relationship between genotype and phenotype. 

These studies engineer large collections of cells with diverse genotypes and measure their 

resulting phenotypes. The first phenotype profiled in this manner was cellular fitness as 

researchers sought to discover the core set of genes essential to sustain life. This work began in 

model organisms, such as yeast (Winzeler et al., 1999). As the tools of genetic engineering in 

human cells develop (RNAi (Harborth et al., 2001), short hairpin RNA (Silva et al., 2008; 

Tsherniak et al., 2017), and CRISPR/Cas9 (Hart et al., 2015; Meyers et al., 2017)), these screens 

have also identified the genes essential for human life. 

In addition, the phenotype measurements have also become richer. Pathway activities can 

be profiled using fluorescent reporters (Liang et al., 2020; Torres et al., 2019). Plummeting costs 

of next-generation, short-read sequencing, have led to an explosion of high-content datasets. 

Entire transcriptomes can be profiled via RNA sequencing, DNA methylation by bisulfite 

sequencing, chromatin accessibility and DNA sequences that are associated with particular 

proteins via ATAC-seq and CHIP-seq, respectively. These measurements can even be 
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simultaneously obtained for an individual cell by tagging each cell with a molecular barcode 

(Stoeckius et al., 2017).  

The diversity in phenotypes measured reflect the complexity of life, which presents two 

key challenges in the field of functional genomics. First, fully profiling the diversity of human 

cells remains an intractable problem in biology. Second, the high dimensionality of biological 

omics data, in both the number of objects and modalities profiled, make interpretation difficult. 

As a result, analytical methods are needed to integrate and generalize these data.  

In the following chapters, I address both of these challenges by proposing a platform to 

systematically map genotype-phenotype relationships and use a deep learning model to integrate 

these relationships with existing omics data to generalize these relationships.  

The work consists of the following aims:  

• Aim 1: build a platform to map high-throughput genotype-phenotype 

relationships 

• Aim 2: map genotype-phenotype relationships coupled with high-content 

transcriptomic data to provide mechanistic insights 

• Aim 3: build a machine learning model that can accurately predict genotype-

phenotype relationships while providing intermediate explanations for its predictions 

The following chapters will follow each of the aims above. The first chapter describes a 

series of combinatorial CRISPR screens to uncover synthetic essential genes, pairs of genes 

whose disruptions lead to unexpected cell death, and how these screens can integrate with public 

omics data to identify robust interactions that are likely to be highly penetrant. The second 

chapter describes an experiment that couples a CRISPR screen to single-cell transcriptomic read 

out. The final chapter describes a novel neural network architecture that can provide biological 



3 
 

explanations to genotype-phenotype datasets. Finally, in the conclusion, I address how this work 

can be extended to incorporate the recent advances. 
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CHAPTER 1: A map of pan-essential genetic interactions and systems in cancer 

Abstract 
A fundamental goal of biology is to elucidate the cellular functions essential to life. 

Single-gene knockouts have identified essential human genes, but most functions require 

multigenic interactions and are cell-state-specific. Here, we interrogate essential functions and 

their context dependencies using ~6⨉106 combinatorial gene disruptions in breast, lung and 

oropharyngeal tumor cells. Approximately 1,800 synthetic-essential gene combinations, of which 

34% are penetrant across tumor types, converge on 49 multi-gene systems. Most essential 

systems are identified by interactions with outside functions, i.e., MAPK and BAF complexes 

become essential with polymerase loss-of-function, as does STK11-polyubiquitination with 

VRK1 loss-of-function. Essential combinations are corroborated by chemogenetics, cell-line 

dependencies or patient genome analysis. This study provides a roadmap for decoding tumor 

genetic logic via multi-tissue, multi-scale models of essentiality. 

Introduction 
Systematic gene knockout studies using CRISPR/Cas9 (Clustered Regularly Interspaced 

Short Palindromic Repeats) have revealed a set of genes that are essential for the viability of 

human cells. Particular attention has been devoted to the set of approximately 2,000 “common 

essential” genes for which single-gene knockouts consistently cause lethality across tumor cell 

types (Hart et al., 2015; Tsherniak et al., 2017; Wang et al., 2015; Winzeler et al., 1999). From 

this list, an ultimate goal has been to reveal the core components and functions that are essential 

to human cells. However, most cellular functions are dependent on multiple gene products 

working together in complementary, redundant, or overlapping roles. As such, many cellular 
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functions that appear dispensable in previous genome-wide CRISPR screens may in fact be 

critical, but this criticality involves genetic logic that is not exposed by single-gene knockouts.   

A significant strategy to unmask this logic has been to screen for combinatorial gene-

gene interactions by engineering collections of cells with multiple, concurrent gene disruptions. 

These screens, first conducted in model organisms (Bandyopadhyay et al., 2010; Costanzo et al., 

2016; Dixon et al., 2008; Frost et al., 2012; Horn et al., 2011; Roguev et al., 2008) then later in 

human cells using RNA interference (Horn et al., 2011; Laufer et al., 2013; Mohr et al., 2014) or 

CRISPR methodology (Bakerlee et al., 2022; Du et al., 2017; Han et al., 2017; Horlbeck et al., 

2018; Ito et al., 2021; Kelly et al., 2020; Najm et al., 2018; Shen et al., 2017; Ward et al., 2021; 

Wong et al., 2016; Zamanighomi et al., 2019; Zhao et al., 2018), have identified sets of 

“synthetic essential” pairs of human genes, for which simultaneous disruption leads to 

unexpected loss of viability (called synthetic lethality) (Zhao & DePinho, 2017). The interest in 

combinatorial screens has been further driven by the desire to understand genetic dependencies 

in diseases such as cancer, for instance to target proteins that are synthetic-essential with the 

genetic alterations found in a patient’s tumor (Ashworth & Lord, 2018; Hartwell et al., 1997; 

Reinhardt et al., 2009). Initial studies have reported markedly low penetrance of synthetic-

essential gene combinations, with the networks appearing to rewire substantially when 

alternative cell lines were used for screening (Ito et al., 2021; Martin et al., 2017; Najm et al., 

2018; Ryan et al., 2018; Shen et al., 2017). The extent of this variation remains unclear however, 

since previous screens have focused on a few common fast-growing lines to maximize the gene 

pairs tested (e.g. lines growing in suspension like K562) (Han et al., 2017; Horlbeck et al., 2018; 

Shen et al., 2017; Zhao et al., 2018), or on a very specific set of interactions such as those 

induced by KRAS mutation (Kelly et al., 2020) or found among paralogs (Ito et al., 2021). 
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Here, we describe a combinatorial genetic strategy to identify the essential functions of 

human cancer cells across tumor contexts (Fig. 1.1A). First, a panel of tumor cell lines is 

exposed to systematic single and combinatorial gene disruptions aimed towards human 

subcellular functions genetically altered in cancer (hereafter these are called cancer systems). 

The genetic disruption data are then analyzed to determine which systems show evidence for 

essentiality, based on convergence of single-essential genes or synthetic-essential gene 

combinations. This analysis reveals different classes of system essentiality, based on whether 

viability depends on single or combinatorial disruptions and whether the essentiality persists 

across tumor types or is specific to tissues or cancer biomarkers. We designate a core set of gene 

combinations and systems that are pan-essential across tumor contexts, some of which are also 

highly penetrant in outside populations of cell lines and patients. 

Results 
Mapping cancer genetic interactions across tissues  

We constructed a combinatorial CRISPR library (Mali et al., 2013; Shen et al., 2017) to 

disrupt pairs of genes in NeST (Nested Systems in Tumors), a map of multi-gene systems found 

to be genetically altered in human cancers (Zheng et al., 2021) (Fig. 1.1A, Methods). Systems in 

NeST are organized hierarchically, with many small systems capturing specific functional 

relationships (e.g. ATM-dependent DNA repair; Fig. 1.1B) nested within fewer larger ones 

representing broad processes and organelles (e.g. Cellular response to DNA damage). We 

focused in particular on 64 subcellular systems representing hallmark cancer processes of DNA 

damage repair, cell cycle, transcription, and mitogenic signaling (Fig. 1.1B,C). An asymmetric 

library targeted 11,792 (67 x 176) gene pairs; each gene was addressed by three independent 

guides which, with the inclusion of negative controls, made for a library size of 110,728 dual 
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guide RNA constructs (dual-gRNAs, fig. S1.1). This size was comparable to, or slightly larger 

than, modern genome-wide single-gene knockout CRISPR screens (Doench et al., 2016; Sanson 

et al., 2018; Shalem et al., 2014), making it feasible to interrogate a panel of adherent tumor cells 

in large cell culture format (Methods). In the asymmetric library, the first axis was particularly 

directed towards genes that are frequently mutated in various cancer types (Bailey et al., 2018; 

Tate et al., 2019), whereas the second axis included many genes considered druggable  

(Mitsopoulos et al., 2021), enabling high coverage of mutation-drug combinations (Fig. 1.1A).  

We screened this library in a diverse panel of cell lines representing breast, lung, and 

oropharyngeal tissues (Fig. 1.1A). Within these, cell lines were chosen to survey different 

oncogenic backgrounds, including lines with KRAS gain-of-function mutations (MDAMB231, 

A427, A549), PIK3CA gain-of-function mutations (MCF7, CAL33), TP53 mutations 

(MDAMB231, CAL27, CAL33), and contexts lacking all of these (MCF10A). Each line was 

screened in duplicate over four time points, resulting in approximately six million fitness 

measurements and, in this respect, one of the largest genetic interaction screens in solid tumor 

cell lines. We verified these measurements were of high quality based on multi-stage evaluation 

of CRISPR editing efficiency, reproducibility, and benchmarking against previous datasets (figs. 

S1.2-1.3). 

Analysis using Bayesian inference (Kim & Hart, n.d.) showed that 5 to 21% of genes 

were single-essential depending on cell-line context (Bayes Factor >5, fig. S1.4, Methods). 

Similarly, we identified from 0.7 to 3.0% of gene pairs that were synthetic-essential, accounting 

for 1,085 genetic interactions (FDR <10%; fig. S1.3). Here, synthetic essentiality was defined as 

reduced cell fitness due to disruption of both genes simultaneously, which could not be explained 

by additive effects of individual disruptions to either gene (Fig. 1.1D, fig. S1.3, Methods). These 
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data were enriched for synthetic-essential interactions found in former studies (Oughtred et al., 

2019), including 57 in humans or among orthologous genes in other species (hypergeometric 

P=0.02). The remaining 1,028 synthetic-essential combinations (95%) had not been previously 

reported (Oughtred et al., 2019).  

Recognizing pan-essential versus contextual interactions 

Next, genetic data were pooled across all contexts to infer pan-cancer essentiality, or 

alternatively pooling lines of the same tissue, or those harboring a common genetic alteration, to 

infer context-specific essentialities (Fig. 1.2A, Methods). This meta-analysis identified an 

additional 720 synthetic-essential interactions that had narrowly missed the score threshold in 

individual lines but became significant given repeated observations across pooled samples. 

While most essential genes were pan-essential across contexts (59%, Fig. 1.2B), a smaller but 

substantial fraction of genetic interactions were (618 or 34%, Fig. 1.2C, fig. S1.3). For example, 

pan-essential interactions unexpectedly linked the SWI/SNF chromatin factor BRD7 with 

CDKN2A and MSH6 (Fig. 1.2D), genes which may synergistically regulate cell-cycle arrest 

(Mantovani et al., 2010; O’Brien & Brown, 2006; Stott, 1998). We saw pan-essential interactions 

of BRCA1 with base-excision-repair factors, including the expected PARP1 (Farmer et al., 

2005), deubiquitinase USP1 (Lim et al., 2018), and apurinic/apyrimidinic endonuclease 

(Álvarez-Quilón et al., 2020) but also the SWI/SNF factor SMARCA2 (Fig. 1.2D). Notably, 

these examples were not strongly identified in every cell line (e.g. BRCA1-PARP1 in breast), 

but, following the pan-cancer identification, were at least weakly detectable in all tissues. The 

pan-essential network contained numerous connections between genes mutated in cancer and 

FDA-approved drug targets, such as using PALB2 and BAP1 as biomarkers for USP1 inhibitor, 
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suggesting biomarker-drug combinations of potential clinical value based on their penetrance 

across backgrounds (Fig. 1.2E).   

Beyond pan-cancer penetrant interactions, approximately half of synthetic-essential 

interactions segregated in context-specific groupings (51%, Fig. 1.2C,F,G). In these cases, 

grouping by common genetic alterations (21%) accounted for nearly twice as many interactions 

as did grouping by common tissue lineage (11%, Fig. 1.2C). For example, MCF7 and CAL33, 

lines from different tissues but with activating PIK3CA mutations, exhibited common 

interactions linking signaling factors (NOTCH1, GATA3, MAP2K1) to proteins regulating 

genome stability (APEX2, SMARCA2, RECQL5, SHPRH) (Fig. 1.2G). Thus, the vast majority 

of interactions occurred pervasively (pan-essentials) or in logical patterns (contextual groupings) 

across conditions.  

A hierarchy of essential tumor cell systems 

To move from pairwise interactions to impacts on subcellular functions, we next 

integrated our combinatorial CRISPR data with the NeST map of multi-gene systems (Zheng et 

al., 2021) (Fig. 1.3A,B). For comparison, we also consulted three alternative gene function 

databases defined by WikiPathways (255 systems) (Martens et al., 2021), Reactome (416 

systems) (Jassal et al., 2020) or Kyoto Encyclopedia of Genes and Genomes (KEGG, 78 

systems) (Kanehisa et al., 2022). Essentiality of a system was scored using three complementary 

tests (Fig. 1.3C, fig. S1.5): (1) Enrichment for lethal knockouts to single genes (independent 

lethality, IL); (2) Enrichment for synthetic-lethal knockouts to gene pairs (within-system 

synthetic lethality, SLwithin); or (3) Enrichment for synthetic-lethal interactions with an outside 

gene (across-system synthetic lethality, SLacross). The first test (IL) recognized essential 

systems in which each subunit is required independently of others, whereas the second and third 
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tests recognized systems in which subunits are essential in combinations, dependent on other 

factors within (SLwithin) or outside (SLacross) the system. Of the 64 NeST systems covered by 

our screen, 49 scored as essential by one or more approaches (77%, FDR <0.3; Fig. 1.3A-B). 

These 49 essential systems were supported by 81% of all single-essential genes and 54% of all 

synthetic-essential interactions, covering approximately 1,000 separate combinations. Thus, all 

of these numerous separate observations of essentiality at the level of genes could be attributed 

more parsimoniously to a core set of essentialities of a relatively small number of multi-genic 

mechanisms. Conversely, 15 systems lacked evidence for essentiality by any of the single or 

combinatorial tests, despite having sufficient coverage in the CRISPR screen. Some of these 

non-essential systems were surprising, such as Histone modification during DNA repair, which 

we expected would be essential but were not.   

For essential systems, the vast majority were identified from SLacross system-by-gene 

interactions (Fig. 1.3D). In lung cells for example, single-gene disruptions in the G1 checkpoint 

system were nominally tolerated but became strongly essential under knockout of DNA 

polymerase epsilon (POLE, Fig. 1.4A, fig. S1.6). Other notable examples included the BAF 

chromatin remodeling complex and Mitogen Activated Protein Kinases (MAPK), which became 

essential under knockout of DNA polymerases POLE or mitochondrial POLG, respectively (Fig. 

1.4A). System-by-gene interactions were even more prevalent in WikiPathways and KEGG, in 

which nearly all essential systems were identified by SLacross. In contrast, <1% of systems in 

these databases scored essential by single-gene lethality (Fig. 1.3D). As one explanation for why 

essential systems might be missed by single-gene knockouts, we hypothesized they might 

contain paralogs with redundant or buffering functions (Ito et al., 2021; Kelly et al., 2020); 

however, paralogs were not enriched among the synthetic-essential interactions identified.  
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For system-by-gene interactions involving drug targets, a useful follow-up is a 

chemogenetic screen to investigate whether such interactions are phenocopied by the drug. As 

proof-of-concept, we ran a chemogenetic screen to examine the pan-cancer interaction that had 

been identified linking Homology Directed Repair (HDR) genes to PARP1 (Fig. 1.4A, Methods). 

This screen confirmed that disruptions to HDR factors such as XRCC3, LIG1 and BRCA1 

induce chemical dependency on the PARP-inhibitor olaparib in oropharyngeal tumor cells (Fig. 

1.4B,C). Notably, olaparib is in clinical trials for this tumor type although XRCC3 and LIG1 

mutations are not being examined as biomarkers of response (Moutafi et al., 2021); adding these 

genetic indications may thus prove informative.  

Alignment with population genetic resources 

Finally, we examined the degree to which the essential interactions and systems aligned 

with outside resources based on gene association testing in sample populations. For this purpose 

we examined the Dependency Map (DepMap), measuring a population of 808 genomically-

characterized cell lines for sensitivity to each of 18,119 single-gene knockouts (Meyers et al., 

2017; Tsherniak et al., 2017), and The Cancer Genome Atlas (TCGA), measuring a population of 

10,967 genomically-characterized tumors for patient survival times (Hutter & Zenklusen, 2018; 

Liu et al., 2018). For each gene-gene or system-gene interaction identified by combinatorial 

CRISPR, we examined DepMap cell lines to determine whether genomic alteration of one of the 

interacting genes/systems (single nucleotide variants, small insertions/deletions, or copy number 

aberrations) was associated with increased sensitivity to knockout of the interacting partner (Fig. 

1.5A). We used TCGA in a complementary fashion, to identify interactions for which tumors 

with genomic alterations in both interactors associate with increased patient survival (Fig. 1.5A, 

Methods). We found that these resources were powered to test approximately half of our genetic 
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interactions (Fig. 1.5A, 43 to 52%), based on which genes were altered in a sufficient fraction of 

samples (Methods). 

This analysis identified 91 gene-gene interactions and 25 system-gene interactions with 

suggestive evidence in DepMap or TCGA (Fig. 1.5A, P<0.05), of which 25 and 15 remained 

after control for multiple hypothesis testing (FDR<0.3, Methods). For example, DepMap cell 

lines with genetic alterations in systems related to cell cycle and DNA repair were markedly 

sensitive to TP53 knockout (Fig. 1.5B), corroborating our earlier findings with combinatorial 

CRISPR (Fig. 1.4A). Another illustrative example was the synthetic essentiality of double-

strand-break repair factor MRE11 with POLE in lung cancer cells, which we recapitulated in 

DepMap by showing that samples with POLE copy-number loss were particularly MRE11-

dependent (Fig. 1.5C). A notable group of interactions corroborated by DepMap linked the 

vaccinia-related kinase (VRK1) to genes involved in the STK11-polyubiquitination system (Figs. 

1.5D-E; STK11 also known as LKB1). We had first identified VRK1-STK11 as a significant 

synthetic-essential interaction in lung cancer cells (Fig. 1.2F). Our later systems analysis 

clarified that VRK1 interaction is not only with STK11 but with factors that activate STK11 via 

polyubiquitination, including VHL and FBXW7 (Lee et al., 2015) (Fig. 1.4A). Although these 

interactions had not been previously reported, analysis of DepMap showed that lung cancer cells 

with genomic alterations in STK11-polyubiquitination genes were associated with sensitivity to 

VRK1 knockout (Fig. 1.5D). Based on our combinatorial CRISPR results and corroboration by 

DepMap, targeting VRK1 in the >20% of lung cancers with genetic alterations in STK11 or 

upstream ubiquitination machinery presents an attractive strategy for further study.  

As for alignment with TCGA, a compelling synthetic-essential interaction corroborated 

by this resource involved the HDR factor TDP2 and Wnt-pathway antagonist APC. In TCGA, 
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breast cancers with copy number losses in both genes were associated with substantially 

improved outcomes (Fig. 1.5F, 13-month difference in median survival, log-rank P=3.3⨉10–4). 

Beyond these individual validations, we used all gene-by-gene and system-by-gene interactions 

as features in a unified predictive model to stratify patients into good versus poor survival groups 

(Methods). This unified model had very high predictive power (fig. S1.8A) which could not be 

explained by general tumor characteristics including tumor mutation burden, subtype, and sex 

(fig. S1.8B), and it significantly outperformed null models based on random interactions (fig. 

S1.8C). The highest overall performance was achieved with a unified model for predicting breast 

cancer survival, based only on synthetic-essential interactions identified in breast tumor cells 

(69.6-month difference in median survival, Fig. 1.5G, fig. S1.8C). These results further 

underscore the utility of cancer genetic interaction maps specific to tissue type. 

Discussion 
In expanding the concept of essentiality from genes to objects at larger scales, 

fundamental questions arise as to what being  essential in biology means and how to detect it. 

Here, we focused on scales relevant to the inner functions of human cells, spanning a hierarchy 

of subcellular systems of diverse sizes. Systems were designated “essential” if they are enriched 

in genes for which genetic disruptions, either individually or in combinations, cause a severe 

growth phenotype. This definition suggests an organization of biological constituents required 

for viability, subsuming physical interactions and functional logic (Cheng et al., 2021). Notably, 

there is no requirement that any of the constituent parts of an essential system must be essential 

independently. This aspect was seen repeatedly in our analysis, where most essential systems 

were implicated by pairwise interactions rather than independent disruptions of single genes 

(Fig. 1.3D). Conversely, many genes that score as independently essential could be more 
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parsimoniously explained by the smaller set of essential systems whose functions they enable 

(Fig. 1.3A-B). Such transfer of biological essentiality from genes to other scales has been 

invoked in other studies, such as those which explain pleiotropic genes by contributions to a few 

independent functions (Pan et al., 2022), or which use tiling CRISPR guide-RNAs to dissect an 

essential gene into essential domains or residues (He et al., 2019; Neggers et al., 2018; Yang et 

al., 2021). 

While our findings on the numbers and sizes of essential systems (Fig. 1.3D, fig. S1.4-

1.5) reflect subcellular organization, they are also influenced by the statistical power of 

enrichment tests, which increases with the number of proteins (IL test) or protein pairs (SL tests) 

contributing data. This property makes it easier to detect small phenotypic effects for larger 

systems, and it confers higher sensitivity to SL tests than IL tests, since the number of gene pairs 

in a system is quadratically greater than the number of genes. It is nonetheless notable that the 

size distribution of essential systems closely mirrors that of all systems, suggesting that 

biological essentiality is a scale-free property; this trend is readily apparent for pan-cancer 

essential systems identified by the more highly powered SL approaches (fig. S1.5C). 

Once the strong gene-gene and system-gene interactions have been identified, these 

provide a focused set of candidates for integration with population genetic resources like 

DepMap and TCGA. Identifying a set of strong genetic interactions prior to querying these 

resources greatly improves statistical power compared to subjecting them to exhaustive de novo 

screens for genetic associations. This latter prospect yielded early results (Behan et al., 2019; 

Chan et al., 2019; El Tekle et al., 2021; Haar et al., 2019; Tsherniak et al., 2017) but is ultimately 

hampered by the very stringent p-value thresholds required to control false discoveries from the 

many association tests (e.g., exhaustive evaluation of DepMap involves testing >103 gene 
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mutations for association with >104 gene knockouts). Here we use DepMap and TCGA to follow 

a combinatorial CRISPR screen rather than precede it, yielding a corroborated set of pan-cancer 

and tissue-specific interactions of high interest for future research and therapeutics development, 

most of which have not been previously reported (Fig. 1.5A). 

