
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Computational Tools for Immune Repertoire Characterization and Primer Set Design

Permalink
https://escholarship.org/uc/item/8177r05h

Author
Yu, Jane

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8177r05h
https://escholarship.org
http://www.cdlib.org/


Computational Tools for Immune Repertoire Characterization and Primer Set Design

by

Jane Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yun S. Song, Chair
Professor Haiyan Huang

Assistant Professor Nir Yosef

Fall 2019



Computational Tools for Immune Repertoire Characterization and Primer Set Design

Copyright 2019
by

Jane Yu



1

Abstract

Computational Tools for Immune Repertoire Characterization and Primer Set Design

by

Jane Yu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

The enormous decrease in the cost of genomic sequencing over the past two decades has
enabled researchers to revisit previously unaddressable questions in sequence analysis. How-
ever, this boom of genomic information has introduced new sets of problems that often
demand computationally efficient methods. In this work, we describe computational tools
for two such settings involving large-scale genomic data: 1) estimating copy number and
allelic variation in two highly complex gene families, and 2) selective sequencing of a target
genome in a complex DNA sample.

We first describe a method that takes short reads from high-throughput sequencing and
characterizes both copy number and allelic variation in the IGHV and TRBV loci. These
two loci can vary extensively between individuals in copy number and contain genes that
are highly similar, making their analysis technically challenging. Additionally, we have con-
ducted the first study of a globally diverse sample of hundreds of individuals in these two
loci from over a hundred populations. In addition to providing insight into the different evo-
lutionary paths of the IGHV and TRBV loci, our results are also important to the adaptive
immune repertoire sequencing community, where the lack of frequencies of common alleles
and copy number variants is hampering existing analytical pipelines.

In our second problem setting, we describe SOAPswga, an optimized and parallelized
pipeline for primer design in the context of selective amplification. Unlike previous heuristic-
based methods, SOAPswga uses machine learning methods to evaluate both individual
primers and primer sets. Additionally, rather than brute force search for primer sets, such
as in predecessor methods, SOAPswga uses branch-and-bound principles to pursue only the
most promising sets. These optimizations, including the parallelization of each step, allow
for a huge decrease in runtime from the order of weeks to minutes. We also discuss the
results of our pipeline applied to the selective amplification of Mycobacterium tuberculosis in
a sample of human blood. Lastly, we expand on the importance of this work, and in general,
its potential usefulness to any setting consisting of targeted sequencing.
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Chapter 1

Introduction

In the past few decades, there has been a fortuitous concurrent increase in both computa-
tional processing power as well as in the volume of genomic data—the former made possible
by innovation in hardware and the latter made possible by high-throughput sequencing tech-
nologies developed by companies such as Illumina, Life Technologies, Roche, and many oth-
ers. Naturally, this growth has paved the way for new fields like computational genomics—the
use of computational and statistical analysis to understand biology from DNA and related
data. In this dissertation, we discuss two important problems in the domain of computa-
tional genomics: characterizing genetic variation in a highly repetitive region and optimizing
primer sets for selective amplification.

Both projects to be discussed focus on developing computational tools using data from
whole-genome sequencing (WGS). WGS refers to the sequencing of the entire genome of an
organism, which is composed of A, C, G, and T nucleotides. Contrary to what its name may
imply, the output of WGS is not a single contiguous sequence of nucleotides, but rather, a
collection of short contiguous sequences (see Figure 1.1 for an illustration), each of which
is referred to as a read. The length of a read is termed read length while the term read
coverage or coverage refers to the number of reads covering a location of the genome, often
meaning the average coverage across the genome. Assembling the reads into a contiguous
whole genome sequence can be done by leveraging the overlap between reads and by mapping
the reads to an existing whole genome (if available).

In the remainder of this chapter, we provide background information and summarize the
two different problem settings to be discussed in the coming chapters.

1.1 B-cell and T-cell receptors

The first problem setting entails the characterization of genetic variation in two highly repet-
itive regions instrumental in the function of B-cell and T-cell receptors. B cells and T cells
are both key players in the adaptive immune system and have receptors capable of initiating
action or inaction when bound. For fields such as personalized medicine and evolutionary
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Figure 1.1: Example of sequencing data. The original sequence is shown at the top and
reads 1-6 are the sequencing results. The coverage is shown at the bottom and reflects the
number of reads overlapping each corresponding position.

biology, quantifying the diversity of B-cell and T-cell receptors in an individual and in the
population would be incredibly valuable, but this diversity is estimated to be north of 1012

[2, 73]. Alternatively, instead of quantifying variation at the protein level (i.e., variation
in B-cell and T-cell receptors), we can quantify the genetic diversity that contributes to
this abundant receptor diversity. In this work, we focus on two regions which are both in-
volved in the process of binding to an antigen or other molecules: the immunoglobulin heavy
chain variable (IGHV) region and the T-cell receptor beta-chain variable (TRBV) region
(see Figure 1.2).

IGHV and TRBV loci

The portion in the DNA which encodes for the IGHV and TRBV regions are the IGHV and
TRBV loci which consist of gene families (collections of genes) which likely formed through
a process of gene duplication and deletion events. While the 1 MB IGHV locus is located on
chromosome 14 [71, 120], the 500 kb locus is located on chromosome 7 [96]. There are roughly
45 functional IGHV and TRBV functional genes each, where all genes are approximately 300
base pairs in length. Variation in these genes critically contributes to receptors, but to date
is not carefully quantified. In this dissertation, we explore genetic variation in the IGHV
and TRBV functional genes among individuals. Quantifying variation at the genomic level
can have its challenges, because often the data comes post-V(D)J recombination, a process
to be discussed and which may result in many missing IGHV and TRBV genes. B cells also
can undergo a mechanism called somatic hypermutation, which introduces non-inherited
mutations in maturing B cells in an effort to diversify and adapt receptors to new foreign
elements, making the identification of the originally inherited alleles all the more difficult.