Conclusions 
Moving forward, our results illustrate how a comprehensive map of cancer-essential 

systems, spanning many of the relevant biological scales, might be achieved within this decade 

by approaches related to those outlined here. The work ahead includes expanded combinatorial 

genetic screening, in a broader collection of human cell types and across differing states of 

disease and exposure to therapy. However, the ultimate goal is not a long list of essential and 

synthetic-essential genes; rather, such lists provide the underlying data points that inform 

essential biological structures and their functional logic. In this respect, our exploration has 

demonstrated the value of screens that do not progress in isolation but are informed by, and 

subsequently inform, human cell architecture. 

  



18 
 

Figures 

Figure 1.1. Overview and study design.  

(A) Understanding the core functions of tumor cells by systematic mapping and discovery of 
synthetic-essential gene combinations and essential systems across cancer contexts. gRNA, 
guide RNA; GI, genetic interaction; hU6, mU6: human and murine U6 promoters. (B) Circle-
packing diagram of the NeST (Nested Systems in Tumors) map of human subcellular systems, 
filtered to the systems covered in this study. Subcellular systems are denoted as circles; 
containment of one circle in another denotes a system that is a subcomponent of a larger one. 
Circle color denotes the fraction of genes within the system represented in the combinatorial 
CRISPR library, according to the color scale defined in panel C. (C) Histogram showing the 
combinatorial CRISPR library coverage of subcellular systems. NeST systems are binned by the 
fraction of their genes represented by gRNAs in the CRISPR library (coverage, x-axis). Bar 
shading increases with coverage. (D) Points show all pairwise gene combinations with MSH2, 
with the (MSH2 ⨉ gene) double-mutant fitness plotted versus the single-mutant fitness of each 
gene (y versus x-axis). The diagonal shows the least squares fit regression line by which a gene 
is determined to have a positive (above line, e.g. KAT5) or negative (synthetic-essential, below 
line, e.g. BRD4) interaction with MSH2. 
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Figure 1.2. Pan-cancer and context-specific mapping of synthetic essentiality.  

(A) Typing the essentiality of genes and pairwise genetic interactions. Scoring occurs first across 
all contexts to identify pan-cancer essentialities (red), then within tissue or biomarker contexts 
(purple), then within individual cell lines (light blue). (B-C) Piecharts showing numbers of 
essential genes (B) and synthetic-essential interactions (C) by scoring context (colors same as 
panel A). (D) Heatmap of strongest synthetic-essential genetic interactions based on their 
consistent discovery across contexts (most extreme negative pan-cancer scores with all 
interactions having FDR < 0.1). Columns show interacting gene pairs; rows show modes of 
interaction scoring based on (top to bottom) pan-cancer, tissue-specific, or individual cell-line 
analysis as per panel A. Blue-black-yellow color gradient represents full range of negative-zero-
positive scores. Gene pairs in red are highlighted in the text. (E) Chord diagram of pan-essential 
interactions that link genes impacted by frequent somatic mutations (blue) to genes encoding 
druggable targets (green). Some genes have both properties (purple). (F) Heatmap of strongest 
synthetic-essential genetic interactions identified in specific tissue contexts (most extreme 
negative interactions by tissue score among interactions failing the pan-cancer test, all 
interactions shown have FDR < 0.1). Display as per panel D. (G) Heatmap of representative 
synthetic-essential genetic interactions that are conditional on a specific biomarker (top). Display 
as per panel D. Activating gain-of-function (GOF) mutations: KRAS, PIK3CA. Loss-of-function 
(LOF) tumor suppressor mutations: POLQ. Interactions dependent on TP53 are active under the 
TP53 wildtype status. 
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Figure 1.3. Structural map of essential multi-gene systems. 

(A) Multi-scale map of tumor subcellular systems, represented as a kaleidoscopic nested circle 
layout as per Fig. 1B. Color indicates whether a system (circle) or gene (diamond) is pan-
essential across cancer types (red), essential in specific tissue or biomarker contexts (green), or 
non-essential (blue). Four systems are expanded at right to show the underlying genetic data, 
with accompanying barplots providing odds ratios of enrichment for single-essential genes (IL), 
synthetic-essential gene pairs (SLwithin), and synthetic essentiality with outside genes (SLacross) 
where relevant. The highlighted systems are exemplars of all three effects: IL (Chromosome and 
HR systems); SLwithin (Mitosis, HR); SLbetween (G1 checkpoint). (B) Same map of multi-gene 
systems visualized as a vertical hierarchy. System size (number of proteins) shown by node size. 
Arrows denote that one system contains another. Individual proteins not shown. (C) Scatterplot 
of systems (points) showing enrichment for independent gene lethality (IL, x-axis), synthetic 
lethality within systems (SLwithin, y-axis), or synthetic lethality across systems (point color, 
SLacross). (D) Fraction of systems (y-axis) scoring as essential in each of four databases of 
subcellular systems (x-axis) revealed by the different methods (bar colors). Error bars, 95% 
confidence intervals of the sampling proportion. 
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Figure 1.4. Systems with conditional essentiality on an outside function. 

(A) For systems identified by across-system essentiality (rows, SLacross), the heatmap shows the 
outside gene dependencies (columns) and the tissues in which dependency is observed. Selected 
subset of system-gene interactions shown for systems cataloged by NeST and Reactome; for a 
full list see Figure S6. (B) Scatterplot comparing olaparib chemogenetic interaction experiments 
(y- axis) with PARP1 combinatorial CRISPR genetic interaction experiments (x-axis; Pearson r 
= 0.33 over all data points) in the CAL27 cell line. (C) Cell fitness under olaparib treatment (y-
axis, dark blue points) versus untreated conditions (DMSO, light blue) focusing on sgRNA 
knockouts of genes prioritized by the PARP1 combinatorial CRISPR screen (x-axis). Data from 
CAL27 cell line. 
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Figure 1.5. Comparison of combinatorial CRISPR screening to population genetic datasets. 

(A) Gene-gene and system-gene interactions identified with combinatorial CRISPR (left) are 
examined in complementary screens measuring dependency of cell lines on single gene 
knockouts (top) or dependency of patient survival on presence/absence of pairwise genetic 
alterations in the tumor (bottom). Interactions are stratified into four categories (piecharts with 
colored slices, right). Suggestive: P < 0.05; Stringent: P < 0.05 and FDR < 30%. (B) Novel 
TP53-system interactions identified by combinatorial CRISPR corroborated by supporting 
evidence in DepMap. (C) Swarmplot showing fitness reduction in DepMap lung cell lines due to 
MRE11 knockout, shown separately for lines without (left) versus with (right) POLE copy 
number loss. P-value determined by Student t-test. (D) Swarmplot showing fitness reduction in 
DepMap lung cell lines due to VRK1 knockout, shown separately for lines without (left) versus 
with (right) somatic coding mutations in genes encoding the STK11 polyubiquitination system. 
P-value determined by Student t-test. (E) Pathway diagram showing synthetic-essential 
interactions resulting from knockout of VRK1 paired with knockout of genes in the STK11 
polyubiquitination system. (F) Kaplan-Meier survival curves of TCGA breast cancer patients 
whose tumors have copy number loss in both APC and TDP2 (red curve) versus all other patients 
without copy number loss in these genes (black). P-value determined by log-rank test. (G) 
Kaplan-Meier survival curves for TCGA and METABRIC breast cancer patients. Patients 
stratified in good versus poor prognosis groups (red versus black), as predicted by a regression 
model using the set of gene-gene and system-gene interactions corroborated in the “suggestive” 
significance category (panel A). P-value determined by log-rank test. 
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Supplemental Figures 

 
Figure S1.1. Combinatorial gRNA library design. 

(A) The dual CRISPR library targets all pairs of 67 by 176 genes across 7 cell lines. Each gene is 
targeted by 3 guide RNAs resulting in 9 guide pairs for each gene pair assayed in 2 replicates. 
(B) Design of the custom 130 base pair oligonucleotide pool used to construct the combinatorial 
CRISPR library. sgRNA1 and sgRNA2 can target the same gene or two different genes. hU6, 
human U6 promoter; sgRNA, single-guide RNA; BsmBI, BsmBI restriction enzyme recognition 
site. (C) Two-step cloning strategy to package the oligonucleotides in B into a functional 
combinatorial CRISPR library. mU6, murine U6 promoter. 
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Figure S1.2. Reproducibility and validation of fitness measurements. 

(A-C) Scatter plots showing reproducibility across replicates of fitness measurements (y versus 
x) at the level of (A) individual guide pairs; (B) gene pairs, median over all relevant guide pairs; 
and (C) genes, integrating over all relevant pairwise fitnesses involving each gene. Note 
progressive increases in reproducibility (Pearson correlation r) with increasing integration of 
data. (D) Bar plot of the Pearson correlation between replicate guide pair (teal) and gene pair 
(blue) fitness measurements in each of the 7 cell lines. (E) Bar plot of Pearson correlation 
between the replicate single-gene fitness measurements from the human U6 (hU6, in blue) and 
murine U6 (mU6, in red) position. (F) Bar plot of the Pearson correlation between the single-
gene fitness measurements from the hU6 (in blue) and mU6 (in red) position and the single-gene 
fitness measurements from the DepMap project. (G) Fitness distributions of single-knockout 
common-essential genes (in blue) and non-essential genes (in orange) annotated by DepMap. (H) 
The recovery of common-essential genes annotated by DepMap (area under the receiver 
operating characteristic curve, auROC) when scoring essential genes de novo based on sgRNAs 
expressed by the human U6 (hU6, in blue) or murine U6 (mU6, in red) promoters. (I) Scatterplot 
of single-gene knockout fitness measurements scored in this study versus those measured by 
DepMap, including data from all seven cell-line contexts 
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Figure S1.3. Reproducibility and validation of genetic interaction measurements. 

(A) Relative fitness measurements for single-gene disruption to BRCA1 and PARP1 and double-
gene disruption to BRCA1 and PARP1. Fitnesses of both single- and double-gene disruptions are 
tracked over the course of 21 days. (B) Volcano plot showing false discovery rate versus genetic 
interaction score for all gene pairs in CAL27 cell line. The confidence interval contains 95% of 
all genetic interactions where at least one sgRNA targets the adeno-associated virus integration 
site 1 (AAVS1). Point color shows the absolute fitness score of each gene pair. (C) Distribution 
of coefficients of variation (CV) of top 100 synthetic essential genes in individual cell lines 
(blue) and randomized genetic interaction measurements used for pan-cancer interactions 
(green). Dotted line shows the threshold of CV that best separates the cell line and pan-cancer 
CV distributions. (D) Bar plot of the Pearson correlation between replicate genetic interaction 
measurements in each of the 7 cell lines. Pearson correlations are also shown after pooling 
measurements within each of the 3 tissues or across all tissues (pan-cancer). All measurements 
are shown in teal and significant interactions (FDR < 30%) are shown in blue. FDR, False 
Discovery Rate. (E) Number of significant positive and negative genetic interactions (FDR < 1% 
in teal and FDR < 10% in blue) in each of the 7 cell lines, in each of the 3 tissue pools, or when 
pooling all contexts as pan-cancer. 
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Figure S1.4. Heatmap of essential genes identified in this study. 

Blue color indicates a human gene (columns) scoring as essential in a tumor cell line, context, or 
pan-cancer (rows). 
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Figure S1.5. Mapping essential systems with combinatorial CRISPR data. 

(A) Tests for identifying essential systems by independent gene lethality (IL), synthetic lethality 
within systems (SLwithin ), or synthetic lethality across systems (SLacross). Circle nodes represent 
systems; diamond nodes represent genes; arrows linking one circle to another indicate 
hierarchical containment of the first system (child) by the second (parent). Color represents 
viable (gray) versus lethal (red) status of the corresponding gene or pairwise gene knockout. (B) 
Distribution of system sizes for essential systems identified by IL, SLwithin, SLacross, or all systems 
regardless of essentiality status. (C) Proportion of systems binned by system size, measured in 
number of genes. System sizes are binned by equal sized bins in linear space then log 
transformed. Red highlights this information for the subset of essential systems. The negative 
linear trend on a log-log plot is consistent with a scale-free distribution.  
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Figure S1.6. Heatmap of all systems identified by across-system essentiality. 

Each colored box indicates a system (rows) that scored as essential conditional on knockout of 
an independent gene outside the system (columns). Colors denote the relevant context (tissue 
type or pan-cancer). Abbreviated version in Fig. 4A. 
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Figure S1.7. Patient survival prediction model. 

(A) Kaplan-Meier survival curves for TCGA and METABRIC breast cancer patients. Patients 
stratified in good versus poor prognosis groups (red versus black), as predicted by a regression 
model using pan-cancer interactions. P-value determined by log-rank test. (B) Kaplan-Meier 
survival curves for TCGA and METABRIC breast cancer patients. Patients stratified in good 
versus poor prognosis groups (red versus black), as predicted by a regression model using tumor 
mutation burden, subtype, and sex. P-value determined by log-rank test.  (C) Bar chart showing 
the significance of the difference in overall survival between good and poor prognosis breast 
cancer patients as predicted for different models trained on the essential genes and gene pairs 
discovered in pan-cancer, oropharyngeal, lung, or breast contexts.  
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Methods 
Construction of combinatorial gRNA libraries 

We created a 110,728-element oligonucleotide pool (contract to CustomArray, Inc.), split 

into nine smaller subpools of roughly 12,500 elements each to ensure >100X coverage during 

production of the combinatorial CRISPR library (see below). Each element consisted of a 130 

base pair (bp) oligonucleotide containing a 5’ overlap to the U6 promoter region and a 3’ overlap 

to the guide-RNA scaffold region of the LentiGuide Puro backbone (LGP, Addgene #52963). 

Between these overlaps, the oligonucleotide included two guide-RNA sequences (20bp each) and 

a 15-bp random spacer sequence (fig. S1B). The first gRNA1 targeted a gene along the long axis 

of the asymmetric library design while the second gRNA2 targeted a gene along the short axis 

(176 by 67 genes, Fig. 1A), with 3 gRNAs targeting each gene. Specific gRNA sequences 

targeting each gene were selected from previously released gRNA databases (Shalem et al., 

2014). The long versus short axis also included two additional control disruptions: an AAVS1 

(adeno-associated virus integration) site, a classical “safe editing” locus in which the 3 gRNAs 

should not disrupt cell function (Mali et al., 2013), and a non-targeting control disruption based 

on 3 gRNAs that do not target anywhere in the genome. In addition, we added 190 gRNA1-

gRNA2 pairs for which both gRNAs are non-targeting. Each subpool of oligonucleotides was 

amplified with OLS_gRNA-SP_Foward and OLS_gRNA-SP-Reverse primers using Kapa Hifi 

HotStart DNA polymerase (Roche). PCR cycling conditions: 20s at 98 °C, 20s at 59 °C, 20s at 

72 °C, 24 cycles. Each oligonucleotide subpool was used to construct a combinatorial-gRNA 

library in two molecular cloning steps (fig. S1C). First, the LGP backbone was linearized by 

PCR using Q5 HotStart HF master mix (Qiagen) (Q5_LGPpbackboneAmp_F, 

Q5_LGPpbackboneAmp_R) and digested with BsmBI (New England Biolabs) and 1% Bovine 

Serum Albumin. The digested, linearized LGP backbone was joined with each of the 
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oligonucleotide subpools by Gibson Assembly. The product was then electroporated into 

ElectroMAX Stbl4-competent cells (Invitrogen) and grown according to manufacturer 

recommendations. To ensure coverage of the library, we performed and pooled at least four 

Gibson Assembly and transformation operations per oligo subpool, depending on transformation 

efficiency. Intermediate plasmids were extracted using ZymoPure II Plasmid Maxiprep Kit 

(ZymoResearch). The second cloning step incorporated a modified gRNA scaffold for the gRNA 

expressed by the human-U6 promoter and the murine-U6 promoter. The scaffold was modified 

to reduce homology between the two gRNAs, as per a previous protocol (Shen et al., 2017). Both 

the scaffold promoter sequence and the intermediate plasmid were digested by BsmBI and 

ligated by T4 Ligase (New England Biolabs). The final products were transformed into electro-

competent cells, extracted, quantified by Qubit Fluorometer (ThermoFisher Scientific), and the 

separate sub-libraries combined at equal molar concentrations. To verify correct library 

construction, the pooled library was sequenced by next-generation sequencing (Illumina HiSeq 

4000). 

Next-generation sequencing 

For both plasmid library and genomic DNA extracted from the combinatorial CRISPR 

screens, we amplified the pair of gRNAs using F_dCRISPR_NGS and R_dCRISPR_NGS 

sequencing primers. We optimized the PCR cycle number by performing a series of small-scale 

PCR reactions at different cycle numbers, then selected a cycle number within the exponential 

phase of the PCR to minimize artifacts. PCR products were purified using DNA Clean and 

Concentrate (Zymo Research) and AMPure XP beads (Beckman Coulter). The sequencing 

primers contained an adapter sequence for NEBNext Multiplex oligos for Illumina (New 

England Biolabs) to add an indexing barcode, allowing us to multiplex multiple time points and 
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experiments in a single sequencing lane. This indexing barcode was added with a second PCR 

step. Products were analyzed using a TapeStation (Agilent) to verify purity then sequenced using 

paired-end 100-bp reads. Sequencing files were analyzed using Bowtie2(Langmead et al., 2019) 

to generate a counts file enumerating the number of reads mapped to each construct. 

Cell culture and reagents 

MDAMB231, A549, A427, CAL33 or CAL27 cells were retrieved from the American 

Type Culture Collection (ATCC) or Leibniz Institute German Collection of Microorganisms and 

Cell Cultures GmBH (DSZM) and cultured according to the provider’s recommendations. MCF7 

and MCF10A were gifted by William Hahn. All cell lines were routinely tested for Mycoplasma 

contamination and were authenticated by short tandem repeat (STR) analysis (Idexx 

BioAnalytics). 

Lentivirus production 

Lentiviruses were used to generate Cas9-expressing cell lines and to transduce Cas9-

expressing cells with the combinatorial-gRNA library. HEK-293T cells (ATCC CRL-3216) were 

purchased from ATCC and used to produce lentiviruses. Cells were cultured in DMEM (Gibco 

11995-040) with 10% fetal bovine serum (FBS; Omega Scientific FB-01), 1% penicillin-

streptomycin (Gibco 15140-122), and 1% antibiotic-antimycotic (Gibco 15240-062). HEK-293T 

cells were seeded in 10-cm tissue culture dishes at a density such that 70-80% confluency was 

reached on the day of transfection. A transfection cocktail composed of 14.5 μL of 

Lipofectamine 3000 (Invitrogen L3000001) and 0.6 ml of Opti-MEM reduced serum medium 

(Gibco 31985070) was deposited into each dish and incubated for 5 min at room temperature. In 

parallel, a plasmid cocktail containing 1.2 μg of VSV-G envelope expressing plasmid (pMD2.G; 

Addgene #12259), 4.8 μg of pCMV delta R8.2 (pCMVR8.2; Addgene #12263) packaging 
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plasmid, 3.6 μg of LentiCas9-Blast plasmid or combinatorial dual-gRNA CRISPR library 

plasmid and 19.2μL of P3000 (Invitrogen) were mixed gently. LentiCas9-Blast (Addgene 

#52962) was a gift from Feng Zhang (Sanjana et al., 2014). After 5 min, the transfection and 

plasmid cocktails were combined and incubated for 30 min at room temperature. The mixture 

was then added dropwise onto the HEK-293T cells. Virus was harvested at 48 and 72 hr post-

transfection. The pooled media containing virus was filtered using a Steriflip vacuum filtration 

system (Millipore SE1M003M00) to remove cell debris, followed by purification and 

concentration using an Amicon Ultra-15 (Millipore UFC910024).  

Cas9-expressing cells 

Cells were seeded at 300,000 cells in each well of a 6-well plate and transduced with a 

range of the Cas9 virus (5-20 μL) with 8 μg/mL polybrene (Sigma-Aldrich). Stable Cas9-

expressing cells were tested for Mycoplasma contamination, STR-verified, expanded, and frozen 

into multiple aliquots so that experiments could be performed at low passage numbers. Cells 

were grown in their respective growth media with blasticidin to select for Cas9 expression (5-10 

μg/mL depending on cell line). Cas9-expressing cells were selected based on high levels of Cas9 

protein expression and confirmed by capillary western (Wes, Protein Simple) using CRISPR-

Cas9 antibody (7A-3A3)–N–Terminus (Novus NBP2). 

Combinatorial CRISPR screening 

To ensure representation of all guide pairs in the combinatorial CRISPR library, we 

performed the CRISPR screens with >500 cells per guide pair in the library, with significantly 

higher number of cells per guide pair after the initial infection. Each cell line was infected at a 

multiplicity of infection of 0.3 to minimize probability of multiple lentiviral integration (P < 

0.05). Puromycin selection (2.5 μg/mL) was started two days after transduction and the 
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concentration was reduced by half upon each cell culture passage to a final concentration of 

0.625 μg/mL, which was maintained for the remainder of the experiment. Following initial 

puromycin selection, cells were maintained in exponential growth by harvesting and removing a 

fraction of cells every 2-3 days over the course of 24-28 days. We selected four time points per 

replicate for genomic extraction using a Blood and Cell Culture DNA Mini Kit (Qiagen). We 

amplified our combinatorial gRNA from the extracted genomic DNA by PCR using 

F_dCRISPR_NGS and R_dCRISPR_NG primers. The amplified products were prepared for next 

generation sequencing as described above.  

Quantifying fitness effects 

The fitness effect of a guide pair at a given time point was quantified as the difference in 

abundance at that time point compared to the abundance in the starting plasmid pool.  

𝑓𝑓𝑖𝑖,𝑗𝑗𝑡𝑡 = log2(
𝑎𝑎𝑖𝑖,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝

𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡
) 

Where f denotes the fitness effect of a guide pair (guide i and guide j) at time point t, and 

a denotes the fraction of the sequencing reads that mapped to i, j. We quantified the fitness effect 

of each double-gene knockout (a,b) (gene a on the long 176-gene axis and gene b on the short 

67-gene axis of the screen, Fig. 1A) by calculating the median across the nine fitness 

measurements of the corresponding (gRNA1,gRNA2) pairs (fig. S1A). We quantified the single-

gene knockout fitness of each gene a as the median of all double-knockout fitness that contain 

gene a. Finally, both single-gene and double-gene knockout fitness measurements were centered 

on the median fitness of the non-targeting-control pairs (fNTC, see “Construction of combinatorial 

gRNA libraries” above). In particular: 
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Quantifying genetic interactions 

Genetic interaction scores were calculated from these fitness measurements following a 

previously described method (Collins et al., 2010; Horlbeck et al., 2018) with minor adaptations. 

For each time point and specific gene b=B (short axis), we regressed all relevant double-gene 

knockout fitness measurements (a,B) against the single-gene knockout fitnesses of (long axis) 

genes a, described by the following equation:  

 

where fab is the observed fitness of the double-gene knockout, fa is the observed single-

gene fitness of a, and  and  are linear regression parameters specific to gene b and the 

inferred single-gene fitness of b. The remaining error, , is the degree of genetic interaction, 

which was z-score normalized for each regression:  

 

where  and  are the mean and standard deviation, respectively. This genetic 

interaction z-score was thus the difference between the observed and the predicted fitnesses, with 

a positive score indicating that the double mutants were healthier than predicted and negative 

score sicker than predicted (Fig. 1D). We estimated the genetic interaction score for a gene pair 

in a given context (pan-cancer, tissue, biomarker, or cell line; Fig. 2A) by averaging za,B over the 

n different time points, replicates and cell lines relevant to that context: 
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We found both here and previously (Shen et al., 2017) that inclusion of multiple time 

points increases the stability of the resulting interaction scores.  

Classifying synthetic-essential genes 

We classified a gene pair (a,b) as synthetic-essential in a given context via a series of 

three tests, all of which had to succeed. First, we compared πa,b to a negative control πAAVS 

distribution, defined across the 246 pairwise combinations of genes including the AAVS1 safe-

harbor locus (see “Construction of combinatorial gRNA libraries” above). Gene pairs were 

classified as synthetic-essential if πa,b was substantially negative in value compared to this 

control (fig. S3B): 

 

Second, we ensured that the underlying gRNA-level interaction scores were significantly 

different for the gene pair (a,b) versus the AAVS negative control:  

 

t-test ( ) 

Third, only for contexts grouping multiple cell lines (pan-cancer, tissues or biomarkers; 

Fig. 2A), we required that the genetic interaction score for (a,b) should be consistent across the 

included lines and not due to outliers. The coefficient of variation (CV) was used to quantify this 

consistency:  

 

where  is the gRNA-level interaction scores relevant to the genetic interaction 

between gene a and b in cell lines c belonging to the particular context. We examined the 

distribution of CVs for all synthetic-essential genes called in single cell lines (by the first two 

criteria above), finding these CVs to be very low in comparison to those of a randomized control 
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permuting the mapping from guide-pairs to gene-pairs (fig. S3C). We therefore set a threshold of 

CV < 4.3 for calling a gene pair synthetic-essential in a given contextual grouping, which was 

the CV value that best separated the cell-line-specific and random distributions.  

Classifying single-essential genes 

To classify single-essential genes in a given context (pan-cancer, tissue, biomarker, or 

cell line; Fig. 2A), we pooled the relevant collection of fitness measurements for that context (

) including all guide pairs covered by the combinatorial CRISPR library and both replicates 

at the final time point. This pool, along with the mapping of guide pairs to gene-pair labels, was 

provided to the BAGEL classifier (Bayesian Analysis of Gene Essentiality)(Kim & Hart, n.d.). 

We used BAGEL to assign a likelihood of essentiality, called the Bayes Factor (BF), to each 

gene pair based on its distribution of guide-pair fitness measurements. Given these BF scores on 

gene pairs, single genes were classified as essential if at least half of all gene pairs containing 

that gene had BF > 5.  

Identifying essential systems 

NeST (https://idekerlab.ucsd.edu/nest/), Reactome (https://reactome.org/download-data), 

KEGG (https://www.genome.jp/kegg/pathway.html), and WikiPathways 

(https://www.wikipathways.org/index.php/Download_Pathways) were downloaded from their 

respective websites. We evaluated the subset of entries in these databases (called “Systems” in 

NeST and “Pathways” in Reactome, KEGG, and WikiPathways) that were sufficiently covered 

by the genes interrogated by the combinatorial CRISPR screen, as follows. We first selected 

“seed systems” as those with ≥ 5 genes, of which ≥ 3 were shared with the set of genes in the 

screen and for which these shared genes accounted for ≥ 10% of genes in the system. For 

databases that organize systems/pathways hierarchically (NeST and Reactome), we also selected 
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all systems along the shortest path in the hierarchy connecting the seed system to the root 

(defined as the largest system containing all others in the database). Each selected system was 

then tested for essentiality according to its odds ratio of enrichment for essential “counts”, 

defined differently for the three types of essentiality tests (Fig. S5A):  

Test Essential Count 

IL Essential genes in the system. 

SLwithin Synthetic-essential gene pairs (a,b) with a,b both inside the system. 

SLacross Synthetic-essential gene pairs (a,Z) with a inside the system, 

and Z iterated over all other genes. 

 

The odds ratio of enrichment for system s was then computed as OR(s)=xs/Xns/N, where 

xs denotes the number of essential events associated with s, X denotes the global number of 

essential events associated with any system, ns denotes the number of genes associated with s, 

and N denotes the global number of genes associated with any system. The significance of this 

enrichment was determined by a one-sided hypergeometric test, corrected for multiple 

hypothesis testing using the Benjamini-Hochberg procedure.  

Chemogenetic CRISPR experiment 

We created a companion single-gRNA CRISPR library that targets every gene in the 

combinatorial CRISPR library with 10 gRNAs. We included all 3 gRNA sequences in the 

combinatorial CRISPR library along with 7 additional gRNA sequences found in other genome-

wide libraries and databases (Doench et al., 2016; Sanjana et al., 2014; Sanson et al., 2018). Each 

library element consisted of an 80-base-pair oligonucleotide containing a 20-base-pair gRNA 
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sequence and two 30-base-pair overlaps with the human-U6 promoter and LentiGuide Puro 

gRNA scaffold. With controls, we synthesized a total of 2,341 gRNAs (Twist Bioscience, Inc.) 

which were then packaged into LentiGuide Puro vectors and lentiviruses using the same protocol 

as the initial step of the combinatorial CRISPR library construction described above. Cas9-

expressing CAL27 cells were cultured, also as described above, with at least 2,000 cells per 

sgRNA maintained for the duration of the experiment. The chemogenetic experiment was 

performed in duplicate. Cells were infected at a multiplicity of infection of 0.3 and selected with 

Puromycin (2.5 μg/mL) two days after transduction. Cells were harvested and split into two 

separate plates 7 days after transduction for drug and control treatments. Media in these plates 

was changed a day later with media containing 15 μM olaparib in one plate and 1% DMSO in 

the other. We selected a concentration of olaparib that approximately corresponds to the 

inhibitory concentration of 20% in a dose-response experiment in CAL27. The chemogenetic 

experiment ended 15 days after initial transduction of the gRNA library. We sequenced and 

quantified the sgRNA abundances using the same protocol as for the combinatorial CRISPR 

experiments. To score the interaction between a gene knockout and olaparib, we regressed the 

single-gene knockout fitness measurements of cells treated with olaparib against those treated 

with DMSO. The residuals were z-score normalized and averaged across replicates. 

Alignment with population genetic resources 
We downloaded the 2021 quarter 4 release of DepMap and the TCGA breast cancer, lung 

adenocarcinoma and oropharyngeal cancer cohorts from cBioPortal: 

DepMap:http://depmap.org/portal/download/all/ 

TCGA:http://www.cbioportal.org/study/summary?id=esca_tcga_pan_can_atlas_2018%2

Cbrca_tcga_pan_can_atlas_2018%2Cluad_tcga_pan_can_atlas_2018 
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Both the DepMap and TCGA datasets provide molecular profiles of cell-line or tumor 

samples which include transcriptomic profiles as well as somatic copy number variations, point 

mutations and short insertion/deletions. In both datasets, we processed these molecular profiles 

to infer disrupted genes in two ways. For each sample, we marked genes with point mutations or 

indels predicted to be deleterious (Adzhubei et al., 2013) as well as genes that have a loss of 

copy number (less than the normalized copy of 1) and are under-expressed relative to the 

population median. For the DepMap analysis, cell lines are stratified according to those that have 

disruptions in one of the two interacting genes and those that do not. For the TCGA analysis, 

patients are stratified according to their tumors that have disruptions in both of the interacting 

genes and those that do not. We required both case and control groups to have a minimum 

number of samples for them to be sufficiently statistically powered (DepMap, 10; TCGA, 50). 

We then determined whether these groups display a difference in phenotype (cellular fitness 

when the second of the two interacting genes is knocked out by CRISPR for DepMap; overall 

patient survival for TCGA). We considered an interaction to be corroborated if samples with the 

two disrupted genes were associated with a significant difference in phenotype by Student t-test 

(DepMap) or log-rank test (TCGA) in the expected direction (more deleterious fitness in 

DepMap; increased survival in TCGA). In all cases, we corrected for multiple hypothesis testing 

using the Benjamini-Hochberg procedure. 

Unified survival prediction models 
To build unified prediction models of cancer patient survival, each patient tumor was 

assigned a set of binary features consisting of the genetic alteration status of synthetic-essential 

gene pairs and SLacross system-gene interactions. A feature was assigned a 1 if a tumor contains 

disruptions (as inferred in the previous section) in both genes of a synthetic essential gene pair or 
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both a gene and any of the genes in the system of an SLacross and otherwise assigned a 0. 

Separately, the tumor mutation burden, subtype, and sex were used as features for a baseline 

model for comparison. The mutation rates of each tumor were defined as the number of 

mutations per number of genes profiled. A feature was assigned a 1 if a tumor had a mutation 

rate greater than the mean of all mutation rates defined within that dataset and otherwise 

assigned a 0. The tumor subtype (Luminal A, Luminal B, Her2, Basal, and Normal) and sex were 

one-hot encoded where a feature was assigned a 1 if the tumor was classified as that subtype or 

sex and otherwise assigned a 0.  

These policies were used to interpret breast tumor samples from a pooled tumor 

population combining TCGA (https://gdc.cancer.gov/about-

data/publications/pancanatlas)(Cancer Genome Atlas Network, 2012) and METABRIC cohorts 

(https://www.cbioportal.org/study/summary?id=brca_metabric). Tumor profiles of the two 

cohorts were transformed into binary features prior to joining into a single dataset. Model 

training and evaluation was performed using a nested training/validation/test design, as follows. 

We first held out a randomly selected 20% of the samples as test data. The remaining 80% of 

samples were used for model training and validation/hyperparameter tuning. In these samples, 

we used five-fold cross validation to select hyperparameters for a random forest model to predict 

overall patient survival. The best performing model was re-trained using the complete 

training/validation data and evaluated against the test data.  

Statistical analysis 
All data analyses were performed in Python (3.7), using Numpy (1.23.5), Pandas (1.5.2), 

Scipy (1.9.3) and Statsmodels (0.13.5). Random Forest models were trained using Scikit-Learn 

(1.0.2).  
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CHAPTER 2: Multimodal perturbation analyses of cyclin-dependent kinases reveal a 

network of synthetic lethalities associated with cell-cycle regulation and transcriptional 

regulation 

Abstract 
Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating 

extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use 

combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional 

interdependencies among CDKs and related factors, identifying 51 synthetic-lethal and 17 

synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we 

develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell 

states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, 

only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple 

CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-

cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple 

lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation 

resulting in premature termination. These inter-dependencies translate to drug-drug synergies, 

with therapeutic implications in cancer and other diseases. 

Introduction 
Regulation and transition between cell-cycle phases is accomplished primarily by cyclin-

dependent kinases (CDKs) and associated cyclin proteins (Malumbres, 2014). The CDK family 

is large, with more than 20 distinct protein-coding genes, and there is substantial uncertainty 

regarding the specific functions of individual family members (Asghar et al., 2015; Malumbres, 

2014). Canonically, CDK proteins have been divided into two functional classes: factors that 
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regulate cell cycle, such as CDK1, 2, 4 and 6, and factors that participate in general control of 

transcription, such as CDK7, 9 and 12 (Malumbres, 2014) (Fig. 2.1a, Fig. S2.1). The 

transcriptional CDKs play a critical role in regulating RNA Polymerase II (RNAPII), with 

diverse functions across initiation, elongation, and termination. CDK7, 9 and 12 all have been 

shown to phosphorylate RNAPII directly. However, there is still much uncertainty regarding the 

mechanistic role and functional importance of each transcriptional CDK. For example, CDK8 

(working as part of the Mediator complex) has been reported to be both a transcriptional 

repressor and activator, and CDK7 has established roles in initiation, capping, promoter-

proximal pausing, and phosphorylation of CDK9 (Donner et al., 2010; Fisher, 2019). CDK9 is 

essential for transcriptional elongation, with CDK12 knockdown also leading to global 

impairment in transcription, especially among long genes, and DNA damage response genes 

(Egloff, 2021; Malumbres, 2014; Tellier et al., 2020). However, many CDKs have been shown to 

function in both cell-cycle and transcriptional roles as well as in diverse other pathways 

(AbuHammad et al., 2019; S. Chen et al., 2010; Dubbury et al., 2018; Espinosa, 2019; Ewen et 

al., 1995; Ji et al., 2019; Matutino et al., 2018; Nie et al., 2019; Polyak et al., 1994; Wei et al., 

2011). For example, both cell-cycle and transcriptional class proteins can activate the epigenetic 

regulators EZH2, AR, PRMT5, and PARP1 (S. Chen et al., 2006; Chymkowitch et al., 2011; Nie 

et al., 2019; Wright et al., 2012; Yang et al., 2016) or interact with proliferative cell signaling via 

the transforming growth factor beta (TGFβ) pathway (Datto et al., 1995; Hannon & Beach, 

1994). The emerging picture is that CDKs govern a complex network of overlapping and 

synergistic functions, with “cell-cycle” and “transcriptional” labels providing useful but 

incomplete guidelines. 
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CDKs have also been the focus of extensive interest in the pharmaceutical industry, 

which has developed an armada of specific CDK inhibitors with potential applications in cancer 

(Asghar et al., 2015; Law et al., 2015), infection (Gutierrez-Chamorro et al., 2021; Kudoh et al., 

2004), neurological disorders (Marlier et al., 2018; Menn et al., 2010; Shin et al., 2019), and 

other diseases in which cell-cycle dysfunction plays a central role. Dual specificity CDK4/6 

inhibitors have thus far shown tremendous benefit in cancer, with Phase III clinical trials for 

palbociclib reporting an improvement in progression-free survival of approximately ten months 

in combination with endocrine therapy in hormone-receptor positive (HR+) breast tumors (Finn 

et al., 2016) (Fig. 2.1a). As these drugs have consequently moved to standard-of-care (Asghar et 

al., 2015; Enserink & Kolodner, 2010; Goel et al., 2018; Neganova et al., 2011; Yu et al., 2006), 

it has also become readily apparent that many tumors present innate or acquired resistance. One 

pathway to resistance is inactivation of the retinoblastoma tumor suppressor protein (McCartney 

et al., 2019) (Rb), a central transcriptional repressor of cell cycle progression which is regulated 

by CDKs. As Rb is typically inactivated in triple negative breast cancers (TNBC) (Herschkowitz 

et al., 2008), CDK therapies have yet to be approved for this tumor subtype. Within the triple 

negative breast cancer classification, cells can be further divided into Basal A (more epithelial 

like), and Basal B (more mesenchymal). This stratification is the result of early gene expression 

profiling experiments (Lehmann et al., 2011; Neve et al., 2006), which identified two distinct 

clusters of TNBC cells expressing genes similar to basal cells in the human mammary gland. 

It is also clear that Rb status explains only a fraction of resistance to CDK4/6 inhibitors, 

motivating a keen interest in developing biomarkers of drug response (Álvarez-Fernández & 

Malumbres, 2020; McCartney et al., 2019). For example, androgen receptor (AR) has been 

proposed as a biomarker for drug sensitivity (Ji et al., 2019), and altered TGFβ signaling as a 
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biomarker for drug resistance (Cornell et al., 2019; Decker et al., 2021). Another area of interest, 

particularly in TNBC, has been the identification of synthetic-lethal dependencies involving 

CDK proteins, i.e. protein pairs that selectively kill tumor cells when they are disrupted in 

pairwise combinations (Álvarez-Fernández & Malumbres, 2020; Pandey et al., 2019; Puyol et 

al., 2010; Spring et al., 2019). For example, inhibition of the epigenetic regulators EZH2 or 

PRMT5 is being investigated as a means to sensitize cells to anti-CDK4/6 therapy (AbuHammad 

et al., 2019; Shi et al., 2020), and inhibition of CDK12 was discovered to sensitize tumors to 

anti-PARP1 therapy (Bajrami et al., 2014; Dubbury et al., 2018; Krajewska et al., 2019). Such 

developments suggest that the extended family of CDK proteins and interactors may provide a 

useful source of novel biomarkers and synthetic-lethal drug targets.  

Here, we use CRISPR/Cas9 genetic disruption and single-cell mRNA sequencing (Dixit 

et al., 2016; Doench, 2018; Ford et al., 2019; Han et al., 2017; Meyers et al., 2017; Shen et al., 

2017) to systematically interrogate interdependencies and functions of all 21 CDKs in TNBC 

cells, including 5 epigenetic factors linked to CDKs (AR, EZH2, PARP1, PRMT5, TGFBR1) (S. 

Chen et al., 2006; Datto et al., 1995; Dubbury et al., 2018; Nie et al., 2019; Yang et al., 2016). 

These experiments reveal a complex network of synthetic-lethal interactions among CDKs and 

show that the cellular programs orchestrated by each CDK are remarkably diverse (Dixit et al., 

2016; McDonald et al., 2020; Schraivogel et al., 2020). The resulting resource of 

interdependencies and associated cell states expands our understanding of this complex protein 

family and suggests targets for individual and combination therapy.  
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Results 
A network of CDK genetic dependencies  

To systematically map CDK genetic dependencies, we performed combinatorial CRISPR 

fitness screening using lentiviral vectors delivering pairs of sgRNA molecules to each cell (Shen 

et al., 2017). We selected four distinct sgRNAs per gene, designed to perturb all single and 

pairwise combinations of the 26 CDK and CDK-related genes (Fig. 2.1a). Together with non-

targeting sgRNA and safe-harbor controls (AAVS1, the adeno-associated virus integration site in 

intron 1 of PPP1R12C), this library design resulted in a total of 12,432 dual sgRNA constructs 

(Fig. 2.1b, Methods).  

To supplement our combinatorial knockout screen with information-rich transcriptomic 

data, we built a second library of single-cell RNA sequencing (scRNA-seq) compatible single-

knockout CRISPR constructs for the same set of 26 genes (2 sgRNA per gene). We verified the 

cutting efficiency of all 52 sgRNAs, confirming that we had achieved highly efficient editing of 

target loci (Fig. 2.1c). These libraries were used to interrogate three cell lines, representing 

distinct TNBC classifications (MDA-MB-468: Basal A; MDA-MB-231 and Hs578T: Basal B). 

MDA-MB-468 cells have a loss-of-function disruption of retinoblastoma protein (Rb–), while 

the Basal B cells are Rb+ but have activating RAS mutations and CDKN2A deletions which 

increase mitogenic signaling via D-type cyclins (Aktas et al., 1997; Cen et al., 2012; Ikediobi et 

al., 2006; Knudsen & Witkiewicz, 2017; Puyol et al., 2010).  

Cell lines were screened in biological duplicates, with genomic DNA sequenced at 4 time 

points over 28 days to track the relative fitness of cells harboring each dual sgRNA construct. 

Fitness measurements were well correlated between biological replicates (Pearson’s r = 0.996) 

and across the three breast cancer cell lines (r = 0.922 to 0.937), with CDK1 ranking as the most 

deleterious knockout, consistent with its role as a master regulator of cell-cycle progression 



59 
 

(Enserink & Kolodner, 2010; Q. Wang et al., 2011) (Fig. 2.2a, Fig. S2.2). This high level of 

correlation is possible due to the large number (100s) of unique sgRNA constructs targeting each 

CDK gene and our computational strategy of imputing single gene fitness effects from the 

entirety of the combinatorial knockout data (Methods). We then analyzed these measurements to 

identify pairwise gene knockouts in which fitness was significantly less than or greater than 

expected from the single knockouts (Shen et al., 2017) (Fig. 2.2b, Methods). This analysis 

identified a collection of 51 synthetic-sick/lethal and 17 synergistic genetic interactions, 

respectively (Fig. 2.2c-d). These interactions were identified in either of two analysis modes: one 

treating data from each cell line separately, to identify specific vulnerabilities; another pooling 

all cell lines as replicates (“pan” cell line, Fig. 2.2c), to identify interactions occurring 

consistently across contexts with high statistical power.  

Nearly all synthetic lethalities identified in this experiment had not been identified 

previously, with three partial exceptions. One interaction between CDK8 and CDK12 had been 

identified in K562, a model for chronic myeloid leukemia (Han et al., 2017). We saw this 

synthetic-lethal interaction in Hs578T, but not in the other two contexts. Two interactions, 

CDK4-CDK6 (Fig. 2.2b) and CDK2-CDK6 (Fig. 2.3a), had been previously inferred from 

patient data or knockout mouse experiments (Guo et al., 2016; Malumbres et al., 2004) but not 

demonstrated with a combinatorial genetic screen. Here, we observed these interactions in our 

primary screen as well as an orthogonal flow cytometry assay (Fig. 2.2e-h, Methods). For the 

remaining novel synthetic lethals, 14 corresponded to protein pairs that had been shown to 

physically interact, corroborating the observed genetic interactions.  

Notably, genetic interdependencies among the canonical cell-cycle CDKs were observed 

exclusively in the Rb+ cell types (MDA-MB-231 and Hs578T). For example, strong synthetic 
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lethality was observed between CDK4 and CDK6 in both of these backgrounds but not in the 

Rb– context (MDA-MB-468), supporting the use of Rb status as a predictive biomarker for 

efficacy of anti-CDK4/6 agents (Condorelli et al., 2018; Pandey et al., 2019; Pfizer, 2018) (Fig. 

2.2b). We also observed Rb-dependent interaction of CDK2 with CDK6, of note due to ongoing 

research in trispecific CDK2/4/6 inhibitors (Freeman-Cook et al., 2021), as well as interaction of 

CDK1 with CDK17 and CDK18, suggesting that the Rb-dependent regulatory axis may include 

the broader family of cell-cycle CDKs beyond CDK2/4/6.  

Other than the CDK4/6 dependency, all of the top five synthetic-lethal interactions 

featured a transcriptional CDK or epigenetic regulator (Fig. 2.2c, ranked by pooled score across 

cell lines). The overall strongest interaction linked PRMT5 and CDK12 (Fig. 2.2c,i; Fig. S2.3b), 

a novel interaction between two genes which, separately, have been implicated in regulation of 

RNA polymerase II (RNAP II) and splicing (Dubbury et al., 2018; Koh et al., 2015; Pallasaho et 

al., n.d.). Related to this finding, we found synthetic lethalities linking PRMT5 to CDK7 and 

CDK9, two additional transcriptional CDKs (Fig. S2.3c,d). Several highly ranked synthetic-

lethal interactions were identified linking a cell-cycle regulatory CDK to a transcriptional CDK, 

such as the CDK1–CDK8 interaction (Fig. 2.2d). Many synthetic lethalities involved CDK 

proteins that had yet to be investigated as anti-cancer drug targets, such as the transcriptional 

regulators CDK11B and CDK15.  