V(D)J Recombination

The process from immunoglobulin heavy chain variable (IGHV) genes to B-cell and from T-
cell beta receptor variable (TRBV) genes to T-cell receptors involves a unique and defining
feature of the adaptive immune system: V(D)J recombination. This series of steps is depicted
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Figure 1.2: A high level schematic of the B-cell and T-cell receptor. Labels demarcate the
location of the immunoglobulin heavy chain variable (IGHV) region on the B-cell receptor
and the T-cell receptor beta-chain variable (TRBV) region on the T-cell receptor.

in Figure 1.3 and begins with the variable, diversity, joining, and constant genes of the
immunoglobulin heavy chain locus. In the next step of the process, D-J recombination,
one D gene and one J gene are stochastically selected and all genes in between are excised.
Following this is V-DJ recombination, where one V gene is again stochastically selected and
everything between it and the D-J combination is removed. This DNA sequence undergoes
a complex process of transcription to produce RNA and translation to produce a protein
product that contributes to the variable portions of the immunoglobulin heavy chain and the
T-cell receptor beta-chain. This process is pivotal in contributing to the immense diversity
of B-cell and T-cell receptors but creates challenges to inferring the genetic diversity of the
IGHV and TRBV regions.
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Figure 1.3: Simple illustration of the process from IGHV genes to receptor. In the first
two steps, V(D)J recombination occurs, where a stochastically chosen V, D, and J gene are
chosen. Everything in between the chosen V and D gene and the D and J gene is excised.
Transcription and translation encode a protein product that becomes the variable region of
the immunoglobulin heavy chain. Assembly with the other portions of the receptor produces
the full B-cell receptor. These steps are highly simplified and serve as an introductory
overview in understanding how the inherited genes contribute to the combinatorial diversity
of B-cell receptors. An analogous process happens for T-cell receptors. The orange portions
of the B-cell receptor are the immunoglobulin light chain, whereas the complementary portion
is the immunoglobulin heavy chain.
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Figure 1.4: An example of two haplotypes from the same organism with genes 10-1, 10-2,
and 10-3 and the * indicates the allele in this dissertation.

Genomics definitions

Lastly, we clarify our usage of three terms commonly used in biology.

• gene: A subsequence of the genome which encodes instructions for some function.

• allele: A specific variant of a gene (indicated by a *). For example, 1-69*01 indicates
allele ‘01’ of the gene 1-69.

• haplotype: A collection of alleles belonging to the one chromosome copy. Humans, for
example, have two copies of each chromosome.

• somatic mutations : mutations in an organism that are not passed on to its offspring.
Somatic hypermutation, for example, introduces mutations which are not passed on to
offspring but is an important process of the adaptive immune system.

• germline mutations : mutations in an organism that are passed on to offspring.

• genotype: identification of the genetic constitution of an individual organism.

For an illustrative example of the first three definitions, see Figure 1.4 which depicts two
haplotypes. One haplotype has all three genes 10-1, 10-2, and 10-3 whereas the other
haplotype is missing gene 10-3. Additionally, the top haplotype has allele 10-1*01 whereas
the other haplotype has 10-1*02, but for the gene 10-2, the two haplotypes have the same
allele. In addition to deletion events, duplication events may also occur, meaning a gene or
set of genes is duplicated on the same haplotype.

This concludes background information for Chapters 2 and 3 of this dissertation. For a
more thorough background, [76] is a great resource. We now discuss background information
for Chapter 4.
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1.2 Selective Whole Genome Amplification (SWGA)

This next problem setting is motivated by the lack of methods needed to sequence a specific
genome of interest. For example, it is often the case that a particular microbial species of
interest is cultivated from a complex, natural sample. This particular species may comprise
less than 1% of the entire sample, making it very inefficient to sequence. In many cases,
in vivo cultivation of the species can be done via a host organism. For Wolbachia, an
endosymbiotic bacteria compatible with the fruit fly, one would need roughly 1000 live adult
flies to cultivate enough Wolbachia to achieve roughly 10x coverage. This method can be
extremely cumbersome and can also sometimes be legally unethical, as is the case with
Plasmodium reichenowi, which exists in chimpanzees infected with malaria. Often times the
target genome cannot even be cultured in the lab, necessitating other methods for amplifying
the target genome.

Multiple Displacement Amplification

In 2001, Dean et al [25] proposed a method of using the enzyme φ29 DNA polymerase
and primers (short DNA sequences, composed of A, G, T, C nucleotides) to amplify whole
genomes via multiple displacement amplification. As depicted in Figure 1.5, this process
starts with the primers binding to the target genome. In the subsequent steps, the φ29
proceeds along the genome, synthesizing the complementary strand. When synthesis is
impeded from encountering a primer bound to the genome, the φ29 enzyme will displace the
synthesized strand and continue its own synthesis. The same process can be repeated on these
“branched” strands, creating the opportunity for exponential amplification. This procedure
using multiple displacement amplification supplants the need for lengthy growth periods and
traditional DNA isolation methods. However, this solution has its own challenges. Namely,
typical genomes can be thousands to billions of base pairs long, mandating computational
tools for processing these large genomes and for designing sets of primers that will optimally
amplify the target genome.

1.3 Summary

Now that we have established the necessary background information, we outline the chapters
of this dissertation. In Chapter 2, we discuss the development of our model for estimating
copy number and allelic variation in the IGHV locus. Lack of standard methods to genotype
this region prevents it from being included in association studies and is impeding the growing
field of antibody repertoire analysis. In general, the study of genomic regions that contain
gene copies and structural variation is a major challenge in modern genomics and unlike
variation involving single nucleotide changes, data on the variation of copy number is difficult
to collect. Our method presented in Chapter 2 takes short reads from high-throughput
sequencing and outputs a genetic profile of the IGHV locus with the read coverage depth and
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Figure 1.5: Illustration of multiple displacement amplification. Red lines correspond to
primers, green to φ29 enzymes, blue to the genome to be amplified, and purple to the the
polymerized DNA. In the first and second steps, the primer binds to regions in the genome
and with the help of enzyme φ29, it polymerizes a complementary strand. This continues and
displaces downstream strands, allowing for additional amplification on branches, as shown
in steps 4 and 5.

a putative nucleotide sequence for each operationally defined gene cluster, without the need
to reconstruct the complete sequence for the region. Tests on simulated data demonstrate
that our approach can accurately determine the presence or absence of a gene cluster from
reads as short as 70 bp. When applied to a family composing three generations, our pipeline
outputs genotypes that are consistent with the family pedigree, confirms existing multigene
variants, and suggests new copy number variants. This study paves the way for analyzing
population-level patterns of variation in IGHV gene clusters in larger diverse datasets and
for quantitatively handling regions of copy number variation in other structurally varying
and complex loci.