Effects of CDK knockouts on cell-cycle phase  

Coupling genetic perturbations to rich molecular readouts, namely transcriptomic 

profiling with scRNA-seq (Dixit et al., 2016), offers the ability to reveal specific functions that 

underlie changes in fitness phenotypes. Accordingly, we analyzed each of the three TNBC cell 

lines using scRNA-seq in the presence or absence of genetic disruptions to each of the 26 CDK 
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and CDK-related genes (Fig. 2.1c). A pooled library of CRISPR single-guide RNAs (sgRNAs) 

was transduced at low multiplicity of infection (MOI) such that the majority of cells received at 

most a single sgRNA (Fig. S2.4). One week after transduction, scRNA-seq was performed using 

the 10x Chromium platform (Methods). When annotating which cells received which sgRNA, 

we observed fewer than expected (based on the equimolar starting pool of CDK targeting 

sgRNA) cells harboring sgRNAs targeting essential genes such as CDK1 (Fig. S2.4c), consistent 

with their negative effects on cell fitness.  

 Within these data, we examined the expression of 603 genes that had been 

previously nominated as cell-cycle markers based on their periodic transcriptional variation in 

cycling cells (Macosko et al., 2015; Mahdessian et al., 2021; Whitfield et al., 2002). Gene 

markers of the same cell-cycle phase were tightly clustered when examining their co-expression 

(Pearson correlation, Methods), supporting their previous assignments (Fig. S2.5a). Furthermore, 

these clusters included additional transcripts whose inclusion was consistent across the three cell 

lines, prompting us to expand the set of cell-cycle markers by an additional 127 genes (Fig. 

S2.5b-d, Methods). We found highly significant overlap between this expanded list of cell-cycle 

marker transcripts and an independent dataset of cell cycle transcripts characterized by the 

Human Protein Atlas (Mahdessian et al., 2021) (p = 1.64✕10-31 Fisher's exact test, odds ratio = 

49.5; Fig. S2.5c). There was less overlap between our expanded list of cell-cycle marker 

transcripts and known cycling proteins, likely due to the importance of post-translational 

mechanisms in regulating cell phenotypes at the protein level (Beltrao et al., 2013) (Fig. S2.5c). 

Of these 127 additional cell-cycle markers, 34 were differentially expressed in one or more CDK 

knockout populations (Fig. S2.5e). 
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The cell-cycle phase of each cell was determined by embedding the expression profiles of 

the expanded set of cell-cycle markers into polar coordinates, similar to a previous method based 

on Hi-C data (J. Liu et al., 2018) (Fig. 2.3a, Methods). In these coordinates, angle corresponded 

to the state of cell-cycle progression at the time of cell capture, with M, G1, S and G2 phases 

defined by successive angular ranges around the unit circle (Fig. 2.3b, Fig. S2.6a,b). The 

subpopulation of cells harboring a specific CDK knockout could then be selected, and its angular 

distribution examined for aberrations relative to wild type (Fig. 2.3c). Using this approach, we 

found that knockouts of CDK1, 2, 5, and 6 all had significant effects on cell cycle progression 

(Fig. 2.3d). Cells harboring CDK1 knockouts accumulated at the end of G2 phase, whereas cells 

harboring CDK2 knockouts accumulated at G1 (Ding et al., 2020) (Fig. 2.3d). CDK2 and CDK5 

had context-specific impacts on cell cycle: CDK2 knockouts resulted in M/G1 arrest in the Rb+ 

lines and early S phase arrest in the Rb– line, while CDK5 knockouts arrested in G2/M only in 

Hs578T cells. The effects of CDK6 knockout were also context-dependent: MDA-MB-231 and 

Hs578T cells showed enrichment in early and late G1 respectively, whereas the Rb– line, MDA-

MB-468, showed little cell-cycle effect. In addition to effects of these canonical cell-cycle 

CDKs, we found that CDK13 significantly perturbed cell cycle progression in Hs578T cells, 

although it has previously been classified as transcriptional CDKs (Fig. S2.6c). We further 

validated the cell-cycle embedding by using the angular position of cells to robustly remove cell-

cycle signatures from the expression profiles (Fig. S2.6f). 

CDK transcriptional effects are large and distinct from one another  

We next sought to quantify the functional effects of CDK knockouts beyond cell-cycle 

progression. We chose to focus our analysis on the MDA-MB-231 cell dataset, due to it having 

the highest number of cells harboring single sgRNA (increasing statistical power). First, we 
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confirmed that many of the knockouts led to a significant expression reduction of the 

corresponding gene in cis, consistent with nonsense-mediated decay of the CRISPR-edited 

transcripts (Popp & Maquat, 2016). CDKs lacking this cis regulatory effect could be largely 

explained by low endogenous transcript abundance levels in wild-type cells (Fig. 2.4a), as 

CRISPR sgRNA reagents were confirmed to efficiently generate gene knockouts (85.7% mean 

editing rate, Fig. 2.1c).  

Moving to trans-acting effects, we found that many CDKs have strong transcriptional 

effects that are very different from one another in the affected downstream genes and pathways 

(Fig. 2.4a, Methods). In particular, CDK1 knockout in MDA-MB-231 cells showed significantly 

perturbed expression of a large number of genes (1334), including the TGFβ receptor (TGFBR1) 

as well as genes involved in proteasomal degradation, oxidative phosphorylation and the electron 

transport chain (Fig. 2.4a). CDK5 knockouts showed perturbed transcription of DNA damage 

response genes, potentially due to the observed dysregulation of DNA damage signaling via 

ataxia-telangiectasia mutated (ATM) (Tian et al., 2009). While CDK6 knockouts caused 

dysregulation of Rb-regulated genes and canonical cell-cycle genes, they additionally perturbed 

genes involved in metabolism of fluoropyrimidines. The classic transcriptional CDKs also 

impacted diverse pathways. While CDK7, CDK9, and CDK12 knockouts each had highly 

perturbed transcriptomes when compared to control cells (in MDA-MB-231 cells 92, 347, 893 

differentially expressed genes, respectively, padj < 0.05; Fig. 2.4b,c), we detected few commonly 

dysregulated cell functions save for VEGFA-VEGFR2 signaling in CDK12 and CDK13 

knockouts (Fig. 2.4a). Regardless of these differences, the magnitude of transcriptional 

perturbation caused by a CDK knockout (Fig. 2.4b, Fig. S2.7a-b), radial distance from AAVS 

control) was strongly and negatively correlated with its effect on cell fitness (Fig. 2.4c, Pearson’s 



64 
 

r = –0.66, Fig. S2.7a-b). Thus, transcriptional effects of CDK knockouts scale with their effects 

on growth, but beyond this general association they implicate different underlying programs.  

The CDK/RNAPII transcriptional axis presents a critical vulnerability in TNBC cells 

Our genetic interaction analysis revealed that three of the classical transcriptional CDKs 

(CDK7, 9, 12) have strong synthetic-lethal interactions with the transcriptional regulator PRMT5 

in all three cell-line contexts, with the CDK12-PRMT5 interaction being the strongest in the 

screen overall (Fig. 2.2c, 2.5a). We further confirmed this interaction in two ways: first using an 

independent FACS assay (Fig. 2.2h), and second using selective small molecule inhibitors 

against CDK12 (SR4835) and PRMT5 (EPZ015666 or PF06939999) in place of CRISPR guides 

(Fig. 2.5b). 

Phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) 

by CDK7, CDK9, and CDK12 is crucial for release of the negative elongation factor (NELF), 

promoting transcription (Hsin & Manley, 2012; Parua & Fisher, 2020; Tellier et al., 2020). 

Likewise, methylation of SPT5 by PRMT5 dissociates the DSIF repressor from RNAPII (Koh et 

al., 2015), thus promoting transcript processing. Given these convergent functional roles (Fig. 

2.5c), we examined how CDK7/9/12 and PRMT5 functions impact RNA production and splicing 

patterns across the transcriptome. First, we found that the expression levels of an NELF 

subcomponent, NELFE, were significantly dysregulated in CDK9/12 and PRMT5 knockout cells 

(p < 0.05 t-test; log2 fold-changes of 0.24, -0.86, -0.23, respectively;  Fig. S2.8a,b). In addition to 

NELFE, several other key RNAPII associated proteins had changed expression levels in 

response to CDK knockouts, including RNAPII subunits in all CDK knockout populations. 

Second, we noted that CDK9 and CDK12 knockouts produced very low transcriptional activity 

(read count per cell, Fig. 2.5d), as would be expected given the similar role of these kinases in 
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NELF release by phosphorylation of the RNAPII CTD at Ser-2 (Fisher, 2017) (Fig. 2.5c). 

Notably, CDK7 knockouts did not show marked reduction in transcriptional activity by this 

metric, in contrast to prior work implicating CDK7 in transcriptional initiation via the TFIIH 

complex, as well as regulatory functions in transcriptional elongation via CDK9 phosphorylation 

(Fisher, 2019; Larochelle et al., 2012; Rimel & Taatjes, 2018). However, our data supports 

previous research showing CDK7 is not essential for global transcription (Ganuza et al., 2012; 

Kanin et al., 2007), highlighting that although CDK7/9/12 all converge on RNAPII, the kinases 

have unique functional roles (and differing levels of essentiality) in RNAPII regulation. Showing 

a remarkably different trend, CDK1 knockout cells had greater transcriptional activity, although 

mechanistically deconvolving this result from CDK1 mediated cell-cycle regulation remains 

challenging. 

 Third, we found that knockouts of CDK7/9/12, as well as PRMT5, led to a reduced 

fraction of spliced transcripts across the transcriptome (Fig. 2.5e), highlighting how although 

CDK7 knockout did not markedly reduce overall transcriptional activity, it did quantifiably 

perturb the fidelity of transcription. Fourth, in addition to a reduction in splicing overall, CDK7,9 

and 12 knockouts led to transcripts with significantly increased representation of the first exon 

when examining the transcriptome as whole, and significantly decreased representation of 

subsequent exons, relative to wild-type cells (p < 0.05 t-test; Fig. 2.5f). Thus, an in-depth 

analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the 

CDK-PRMT5 dependency is due to aberrant transcriptional activity resulting in a reduction in 

full-length processed mRNAs. However, the co-regulatory nature of the transcriptional CDKs, 

such as CDK7 phosphorylating CDK9, and the diverse sets of genes that become differentially 
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expressed upon targeted knockout, underscore the possibility that other unidentified proteins may 

be critical for mediating the observed transcriptional changes. 

To further characterize the impact CDK and/or PRMT5 inhibition have on RNA Pol II 

transcription, we leveraged a CUT&Tag (Kaya-Okur et al., 2019) assay to profile RNA Pol II 

activity across the genome in individual CDK knockdowns, as well as in combination with 

PRMT5 knockdown (Fig. S2.9). Using an antibody raised against a synthetic “YSPTSpPS” 

peptide corresponding to the Ser-5 phosphorylated RNAPII C-terminal domain, we profiled 

direct interactions between phosphorylated RNAPII and the genome, more directly assaying 

transcriptional initiation/activity compared to our scRNA-seq readout. The results of this 

CUT&Tag assay demonstrate that CDK7, CDK12, and PRMT5 single knockdowns experience a 

significant reduction in RNA Pol II signal near the transcriptional start site compared to the NTC 

controls, and all of the combination knockdowns show this transcriptional defect. This 

transcriptional phenotype supports previous work using analog sensitive cells to selectively 

inhibit CDK7 and CDK12 with ATP analog inhibitors(Ebmeier et al., 2017; Tellier et al., 2020), 

and highlights that while CDK7 is often considered the primary regulatory CDK for 

transcriptional initiation, there is extensive CDK cross-talk during the process of initiating and 

maintaining active transcription. Interestingly, we also observe reduced RNA Pol II signal near 

the TSS for PRMT5 knockdown cells, providing new lines of evidence for how PRMT5 

regulates transcription beyond its more established functional role in splicing (Koh et al., 2015). 

Following this observation, we next sought to determine the particular groups of genes 

for which splicing and other transcriptional dysregulation were most affected. For this purpose, 

we quantified the “5’ coverage bias” of a gene as the relative abundance of the first exon relative 

to the last exon among the collection of all transcript isoforms identified for a gene (Fig. 2.5f). 
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When looking across the entire transcriptome, we observed that very similar sets of genes had 

high 5’ coverage bias in response to knockout of CDK7, 9, 12 or PRMT5 (Fig. 2.5g). Moreover, 

these groups of genes were significantly enriched for key cellular functions, including mitotic 

spindle formation and DNA repair (padj < 0.01, odds ratio of 3.97 and 5.05, respectively; Fig. 

2.5g). Notably, a strong 5’ coverage bias was observed among targets of the central 

transcriptional activators MYC and E2F (padj < 0.01, odds ratio of 3.92 and 5.35, respectively; 

Fig. 2.5g), suggesting that dependence of TNBCs on complete transcription of MYC and/or E2F 

targets may underlie the observed CDK/PRMT5 synthetic lethality. 

Discussion 

Integrating complementary pooled screening methodologies has the potential to 

substantially improve our understanding of genotype-phenotype relationships, including those in 

disease. Because CRISPR-Cas9 perturbs CDK function by specific disruption of genomic DNA, 

it bypasses confounding issues seen with chemical perturbagens such as off-target effects (given 

that CDKs have high sequence homology to one another) and the inability to inhibit phosp27-

CDK4-CycD1 complexes (Fassl et al., 2022; Guiley et al., 2019). While we focused on CDK 

proteins, similar approaches can be applied to diverse other biological pathways of interest. For 

example, combinatorial transcription factor expression is critical for cellular differentiation and 

development (Takahashi et al., 2007) and could be readily assayed in a similar fashion via 

CRISPR reagents and scRNA-seq. Additionally, the framework established here for visualizing 

the cell-cycle phenotypes of individual cells in scRNA-seq data could be applied to alternative 

phenotypes defined by sets of genes. 

The 51 synthetic-lethal interactions we identified among CDK genes precisely quantify 

the functional redundancies and interdependencies that exist in this gene family. While early 
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studies of CDK4 and CDK6 suggested they were functionally redundant (Malumbres et al., 

2004), our results highlight distinct roles based on several lines of evidence. First, each of the 

single CDK4 and CDK6 knockouts has a negative fitness impact, meaning its function is not 

completely buffered by the other gene (Fig. 2.2a). Second, knockouts of CDK6, but not CDK4, 

significantly alter cell-cycle progression (Fig. 2.3d). Third, only CDK6 knockouts result in 

significant deregulation of Rb controlled genes (Fig. 2.4a). Fourth, CDK4 has many more 

synthetic-sick/lethal interactions than CDK6 (7 versus 3, Fig. 2.2c-d). One explanation for these 

distinct effects is that CDK4 is more readily compensated by diverse members of the CDK 

family. On the other hand, in support of some redundancy, CDK4 and CDK6 knockouts are 

synthetic-sick/lethal with each other (Fig. 2.2d-g). This redundancy likely relates to their shared 

regulation of the Cyclin-D/Rb signaling axis, given the lack of CDK4/CDK6 synthetic lethality 

in Rb– cell lines(Giacinti & Giordano, 2006) (Fig. 2.2c). 

Contrary to the usual stratification of CDK genes into “cell-cycle” or “transcriptional” 

families (Fig. S2.1), each with independent functions, here we observe many genetic 

dependencies across CDKs of these two classes (Fig. 2.2d). This crosstalk is reflected in the 

transcriptome as well, where single-cell RNA sequencing reveals extensive transcriptional 

regulation by CDK1, a canonical cell-cycle regulator (although deconvolving transcriptional 

changes due to impaired cell fitness from regulatory activity is an ongoing challenge). 

Furthermore, we find that cell-cycle regulation is far from uniformly conserved across cellular 

contexts, since the same gene knockout (e.g. CDK2, 5, 6) can have impacts on cell-cycle 

behavior that are largely distinct from one another depending on the cell line (Fig. 2.3d). These 

results suggest that the exact timing, mechanisms, and druggability of cell-cycle checkpoints are 

not universal (C. Liu et al., 2020; Stallaert et al., 2021).  
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Our analysis also indicates that the previously underexplored CDK7, CDK9, and CDK12 

proteins play critical roles in controlling cell proliferation and RNAPII activity in concert with 

PRMT5 (Fig. 2.5). We observe a synthetic lethal phenotype when CDK7, CDK9 or CDK12 are 

knocked out in combination with the RNAPII regulator PRMT5, supporting emerging research 

that sequential phosphorylation of RNAPII by multiple CDKs (CDK9 and CDK12 phosphorylate 

Ser-2 on the RNAPII CTD, while CDK7 phosphorylates Ser-5) is critical for proper RNAPII 

function(Fisher, 2017). Unlike CDK9 and CDK12, knockout of CDK7 does not result in a global 

reduction of detected transcripts (Fig. 2.5d), suggesting that phosphorylation at RNAPII CTD 

Ser-2 is the more critical regulatory event for RNAPII function. Regulation of transcriptional 

activity via the combination of these proteins emerges as a critical fitness vulnerability, with 

promising avenues for drug development and therapeutic intervention. Our observation that 

CDK7, 9, 12 and PRMT5 knockouts have improper transcription of MYC-regulated transcripts is 

especially important, given that MYC is an amplified oncogene in the majority of TNBCs(E. 

Wang et al., 2019).  These results suggest that other regulators of transcriptional activity and 

splicing outside the CDK space might serve as potential drug targets as well(Harlen & 

Churchman, 2017). In support of this notion, PRMT5 inhibition has been shown to be synergistic 

with inhibition of DOT1L, a methyltransferase that regulates RNAPII(Secker et al., 2019). 

CDK13 mutations have recently been shown to drive melanoma growth via ZC3H14-regulated 

improper transcriptional elongation, suggesting that the fitness impact of transcriptional 

dysregulation depends specifically on which transcripts are being perturbed(Insco et al., 2019). 

Additional studies will be needed to assess the potential effects of therapeutically targeting the 

various steps of transcription (initiation, elongation, termination) on diseased and healthy cells in 

vivo (Weinstein et al., 2018). 
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While these results expand our understanding of CDK function and essentiality in cell-

cycle transition and transcription, there are still mechanistic uncertainties yet to be understood. 

One challenge encountered in this study is the difficulty interrogating essential genes. Knocking 

out essential kinases, such as CDK1, results in a massive loss of fitness, severely reducing cell 

numbers available for transcriptional profiling in a pooled screen (Fig. S2.4c). One potential 

solution to this problem, is to pool CRISPR sgRNAs predicted to cause large fitness defects at 

higher abundance in the initial library construction. Another challenge in understanding CDKs 

via scRNA-seq is the discrepancy between protein levels and RNA levels. Some cell-cycle 

proteins are regulated post-translationally (Mahdessian et al., 2021), limiting their usefulness in 

assaying the cell cycle when using a transcriptional readout. Given the importance of proteins in 

mediating biological phenotypes, advances in single-cell (and other high-throughput) proteomics 

will surely expand the potential toolkit for screening gene/protein function.  

Here, we have presented a systematic, unbiased resource of CDK functions and 

interdependencies governing cellular growth, cell cycle, and transcriptional programs. 

Perturbations to essential cell functions such as transcription cause (as expected) major impacts 

to cell state, with quantifiable effects unique to each CDK protein. Given the fundamental role 

CDK signaling plays in disease etiology and treatment, this dataset has the capacity to inform 

both basic science and translational medicine. We anticipate that our quantitative mapping of 

CDK gene functions will guide future interrogations into CDK biology, helping uncover how 

this critical class of proteins can be best leveraged therapeutically.  
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Figures 

 
Figure 2.1. Systematic mapping of CDK gene function in triple negative breast cancer cells. 

a, CDK proteins control cell-cycle progression and act as transcriptional regulators, garnering 
interest as potential drug targets (colors). b, Schematic describing the combinatorial 
CRISPR/Cas9 fitness screening approach to map CDK synthetic-lethal and synergistic 
interactions. A library of dual sgRNA constructs targeting pairs of genes listed in (a) was 
synthesized as an oligonucleotide pool and cloned into a lentiviral overexpression vector (top). 
TNBC cell lines were transduced with virus coding for this library and subjected to competitive 
growth screening. Resulting dual sgRNA construct fitnesses were used to extract single gene 
fitness values and map genetic interactions. c, Schematic describing the single-cell 
transcriptional phenotyping approach to map the functional impact of CDK genetic 
perturbations. An sgRNA library targeting the genes in (a) was cloned into an scRNA-seq-
compatible lentiviral overexpression vector and used to transduce TNBC cell lines in pooled 
format. One week after transduction, scRNA-seq was performed using the 10x Chromium 
platform.  
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Figure 2.2. CDK combinatorial disruption reveals conserved and context-dependent 
interaction networks. 

a, Mean fitness for cells receiving each CDK knockout, pooled across three TNBC cell lines. 
AAVS1, sgRNA targeting adeno-associated virus integration site 1, a safe-harbor control locus; 
NTC, non-targeting control. Error bars correspond to standard deviations across measurements 
from three cell lines: Hs578T, MDA-MB-231, and MDA-MB-468. b, Fitness trajectories for 
CDK4/6 dual knockout vs. single knockouts (pairing CDK4 or CDK6 with AAVS) in each 
TNBC cell background. Error bars correspond to standard deviation of fitness measurements 
across replicates and 32 guide pairs targeting the same gene pair. c, Heatmap of significant 
genetic interactions for each cell line and a pan-cell line analysis. d, Complete CDK synthetic 
lethality networks discovered across all experiments. Single gene knockout fitness is defined as 
the log2 growth relative to non-targeting control.  e, Schematic of validation of genetic 
interactions. sgRNAs paired with two different fluorophores are transduced at high MOI and 
grown in competition. Cells are colored according to the sgRNA a cell received: blue for 
sgRNA1-BFP, red for sgRNA2-mCherry, yellow for both sgRNA1-BFP and sgRNA2-mCherry, 
and gray for no viral integration. f, CDK4/6 single and dual knockout populations 4 days and 11 
days after infection. g-i, Validation of synthetic lethal interactions for (g) CDK4-CDK6, (h) 
CDK2-CDK6, (i) CDK12-PRMT5 in MDA-MB-231 cells by fold enrichment (positive values) 
or depletion (negative values) of single and dual knockouts on day 11 vs. day 4 post infection. 
Error bars represent standard deviation across two replicates. Dual knockouts showed marked 
reduction in growth relative to single knockouts.  
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Figure 2.3. Effects of CDK disruption on cell-cycle phase. 

a, Approach for embedding cells such that cell-cycle phases can be measured. In the embedding, 
the angle Θ indicates phase. b, Cell-cycle embedding of all MDA-MB-231 cells. c, Deviation of 
CDK1 knockout cells from AAVS control cells (grey circle) in density of cells about the cell-
cycle embedding (blue). Dashed lines represent the median angle of cell-cycle phases. d, 
Deviation in single-cell density compared to AAVS for select knockouts in MDA-MB-231, 
Hs578T, and MDA-MB-468 cells; * p<0.05 by Kuiper Test.  