In Chapter 3, we build upon the model developed for IGHV in Chapter 2 by extending our
analysis to the T cell beta variable (TRBV) locus, another complex and variable region in the
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human genome, and by refining our detection of single nucleotide polymorphisms and novel
alleles. We also present a comprehensive study of the functional gene segments in the IGHV
and TRBV loci, quantifying their copy number and single-nucleotide variation in a globally
diverse sample of 109 (IGHV) and 286 (TRBV) humans from over a 100 populations. From
our estimates of copy number, allelic, and single nucleotide variant frequencies across geo-
graphic regions in a sample of unprecedented size for the IGHV and TRBV loci, we find that
the IGHV and TRBV gene families exhibit starkly different patterns of variation—namely,
that there is strong evidence the IGHV locus undergoes more frequent gene duplication and
deletion than the TRBV locus but that the TRBV locus may exhibit higher rates of nu-
cleotide substitution. Support from data in other vertebrate species also indicates that the
evolutionary dynamics we infer from the IGHV and TRBV loci in humans were also in force
over longer, macro-evolutionary, time periods. Our work provides a quantitative analysis
of genetic variation relevant to the fields of population genetics and, medicine, and a broad
spectrum of scientific research as well as being of importance to understanding the long-term
evolution of these gene families.

In Chapter 4 we tackle the problem of selective whole genome amplification. The cost
of genomic sequencing over time has seen enormous decreases in the past two decades, but
the process of sequencing complex DNA samples still remains sub-optimal. In particular, in
settings where the interested genome is difficult to isolate and comprises a minuscule fraction
of a heterogeneous DNA sample, the sequencing effort will be vastly disproportionate to the
amount of sequencing of the targeted genome, wasting both time and resources. In this chap-
ter, we describe SOAPSwga, an optimized and parallelized pipeline for primer design in the
SWGA context. Unlike previous methods, SOAPSwga incorporates appropriate machine
learning and active learning methods to model primer efficacy using thermodynamically-
principled calculations of binding affinities. Additionally, when evaluating and searching for
primer sets, SOAPSwga explores according to branch-and-bound principles to pursue only
the most promising sets via a data-driven evaluation model incorporating novel features
rather than performing brute force search according to a human-inferred heuristic function.
In this paper, we discuss this pipeline and our design of primers sets for the selective amplifi-
cation of Mycobacterium tuberculosis in a sample of human blood. Lastly, we expand on the
importance of this work to many fields in genomics, and in general, its potential usefulness
to any setting consisting of targeted sequencing.
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Chapter 2

Estimating variation at the IGHV
locus

This chapter is joint work with Shishi Luo and Yun S. Song and appears in PLoS Computa-
tional Biology [64].

2.1 Introduction

The variation between human genomes in gene copy number is understudied and poorly
characterized. One such region where this variation is known to exist is the immunoglobulin
heavy variable (IGHV) locus. It is a vital component of the adaptive immune system, con-
taining the V genes that code for a component of the heavy chain of antibody molecules. Like
other multigene receptor families, the gene segments in this region have been accumulated
over time through a process of gene duplication and diversification [83, 80, 24]. As such,
many of the genes in this locus are highly similar and there are repetitive DNA elements
interspersed throughout the region. IGHV haplotypes (instances of the IGHV locus) vary
not only by single nucleotide polymorphisms but also in the copy number and ordering of
gene segments [121]. All these characteristics make it difficult to determine the nucleotide
sequence of this region and, to date, only two full sequences of the IGHV locus exist [71, 121].
Despite the increasing affordability of whole-genome sequencing (WGS), there are currently
no methods to genotype the IGHV locus directly from WGS reads (for a tool that extracts
genotypes from long contigs, see [82]). Thus, basic population-level characteristics of the
locus, such as the mean number or standard deviation of copies of gene segments have not
yet been quantified.

The human IGHV locus lies at the telomeric end of chromosome 14 and is approximately
1 Mb in length. In this 1 Mb region, there are about 45 functional genes, each approximately
300 bp in length. There are also approximately 80 non-functional pseudogenes in the region,
so-called because they are either truncated or contain premature stop codons. Known allelic
variants of individual IGHV genes are currently curated in the International Immunogenetics
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Information System (IMGT) Repertoire database [37]. The standard nomenclature for IGHV
genes is detailed in Section 2.3.

Given the role of the IGHV locus in the adaptive immune response, IGHV haplotypes are
obvious candidates as genetic determinants for susceptibility to infectious disease. Several
early targeted studies of the IGHV locus have implicated allelic variation and copy number
in determining expressed antibodies repertoires and understanding disease susceptibility [75,
21, 16, 88, 48, 102, 120]. Allele 3-23∗03, for example, has been shown to be more effective in
binding Haemophilus influenzae type (Hib) polysaccharide than the most common allele, 3-
23∗01 [61]. Despite such findings, however, the IGHV locus is rarely included in genome-wide
association studies, largely in part to the lack of standard format and tools to quantitatively
characterize variation in the region.

Lack of tools for genotyping the IGHV locus also hampers the burgeoning field of anti-
body repertoire sequencing [52, 95, 35, 12, 122], which is being used in numerous medical
applications, including inferring the evolutionary path of broad and potent monoclonal an-
tibodies against human immunodeficiency virus (HIV) [123, 60, 27], detecting blood cancers
[94, 32], assessing the impact of aging on the antibody response [43], and measuring the
adaptive immune response to vaccination [44, 41]. The first step in many of these studies is
to align each read, sequenced from the antibody repertoire of an individual to its germline
gene. The current practice is to use germline alleles in a public database of all known alleles
(such as the IMGT Repertoire database) for alignment. This is a severe limitation of the
process because after undergoing somatic hypermutation, antibody sequences may be so dif-
ferent from the germline that the top-matching allele in the database no longer corresponds
to the germline allele in the individual.