75 
 

 
Figure 2.4. Effects of CDK disruption on diverse transcriptional programs. 

a, Wild-type expression (top row) of CDK genes (columns) and the knockout effect of those 
genes on their own expression (second row), the expression of other CDK genes (third row), and 
specific pathway signatures (bottom row) in MDA-MB-231 cells. b, MDS embedding of median 
single cell profile for each gene knockout. Each contour line depicts the confidence interval 
across 1,000 bootstrap resamplings. The outermost contour line represents the 95% confidence 
interval. c, For each gene knockout (colored points), the distance of the transcriptome from the 
AAVS control (y-axis) is plotted versus its fitness. 
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Figure 2.5. Relation of PRMT5/CDK synthetic-lethal interactions to aberrant splicing. 

a, Genetic interaction score of indicated gene in combination with PRMT5, pooling data 
from  MDA-MB-231, Hs578T, and MDA-MB-468 cell lines as replicates. Error bars represent 
the standard deviation across all replicates and cell lines. b, Synergistic inhibition of MDA-MB-
231 cell growth with combinatorial treatment of a CDK12 inhibitor (SR-4835) and a PRMT5 
inhibitor (EPZ015666 or PF-0693999). c, CDK proteins and PRMT5 modulate transcript 
elongation. d, Mean number of transcripts observed in cells impacted by each gene knockout. 
The dotted lines represent the standard error of the mean. e, Splicing rate observed across single 
cells impacted by each gene knockout. Dotted lines span the standard error of the mean. f, Log2-
fold coverage of exon positions (colors) in transcripts from cells harboring specific gene 
knockouts (subplots). Data are normalized against data from cells harboring non-targeting-
control guides (* p<0.05, t-test compared to AAVS). g, Heatmap showing the 5’ coverage bias 
(first exon relative to last exon) for each gene (row) under select gene knockouts (columns). The 
most enriched biological functions (MSigDB Hallmark gene sets) are given for select clusters of 
genes (* padj<0.05). Rows and columns are sorted by hierarchical clustering; the dendrogram of 
rows is not shown. Data in panels (d-g) are from MDA-MB-231 cells. 
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Supplemental Figures 

 

Figure S2.1. Classes of CDK genes. 

Phylogenetic tree showing evolutionary relationships among CDK proteins. Tree derived from 
multi-sequence alignment of CDK protein amino-acid sequences (Methods). 
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Figure S2.2. Quality control metrics of genetic interaction experiments. 

(a) Genepair fitness and (b) gene fitness measurements across the two replicates for HS-578-T, 
MDA-MB-231, and MDA-MB-468. (c) Density distribution of genetic interaction scores for HS-
578-T, MDA-MB-231, and MDA-MB-468. The mean for the three sets of genetic interaction 
scores are near zero. 
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Figure S2.3. Synthetic lethality of select double knockouts. 

Fitness trajectories of synthetic-lethal interactions for (a) CDK2-CDK6, (b) CDK12-PRMT5, (c) 
CDK7-PRMT5, and (d) CDK9-PRMT5, comparing dual knockout vs. single knockouts in 
HS578T, MDAMB231, and MDAMB468 cell lines (colors). Error bars correspond to fitness 
measurements across replicates and guide pairs targeting the same gene pair. 
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Figure S2.4.  ScRNA-seq quality control metrics. 

a, Histogram of sgRNA counts per cell, for each of the three cell types interrogated in this study. 
b, Read depth per cell in each cell line (10X PMBC). c, Histogram of number of cells receiving 
specific sgRNAs. AAVS1, sgRNA targeting the adeno-associated virus integration site 1, a safe-
harbor locus; NTC, non-targeting control. 
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Figure S2.5. Coexpression analysis to identify cell-cycle associated genes. 

a, Heatmap showing the Pearson correlation in expression for pairs of genes. MDA-MB-231 
cells, highly variable transcripts only. Known cell-cycle markers marked in color on the heatmap 
border. b, Cell-cycle phase scores for predicted cell-cycle genes, defined as genes without 
previous phase assignment but that have significantly high correlation with marker genes of a 
particular phase (versus markers from all other phases, p<0.05). c, Comparison of newly 
identified cell cycle genes to existing datasets describing cell-cycle variable RNAs and proteins 
(Mahdessian et al., 2021). d, UMAP plots showing expression levels of two predicted G1/S 
phase markers (MCM3, FAM111B) alongside the known marker PCNA. M-phase marker 
CCNB1 shown for comparison. e, Expression levels for identified cell-cycle genes (columns) 
grouped by CDK knockout (rows). Genes with significant (FDR adjusted p<0.05) dysregulation 
in response to one or more CDK knockouts are shown. Color indicates log2 fold change for each 
transcript relative to the population mean.  
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Figure S2.6. Cell-cycle embedding, perturbation, and regression. 

a, MDS cell-cycle embedding of all Hs578T cells. b, MDS cell-cycle embedding of all MDA-
MB-468 cells. c-e, Deviation in single-cell density compared to AAVS for select knockouts in 
Hs578T (c), MDA-MB-468 (d), and MDA-MB-231 (e) cells; * p<0.05 by Kuiper’s Test. f, 
UMAP projection of single cells before and after regression of cell-cycle phase (theta) from 
expression estimates; color corresponds to mean expression scores in S-phase genes after 
preprocessing.  
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Figure S2.7. Effects of CDK disruption on diverse transcriptional programs. 

MDS embedding of median single cell profile for each gene knockout for MDA-MB-468 (A) 
and HS-578-T (B). Each contour line depicts the confidence interval across 1,000 bootstrap 
resamplings. The outermost contour line represents the 95% confidence interval. For each gene 
knockout (colored points), the distance of the transcriptome from the AAVS control (y-axis) is 
plotted versus its fitness. 
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Figure S2.8. Analyses of PRMT5 and RNAPII-associated CDKs. 

a, Volcano plots showing the significance vs. change in mRNA abundance level for detectable 
transcripts under CDK12 (left) or PRMT5 (right) knockout. The five most significantly 
downregulated genes are NELF, DSIF, PIC, and RNA Pol II complex members (columns)(, for 
select knockouts in MDA-MB-231, HS578T, and MDA-MB-468 (rows); * p<0.05 Mann 
Whitney-U test. 
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Figure S2.9. RNA-polymerase II activity in CDK knockouts. 

Coverage of the location of RNA-polymerase II in the transcript body averaged across all genes 
measured with CUT&Tag experiments. Each of CDK7, CDK9, CDK12, and PRMT was 
disrupted in combination with a non-targeting control (NTC) (top row). CDK7, CDK9, and 
CDK12 were also disrupted in combination with PRMT5 (bottom row); combinatorial disruption 
using two NTCs is also shown (bottom right), as well as, in each panel in grey. Coverage profiles 
means for each set of replicates are compared to the mean of NTC-NTC replicates; * p<0.05 
Kolmogorov–Smirnov test.  
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Methods 

Phylogenetic tree construction 

Tree diagram showing relationships between CDK proteins was constructed from a 

multi-sequence alignment (MSA) using Geneious (Kearse et al., 2012). The “Geneious Aligner”, 

was used to generate the MSA, and the neighbor joining method was used to construct the tree. 

All default parameters were used except where otherwise indicated.  

Combinatorial CRISPR sgRNA library construction 

Design of gRNA spacer sequences. A list of 21 CDK and 5 non-CDK genes was 

compiled from literature sources. The HGNC symbols of these genes were converted to Entrez 

IDs using Bioconductor packages AnnotationDbi and org.Hg.eg.db. To target these genes in 

CRISPR-Cas9 knockout experiments, four different gRNA spacer sequences were selected per 

gene from two lists of such sequences. One list was obtained from the Genetic Perturbation 

Platform sgRNA Designer (GPPD) web tool 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna- design, accessed in March 

2018), and the other from the Brunello lentiviral pooled library 

(https://www.addgene.org/pooled-library/broadgpp-human-knockout-brunello/). The latter 

consists of 76,441 validated gRNAs that target 19,114 human genes and includes 1,000 control 

gRNAs (Sanson et al., 2018). To obtain the first list of gRNA spacer sequences, the Entrez IDs 

of the target genes were submitted to GPPD with the following parameters: enzyme=Sp, 

taxon=human, quota=50, include=unpicked. The output of this tool was a table listing up to 50 

candidate spacers for each specified gene. For each spacer, the table included the genomic 

location (chromosome, coordinate, and strand) of the cut site, the 20-nt target sequence, a 30-nt 

context sequence encompassing the cut site, the PAM sequence, and the “pick order”, i.e. the 
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gRNA ranking order based on a score that combines predictions of on-target and off-target Cas9 

activity (Doench et al., 2016). To detect potential errors, the obtained spacer sequences were 

subjected to the following quality control steps. The initial list of 6,349 sequences was searched 

for duplicate entries, 330 of which were found and discarded. For each of the remaining 6,019 

spacers, a 30-nt context sequence around the cut genomic location predicted by GPPD was 

extracted from the human genome assembly hg38 using Bioconductor package 

BSgenome.Hsapiens.UCSC.hg38. The extracted sequence was compared to the 30-nt context 

sequence reported by GPPD. An exact match between the two sequences was found for all of the 

tested spacers. Next, each spacer sequence was tested for targeting the intended gene. To this 

end, the annotation file gencode.v28.annotation.gtf.gz was downloaded from release 28 of the 

GENCODE project, and a list of coding sequence (CDS) annotations for the human genome was 

extracted from that file. All gene IDs in the list of spacers were found to be represented in the 

extracted list of CDSs. Each spacer was tested to verify that the predicted genomic location of 

the cut site was within the annotated CDSs of the target gene, and not within the CDSs of any 

other gene. A suitable CDS could not be found for 11 spacers, but these had not been picked by 

GPPD and were therefore discarded at a later stage (see below). Lastly, to test for potential off-

target activity, the spacer sequences were mapped to the human reference genome using 

Bioconductor packages Biostrings and BSgenome.Hsapiens.UCSC.hg38, allowing for up to two 

base mismatches. Out of 6,019 sequences, 3,697 were mapped to multiple genomic locations. In 

the latter group, 43 spacers were found to have a pick order less than 5. The second list of spacer 

sequences was obtained by downloading the file 

https://www.addgene.org/static/cms/filer_public/8b/4c/8b4c89d9-eac1-44b2-bb2f-

8fea95672705/broadgpp-brunello-library-contents.txt. The table in this file contained the same 
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kind of information as that provided by GPPD. This table was confirmed to contain no two 

spacers with the same predicted cut site, or with the same target sequence, or with different 

lengths of target, context, or PAM sequence. The list of spacers was then subjected to the same 

quality controls described above for the list of spacers obtained from GPPD. In this case, 784 

spacers were found to be associated with 196 genes lacking a CDS annotation, 48 spacers did not 

hit a CDS of the intended gene, 790 spacers hit a CDS of 211 genes that were not the intended 

targets, 12 spacers hit only the CDSs of unintended targets, and 74,831 spacers hit only a CDS of 

the intended targets. Within this last set of spacers, 30,481 could be mapped to multiple genomic 

locations with up to two base mismatches. All CDS hits were determined using the downloaded 

and confirmed genomic locations of the gRNA cut sites. After the above controls, the two lists of 

spacers obtained from GPPD and the Brunello library were merged into a single list. All spacers 

labeled with the Entrez IDs of the 26 chosen genes were retained, yielding 6,024 spacers. From 

the latter set of spacers, a total of 5,236 undesirable spacers were discarded. These included 11 

spacers that were not hitting a CDS of the intended gene, 4,745 that were not assigned a pick 

order by GPPD, and 2,647 whose target CDS was not one of the following: the only CDS in the 

gene, the second CDS in the gene, or an “asymmetric” exon, i.e., a CDS that is not the first or the 

last in the gene and whose length in bases is not a multiple of 3. These criteria for choosing the 

target CDS were intended to maximize the likelihood of disrupting the translation product from 

the targeted gene. Out of the remaining spacers, 104 were selected to target the 26 chosen genes, 

with 4 spacers per gene. To make this selection, the spacers in the Brunello library were given 

the highest priority, and the genes obtained from GPPD were ranked according to pick order. 

The final list of selected spacers included 60 from the Brunello library and 44 from GPPD. This 

list of 104 gene-targeting spacer sequences was augmented with four non-targeting sequences 
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(AAAAAGCTTCCGCCTGATGG, AACTAGCCCGAGCAGCTTCG, 

AAGTGACGGTGTCATGCGGG, AATATTTGGCTCGGCTGCGC), and four sequences 

targeting the AAVS1 safe harbor locus (CCTGCAACAGATCTTTGATG, 

GGTCCAAACTTAGGGATGTG, AGTACAGTTGGGAAACAACT, 

GGCCATTCCCGGCCTCCCTG). The final list was used to generate a pool of oligonucleotide 

sequences containing all possible pairs of spacer sequences, but excluding pairs of identical 

sequences, thus yielding (104+8)×(104+8−1) = 12,432 different pairs. For each such pair, the 

corresponding oligonucleotide sequence was obtained from the following scaffold sequence: 

TCTTGTGGAAAGGACGAAACACCG<M20>GTTTTGAGACG<R15>CGTCTCGTT

TG<N20>GTTTTAGAGCTAGAAATAGCAAGTTAAAA 

where the segments <M20> and <N20> were replaced with the given pair of spacer 

sequences, and the segment <R15> was replaced with a unique random 15-base sequence. The 

latter was intended to minimize the “uncoupling” of spacer sequences that can arise from 

abortive PCR products (Hegde et al., 2018). To obtain the random 15-base sequences, a pool of 

592 barcodes of length 5 bases and minimum Hamming distance of 3 bases was generated using 

the function DNABarcodes in the Bioconductor package of the same name (Buschmann & 

Bystrykh, 2013). This function was used with the parameter heuristic="ashlock". A unique 

permutation of three 5-base barcode sequences was used to define each of the 15-base random 

sequences. The list of oligonucleotide sequences was submitted to CustomArray, Inc. (Bothell, 

WA) for synthesis on CMOS array technology.  

PCR amplification of pooled oligos. The dual library constructs were ordered as single 

stranded DNA oligonucleotides from Custom Array. PCR primers OLS_gRNA-SP_F and 

OLS_gRNA-SP_R were used to amplify 100 ng of the libraries with Kapa Hifi Hot Start Ready 
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Mix (Roche 7958935001) according to the manufacturer's protocol. An annealing temperature of 

55 °C and an extension time of 15 seconds was used, with the number of cycles tested to fall 

within the exponential phase of amplification.  

Gibson cloning of amplified libraries into lentiviral plasmid. A lentiviral vector 

containing Cas9 and a human U6 promoter for sgRNA expression  (LentiCRISPRv2: Addgene 

52961) was digested with BsmBI (NEB  R0580) for 3 hrs at 55 ℃. The digested vector was then 

purified using a Qiaquick PCR purification column (Qiagen 28104). Gibson Assembly reactions 

containing 200 ng of digested vector, 36 ng of insert (containing pooled library), and 10 μL of 

Gibson Assembly Master Mix (NEB  E2611S) were then incubated at 50 °C for 1hr, and 

subsequently transformed into 200μL of Stbl4 electrocompetent bacteria (Thermo 11635018). 

Transformed cells were resuspended in 8mL of SOC media (Invitrogen 15544034), and allowed 

to recover for 1 hour shaking before being used to inoculate 150mL of LB media supplemented 

with carbenicillin. After 16 hours of further growth, plasmid DNA containing the sgRNA library 

was isolated via a Qiagen Plasmid Plus MaxiPrep kit (Qiagen 12963). 

Insertion of the gRNA scaffold, mouse U6 promoter, and 30mer barcode. A DNA insert 

containing the mouse U6 promoter and second gRNA scaffold was first PCR amplified from a 

previously sequence validated TOPO vector (Shen et al., 2017). This insert was modified from 

previous designs to include a 30mer Unique molecular identifiers (UMI) barcode between each 

pair of sgRNA. To generate this modified insert, 5’ and 3’ fragments of the original insert were 

amplified using dgRNA_Insertv4_barcoded_Left_F/R and 

dgRNA_Insertv4_barcoded30mer_Right_F/R, respectively. These two fragments were then 

stitched together via an overlap extension PCR and subsequently cloned into the sgRNA library 

containing vector. 10ng of template plasmid was used to amplify the 5’ and 3’ fragments, with an 
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annealing temperature of 65℃, an extension time of 30 seconds and 25 cycles. After purifying 

via a Qiaquick PCR Purification column, the two fragments were stitched together via an overlap 

extension PCR amplification using primers dgRNA_Insertv4_barcoded_Left_F and 

dgRNA_Insertv4_barcoded_Right_R, with identical PCR cycling conditions as the individual 

fragment amplifications. 147 ng of the purified 3’ fragment and 52 ng of purified 5’ fragment 

were used as template to maintain an equimolar concentration of each fragment. 

Insert ligation and transformation. Both the insert and step 1 sgRNA vector were 

digested with BsmBI for 3hrs at 55℃, and subsequently purified via a Qiaquick PCR 

Purification column. The ligation reactions were then set up using 100 ng of vector, 100 ng of 

insert, 2 μL of buffer, 1 μL of T4 ligase (NEB M0202T), and ultra pure H2O up to 20 μL. Each 

reaction was allowed to proceed overnight at 16 ℃. The following morning the ligase was heat 

inactivated at 65℃ for 20 min. Following this, the reaction was dialyzed into ultrapure water 

(Millipore VSWP01300) to remove any residual salts from the ligase buffer. Once the DNA was 

dialyzed, the ligation reaction was split evenly between 300 μL of Stbl4 electrocompetent cells, 

which were then transformed according to the manufacturer's protocol. The transformed cells 

were resuspended in 10 mL of SOC media (Invitrogen 15544034), and allowed to recover for 1 

hour shaking before being used to inoculate 150 mL of LB media supplemented with 

carbenicillin. After 16 hours of further growth, plasmid DNA containing the sgRNA library was 

isolated via a Qiagen Plasmid Plus MaxiPrep kit (Qiagen 12963). 

Combinatorial fitness screening and NGS prep from gDNA 

Transfection of HEK293T cells for lentivirus production. HEK293T cells were used to 

produce lentivirus for the pooled CRISPR screens. One day before transfection, HEK293T cells 

were seeded into a 15-cm dish so that they would be approximately 70-80% confluent the 
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following day. On the day of transfection, 36 μL of Lipofectamine 2000 was added to 1.5 mL of 

Opti-Mem reduced serum media. In a separate 1.5 mL of Opti-Mem, 12 μg pCMVR8.74, 3 μg 

pMD2.G, and 9 μg of the sgRNA containing lentivector were mixed. After 5 minutes, the 

lipofectamine containing OptiMem and the diluted DNA were mixed gently and incubated at 

room temp for 25 minutes. While this is incubating, the HEK293T cells were replenished with 

20 mL of fresh media. After 25 minutes, 3 mL of the lipofectamine/DNA was added to the cells 

dropwise. The cells were incubated for 48 hours, after which the virus containing supernatant 

was collected and replaced with 20 mL fresh media. After 24 more hours, a second round of 

virus containing supernatant was harvested and combined with the first. Following this, a 

Steriflip .45μm filter unit was used to remove contaminating HEK293T cells. The virus was then 

concentrated at 3500g and 4 °C using a 100K MWCO spin concentrator (Millipore UFC910096). 

Once the final volume was 1.5mL or less, the virus was aliquoted and stored at -80 °C. 

Lentiviral transduction. All cell lines used were transduced at a low MOI (<.4) to ensure 

every cell has only a single sgRNA integrated. Before doing a scaled up transduction at 1000 

fold coverage, cells were transduced in a 12 well plate with varying amounts of virus to identify 

the appropriate amount of virus necessary. To transduce the cells, lentivirus was mixed with the 

necessary volume of cell culture media containing 8 μg/mL polybrene. The virus-containing 

media was added to the cells at 30% confluency, and let incubate overnight. The following day, 

the virus/polybrene containing media was removed and replaced with fresh media. 48 hours after 

transduction, the cells were changed into puromycin (2 μg/mL) containing media. Cells were 

then grown as normal in media containing puromycin. 

 Fitness screening in TNBC cell lines. Fitness screening was performed in three TNBC 

cell lines: Hs578T, MDA-MB-231, and MDA-MB-468. All cells were grown in DMEM media 
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(Thermo 10566016)  supplemented with 10% FBS (Thermo 10082147), and 

antibiotics/antimycotics (Thermo 15240096). Cells were passaged every 3-4 days via .25% 

Trypsin-EDTA (Thermo 25200056). The TNBC cell lines were grown for a total of 28 days, 

guide reezing down (-80C) aliquots of cell pellets at each passage, as well as a portion of cells 

three days after transduction. Care was taken to ensure that the number of cells plated, and frozen 

down were both greater than 1000 fold the library size. After the completion of the screen, a 

Qiagen DNeasy blood and tissue kit was used to isolate genomic DNA from four evenly spaced 

time points over the course of the screen. After genomic DNA extraction, primers 

NGS_dualgRNA_SP_Lib_F and NGS_ dual-gRNA_SP_Lib_R were used to amplify the dual 

sgRNA cassette for sequencing. For each sample, 40 μg of genomic DNA was mixed with 250 

μL of Kapa Hifi HotStart ReadyMix, 25 μL of each primer (10 μM stock), and water up to 500 

μL. The amplification was performed according to the manufacturer’s protocol, with an 

annealing temperature of 55 °C and an extension time of 45 seconds. The step 1 PCR product 

was then purified using a QiaQuick PCR Purification Kit. Following this an NEBNext indexing 

kit (NEB E7335S) was used to attach Illumina specific sequences and indices via a nested PCR. 

1 μL of the purified step 1 PCR amplicon as template (the sgRNA library) was added with 2.5 

μL of each indexing primer per 50 μL Kapa HiFi reaction, and run for 6-8 cycles with an 

annealing temperature of 65 °C and an extension time of 45 seconds. The final dual sgRNA 

sequencing libraries were then purified using AmpureXP magnetic beads (Beckman A63881) at 

a .8:1 bead-to-DNA ratio. The libraries were subsequently sequenced with at least 500 fold 

sequencing coverage using a HiSeq2500 operating in rapid mode. 
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Genetic interaction scoring 

Counting gRNAs. The abundance of cells harboring dual CRISPR constructs, the fitness 

estimation of those constructs, and resulting interaction scores were quantified as previously 

described (Shen et al., 2017) with modification. Briefly, the DNA aligner Bowtie2 (Langmead & 

Salzberg, 2012) was used to align the sequencing reads harboring sgRNAs to a reference of 

expected guides and background amplicon sequence. The NGS read format of the dual CRISPR 

constructs is as follows:  

Read1: 5’-

TATATATCTTGTGGAAAGGACGAAACACCG<gRNA_1>GTTTCAGAGCTATGCTGGAA

ACTGCATAGCAAGTTGAAATAAGGCTAGTCC-3’ 

Read 2: 5’-

CCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC<gRNA_2><GTTTTAGAGCTAGAAA

TAGCAAGTTAAAATAAGG - 3’ 

gRNA_1 and gRNA_2 are the guide RNAs targeting gene 1 and gene 2, respectively.  A 

reference sequence fasta sequence was constructed by prepending the 5’ sequence and appending 

the 3’ sequence to unique each guide RNA in position 1 and 2 separately.  This resulted in a 

reference sequence with 224 ‘contigs’ or expected sequences, 112 in each gRNA position.  The 

bowtie2 index files were then built with the command ‘bowtie2-build’.  The individual read 1 

and read 2 fastq files were aligned separately with ‘bowtie2-align’ using the ‘--very-sensitive’ 

preset.  After alignment, bam tags were added to each alignment specifying the index position of 

the first base of the gRNA, the expected gRNA based on which gRNA contig the read was 

aligned to, and the Levenshtein distance of the read to the expected guide 

sequence.  Additionally, the bam binary flag was modified to include mate pair information.  The 
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individual read 1 and read 2 bams were then merged with ‘samtool merge’, coordinate sorted 

with ‘samtools’ sort, and the mate pair information fixed with ‘samtools fixmate’. Guide-guide 

pairs were then counted from the aligned bam files.  The individual reads are filtered to those 

with a Levenshtein distance of less than 3, allowing for a maximum of two insertions, deletions, 

or mismatches in the guide sequence. Furthermore, for a given mate pair to be valid, we require 

that each read is aligned to a contig expected in that position. The pair of guide sequences 

observed in read 1 and read 2 for a given mate pair are also required to be expected from the 

library construction. These requirements ensure we do not quantify sequencing reads or PCR 

errors. 

Quantifying fitness. The relative abundance of each dual gRNA construct, xg1g2, was 

estimated as a log2 transformed ratio of the number of reads assigned to that pair, Mg1g2, to the 

total number of reads assigned to any construct in the experiment: 

𝑥𝑥𝑔𝑔1𝑔𝑔2 =  log2
𝑀𝑀𝑔𝑔1𝑔𝑔2

∑ ∑ 𝑀𝑀𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗
𝑁𝑁
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖

     (1) 

where N is the total number of individual gRNAs. The log2 change in abundances 

induced by each gRNA pair, mg1g2,t, at each timepoint t was estimated as the difference 

between the abundance on day t  and the abundance in the initial infection (t0): 

𝑚𝑚𝑔𝑔1𝑔𝑔2,𝑡𝑡 =  𝑥𝑥𝑔𝑔1𝑔𝑔2,𝑡𝑡 −  𝑥𝑥𝑔𝑔1𝑔𝑔2,𝑡𝑡0      (2) 

The changes in abundances, 𝑚𝑚𝑔𝑔1𝑔𝑔2,𝑡𝑡, are then Z-score standardized. The standardization 

serves to scale 𝑚𝑚𝑔𝑔1𝑔𝑔2,𝑡𝑡 to a dimensionless number that is invariant to time.  

𝑓𝑓𝑔𝑔1𝑔𝑔2,𝑡𝑡 =  𝑝𝑝𝑔𝑔1𝑔𝑔2,𝑡𝑡 −  𝜇𝜇𝑡𝑡
𝜎𝜎𝑡𝑡

      (3) 

Scoring genetic interactions. A genetic interaction, 𝜋𝜋, was scored as the deviation in 

observed dual gRNA construct fitness, 𝑓𝑓𝑔𝑔1𝑔𝑔2, from the multiplicative effects of the individual 
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gRNA construct fitnesses. Since the fitness f is log transformed, the genetic interaction score is 

described as follows: 

𝑓𝑓𝑔𝑔1𝑔𝑔2 =  𝑓𝑓𝑔𝑔1 −  𝑓𝑓𝑔𝑔2 −  𝜋𝜋𝑔𝑔1𝑔𝑔2       (4) 

The single guide effects fg1 (or equivalently fg2, fg3 … fgN) were imputed as follows. 

Summing eqn. (4) over all gRNA pairs containing g1, we have: 

∑ 𝑓𝑓𝑔𝑔1𝑔𝑔2
𝑁𝑁
𝑗𝑗=2 = (𝑁𝑁 − 1)𝑓𝑓𝑔𝑔1 + ∑ 𝑓𝑓𝑔𝑔𝑗𝑗

𝑁𝑁
𝑗𝑗=2 +  ∑ 𝜋𝜋𝑔𝑔1𝑔𝑔𝑗𝑗

𝑁𝑁
𝑗𝑗=2    (5) 

Under the assumptions that genetic interactions are rare and centered about 

zero(Baryshnikova et al., 2010), the final term of this equation is dropped: 

∑ 𝑓𝑓𝑔𝑔1𝑔𝑔𝑖𝑖
𝑁𝑁
𝑗𝑗=2 ≅ (𝑁𝑁 − 1)𝑓𝑓𝑔𝑔1 + ∑ 𝑓𝑓𝑔𝑔𝑗𝑗

𝑁𝑁
𝑗𝑗=2   (6) 

The set all summations for each gRNA is then solved as a system of linear equations, 

Ax=b, where A is an N⨉N matrix, x is the vector of single gRNA fitnesses fg to be imputed, and 

b is the sum of all construct fitnesses harboring gRNA i (eqn. 5). 

  (7) 

Having used this equation to impute values for each fg, we then solve eqn. (4) for all 

genetic interaction terms 𝜋𝜋𝑔𝑔1𝑔𝑔2.   

Each pair of genes in the screening library, a and b, corresponds to 32 distinct 

combinations of gRNAs: each gene is targeted by 4 distinct gRNAs, resulting in 4 ⨉ 4 = 16 

unique gRNA combinations per gene pair, and the gene pair appears in 2 orders (a,b or b,a).  To 

compute gene level genetic interaction scores, we averaged 𝜋𝜋g1,g2 across all 32 combinations of 

gRNAs for a given gene pair. The gene level interaction scores were then z-score normalized for 
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each time point in each replicate. A final estimate of the gene-gene interaction score was 

computed as the median z-score for all 3 timepoints and 2 replicates.   

Validation of candidate genetic interactions. We validated candidate genetic interactions 

using a previously described technique (Han et al., 2017) as follows. sgRNA used in the screen 

were selected and cloned into the lentiviral pKLV2-U6gRNA5(BbsI)-PGKpuro vector backbone 

expressing either BFP or mCherry (Addgene #67974 or #67977). Cells were transduced in 

triplicate to create four populations, and abundance of each population was quantified by FACS 

Aria. Analysis was performed with Flowjo (v10.8.1).  

Single-cell RNA sequencing of pooled knockout cells 

The DNA coding for each sgRNA construct was generated using two overlapping 

oligonucleotides containing the guide sequence and homology arms for Gibson cloning. To 

produce a double-stranded insert for Gibson Assembly cloning, 1 μL of each primer (10 μM) 

was added to 8 μL of ultrapure water and 10 μL Kapa Hifi HotStart ReadyMix. The PCR 

reaction was performed according to the manufacturer's protocol with an annealing temperature 

of 60 °C, an extension time of 15 seconds and 7 cycles. Following this, the sgRNA insert was 

purified using a QiaQuick PCR purification column.  50 ng of BsmBI digested CROP-Cas9-Puro 

vector was then incubated with 10ng of purified sgRNA insert in a 10 μL Gibson Assembly 

reaction for 1 hr at 50 °C. This Gibson reaction was then directly transformed into Stbl3 

chemically competent cells according to the manufacturer's protocol. Colonies were then 

miniprepped and sequenced to identify correctly cloned constructs. After sequence verifying all 

targeting sgRNA plasmids in the library, they were quantitated via Nanodrop and pooled at equal 

molarity, excluding the non-targeting and AAVS1-targeting negative control guides which were 

included at 25% of the total library.  
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For scRNA-seq experiments, cells were transduced with lentivirus at 30% confluency in 

a 10cm dish to maintain library coverage. After transduction (see above), cells were grown for 7 

days, then processed via 10X Genomics 3’ Single Cell mRNA Capture Kit v3 according to the 

manufacturers protocols. Unused cDNA from the library prep was used to amplify the CRISPR 

sgRNA sequences to improve cell annotation. In a 50 μL reaction, 20 μL of cDNA was mixed 

with 2.5 μL of the CROP-Seq_Guide_Amp primer (10μM), 2.5 μL of the NEB_Universal primer 

(1 0μM), and 25 μL of Kapa HiFi HotStart ReadyMix. The PCR cycling parameters were used 

according to the manufacturer's protocol, with an annealing temperature of 65 °C and an 

extension time of 30 seconds. Care was taken to ensure the PCR reaction was terminated in the 

exponential phase by performing a small scale test PCR reaction and running several different 

cycle numbers on an agarose gel to visualize amplification kinetics. After amplifying and 

purifying the sgRNA libraries via a Qiagen PCR purification column, the libraries were then 

indexed for Illumina sequencing via an NEBNext multiplexed indexing oligo kit. 1 μL of the 

purified step 1 PCR amplicon as template (the sgRNA library) was added with 2.5 μL of each 

indexing primer per 50 μL Kapa HiFi reaction, and run for 6-8 cycles with an annealing 

temperature of 65 °C and an extension time of 45 seconds. The final sgRNA sequencing libraries 

were then purified using AmpureXP magnetic beads (Beckman A63881) at a 1.6:1 beads to 

DNA ratio. Resulting sequencing libraries were then sequenced on a NovaSeq according to 10X 

Genomics’ recommended sequencing parameters. 

Assessing sgRNA efficiency 

Lentiviral transduction was used to delivery each sgRNA to Hs578T cells in separate 

wells of six-well plates. Transduction was performed at a high MOI, incubating the cells for 16 

hours in a 1:1 mix of unconcentrated viral supernatant (see lentiviral production section) and 
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DMEM + 10%FBS (with 8 μg/mL polybrene). After 16 hours of incubation, the virus containing 

media was replaced with fresh DMEM + 10%FBS, and after 48 hours of incubation the media 

was replaced with DMEM + 10%FBS + 2 μg/mL puromycin. Following this, the cells were 

maintained in media containing puromycin for one week, at which point genomic DNA was 

isolated via the Qiagen DNeasy blood and tissue kit. The Genomic DNA was then used as 

template for a set of nested PCRs to amplify the edited genomic region and subject it to NGS. 

For each sample, 4 μg of genomic DNA was mixed with 25 μL of Kapa Hifi HotStart ReadyMix, 

2.5 μL of each primer (10 μM stock), and water up to 50 μL. The amplification was performed 

according to the manufacturer’s protocol, with an annealing temperature of 60 °C, an extension 

time of 30 seconds, and 30-35 cycles of amplification. The step 1 PCR product was then purified 

using a QiaQuick PCR Purification Kit. Following this an NEBNext indexing kit (NEB E7335S) 

was used to attach Illumina specific sequences and indices via a nested PCR. 25ng of the purified 

step 1 PCR amplicon as template was added with 2.5 μL of each indexing primer per 50 μL Kapa 

HiFi reaction, and run for 6-8 cycles with an annealing temperature of 65 °C and an extension 

time of 45 seconds. The final amplicons were then purified using AmpureXP magnetic beads 

(Beckman A63881) at a 1.6:1 bead-to-DNA ratio, and sequenced on an Illumina HiSeq2500. The 

online ‘CRISPResso’ tool (http://crispresso2.pinellolab.org/submission) was then used to 

quantify editing rates with default parameters (Pinello et al., 2016). For sgRNA 

“CCTCCTCCTCCGGCACCCAG”, targeting CDK13, we were unable to generate a high quality 

NGS compatible amplicon due to significant off-target amplification. Instead, we used the 

Synthego ICE analysis tool, to estimate the editing rate from sanger sequencing data. This 

methodology has been shown to well approximate results from NGS (Conant et al., 2022). 



103 
 

Cell-cycle phase scoring for unannotated genes 

Co-expression networks were constructed using the “scanpy” and “numpy” Python 

packages (Langfelder & Horvath, 2008) using the Pearson correlation to quantify gene-gene 

similarity in expression. For each transcript of unknown cell-cycle relevance, cell-cycle phase 

scores were quantified by taking the mean Pearson correlation of the transcript of interest to a 

given set of known cell-cycle phase markers (Macosko et al., 2015). To quantify statistical 

significance, we identified genes which have a significantly higher mean coexpression with 

genes of a given phase versus all other phases, as quantified by a t-test. We then stratified 

transcripts by the variance in their cell-cycle phase scores, only plotting genes with cell-cycle 

phase scores with variance greater than 2 standard deviations away from the dataset mean.  

Cell-cycle phase annotation 

Preprocessing read counts. The sequencing counts from the scRNA-seq experiments 

were quantified with the CellRanger (Zheng et al., 2017), which provides estimates of mRNA 

abundance per gene and classification of which sgRNA each cell harbors. “Scanpy” was used for 

downstream processing of the mRNA expression estimates. Single cells for which the mRNA 

samples have fewer than 200 genes, or more than 10,000 genes, are removed with the scanpy 

function “filter_cells”.  Likewise, genes expressed in fewer than 3 cells are filtered from the 

expression matrices with the scanpy function “filter_genes”. Next, the  fraction of read counts 

mapping to mitochondrial genes was quantified and cells with more than 10% mitochondrial 

reads were removed. The expression estimates were then read-count normalized with the 

function “normalize_total” and log normalized with the scanpy function ‘log1p’. 

Expression markers of cell cycle and coarse classification of cell-cycle phase. For each 

cell i, the cell-cycle phase was estimated using numpy and pandas in custom python scripts. 
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First, we obtained five sets of genes (Jk),  k ∈ K =  {M, M/G1, G1/S, S, G2/M}, that had been 

previously identified as biomarkers of discrete cell-cycle phases (Whitfield et al., 2002), as well 

as cell-cycle biomarkers newly identified from our transcriptomic data. For each Jk we computed 

the average expression, Eik:  

𝐸𝐸𝑖𝑖𝑖𝑖 =  
∑ 𝐸𝐸𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑘𝑘

|𝐽𝐽𝑘𝑘|     (8) 

We also computed a pan-phase expression profile Ei, with all genes implicated in any 

cell-cycle phase:  

𝐸𝐸𝑖𝑖𝑖𝑖 = ∪∀𝑖𝑖 𝐸𝐸𝑖𝑖𝑖𝑖     (9) 

These expression vectors were also used to label each cell with a coarse-grained 

classification 𝐶𝐶 ∈ 𝐾𝐾 of the cell-cycle phase: 

 𝐶𝐶𝑖𝑖 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖 𝐸𝐸𝑖𝑖𝑖𝑖    (10) 

Embedding of single-cell expression to quantitate cell-cycle phase angle. For each pair of 

cells (m, n), we computed the cosine similarity of the pan-phase expression profiles (eqn. 9), 

which was used to derive the pairwise cell-cell distance D: 

𝐷𝐷𝑝𝑝,𝑛𝑛 = 1 −  cos�Θ𝑝𝑝,𝑛𝑛� = 1 −  𝐸𝐸𝑚𝑚⋅ 𝐸𝐸𝑛𝑛𝑇𝑇

‖𝐸𝐸𝑚𝑚‖ ‖𝐸𝐸𝑛𝑛‖
 (11) 

The matrix of all pairwise cell-cell distances, D, was then embedded into two 

dimensional space (D1 and D2) using Multidimensional Scaling (Kruskal & Wish, 1978) (MDS) 

in sklearn. The Cartesian coordinates of each cell in the embedding were converted to polar 

coordinates: 

(𝑎𝑎,Θ) = (�𝐷𝐷12 +  𝐷𝐷22  tan−1 𝐷𝐷2
𝐷𝐷1

)   (12) 

We then assigned consecutive angular ranges to discrete cell-cycle labels k according to 

the Ci that was most represented among the cells within that range. Defining 𝑆𝑆Θ as the set of all 
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cells residing in a angular range bounded by Θ and Θ + 1, the most represented cell-cycle phase 

label was: 

𝑀𝑀Θ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖 �𝐶𝐶𝑖𝑖,0 = 𝑘𝑘∀𝑖𝑖 ∈  𝑆𝑆Θ, 𝑘𝑘 ∈ 𝐾𝐾�  (13) 

We used linear regression to assess the ability of Θ to capture cell-cycle information and 

to consequently be used to remove that information from the transcriptome-wide expression 

profile. We first smoothed the expression estimates for each cell in each phase, Eik, across the 

angular dimension, Θ , with the R package ‘mgcv’ (Wood, 2011).  The modified cell-cycle 

expression scores were then used as features in the ‘regress_out’ function in scanpy. Kuiper’s 

test, a Kolomogrov-Smirnov test in polar coordinates available in the R package “circular” (Lund 

et al., 2017), was used to score which gene knockouts result in a significant change in 

distribution of cells about the cell-cycle embedding.  

Annotating phenotypic effect of CRISPR knockout 

To establish the baseline transcriptomic state, we calculated the median transcriptomic 

abundance per each transcript for all cells that received only one AAVS sgRNA. We calculated 

the log2 fold change in abundance for each transcript of each cell. We then calculated the median 

fold change per transcript for each set of cells that had the same gene knocked out. We also 

established a confidence interval of the median through 1000 bootstrap resampling. We finally 

embedded both the median and resampled median using multi-dimensional scaling, similar to the 

cell cycle phase analysis. 

We also inferred the transcriptomic programs altered by the genetic perturbation. For 

each gene knockout, we compared the distribution of transcript abundances between the 

knockout cells and cells that received AAVS sgRNAs using a Mann Whitney-U test corrected 

for multiple hypothesis testing using the Bejamini-Hochberg procedure. We defined a gene to be 
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differentially expressed for FDR < 0.05. This procedure yields a set of differentially expressed 

genes for each knockout. We then determined what cellular functions are perturbed by 

performing gene enrichment analysis against genesets from Reactome.  

Chemical Validation of CDK12-PRMT5 interaction 

MDA-MB-231 cells were seeded into 96-well flat bottom black wall plates in 100 

μL/well of L-15 culture medium with 10% FBS and 1X Penicillin/Streptomycin added at 1500 

cells per well and incubated overnight at 37C in air.  PRMT5 inhibitor (PF-06939999 (Jensen-

Pergakes et al., 2022) or EPZ015666 (Chan-Penebre et al., 2015)) dilutions were prepared in 

100% DMSO, then further diluted in complete culture media and 11 ml was added to each well 

of the cell plate to reach the appropriate final concentration in 0.1% DMSO.  Each dose was 

tested in triplicate.  Plates were incubated for 3 days at 37°C.  Media and PRMT5 inhibitors were 

refreshed and SR4835 (Quereda et al., 2019) was added in dose response.  SR4835 compound 

dilution plates were prepared in 100% DMSO starting with a 10 mM stock concentration, using a 

3-pt serial dilution, then further diluted in complete culture media and added to each well of the 

cell plate such that the highest compound concentration tested was 10 mM final in 0.1% 

DMSO.  Cells were incubated an additional 7 days at 37°C, then plates were removed and 

assayed for viability using Cell Titer Glo reagent. Plates were read on an Envision plate reader 

using the luminescent filter.  Viability was assessed as a percentage of DMSO control using 

Excel.  The SynergyFinder 2.0 (Ianevski et al., 2020) web tool was used to calculate synergy 

scores for each PRMT5 inhibitor + SR4835 combination.  

5’ Transcript Coverage Bias 

Exon coverage. Strand aware, base level read coverage was computed for each knockout 

in the MDA-MB-231 dataset from aligned bam files using the ‘genomecov’ tool in bedtools 
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(version 2.30.0) with the ‘-bg’ and ‘-strand’ flags set. GENCODE comprehensive gene 

annotation for GRCh38 version 28 was used as a gene model for exon definitions. Exons 

categories for a given gene were defined as follows: ‘First’ exons are the 5’ most exon in any 

transcript, ‘Alternative First’ exons are other exons which are the 5’ most exon in any transcript 

but are were not labeled ‘First’, ‘Last’ exons are the 3’ most exon in any transcript for a given 

gene, ‘Alternative Last’ exons are other exons which are the 3’ most exon in any transcript but 

are were not labeled ‘Last’, ‘Internal’ exons are all other exons.  Coverage per exon per gene for 

all genes the GENCODE annotation was computed as the number of reads that span the exon 

with at least one base-pair using the package bx-python (version 0.8.11). Genes with less than 10 

assigned reads were filtered out. Exon coverages were subsequently normalized as reads per 

million and log2 transformed. Log2 fold-change per exon per gene was computed relative to cells 

harboring non-targeting control (NTC) guides. Significant perturbation to the fold enrichment of 

‘First’ exons across the distribution of all genes measured in the scRNAseq experiment was 

computed as a t-test with the python package scipy (version 1.6.2).    

Gene set enrichment of 5’ biased transcripts. The 5’ coverage bias was defined as the 

ratio of the fold enrichment relative to NTC of the ‘First’ exon to the ‘Last’ exon. We performed 

hierarchical clustering of the euclidean distances of the 5’ bias for select knockout samples 

across all genes with ten or more read counts measured in the scRNAseq experiment using the 

‘complete’ option from the ‘hierarchy’ package in scipy. The hierarchy was then cut into 12 trees 

and gene set enrichment was performed on the transcripts within each tree using the Enrichr (E. 

Y. Chen et al., 2013) webtool. Significantly enriched terms from the MSigDB Hallmark 2020 

gene sets had a padj < 0.05 by Benjamini-Hochberg corrected Fisher Exact test. 



108 
 

RNA Pol II transcriptional profiling via CUT&Tag  

To quantify RNA pol II transcriptional initiation/activity across the genome, we 

employed a CUT&Tag (ActiveMotif #53165 and #91152) assay (Kaya-Okur et al., 2019). To 

target RNAPII, we used an antibody raised against a synthetic “YSPTSpPS” peptide 

corresponding to the Ser-5 phosphorylated RNAPII C-terminal domain (ActiveMotif # 91152). 

We used a clonal doxycycline inducible dCas9-KRAB MDA-MB-231 cell line to control 

repression of CDK genes and PRMT5. On day 1 of the experiment cells were infected with 

lentiviruses containing the appropriate targeting/NTC sgRNAs driven by the human U6 promoter 

at an MOI of ~3 for each virus to ensure all cells were transduced. Cells were transduced in 

DMEM + 10% FBS with the addition of 8 μg/mL polybrene. 16 hours after the time of 

transduction, media was changed to DMEM +10% FBS. 24 hours after this, the cell culture 

media was switched to DMEM + 10%FBS containing 2μg/mL puromycin to ensure no 

uninfected cells remain. 48 hours after this, cell culture media was changed to DMEM + 

10%FBS containing 2 μg/mL puromycin and 1 μg/mL doxycycline to induce dCas9-KRAB 

expression. 48 hours after this, cells were processed for CUT&Tag library prep following the 

manufacturer's recommendations. To summarize, for each sample 500K cells were spun down at 

500G for 3 minutes in a 1.5mL Eppendorf tube. The cell pellet was then resuspended in 1 mL 1X 

wash buffer. The cells were again spun down at 500G for 3 minutes, and resuspended in 1.5 mL 

1X wash buffer. Concanavalin A beads were prepared by mixing 20 μL of beads with 1.6 mL 1X 

binding buffer. The tube was placed on a magnetic separator, until the beads were adhered to the 

wall of the tube. The supernatant was aspirated, and the beads were washed with 1.5 mL 1X 

binding buffer. After this, the supernatant was again removed and the beads were tubes were 

removed from the magnetic rack and resuspended in 20 uL of 1X binding buffer. The 
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resuspended beads were then added to the tubes of cells, and allowed to mix end-over-end for 10 

minutes at room temp. The samples were then placed on a magnetic rack, and after the beads had 

adhered to the wall of the tube the supernatant was removed. The cells/beads were then 

resuspended in 50 uL of ice-cold antibody buffer (containing protease inhibitors and digitonin), 

and 1uL of anti-RNAPII primary antibody was added to the samples. The primary antibody was 

allowed to bind overnight at 4°C on an orbital rotator. The next day, the tubes were placed back 

on the magnetic rack, and the supernatant was removed after the beads had adhered to the wall of 

the tube. 100 µL of rabbit anti-mouse secondary antibody (diluted 1:100 in Dig-Wash buffer) 

was added to each tube, and allowed to bind for 1 hour on an orbital rotator at room temp. Using 

the magnetic separator, the bead/cells were then washed 3 times with 1 mL of Dig-Wash buffer. 