Here, we address the pressing need for methods to genotype the IGHV locus. By lever-
aging the IMGT database of known alleles and the increasing availability of WGS data, we
construct a pipeline that determines the functional genes present in an individual’s IGHV
locus from short reads. Not only is our approach high-throughput, but it also produces out-
put that is annotated and in a format ready for quantitative comparisons between multiple
individuals. With reads as short as 70bp and with coverage of 30x, our pipeline accurately
detects the presence of gene segments from simulated reads of the two known IGHV refer-
ences (GRCh37 and GRCh38). With sufficiently long read lengths (250bp), our pipeline also
outputs accurate nucleotide sequences of gene segments present in single copy. We then run
our pipeline on an empirical dataset of whole-genome sequencing reads from a sixteen mem-
ber family, obtaining for the first time distributions of copy numbers in this family. Our copy
number calls are consistent with the family pedigree and confirm known multigene variants
of the IGHV locus. Our results also suggest evidence of new haplotypes that are mosaics of
the existing reference haplotypes and haplotypes that might be transitional between them.
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Figure 2.1: Alleles clustered according to nucleotide similarity. (A) Phylogenetic tree recon-
struction of the gene segments in the haplotype sequenced in [71]. Circles highlight alleles
that are evolutionarily very close. Tree made using neighbor-joining method in ape pack-
age in R based on Hamming distance between multiple sequence alignment. (Phylogenetic
reconstruction using BEAST [28] led to a qualitatively similar tree). Allele numbers are
suppressed for clarity. (B) Distribution of percent nucleotide difference (Hamming distance
divided by alignment length) between alleles from same IMGT segment (blue) compared
against alleles from different segments (green). Alleles from duplicate segments (e.g. 1-69
and 1-69D) have been merged for this analysis. (C) Same as (B) but with alleles partitioned
by results of hierarchical clustering rather than IMGT segment name.

2.2 Results

Hierarchical clustering to define operational segments

The main difficulty in accurately genotyping the IGHV locus is the high level of similarity
between alleles of different gene segments. Figure 2.1A illustrates the level of nucleotide
similarity between the IGHV segments in GRCh37. For example, the alleles of segments 3-
30 and 3-33 in GRCh37, circled in Figure 2.1A, differ in only 1.4% of their nucleotides. Since
some segments have alleles that differ by more than 1.4% in their base pairs (Figure 2.1B), it
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Figure 2.2: Heatmaps of matrices of Hamming distance between alleles. Rows and columns
are ordered according to clusters found by hierarchical clustering as described in Section 2.3.
Color spectrum ranges linearly from red to white for nucleotide distances 0-10%. Differences
greater than 10% are white. (Left) Alleles from family 1. (Center) Alleles from family 3.
Full set of alleles in Figure A.3. (Right) Alleles in family 4. Dashed white squares indicate
possible clusters.

becomes problematic to distinguish between alleles of the GRCh37 genes 3-30 and 3-33 based
on nucleotide dissimilarity. To be more concrete, if one had reads of length 100 bp from a
haplotype containing both 3-30 and 3-33 segments, it would be algorithmically very difficult,
if not impossible, to correctly map reads that are from regions common to 3-30 and 3-33.
We note that this difficulty in distinguishing between alleles becomes even more pronounced
when analyzing antibody repertoire sequencing data, where somatic hypermutation further
confounds the matching of repertoire sequences to germline alleles [126].

This problem also occurs with other gene segments: across all full-length functional
IMGT alleles, there is a 10.6% overlap in the distribution of nucleotide differences between
alleles with the same segment name and alleles with distinct segment names (Figure 2.1B).
Reads from the alleles in this overlapping region cannot be operationally distinguished from
each other, leading to unreliable and ambiguous genotype calls. Thus, it does not make
sense to keep these alleles separate and we pool them together into units we call “opera-
tional segments”. As we show in the next sections, this strategy allows us to extract useful
information, such as copy number estimates, with less ambiguity.

To determine these operational segments in a systematic manner, we perform hierarchi-
cal clustering within each family of full-length, functional IMGT alleles (Section 2.3). This
groups the alleles together according to their sequence similarity. As a result of this clus-
tering, we reduce the overlap compared to clustering by segment name alone (Figure 2.1C).
From this figure, we see that although we cannot eliminate the overlap completely, in most
operational segments, alleles are within 5% nucleotide differences of each other.

Some families have clearly defined operational segments. In family 1, the clusters corre-
spond to segment name, as long as duplicate segments such as 1-69D and 1-69 are merged
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(Figure 2.2). In families 2 and 5, which have three and two segments respectively, the alleles
cluster by segment name (Figure A.1, Figure A.2). In family 3, five segments that have dis-
tinct names—namely, 3-30, 3-30-3, 3-33, 3-53, and 3-66 —form two clusters {3-30, 3-30-3,
3-33} and {3-53, 3-66} (Figure 2.2). Families 6 and 7 each have only one segment and
therefore do not require clustering.

Surprisingly, the same clustering algorithm that leads to clean clusters in the other fam-
ilies fails to identify clear-cut clusters in family 4 (Figure 2.2). This is the main source of
overlap still seen in Figure 2.1C. Not only are the boundaries between clusters fuzzy in this
case, but alleles of the same segment cluster separately. For example, 4-4∗01 and 4-4∗02
cluster separately from 4-4∗07 and 4-4∗08. The alleles in family 4 also seem to be more
similar to each other than alleles in other families. It is not clear why alleles in family 4,
in particular, should cluster poorly compared to the other families. Gene conversion events
in IGHV family 4 and a more recent common ancestor than other IGHV families are both
possible explanations that are consistent with the observed distance matrix. A better clus-
tering, based on a combination of mutational distance and indel distance, was ultimately
used to define the operational segments for family 4 (Figure A.4).

With the caveat that family 4 gene segments are more speculative, Table 2.1 summarizes
the operational segments as defined by hierarchical clustering. Only segments for which
the alleles differ from the current IMGT nomenclature are listed. For the remainder of
this article, unless stated otherwise, we will use the segment names as they are defined in
Table 2.1.

Pipeline performance on simulated reads

The operational gene segments (Table 2.1) address the main difficulty in genotyping the
IGHV locus and is the key idea behind our data pipeline (Figure 2.3). Without this crucial
step, it is difficult to determine IGHV alleles from read mapping alone (Table A.1). The
input of the pipeline is a file of whole-genome sequencing reads from an individual and the
output consists of a segment-by-segment reconstruction of the IGHV locus, with a point
estimate of copy number, the closest matching existing IMGT allele, and a nucleotide se-
quence reconstruction of each operational segment. Figure 2.4 shows the performance of
our pipeline at three levels of genotype resolution on simulated reads from the two complete
IGHV haplotype sequences (Section 2.3).

At the coarsest scale, we ask whether the pipeline correctly identifies the presence or
absence of each operational segment. We find the pipeline to be highly accurate, with a
precision of 100% for all coverage depth (30×, 40×, 50×) and read length (70 bp, 100 bp,
250 bp) combinations. This means that all the segments identified by our pipeline are in the
reference haplotype. The recall, the fraction of segments in the reference that are identified
by our pipeline, is 100% for all but two of the coverage depth/read length combinations
(Figure 2.4A).