The assembled pA-Tn5 transposomes were then mixed with Dig-300 Buffer at a final 

concentration of 1:100 (100 µL total volume). For each sample, the cells/beads were resuspended 

in 100 µL of the assembled transposome buffer, and incubated at room temperature for 1 hour on 

an orbital rotator. After this, the cells/beads were then washed three times with 1 mL of Dig-300 

buffer via the magnetic separator. After the final wash, the supernatant was removed and the 

samples resuspended in 125 µL of tagmentation buffer. The samples were then incubated for one 

hour at 37°C. Following this, we added 4.2 µL of 0.5 M EDTA, 1.25 µL of 10% SDS, and 1.1 

µL of Proteinase K (10 mg/mL) to each sample. After mixing well, the samples were incubated 

at 55°C for one hour. The beads/samples were then placed on a magnetic separator, and the 

supernatant was moved to a new tube for DNA purification. 625 µL of DNA purification binding 

buffer was then added to each sample. The samples were then placed in a DNA purification 

column, and spun down at 17,000G for 1 minute. Following this, the column was washed once 

with 750 µL of DNA wash buffer. The column was allowed to air dry for 1 minute, and then the 
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DNA was eluted with 35 µL of elution buffer. 30 µL of the eluted DNA was then used as 

template for a PCR, attaching illumina specific adapters and indices via Q5 polymerase. The 

PCR conditions were: 72°C for 5 minutes, 98°C for 30 seconds, 14 cycles of: {98°C for 10 

seconds, 63°C for 10 seconds} followed by a final incubation at 72°C for 1 minute, and a hold at 

10 °C. The PCR reaction was then cleaned up using SPRI beads at a 1.1:1 beads to sample 

volume ratio, washing the beads twice with 200 µL of 80% ethanol. The DNA was finally eluted 

in 20 µL of DNA purification buffer, and the libraries sequenced on a NovaSeq 6000. 

 
Quantifying RNA Pol II transcriptional activity from CUT&Tag data 

Adapter sequences were trimmed from the raw FASTQ files with Trim Galore using 

default settings and cutadapt (version 4.1).  Trimmed FASTQ files were aligned with bowtie2 

(version 2.4.5) with the following settings: ‘--end-to-end --very-sensitive --no-mixed --no-

discordant -I 70 -X 700’.  Aligned bam files were coordinate sorted and duplicates were removed 

with Picard Tools (version 2.17.11). Alignments with a quality score less than 2 were removed 

with samtools (version 1.15.1).  Genomic read coverage was computed with the ‘bamCoverage’ 

utility in deeptools (version 3.5.1) with a binsize of 1 base pair.  Read coverage across transcript 

body was computed with the ‘computeMatrix’ utility in deeptools in ‘reference-point’ mode with 

the following settings ‘--referencePoint TSS   --beforeRegionStartLength 2000  --binSize 10 --

metagene --afterRegionStartLength 2000’.  Read coverage in bins across the transcript bodies 

were summed across all transcripts with a minimum read count of 100 and a maximum read 

count of 10000. The transcriptome wide gene body coverages were normalized relative to the 

mean of double non-targeting control (NTC-NTC) knockouts. Significance was quantified with a 

Kolmogorov–Smirnov test of the mean of replicate knockdowns in the python package scipy 

(version 1.6.2) 
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CHAPTER 3: Using deep learning to model the hierarchical structure and function of a 

cell 

Abstract 
Although artificial neural networks simulate a variety of human functions, their internal 

structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides 

an opportunity to design visible neural networks (VNNs) which couple the model’s inner 

workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical 

structure of 2526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on 

several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory 

observations. During simulation, genotypes induce patterns of subsystem activities, enabling in-

silico investigations of the molecular mechanisms underlying genotype-phenotype associations. 

These mechanisms can be validated and many are unexpected; some are governed by Boolean 

logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems 

(21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for 

decoding the genetics of disease, drug resistance, and synthetic life. 

Introduction 
Deep learning has revolutionized the field of artificial intelligence by enabling machines 

to perform human activities like seeing, listening and speaking(Collobert et al., 2011; Farabet et 

al., 2013; Hinton et al., 2012; LeCun et al., 2015; Mikolov et al., 2011; Sainath et al., 2013). 

Such systems are constructed from many-layered, ‘deep’, artificial neural networks (ANNs), 

inspired by actual neural networks in the brain and how they process patterns. The function of 

the ANN is created during a training phase, in which the model learns to capture as accurately as 

possible the correct answer, or output, that should be returned for each example input pattern. In 
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this way, machine vision learns to recognize objects like dogs, people, and faces, and machine 

players learn to distinguish good from bad moves in games like chess and Go(Silver et al., 2016). 

In modern ANN architectures, the connections between neurons as well as their strengths 

are subject to extensive mathematical optimization, leading to densely entangled network 

structures that are neither tied to an actual physical system nor based on human reasoning. 

Consequently, it is typically difficult to grasp how any particular set of neurons relates to system 

function. For instance, AlphaGo beats top human players(Silver et al., 2016), but examination of 

its underlying network yields little insight into the rules behind its moves or how these are 

encoded by neurons. These are so-called ‘black boxes’(Brosin, 1958), in which the input/output 

function accurately models an actual system but the internal structure does not (Fig. 3.1a). Such 

models, while undoubtedly useful, are insufficient in cases where simulation is needed not only 

of system function but also of system structure. In particular, many applications in biology and 

medicine seek to model both functional outcome and the mechanisms leading to that outcome so 

that these can be understood and manipulated through drugs, genes or environment. 

Here we report DCell, an interpretable or ‘visible’ neural network (VNN) simulating a 

basic eukaryotic cell. The structure of this model is formulated from extensive prior knowledge 

of the cell’s hierarchy of subsystems documented for the budding yeast Saccharomyces 

cerevisiae, drawn from either of two sources: the Gene Ontology (GO), a literature-curated 

reference database from which we extracted 2526 intracellular components, processes, and 

functions(The Gene Ontology Consortium, 2016); or CliXO, an alternative ontology of similar 

size inferred from large-scale molecular datasets rather than literature curation(Dutkowski et al., 

2013; Kramer et al., 2014). While CliXO and GO overlap in 37% of subsystems, some in CliXO 

are apparent in large-scale datasets but not yet characterized in literature, whereas some in GO 
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are documented in the literature but difficult to identify in big data. Subsystems in these 

ontologies are interrelated through hierarchical parent-child relationships of membership or 

containment. Such hierarchies form a natural bridge from variations in genotype, at the scale of 

nucleotides and genes, to variations in phenotype, at the scale of cells and organisms(Carvunis & 

Ideker, 2014; Yu et al., 2016). 

The function of DCell is learned during a training phase, in which perturbations to genes 

propagate through the hierarchy to impact parent subsystems that contain them, giving rise to 

functional changes in protein complexes, biological processes, organelles and, ultimately, a 

predicted response at the level of cell growth phenotype (Fig. 3.1b). Previously, we saw that 

hierarchical groups of genes in an ontology could be used to formulate input features for such 

phenotypic predictions(Carvunis & Ideker, 2014; Yu et al., 2016). However, these features were 

provided to standard black-box machine learning models which could not be interpreted 

biologically. Here, we use the biological hierarchy to directly embed the structure of a deep 

neural network, enabling transparent biological interpretation. 

Results 
DCell Design 

In DCell, the functional state of each subsystem is represented by a bank of neurons (Fig. 

3.1c). Connectivity of these neurons is set to mirror the biological hierarchy, so that they take 

input only from neurons of child subsystems and send output only to neurons of parent 

(super)systems, with weights determined during training. The use of multiple neurons (ranging 

from 20 to 1,075 per system, Methods) acknowledges that cellular components can be 

multifunctional, with distinct states adopting a range of values along multiple 

dimensions(Copley, 2012). The input layer of the hierarchy comprises the genes, while the 
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output layer, or root, is a single neuron representing cell phenotype. By this design, the VNN 

embedded in GO includes 43,721 neurons while the corresponding model for CliXO includes 

22,167 neurons. The depth of both networks is 12 layers, on par with deep neural networks in 

other fields (Silver et al., 2016). 

Training and Performance in Genotype-Phenotype Translation 

Given this architecture, we taught DCell to predict phenotypes related to cellular fitness, 

a model genotype-to-phenotype translation task (Methods). Extensive training was made 

possible by a compendium of yeast growth phenotypes measured for single and double gene 

deletion genotypes, comprising several million genotype-phenotype training examples (Costanzo 

et al., 2010, 2016). Two related phenotypes were considered: (i) Capacity for growth measured 

by colony size relative to wild-type cells; (ii) For double gene deletions, genetic interaction score 

measured as the difference in colony size from that expected from the corresponding single gene 

deletions. Predicting genetic interaction represents a harder task than predicting absolute growth, 

as it requires learning of non-linear effects beyond superposition of elemental genotypes. Based 

on the training examples, the weights of input connections to each neuron were optimized by 

stochastic gradient descent computed by backpropagation. For execution and inspection of this 

DCell model, we created an interactive website at http://d-cell.ucsd.edu/ (Fig. 3.1d). 

We found that DCell was able to make accurate phenotypic predictions for both growth 

(Fig. 3.2a) and genetic interaction (Fig. 3.2b). It outperformed previous predictors, including 

those based on metabolic models (Szappanos, Kovács, Szamecz, Honti, et al., 2011) and protein-

protein interaction networks (I. Lee et al., 2010; Pandey et al., 2010), as well as a hierarchical 

method not related to deep learning (Fig. 3.2c, Fig. S3.1) (Yu et al., 2016). We also compared 

performance to black-box ANNs of several types. First, we constructed ANNs with matching 
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structure to DCell but permuting the assignment of genes to subsystems. Predictive performance 

decreased substantially (Fig. 3.2c) and was restored only after increasing the number of neurons 

by an order of magnitude (Fig. 3.2d). Thus, the biological hierarchy provides significant 

information not found in randomized versions. Second, we constructed a fully connected ANN 

with the same number of layers and neurons as DCell but unlimited connectivity between 

adjacent layers. Despite these extra parameters, performance of this fully connected model was 

not significantly better (Fig. 3.2c).  

From Prediction to Mechanistic Interpretation 

Unlike standard ANNs, DCell’s simulations were tied to an extensive hierarchy of 

internal biological subsystems with states that could be queried. This ‘visible’ aspect raised the 

possibility that DCell could be used for in-silico studies of biological mechanism, of which we 

focused on four major types: 

1. Explaining a genotype-phenotype association 

2. Prioritizing all important mechanisms in determination of phenotype overall 

3. Characterization of the genetic logic implemented by a process  

4. Discovery of new biological processes and states 

Explaining a Genotype-Phenotype Association.  

A fundamental goal of genetics is to explain the molecular mechanisms linking changes 

in genotype to changes in phenotype. To generate such explanations automatically, we used 

DCell to simulate the impact of a genotypic change, relative to wild type, on the states of all 

cellular subsystems in the model. Subsystems with significant changes were proposed as 

candidate explanations in translation of genotype to phenotype, whereas those without state 

changes – typically the vast majority – were excluded from consideration. For example, to 
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explain the severe growth defect caused by pmt1∆ire1∆, disrupting the genes PMT1 and IRE1, 

we simulated this genotype with DCell and examined the 243 subsystems incorporating PMT1 or 

IRE1 at any level of the GO hierarchy (ancestors of one or both genes). These subsystems 

encompassed functions of PMT1 or IRE1 in the endoplasmic reticulum unfolded protein 

response (ER-UPR) (Free, 2013; Xu et al., 2013), cell wall organization and integrity(Scrimale et 

al., 2009; Walter & Ron, 2011), and many other processes (Fig. 3.3a). Examining the simulated 

states of these candidate subsystems (values of their neurons), we found that ER-UPR output was 

substantially reduced compared to wild type, whereas cell wall organization and other 

subsystems were relatively unaffected (Fig. 3.3a). 

To validate this simulated decrease, we examined a dataset measuring abundance of 

Green Fluorescent Protein (GFP) driven by a promoter responsive to Hac1, a key transcriptional 

activator of ER-UPR, over numerous pairwise gene disruptions(Jonikas et al., 2009). Hac1 

activity was significantly lowered in the pmt1∆ire1∆ genotype compared to wild type, consistent 

with model simulations (Fig. 3.3b). Moreover, we found that the simulated state of ER-UPR was 

well correlated with experimental Hac1 activity, not only for this genotype but across all relevant 

gene disruptions in the dataset (Fig. 3.3b). To address the concern that Hac1 activity might 

associate non-specifically with state changes in many diverse subsystems, not just those related 

to ER, we examined its correlation with the simulated states of every subsystem in DCell. High 

correlation was observed only for ER-UPR and super-systems (Fig. 3.3c), demonstrating specific 

validation. In this way, DCell was used to test among competing mechanistic hypotheses for a 

genotype-phenotype relationship. 

In explaining genotype-phenotype associations, a key requirement is that the state of a 

subsystem in silico approximate its true state in vivo. To further validate this capability, we 
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examined the subsystem of DNA repair (Fig. 3.3d) which, like ER-UPR, had been 

experimentally interrogated over many double gene deletions (Srivas et al., 2013). In particular, 

DNA repair status had been characterized by resistance to ultraviolet radiation (UV), a model 

DNA damaging agent (Cadet et al., 2005). Once again we saw good agreement between model 

and experiment: the simulated state of DNA repair significantly tracked experimental UV 

resistance across genotypes (Fig. 3.3e), in a manner highly specific to this subsystem (Fig. 3.3f).  

Prioritizing all important systems in determination of phenotype overall 

Beyond individual explanations, a critical question was whether a complex phenotype 

such as growth depends on equal contributions from many subsystems or is dominated by a few. 

To address this question, we reasoned that the overall importance of a subsystem can be 

computed quantitatively as the degree to which its state is more predictive of phenotype than the 

states of its children – a metric we called Relative Local Improvement in Predictive Power 

(RLIPP, Methods). We observed that RLIPP approximately followed a Pareto (power-law) 

distribution, in which a few subsystems are highly important for model predictions, with a long 

tail of weakly important systems (Fig. 3.4a). In particular, 80% of the cumulative importance 

was captured by 21% of subsystems (the Pareto 80/20 rule (Pareto & Page, 1971)), while >88% 

of subsystems retained some improvement in phenotypic prediction over their children (RLIPP > 

0). The GO subsystem of greatest individual importance was ‘Negative regulation of cellular 

macromolecule biosynthesis’, which organizes cellular circuits that inhibit biosynthesis and, as 

evidenced by DCell simulations, can lead to strong increases in growth when disrupted. Other 

subsystems important for growth related to the proper function of organelles, biomolecular 

transport, stress response, protein modification, and assembly of complexes (Figs. 3.4b-j).  
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Characterization of the genetic logic implemented by a process 

Another type of mechanistic interpretation relates to the mathematical functions by which 

the neurons representing each subsystem integrate information. We investigated whether these 

functions could be reduced to simple forms, such as Boolean logic gates, which are easily 

interpreted (Methods). This analysis found 1119 subsystems at least partly governed by Boolean 

logic (44% of GO). For instance, the state of Mitochondrial Respiratory Chain (Fig. 3.5a), while 

relatively high in wild-type cells, was driven low by disruptions in any of its several enzymatic 

complexes involved in electron transport, such as complexes III or IV (Fig. 3.5b). Thus 

Mitochondrial Respiratory Chain resembles a logical AND gate (Fig. 3.5c). We also observed 

many cases of OR, XOR, and (A not B), although the AND configuration arose most frequently. 

The remaining subsystems did not map clearly to Boolean functions, suggesting machinery that 

is more complex than an on/off switch.  

Discovery of new biological processes and states 

Finally, since DCell’s hierarchy could be structured from systematic datasets (CliXO) as 

an alternative to literature (GO), we investigated the extent to which model simulations with 

CliXO relied on entirely new cellular subsystems not previously appreciated in biology. In total 

we found 236 subsystems in the CliXO hierarchy that were previously undocumented in GO or 

elsewhere in literature and had high RLIPP importance scores for genotype-phenotype 

translation. One example was CliXO:10651, a previously undocumented process ranking among 

the top ten systems important for growth prediction. We found that CliXO had inferred this 

system based on the elevated density of protein-protein interactions observed among its 154 

genes (Fig. 3.5d, 9-fold enrichment, p<10−200). These interactions interconnected two subsystems 

that were much better understood, relating to actin filaments and ion homeostasis (5-fold 
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enrichment between subsystems, p=0.00029). The simulated state of CliXO:10651 was governed 

approximately by a Boolean AND of the states of its two subsystems, both being required to 

maintain wild-type status. These findings were supported by previous reports that homeostasis of 

ions, such as iron, regulates the level of oxidative stress, which in turn disrupts actin cytoskeletal 

organization (Farrugia & Balzan, 2012; Pujol-Carrion & de la Torre-Ruiz, 2010).  

As a second example we considered CliXO:10582, a novel subsystem of 71 genes (Fig. 

3.6a). Although many of these genes had known roles in DNA repair, nothing like this grouping 

had been previously recognized. Examination of the hierarchical model structure revealed that 

CliXO:10582 interconnects components of three known DNA repair subsystems, postreplication 

repair, mismatch repair, and non-recombinational repair, based on a very high density of protein-

protein interactions falling among these components (Fig. 3.6a). Revisiting the experimental data 

on resistance to UV-induced DNA damage (Srivas et al., 2013) (Figs. 3.3e,f), we saw that the 

simulated state of CliXO:10582 strongly correlated with experimental UV resistance across 

genotypes (Fig. 3.6b). This association was stronger than for any child and, in fact, for any other 

CliXO subsystem interrogated by the experimental data (Fig. 3.6c). Mathematically, the state of 

CliXO:10582 was not well-captured by Boolean logic but by a weighted linear summation of the 

states of the three child systems, with postreplication repair having the greatest single 

contribution (Fig. 3.6d). Thus, DCell had identified a novel organization of subcomponents 

which specifically coordinate the response to UV damage. For the eight genes in this system not 

previously known to function in DNA repair (green nodes, Fig. 3.6a), the evidence summarized 

by the model – that these gene products physically interact within a larger cluster of known DNA 

repair factors, and that they functionally manifest with the same UV sensitivity phenotype when 

disrupted – creates a compelling case for further studies. 
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Discussion 

A direct route to interpretable neural networks is to encode not only function but form. 

Here, we have explored such visible learning in the context of cell biology, by incorporating an 

unprecedented collection of knowledge (Dutkowski et al., 2013; Gene Ontology Consortium, 

2015; Kramer et al., 2014) and data (Costanzo et al., 2010, 2016; Kim et al., 2014) to 

simultaneously simulate cell hierarchical structure and function. DCell captured nearly all 

phenotypic variation in cellular growth, a classic complex phenotype, including much of the less-

understood non-additive portion due to genetic interactions (Figs. 3.2a-c). Armed with this 

explanatory power, the model simulated the intermediate functional states of thousands of 

cellular subsystems. Knowledge of these states enabled in-silico studies of molecular 

mechanism, including dissection of subsystems important to growth phenotype, identification of 

new subsystems, and reduction of subsystem functions, where possible, to Boolean logic (Figs. 

3.3-3.5). 

Methodologically, our approach works towards a synthesis of statistical genetics and 

systems biology. State-of-the-art methods in statistical genetics (Yang et al., 2014, 2015) are 

based on linear regression of phenotype against the independent effects of genetic 

polymorphisms, without modeling the underlying molecular mechanisms that give rise to 

nonlinearity and genetic interaction. Separately, studies in systems biology capture molecular 

mechanisms using mathematical models (Chen et al., 2010; I. Lee et al., 2010; Szappanos, 

Kovács, Szamecz, & Honti, 2011), but such models typically do not have the breadth for large-

scale genetic dissection of phenotype. DCell bridges these two avenues: Its neural network 

encodes a complex nonlinear regression, an extension of statistical genetics, in which the 

additional complexity is enabled by a hierarchical mechanistic model, an extension of systems 
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biology. In contrast to other mechanistic models that have attempted large-scale genotype-

phenotype prediction (Karr et al., 2012; Yu et al., 2016), the framework of hierarchical neural 

networks is very general and expressive, such that a large class of biological structures and 

functions can be represented. For example, our earlier approach (Yu et al., 2016) used 

hierarchical knowledge of subsystems to create new features based on the number of gene 

disruptions in a subsystem, but these features were predetermined before modeling and thus 

nothing was learned about the real functions encoded by subsystems.  

It is also instructive to view DCell in context of previous research in interpretable 

machine learning, in which the notion of interpretability has been defined in different ways 

(Lipton, 2016). One direction has been to perform a post-hoc examination of an ANN that has 

already been trained, by inspecting neurons and rationalizing their decisions. A model trained to 

identify images of dogs might, upon later inspection, be seen to have neurons capturing 

interpretable properties like “tail” or “furry” (Mahendran & Vedaldi, 2015; Vondrick et al., 

2013; Weinzaepfel et al., 2011). A limitation of post-hoc interpretation is that it is disconnected 

from training, leaving no guarantees as to what level of human understanding can be achieved 

(Chakraborty et al., 2017). Therefore, in attention-based neural networks (Bahdanau et al., 2014; 

Lei et al., 2016), a separate module preselects key “interpretable” features for input to a black-

box model. For example, in a model predicting emotional attitude of a blog author (positive or 

negative, angry or calm), the key interpretable feature might come from a key phrase preselected 

from text. While DCell has some similarity to these attention-based approaches, its deep 

hierarchical structure captures feature clusters at multiple scales, pushing interpretation from the 

model input to internal features representing biological subsystems.  
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In several case studies, involving genotypes impacting ER-UPR and DNA repair 

subsystems, the subsystem states learned by DCell could be directly confirmed by molecular 

measurements. Notably, no information about subsystem states was provided during model 

training. These states emerged from translating genotypes (model inputs) to growth phenotypes 

(model outputs) under the structural constraints of the subsystem hierarchy; together, the 

input/output data and hierarchical structure were sufficient to guide subsystem neurons to learn a 

biologically correct function. In future, one might directly supervise a VNN to learn potentially 

multiple subsystem states and/or complex phenotypes, in which case training data could be 

provided at any level: genotype, phenotype, or points in between. 

In many applications of machine learning, predictive performance is all that matters. 

Indeed, it is often possible to build many alternative models that, while different in structure, all 

make excellent near-optimal functional predictions. In biology, however, prediction is not 

enough. The key additional question is which of the many excellent predictive models is the one 

actually used by the living system, as optimized not by computation but by evolution. DCell 

provides proof-of-concept of a system that, while optimizing functional prediction, respects 

biological structure. With these principles in mind, such models are of immediate interest in 

genome-wide association studies of human disease (Visscher et al., 2012), in which different 

patient genotypes can influence disease outcomes by complex mechanisms hidden from black-

box statistical approaches. Once trained on sufficient data, these models have application in 

personalized therapy by analyzing a patient’s genotype in combination with potential points of 

intervention targeted by drugs. We also see compelling uses in design of synthetic organisms, in 

which candidate genotypes can be efficiently evaluated in silico prior to validation in vivo. 
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Finally, beyond the architecture of the cell, biological systems at other scales may benefit from 

this type of constrained learning, including modeling of neural connections in the brain. 
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Figures 

 
 

Figure 3.1. Modeling system structure and function with visible learning.  