At the next level of resolution, we ask whether the pipeline can correctly determine the
copy number of each operational segment. We use the read coverage depth of the assembled



CHAPTER 2. ESTIMATING VARIATION AT THE IGHV LOCUS 14

Figure 2.3: Schematic of the genotyping pipeline. 1) WGS reads (short thin black horizontal
lines) that map to the IGHV locus of a single individual are extracted from the full set
of reads. 2) These extracted reads are mapped to known functional IGHV gene segment
alleles (thick blue horizontal lines) curated from the IMGT database. 3) Mapped reads are
pooled according to the operational segments described in the Results section. At this stage,
extra filtering, for example using mate-pair data, can also be applied. 4) Local assembly is
performed on reads to produce contigs (long thin black horizontal lines) corresponding to
each operational segment. 5) The resulting contigs are identified using stand-alone IgBLAST
[124]. The final output contains, for each individual and each assembled contig: the closest-
matching existing allele, the length of the match, the number of nucleotide mutations or
indels that separate the contig from the closest-matching allele, the read coverage of the
contig as reported by SPAdes, and the nucleotide sequence of the contig.
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Figure 2.4: Performance of pipeline on simulated reads from GRCh37 and GRCh38 for
varying coverage depths and read lengths. (A) Recall fractions of the pipeline for the two
human reference genomes (precision fractions are all 1 and not shown). Recall is calculated as
the fraction of operational segments in the reference genome that are correctly called by the
pipeline. (B) Read coverage depth of each assembled segment (the point estimate for copy
number) colored by actual copy number (detailed in Table A.2) in the reference genome. Raw
read coverage depth has been normalized by the average coverage of single-copy segments.
Jitter has been applied to the vertical coordinates to better show their distribution. (C)
The recall of alleles for all segments versus the recall for single-copy segments. Each point is
one reference genome, coverage depth, read length combination. Note that two red triangles
overlap at the point (0.84, 1.0). Different coverage depths are not indicated because there is
no pattern between coverage depth and allele reconstruction accuracy.
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Table 2.1: Operational gene segments as defined by our hierarchical clustering analysis. Only
those that differ from the current IMGT nomenclature are listed, i.e. alleles that cluster by
their IMGT segment name are not shown.

Operational name Alleles, under current IMGT nomenclature
1-69 All 1-69 and 1-69D alleles
2-70 All 2-70 and 2-70D alleles
3-23 All 3-23 and 3-23D alleles
3-30 All 3-30, 3-30-3, and 3-33 alleles
3-43 All 3-43 and 3-43D alleles
3-53 All 3-53 and 3-66 alleles
3-64 All 3-64 and 3-64D alleles
4-4∗01 4-4∗01, 4-4∗02
4-30-2 All 4-30-2 alleles and 4-30-4∗07
4-31 4-30-4∗01, 4-30-4∗02, 4-31∗01-∗04, 4-31∗10
4-31∗05 4-31∗05
4-59 4-4∗07, 4-4∗08, and all 4-59 alleles
4-61 4-61∗01, 4-61∗03-∗05, 4-61∗08
4-61∗02 4-61∗02

contig as our point estimate for copy number. Figure 2.4B shows that contig coverage depth is
indeed correlated with copy number, though there is variation above and below the true copy
number and some segments which are present in a single copy have high coverage depth. This
is because pseudogenes in the IGHV locus, which are not included in our reference set, may
share common subsequences with functional genes. Reads from pseudogenes can, therefore,
be erroneously mapped, artificially inflating the contig coverage depth. This is particularly
an issue with 70 bp length reads as these reads are more likely to completely fall within a
conserved region. This problem can be partly alleviated with paired-end reads, a strategy
we use on the real dataset in the next section.

At the highest level of resolution, we compare the assembled contig obtained from the
pipeline to the known nucleotide sequence for each segment. When a segment is only present
in single copy in the locus, and if the read lengths are 250 bp, the recall of the segment nu-
cleotide sequence is 100% in all but one of the simulated datasets (Figure 2.4C). With shorter
reads, the frequency of correctly calling alleles is lower. As with copy number determination,
this lower accuracy is likely due to erroneously mapped reads from pseudogenes and highly
similar functional genes that interfere with the assembly algorithm. For the same reason,
when a segment is present in more than one copy and as different alleles, the allele calls are
also less accurate. Note that higher coverage depth does not necessarily improve accuracy
because the error arises not from sequencing error, which occurs in random locations and
can be mitigated with higher coverage depth, but from erroneously mapped reads, which are
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systematically incorrect regardless of coverage.

Genotyping the Platinum Genomes dataset

We next apply the pipeline to the publicly available Platinum Genomes dataset [29], a set
of whole-genome sequencing reads of length 100 bp at roughly 30× coverage depth from
a family of 16 individuals (four grandparents, a mother, a father, and ten children, all of
European ancestry). Because these reads are paired, we perform an additional filtering step
(Section 2.3) to discard reads that are potentially from pseudogenes (Figure A.12) in order
to improve our allele calls and decrease the false discovery of duplicated genes.

A summary of copy number and allelic variation in IGHV segment types in this dataset is
shown in Figure 2.5. For all the results that follow, the raw coverage depth of each segment
is scaled by the coverage depth of segment 3-74 in the same individual to eliminate variation
due to differences in read coverage between individuals. We choose segment 3-74 because it
has no documented examples of copy number variation and is located at the telemeric end of
the chromosome. Specifically, we assume that 3-74 has two copies, one on each chromosome,
and divide the coverage depth of all other segments by half of the coverage depth of 3-74. A
normalized coverage depth of 1, therefore, corresponds to single copy on one, but not both,
of the chromosomes. Note that the coverage depth tends to decrease towards the 6-1 end of
the locus due to VDJ recombination, an issue we will return to in the Discussion.

General patterns of variation. Figure 2.5 shows for the first time the distribution of
copy number variation in a sample of individuals, segment by segment. Variation exists in
copy number within segments and between segments. Some, such as 3-72 and 3-73 are
present in all individuals as two copies, one on each chromosome. Others, such as 1-8, 3-9,
5-10-1, 4-38-2, and 1-69-2, are either absent (coverage of zero) or present as single copy on
one chromosome. We note that even though the Platinum Genome reads were mapped to
GRCh37, we are nevertheless able to assemble full nucleotide sequences of 4-38-2 and 1-69-2
that are not in the reference and which are quite distinct from all other alleles. Normalized
coverage around the value of three or higher indicates a segment has a duplicate on the same
chromosome (segments shaded in grey in Figure 2.5). These include 3-23, 3-30, 4-31, 3-43,
1-46, 3-53, 3-64, 1-69, and 2-70, which are known to have duplicates, but also 1-24, 4-34, 1-
45, 3-49, and 1-58, for which duplicates have not been previously documented. These latter
gene segments are new candidates for copy number variants and topics for further study.

Thirteen out of the forty-two segments (about 30%) found in the family are each rep-
resented by the same single allele in all sixteen members of the family. The unique alleles
corresponding to these segments are denoted in Figure 2.5 along the top of the plot. This
strongly suggests that these segments are homozygous in the four unrelated grandparents.
Genotyping of a larger sample will ascertain whether this set of common alleles is shared
for all individuals of European ancestry or is a by-product of our sample being for a small
pedigree. In either case, our pipeline and approach begin to address the question of whether
a subpopulation can be uniquely identified by a common set of IGHV alleles.
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Figure 2.5: Dotplots of coverage calls for each segment type for Platinum Genomes data. The
Y-axis is the normalized coverage, i.e. the coverage depth divided by half of the coverage
depth of segment type 3-74 (assumed to have two copies). Segment types are ordered,
where possible, according to their location in the genome, from 6-1 (centromeric end) to
3-74 (telomeric end). The number in parentheses above each segment type is the number
of unique allele sequences found in the family. If only one allele was found, its name is
given (in the case where a segment has only one known allele in the IMGT database, the
allele name is in red). Shaded columns indicate segment types that likely have more than
one copy per chromosome. The outliers for segment types 6-1, 1-2, and 1-3 all correspond
to a single individual, NA12891, who had relatively uniform coverage over all segments
(Figure 2.8, Figure A.5). Horizontal jitter has been applied to all points to better illustrate
the distribution.

Multigene copy number variants. We next looked for the presence in family members of
two copy number variants involving multiple gene segments that differ between the GRCh37
and GRCh38 reference haplotypes (Figure 2.6). Using knowledge of the family pedigree, we
are able to reconstruct the diploid genotype for these variants.

In the case of alternative haplotypes 1-8 /3-9 (GRCh37) and 3-64D/5-10-1 (GRCh38),
our point estimates for copy number show that maternal grandparent NA12891 carries both
configurations, one on each chromosome. In contrast, the 1-8 /3-9 type is entirely absent
from the paternal side of the family (Figure 2.6A). We manually checked our pipeline output
to verify that the copy number calls in the children are consistent with the pedigree. Indeed,
both NA12881 and NA12888, which appear to be missing the 3-9 segment, generated reads
that mapped to a full-length 3-9∗01 allele (indicated by ‘∗’ in plots). This is consistent
with NA12881 carrying the GRCh37, but not GRCh38, configuration and NA12888 carrying
both the GRCh37 and GRCh38 configurations. (Our automated pipeline did not call the
3-9 segment because the coverage of that segment was too low for the assembler to run).
We also verified that NA12890 and NA12886 do not carry the 5-10-1 segment, suggesting
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Figure 2.6: Coverage calls for two multigene copy number variants in GRCh37 and GRCh38.
(A) Alternative haplotypes 1-8 /3-9 and 3-64D/5-10-1. Additional manual examination of
pipeline output shows, consistent with the putative diploid status, that 3-9 is present in
NA12881 and NA12888 (indicated by stars ‘∗’) and that 5-10-1 is not present in NA12886.
(B) The insertion haplotype 2-70D/1-69-2 /1-69D. In both subfigures, Y axis on each bar
plot is normalized coverage. Each bar is colored according to the segment it corresponds
to. The putative diploid status for each individual is indicated on the coverage bar plot.
Individuals are arranged according to their family tree. NA12877 and NA12878 are the
father and mother respectively.
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a new haplotype, transitional between GRCh37 and GRCh38, which contains a single 3-64
segment without either the 1-8 /3-9 or 3-64D/5-10-1 gene combinations. In both these
individuals, there were allele calls and positive coverage for genes towards the 6-1 end of the
locus, indicating that the absence of 1-8 /3-9 and 3-64D/5-10-1 genes are not due to VDJ
recombination in the cell type or low coverage (Figure A.6). Further, these two individuals
appear to be homozygous for this new haplotype, suggesting that the haplotype is common.

For another multigene copy number variant, the 2-70D/1-69-2 /1-69D insertion (on
GRCh38 but not on GRCh37), grandparents NA12889 and NA12891 carry the insertion
on one chromosome and not on the other (Figure 2.6B). The insertion did not transmit to
the parents or children, with neither the presence of 1-69-2 or elevated coverage for 1-69
and 2-70 present in those individuals.

Interestingly, although all the children are homozygous for the GRCh37 (1-69 /2-70 )
haplotype without the insertion, three of them have the GRCh38 (3-64D/5-10-1 ) haplotype
on at least one chromosome. This implies that there are IGHV haplotypes different from both
reference genomes and that are possibly mosaics of the reference genomes. Analysis of these
two variants therefore not only confirms their presence in the Platinum Genomes sample but
also demonstrates that different configurations are present in the same ethnic population
and that many more configurations may exist. This is in line with resequencing efforts that
have discovered novel sequences not found in GRCh37 [117, 47, 46, 56], highlighting that
the diversity of alternative haplotypes remains largely unexplored.

High copy number variation in the operationally defined 3-30 segment. Among
all the segments, 3-30 exhibited the most variation in coverage depth (Figure 2.5). This
confirms previous findings that the IMGT alleles found near this region, including those of
3-30 /3-30-3 /3-33, often exhibit differences in copy number [121, 88]. The distribution of
this variation has not previously been characterized, however. With the application of our
pipeline to reads from the operational segment 3-30, we are able to begin collecting previously
unknown quantities, such as the mean and range of copy numbers. This information will
also help determine whether copy number is segregating in different subpopulations.

Using pedigree information as a constraint, we reconstructed the diploid configuration of
copy number for segment 3-30 in each member of the family (Figure 2.7). Its abundance
ranges from zero to four copies on a chromosome. To our knowledge, previous results about
the variation in copy number of this segment were not linked to the ethnicity of the individual.
Therefore, this may be the first result about copy number variation of 3-30 within a small
sample of individuals of European ancestry.