(A) A conventional neural network translates input to output as black box without knowledge of 
system structure. (B) In a visible neural network, input-output translation is based on prior 
knowledge. In DCell, gene-disruption genotypes (top) are translated to cell-growth predictions 
(bottom) through a hierarchy cell subsystems (middle). (C) A neural network I sembedded in the 
prior structure using multiple neurons per subsystem. (D) Screen capture of DCell online service.  
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Figure 3.2. Prediction of cell viability and genetic interaction phenotypes.  

(A) Measured versus predicted cell viability relative to wild type (WT = 1) on 
the Costanzo et al.16 data set. (B) Measured versus predicted genetic interaction scores for each 
double-gene-disruption genotype; genetic interactions between the disrupted genes can be 
positive (epistasis), zero (noninteraction), or negative (synthetic sickness or lethality). (C) Model 
performance expressed as the correlation between measured and predicted genetic interaction 
scores. Performance of DCell (blue) is compared to that of previous methods for predicting 
genetic interactions (green): FBA, Flux Balance Analysis17; GBA, Guilt By Association18; 
MNMC, Multi-Network Multi-Classifier19; and Ontotype13. Performance is also shown for 
matched black-box structures in which gene-to-subsystem mappings are randomly permuted 
(orange, average of ten randomizations) or for fully connected neural networks with the same 
number of layers as DCell (yellow). Correlations were calculated across gene pairs that met an 
interaction significance criterion of P < 0.05. DCell based on GO hierarchy; for DCell based on 
CliXO, see Figure S3.1. (D) Predictive performance versus number of neurons per subsystem. 
Performance measure and two structural hierarchies as in (C). 
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Figure 3.3. Interpretation of genotype–phenotype associations. 

(A) DCell simulations generate a hierarchy of candidate subsystems that can explain the 
association of the pmt1∆ire1∆ genotype with a negative genetic interaction phenotype (synthetic 
lethality). Subsystem states are represented by their neuron values, reduced to the first two 
principal components (PCs), which capture >75% of the total variance. The color of the node for 
each subsystem shows its PC2 expressed as a z-score with zero mean and unit s.d. The wild-type 
genotype produces z = 0 for all subsystems (see Online Methods). (B) Correspondence between 
Hac1 GFP activity and the functional states of ER-UPR (blue) or its parent subsystem, response 
to ER stress (red). Points represent genotypes, with pmt1∆ire1∆ genotype indicated. Subsystem 
state is the z-score of PC2 as in a. (C) Distribution of correlations between Hac1 GFP activity 
and the states of every other subsystem containing at least ten genotypes with measured GFP 
activity. (D) DCell simulations indicate that DNA repair is a highly altered subsystem that 
explains the slow growth phenotype of rev7∆rad57∆. The color of the node for each subsystem 
indicates its PC1 expressed as a z-score (see key in A). (E) Experimental resistance to UV 
damage plotted against the simulated state of DNA repair in DCell, separated into two classes: 
above and below wild-type value. Significance measured by Mann–Whitney U test. (f) 
Distribution of the associations between UV-damage resistance and the states of other 
subsystems containing at least ten genotypes with measured UV resistance. Panels A–C use 
genetic interaction prediction as the phenotypic readout; D–F use growth. All panels implement 
GO as the model of system structure. 
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Figure 3.4. Identification of subsystems important for cell growth.  

(A) Ranking of all cellular subsystems in GO (x-axis) by their importance in determining genetic 
interactions underlying growth phenotype (RLIPP score, y-axis). Inset, ten highest scoring 
subsystems. Positive RLIPP corresponds to increases in predictive power relative to children; 
negative RLIPP corresponds to decreases in power. (B–J) 2D state maps of informative 
subsystems (PC2 versus PC1). All axes are on the same scale, referring to the PC weights. Figure 
3.2 provides equivalent information for the CliXO hierarchy. 
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Figure 3.5. Analysis of subsystem functional logic.  

(A) DCell simulations explain the effects of a cyt1∆cox7∆ genotype by a causal hierarchy of 
subsystems involving changes to the mitochondrial respiratory chain (MRC). Display similar to 
Figure 3a, with node color indicating PC1 z-score according to the key. (B) 2D state map of 
MRC plotted as in Figure 4b. Genotypes disrupting MRC complex III only, MRC complex IV 
only, or both complexes are indicated. (C) Truth table relating the state of MRC to the states of 
its children. The logic resembles an AND gate, pictured. A check represents normal wild-type 
output; an “x” represents decreased output. (D) The schematic shows a newly identified system 
(CliXO:10651), identified by DCell to encode a logical AND integrating the states of two well-
characterized children. Names of children are cross-annotated from the corresponding enriched 
GO terms: Actin filament-based process, GO:0030029; Monovalent inorganic ion homeostasis, 
GO:0030004. 
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Figure 3.6. Analysis of a new DNA repair subsystem.  

(A) A new hierarchical organization of DNA repair. Subsystems and their hierarchical relations 
are identified by CliXO, while the states of subsystems are inferred by simulation of DCell 
embedded in this structure. (B)  experimental resistance to UV damage plotted against the state 
of CliXO:10582, separated into two classes: above and below wild-type value. Significance 
measured by Mann–Whitney U test. (C) Distribution of associations between UV resistance and 
the states of all CliXO subsystems with at least ten genotypes with measured UV resistance. (D) 
Weighted linear summation approximating the state of CliXO:10582 as a function of the states of 
its children. Numbers in bold are weights. Subsystem states are the PC1s of their neurons. 
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Supplemental Figures 

Figure S3.1. Precision-recall curves for classification of negative genetic interactions. 
 
Performance of DCell is compared to the same methods as in Fig. 3.2c. Genetic interactions with 
scores ≤ -0.08 are labeled as negative. 
  



143 
 

 
Figure S3.2. CliXO top subsystem states for translation of genotype to growth. 

(a) Ranking of all CliXO subsystems by their importance in determining genetic interactions 
(RLIPP score, see Methods). Inset: ten highest-scoring subsystems. (b-j) Two-dimensional state 
maps of informative subsystems from (a), in which each subsystem’s set of neuron states is 
reduced to the first two Principal Components (PCs). Each point represents the subsystem state 
induced by a genotype, with point color indicating the corresponding growth phenotype (genetic 
interaction score). 
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Figure S3.3. Calculating relative local improvement in predictive power (RLIPP). 

(a) Two L2-regularized linear regression models are fit to predict phenotype using either the 
neurons of a parent subsystem (bottom) or the neurons of that subsystem’s children (top). (b-c) 
Measured versus predicted phenotype (genetic interactions) for the children-based model (b) or 
the parent-based model (c). The example values are for the “DNA repair” subsystem. d, The 
RLIPP score is calculated from the Spearman correlation of both models.   
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Methods 

Preparation of Ontologies 

We guided the deep neural network structure using a biological ontology, consisting of 

terms representing cellular subsystems, child-parent relations representing containment of one 

term by another, and gene-to-term annotations. The first ontology considered was the Gene 

Ontology (GO), in which all three branches of GO (biological process, cellular component, and 

molecular function) were joined under a single root. We used the following criteria to filter 

(remove) terms from GO: 

1. Terms with the evidence code ‘‘inferred by genetic interaction’’ (IGI), to avoid 

potential circularity in predicting genetic interactions in the genotype-phenotype samples. 

2. Terms containing fewer than six yeast genes disrupted in the available genotypes 

(with “containment” defined as all genes annotated to that term or its descendants). 

3. Terms that are redundant with respect to their children terms in the ontology. 

When a term was removed, all children were connected directly to all parent terms to 

maintain the hierarchical structure. The remaining 2526 terms were used to define the hierarchy 

of DCell subsystems. 

To complement the GO structure, we also constructed a data-driven gene ontology using 

the method of Clique Extracted Ontologies (CliXO) as previously described (Kramer et al., 

2014). Briefly, data on gene pairs were sourced from YeastNet v3 (Kim et al., 2014), which lists 

68 experimental studies of 8 data types, excluding genetic interactions to avoid circularity similar 

to criterion 1 above. All features were integrated to create a single gene-gene similarity network 

following a previously described procedure11, in which each gene-gene pair is assigned a 

weighted similarity based on a combination of the YeastNet data. This network was subsequently 
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analyzed with the CliXO algorithm, which identifies nested cliques as the threshold gene-gene 

similarity becomes progressively less stringent. This process yields a hierarchy (directed acyclic 

graph) of parent-child relations among cliques at different similarity thresholds.   

DCell Architecture and Training Algorithm 

DCell trains a deep neural network to predict phenotype from genotype, with architecture 

that exactly mirrors the hierarchical structure of an ontology of cellular subsystems. Each cellular 

subsystem is represented by a group of hidden variables (neurons) in the neural network, and 

each parent-child relation is represented by a set of edges that fully connect these groups of 

hidden variables. The depth of this architecture (12 layers) presents two challenges for training: 

1) There is no guarantee that each subsystem will learn new patterns instead of copying those of 

its child subsystems; 2) Gradients tend to vanish lower in the hierarchy. To tackle these 

challenges, we borrow ideas from two previous systems, GoogLeNet (Szegedy et al., n.d.) and 

Deeply-Supervised Net (C.-Y. Lee et al., 2015), which improve the transparency and 

discriminative power of hidden variables and reduce the effect of vanishing gradients. 

We denote our input training dataset as D={(X1,y1),(X2,y2),… ,(XN,yN)}, where N is the 

number of samples. For each sample i, Xi ∈ RM denotes the genotype, represented as a binary 

vector of states on M genes (1 = disrupted; 0 = wild type), and yi ∈ R denotes the observed 

phenotype, which can be either relative growth rate or genetic interaction value. The multi-

dimensional state of each subsystem t, denoted by the output vector Oi
(t), is defined by a 

nonlinear function of the states of all of its child subsystems and annotated genes, concatenated 

in the input vector Ii
(t): 

O𝑖𝑖
(𝑡𝑡) = BatchNorm( Tanh ( Linear ( 𝐼𝐼𝑖𝑖

(𝑡𝑡) ) ) ) (1) 

Linear ( 𝐼𝐼𝑖𝑖
(𝑡𝑡) ) is a linear transformation of 𝐼𝐼𝑖𝑖

(𝑡𝑡) defined as 𝑊𝑊(𝑡𝑡)𝐼𝐼𝑖𝑖
(𝑡𝑡) + 𝑏𝑏(𝑡𝑡). Let 𝐿𝐿𝑂𝑂

(𝑡𝑡)denote 
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the length of 𝑂𝑂𝑖𝑖
(𝑡𝑡), representing the number of values in the state of t and determined by: 

 𝐿𝐿𝑂𝑂
(𝑡𝑡) = max (20, ⌈0.3 ∗ 𝑛𝑛𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛𝑎𝑎 𝑜𝑜𝑓𝑓 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑎𝑎𝑖𝑖𝑛𝑛𝑛𝑛𝑎𝑎 𝑏𝑏𝑏𝑏 𝑐𝑐⌉  (2) 

Intuitively, larger subsystems have larger state vectors to capture potentially more 

complex        biological responses. Similarly, let 𝐿𝐿𝐼𝐼
(𝑡𝑡) denote the length of 𝐼𝐼𝐼𝐼

(𝑡𝑡). In Eqn. (1), 

𝑊𝑊(𝑡𝑡) is a weight matrix with dimensions 𝐿𝐿𝑂𝑂
(𝑡𝑡) × 𝐿𝐿𝐼𝐼

(𝑡𝑡)and 𝑏𝑏(𝑡𝑡) is a column vector with size 𝐿𝐿𝑂𝑂
(𝑡𝑡). 

𝑊𝑊(𝑡𝑡)and 𝑏𝑏(𝑡𝑡)provide the parameters to be learned for subsystem t. Tanh is the nonlinear 

transforming hyperbolic tangent function. BatchNorm(Ioffe & Szegedy, 2015) is a normalizing 

function that reduces the impact of internal covariate shift caused by different scales of weights 

in 𝑊𝑊(𝑡𝑡). Batch normalization can be viewed as a type of regularization of model weights and 

reduces the need for the traditional dropout step in deep learning. We perform the training 

process by minimizing the objective function: 

 1
𝑁𝑁
∑ (𝐿𝐿𝑜𝑜𝑔𝑔𝑔𝑔 �𝐿𝐿𝑖𝑖𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎�𝑂𝑂𝑖𝑖

(𝑟𝑟)�,𝑏𝑏𝑖𝑖� +  𝛼𝛼 ∑ 𝐿𝐿𝑜𝑜𝑔𝑔𝑔𝑔(𝐿𝐿𝑖𝑖𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎�𝑂𝑂𝑖𝑖
(𝑡𝑡)�,𝑏𝑏𝑖𝑖)) +  𝜆𝜆‖𝑊𝑊‖2 𝑡𝑡≠𝑟𝑟

𝑁𝑁
𝑖𝑖=1  (3) 

Here, Loss is the squared error loss function, and r is the root of the hierarchy. Note that 

we compare yi with not only the root’s output, 𝑂𝑂𝑖𝑖
(𝑟𝑟), but also the outputs of all other subsystems, 

𝑂𝑂𝑖𝑖
(𝑡𝑡). Linear in (3) denotes linear functions transforming multi-dimensional vector 𝑂𝑂𝑖𝑖

(𝑡𝑡)into a 

scalar. In this way, every subsystem is optimized to serve its parents as features and to predict 

the phenotype itself, as used previously by GoogLeNet (Szegedy et al., n.d.); the parameter α 

(=0.3) balances these two contributions. λ is a l2-norm regularization factor determined by four-

fold cross validation. To train the DCell model, we initialize all weights uniformly at random 

between −0.001 and 0.001. We optimize the objective function using ADAM (Kingma & Ba, 

2014), a popular stochastic gradient descent algorithm, with mini-batch size of 15,000. Gradients 

with respect to model parameters are computed by standard back-propagation (Rumelhart et al., 
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1988). Note that while other hyperparameters might influence the overall predictive 

performance, they are unrelated to our focus on biological interpretation as long as the same 

settings are applied to both DCell and the black-box models we use as controls (Fig. 2d). We 

implemented DCell using the Torch7 library (https://github.com/torch/torch7) on Tesla K20 

GPUs.  

Training Genotype-Phenotype Data. 

Several forms of the model were employed in this study, trained on either Costanzo et al. 

2010 (~3 million training examples) (Costanzo et al., 2010) or a more recently published update 

in 2016 (~8 million training examples) (Costanzo et al., 2016). The first model was used for all 

results and figures in the main text to enable comparisons against previous approaches to predict 

genetic interactions. The latter model with updated data is provided at d-cell.ucsd.edu.  

Alternative Genotype-Phenotype Translation Methods 

We compared DCell to three state-of-the-art non-hierarchical approaches for predicting 

genetic interactions: flux balance analysis (FBA) (Szappanos, Kovács, Szamecz, & Honti, 2011), 

multi-network multi-classifier (MNMC) (Pandey et al., 2010),  and guilt-by-association (GBA) 

(I. Lee et al., 2010). FBA uses a model of metabolism to assess the impact on cell growth of gene 

deletions in metabolic pathways. MNMC is an ensemble supervised learning system that uses 

many different datasets as features to predict genetic interactions. GBA predicts the genetic 

interaction score of pairwise gene deletions based on the phenotypes of their network neighbors. 

We also compared against our previous prediction method (Ontotype) (Yu et al., 2016) which 

applies prior knowledge from a hierarchy like GO or CliXO but does not use deep learning nor 

simulate the internal states of subsystems. Ontotype counts the number of genes knocked in 

every GO term and uses these counts as features in a random forest regression.  
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Relative Local Improvement in Predictive Power (RLIPP) 

The RLIPP score was used to quantify and compare the importance of DCell’s internal 

subsystems in prediction of phenotype. To calculate the RLIPP score of a subsystem, we 

compared two different linear models for phenotypic prediction. In the first model, the 

subsystem’s neurons were used as features in a l2-norm penalized linear regression (Fig. S3.3a). 

In the second model, the neurons of the subsystem's children were used as the features instead. 

Each model was trained separately, with the optimal hyper-parameter associated with the L2-

norm penalty determined in five-fold cross validation. The performance of each of these two 

models was calculated as the Spearman correlation between the predicted and measured 

phenotype, here taken as genetic interaction scores (Fig. S3.3b,c). The RLIPP score was defined 

as the performance of the parent model relative to that of the children (Fig. S3.3d). A positive 

RLIPP score indicates that the state of the parent subsystem is more predictive of phenotype than 

the states of its children. This situation can occur when the parent learns complex (nonlinear) 

patterns from the children, as opposed to merely copying or adding their values. The intuition 

behind the RLIPP score is similar to a related ‘linear probe’ technique developed in a previous 

study to characterize the utility of each layer of a deep neural network (Alain & Bengio, 2016). 

 
Identification of subsystems that mimic Boolean logic gates 

As one means to interpret the mechanisms by which DCell translates genotype to 

phenotype, we evaluated each subsystem for the extent to which it approximates Boolean logic. 

In particular, we considered all trios of subsystems, each consisting of a parent subsystem and 

two of its children, and tested whether their binary states (S,C1,C2) were well-approximated by 

non-trivial Boolean logic. For each genotype, the binary state of each child subsystem was 

defined as either ‘Wild Type’ (True) or ‘Disrupted’ (False), by comparing PC1 to the wild-type 
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state. The binary state of each parent subsystem was defined as either ‘Wild Type’ (True) or 

‘>Wild Type’ (False), by comparing PC1 to the wild-type state. For each combinatorial state 

(C1,C2) of two child subsystems, the parent state S implied by DCell was determined based on 

the majority parent states of genotypes annotated to (C1,C2). For instance, suppose that for all the 

genotypes that induce (C1=True, C2=False) in the two children, DCell transforms 80% to parent 

state S=True and 20% to state S=False. We conclude the underlying logic for the parent 

subsystem to translate the signal from children subsystems is (True, False) → True. By checking 

the parent states for all four possible (C1,C2) combinations, we can decide whether this trio of 

subsystems exhibits Boolean logic. A trio belongs to none of the logic functions if >50% of all 

the genotypes or <4 genotypes are annotated to any (C1,C2)combinatorial state, or none of the 

annotated genotypes yield significant genetic interactions (|𝜀𝜀|<=0.08). For those subsystems 

exhibiting Boolean logic, we excluded ‘trivial’ functions in which the parent is always True, 

always False, or follows one of the children without dependence on the other. 

DCell server construction 

The DCell server (http://d-cell.ucsd.edu/) comprises several interconnected components 

working in unison to collect user input, run simulations, and transcode results to the web 

interface. On the backend, the DCell neural network model runs on the Torch library on a 

dedicated multi-GPU machine. On the front end, the web interface is built on cytoscape.js(Franz 

et al., 2016) and an in-house D3 (Bostock et al., 2011) graph visualizer to display a subgraph of 

the hierarchy, and React(Stefanov, 2016) for agile DOM (Document Object Model) editing 

(Wood et al., 2004). To respond to user input, including searching and viewing details of model 

subsystems, a low-latency proxy service translates between plain text fetched from the front end 

and binary data used by the backend. An Elasticsearch cluster (Gormley & Tong, 2015) caches 
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and indexes data for fast lookup and predictions. All web services run on a Kubernetes-based 

cloud infrastructure (http://kubernetes.io/) that auto-scales to heavy workloads. The result of 

these efforts is to allow easy visualization and interactivity of the model. 
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CONCLUSIONS 

In this dissertation, I have described methods for two stages of the functional genomics 

discovery pipeline. The first stage focuses on data generation. I have described a method that 

aims to profile many genotypes at once at the expense of being limited to a simple functional 

readout (Chapter 1). I also described a study based on the Perturb-Seq method that profiles a 

limited number of genotypes but measured a rich transcriptome profile (Chapter 2). The second 

stage attempts to integrate these types of data in a prediction model (Chapter 3). Here, I discuss 

how the two approaches can function synergistically and identify opportunities to extend these 

work to bring the two stages in alignment. 

The combinatorial knockout experiments described in Chapter 1 established the 

feasibility and value of large-scale genetic profiling. The approach can be readily extended to 

other biological systems and cancer contexts, which will yield insight to several outstanding 

questions involving genetic interactions. First, screening across greater contexts will provide a 

measure of penetrance of genetic interactions. In Chapter 1, our experiments across a panel of 

seven cell lines have highlighted the variability, and we proposed a more sensitive approach to 

identifying tissue-specific and pan-cancer genetic interactions. These approaches will benefit 

from increased measurements across more contexts to capture the variability of cancer cells. 

Second, screening across more genesets will identify the degree of batch correction 

needed in genetic interactions experiments. Unlike single-gene knockout experiments, where 

knocking out nearly all protein coding genes are feasible in a single experiment, all 

combinatorial-knockout experiments must make the decision to focus on specific biological 

systems. Because most experiments score the fitness of a genotype by comparing its fitness 

relative to the population, merging interactions across experiments, even within the same cellular 
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context, is not trivial (Doench, 2018; Kim & Hart, n.d.). This problem may be analogous to 

merging single-cell transcriptomics data after batch correction (Büttner et al., 2019; Haghverdi et 

al., 2018) and can only be solved by comparing the same set of interactions within different 

populations with different genetic backgrounds. 

Finally, it’s unclear whether pairwise knockouts are sufficient to reveal the essentiality of 

all biological systems. Higher-order knockouts overcome functional redundancies by 

simultaneously disrupting redundant genes, killing the cell in the process. Comparing pairwise 

knockouts to higher-order knockouts in human cells will yield insight into how many 

interactions are missed by pairwise knockouts. These future directions highlight the fact that 

despite genetic disruption experiments are more readily available than ever, much of the 

complexity of the human genome remains unexplored. 

A natural extension is to limit the space of genetic profiling to pathways that are 

prioritized by a whole cell model. A key advantage of this approach is the ability to identify key 

pathways in the cell that are relevant to specific sets of genetic inputs. In this and subsequent 

work (Kuenzi et al., 2020) that has followed, we showed that these explanations can be validated 

via orthogonal genetic perturbation screens. Since most interactions are rare (Tong et al., 2001), 

using a whole-cell model can enrich the number interactions in the experiment. Additionally, the 

model can identify relevant contexts for specific interactions. This type of approach can increase 

the rate of discovery in a genetic interaction experiment.  

Another direction is to take advantage of the multi-modal profiling data that is 

increasingly available. In Chapter 3, we validated the system activity of ER stress via a Hac1-

fluorescent reporter. Transcriptomic data can be used in place of the reporter and be provided at 

the time of training to systematically predict both the phenotype and transcriptomic state of the 



159 
 

cell. This type of model becomes feasible as datasets such as the genome-scale Perturb-Seq 

become more available (Replogle et al., 2022).  

Data generation and data analysis can be synergistic with one another rather than being a 

part of a one-direction, data pipeline. This feedback loop between screening and modeling 

provides a strategy to systematically traverse and profile the high-dimensionality of human 

genetics.  
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