New 7-4-1 allele. With the exception of 7-4-1, we found exact matches to IMGT alleles
amongst all the segments in the Platinum Genomes dataset. In the case of 7-4-1, none
of the assembled alleles exactly matched an existing IMGT 7-4-1 allele. To eliminate the
possibility that the allele calls were confounded by reads from pseudogenes, these alleles were
determined after applying an extra filtering step to reads that mapped to the 7-4-1 segment
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Figure 2.7: Copy number variation in the IGHV3-30 segment. Below each bar chart of
coverage values is a putative reconstruction of the genomic configuration of the individuals
in the family. Y axis is normalized coverage.

(Section 2.3). One of these alleles was five nucleotide mutations away from 7-4-1∗04 and
present in five individuals (Figure A.7 shows an alignment of the new allele with 7-4-1∗04 ).
Our finding of an allele that is not in the IMGT database is in line with recent reports of
novel alleles found using antibody repertoire sequences [10, 119, 34, 103].

2.3 Methods

The standard naming convention of IGHV genes

IGHV genes are named according to their “family” and genomic location. The families,
numbered 1 to 7, comprising genetically similar genes. The segment 6-1, for example, is in
IGHV family 6 and is the first gene in the locus, counting from the centromeric end. Gene
names with a suffix “D” denote a duplicate gene, for example 1-69D, while an appended
number, for example 1-69-2, indicates that the gene was discovered subsequent to the original
labeling and is located between 1-69 and 2-70. An allelic variant of an IGHV gene is denoted
by a ∗01, ∗02, etc, as in 1-69∗01, 1-69∗02.

Hierarchical clustering

Nucleotide sequences for IGHV gene alleles were downloaded from the IMGT database [54].
Only full-length functional alleles were used for clustering. Multiple sequence alignment was
performed on each family of alleles using Fast Statistical Alignment with default parameter-
ization [11]. The aligned alleles were then clustered using the hclust function in R (method
parameter set to “single”, although using the “complete” method gives the same result for
all families with the exception of family 4, [77]). For all the IGHV families except family
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4, operational segments were determined using distance matrices calculated from Hamming
distance based on FSA alignment, with gap differences treated in the same way as mutations.
Visual inspection of the alignment of family 4 suggested that indels may be important in
partitioning the alleles. Hence, a combination of an evolutionary distance “TN93” (based on
[113]) and indel distance (number of sites where there is an indel gap in one sequence and
not the other) was used to determine the operational segments for family 4.

Genotyping pipeline

Our scripts and example datasets are available at: https://github.com/songlab-cal/

SGDP_IGHV_TRBV. We assume the WGS data is in bam or sam format [57], with reads already
filtered to come from the IGHV locus. For WGS reads aligned to GRCh37, this is chr14:
105,900,000-107,300,000. For reads aligned to GRCh38, this is chr14:105,700,000-106,900,000
(coordinates extend beyond the IGHV locus to be conservative). Bowtie2 [51] is used to
map these reads to all functional, full-length IMGT alleles (the same set used for hierarchical
clustering). The default Bowtie2 local alignment threshold led to too many multiple matches.
Figure A.9 illustrates how we increased this threshold to be more restrictive. Mapped reads
are then pooled according to the operational segments described in the Results section.
For example, all reads that map to the alleles of 3-30, 3-30-3, 3-33 are pooled together.
SPAdes de novo assembler [7] is run on the pooled reads for each operational segment.
The assembled contigs are compared with the IMGT database using stand-alone IgBLAST
[124] to determine the closest matching allele, the length of the match, and the number of
nucleotide mutations or indels that separate the contig from the closest-matching allele. The
read coverage depth of the contig as reported by SPAdes is also recorded for further analysis.

Simulated reads

To test the capabilities and quality of our methods, ART [39] was used to generate simulated
Illumina reads from GRCh37 and GRCh38 of lengths 70, 100, and 250 bp, each at coverage
depths of 30×, 40×, and 50×. Error profiles of simulated reads and adjustments to default
ART parameters are illustrated in Figure A.10 and Figure A.11.

Filtering using mate-pair information

For the Platinum Genomes data, which comprises paired-end reads, we apply an additional
filtering step to remove reads from pseudogenes that share a common subsequence with
a functional gene. One way to disambiguate a read of a functional gene from one of a
pseudogene is to compare the genomic position that its mate maps to. If the mate read
maps to a region that is substantially farther from the region the first read maps to (we
use a threshold of 1000 bp to be conservative) then there is a chance it comes from a
pseudogene and the original read is discarded. Figure A.12 demonstrates that this filtering
step eliminates more than half the reads from pseudogenes. Note that as a tradeoff, this

https://github.com/songlab-cal/SGDP_IGHV_TRBV
https://github.com/songlab-cal/SGDP_IGHV_TRBV
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filtering step will in some cases also incorrectly discard reads from duplicates that are located
in a different region of the genome. For segments where the starting position relative to the
genome is undetermined, no filtering occurs. In the case of the Platinum Genomes data,
which is aligned to GRCH37, this means that filtering is not applied to reads from segments
7-4-1, 5-10-1, 4-38-2, 4-30-2, and 1-69-2.

Extra filtering step for novel 7-4-1 allele detection

Alleles of 7-4-1 have high nucleotide similarity to subsequences of pseudogenes 7-81, 7-40,
and 7-34-1. The mate-pair filtering step above does not apply to 7-4-1 because the Platinum
Genomes reads are aligned to GRCh37, which does not contain 7-4-1. To filter out reads
from these pseudogenes for 7-4-1, we ran stand-alone IgBLAST on reads mapped to segment
7-4-1. The reads that had the highest match to a pseudogene were removed. The remaining
reads were then used as input for SPAdes de novo assembler.

2.4 Discussion

With the approach introduced here, we can begin to obtain population-level statistics on the
IGHV locus and quantify its variation. Given the small sample size of the Platinum Genomes
data, we have focused here on quantifying variation in genes known to vary in copy number.
As larger whole-genome sequencing datasets become available, it will be possible to compare
IGHV copy number profiles at the population scale. These profiles can then be studied to
find correlations between multiple gene segments and to discover new copy number variants.
Even with the coarse presence/absence of segment genotypes, we can begin to address basic
open questions such as whether there is a minimal number of IGHV gene segments required
for a healthy immune system and whether there is a common core set of IGHV genes that
are shared by all individuals.

Our study makes clear that read depth information can be used to accurately determine
the presence and absence of gene segments. However, complications remain for ascertaining
copy number and allelic content to high accuracy. The first complication arises from the cell
type on which whole-genome sequencing is commonly performed. The Platinum Genomes
data were generated from immortalized B lymphocytes. The IGHV locus in these cell types
has undergone VDJ recombination. This rearrangement, which truncates the IGHV locus,
confounds the correlation between read coverage depth and copy number of a gene segment.
We can see this from the pipeline output, where coverage depth tends to decrease towards
the centromeric (6-1 segment) end of the locus. The extent of this decrease can be quite
marked, for example in the case of NA12877, or not noticeable at all, for example in NA12891
(Figure 2.8A; the distribution of read coverage depth of all the individuals is summarized
in Figure A.5). If one knew the number of B cell lineages used to prepare the library and
the fraction of haplotypes that underwent rearrangement, it is possible to adjust the raw
coverage values to reflect actual coverage values (See Appendix A). However, in the case of
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the Platinum Genomes data, this information is unavailable. As whole-genome sequencing
becomes more widespread, we anticipate that datasets from other cell types will become
available and this issue will be resolved.

The second complication is that the majority of whole-genome sequence reads are gen-
erated from diploid cells. Because the majority of segments on both chromosomes are of
different alleles, the single allele call generated by our pipeline may be composed of se-
quences from all the alleles present or represent just one of the alleles. Figure 2.8B shows
that allele calls can hide the heterozygous state of an individual. Figure A.8 gives further
examples of segments that are present as two alleles in the family and for which the allele
calls are misleading. This problem could be addressed with an assembler customized to
identify allelic variants of short genomic regions (popular assemblers are currently designed
for whole-genome assembly). There has been some success in identifying unique alleles using
an alternative data type: antibody repertoire sequencing data [10, 48, 34]. However, such
studies cannot directly quantify the copy number of an exactly duplicated gene because read
abundance in these studies is not correlated with germline gene abundance. Furthermore,
the V gene segment is truncated during the genomic rearrangement for producing the anti-
body coding sequence, so that full-length alleles may not always be obtained from antibody
repertoire sequencing data.

We note that there are many existing methods for estimating copy number based on
coverage depth using whole-genome sequencing [13, 4, 15, 125, 1]. These methods, however,
do not utilize the IMGT database of IGHV alleles or specifically target the IGHV locus,
a region with a higher amount of repetitions and duplications than most of the genome.
They, therefore, may be prone to biases introduced by targeting the entire genome, which
has loci of varying characteristics, rather than targeting a particular region. Additionally,
some existing methods [49] intended for whole-exome sequencing may be further biased when
introduced to data from whole-genome sequencing.

True determination of IGHV haplotypes must ultimately come from sequencing the 1 Mb
region in its entirety and in multiple individuals. Indeed, because the GRCh37 reference is a
chimera of three diploid haplotypes [71], there is currently only one true reference haplotype
for the IGHV locus. However, the technology to accurately sequence structurally varying
regions remains expensive and low-throughput. We can instead take advantage of the in-
creasing availability of whole-genome sequencing datasets and the extensive IMGT database
to genotype this locus in a high-throughput manner but at lower genotypic resolution. With
this approach, we have found evidence of haplotypes that are mosaics of reference genome
configurations or that are transitional between them. The existence of these haplotypes
further indicates that our approach of representing the locus in terms of the copy number
of a reference set of segments is better suited to cataloging variation in this locus than full
sequences of the IGHV locus with annotated breakpoints.

The fundamental strategy applied here is not specific to the IGHV locus. Reads from
whole-genome sequencing datasets can similarly be used to characterize other gene families
and in other species, where the genes are of comparable length and a similar level of diversity.
Some examples include T cell receptor genes and olfactory receptor genes. The analysis of
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Figure 2.8: Complications arising from cell type and diploidy in Platinum Genomes dataset.
(A) Individuals differ in the uniformity of coverage over segment types when DNA is se-
quenced from B lymphocytes. Y axis is normalized coverage. (B) Allele calls color-coded by
allele and arranged by family tree. For 3-73, at least one of the parents must be heterozy-
gous. For 4-34, the singleton allele in one child indicates that one parent and its parent is
heterozygous or that the allele call is incorrect (4-34∗01 1 is a variant that is not in the
IMGT database and is one nucleotide mutation away from the 4-34∗01 allele).

whole-genome sequencing data thus need not be restricted to single nucleotide variants, but
can also be used to study regions exhibiting copy number variation.
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Chapter 3

Worldwide genetic variation of the
IGHV and TRBV gene families in
humans

This chapter is joint work with Shishi Luo, Heng Li, and Yun S. Song which appears in Life
Science Alliance [65].

3.1 Introduction

By some estimates, genomic variation due to copy number differences underlies more vari-
ation in the human genome than that due to single nucleotide differences ([111, 117]). Yet
copy number variation remains challenging to quantify and analyze. Nowhere is this truer
than in genomic regions that contain gene families: collections of genes formed through the
process of duplication/deletion and diversification of contiguous stretches of DNA [79]. Two
gene families that are of particular biomedical relevance but for which variation is not well
characterized are the immunoglobulin heavy variable (IGHV) family, a 1 Mb locus located
on chromosome 14 [71, 121], and the T cell receptor beta variable (TRBV) family, a 500 kb
locus located on chromosome 7 [96]. Both regions undergo VDJ recombination, providing
the V (variable) component in the biosynthesis of adaptive immune receptors: the IGHV for
the heavy chain of the B cell receptor and the TRBV for the beta-chain of the T cell receptor
[76]. In the human genome, both loci are organized as a series of approximately 45 functional
V gene segments and are adjacent to a collection of D (diversity) and J (joining) segments.
Both loci are present in the genomes of all vertebrates known to have an adaptive immune
system, although the arrangement of the IGHV locus can differ between species [33, 24, 14].
Indeed, the genes comprising the IGHV and TRBV loci are distant paralogs and are believed
to derive from a common ancestral locus in a vertebrate contemporaneous with or predating
jawed fishes [33, 24, 14]. That these two loci share genomic features and evolutionary origins
make them an ideal system for a comparative study in gene family evolution.
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Here we present the largest investigation to date of genetic variation in the IGHV and
TRBV loci using short-read whole-genome sequencing data. We apply a customized genotyp-
ing pipeline (based on [64]) to data from the Simons Genome Diversity Project (SGDP) [67],
which performed whole-genome sequencing of a globally diverse sample of human individuals
from over a hundred populations. Such characterization of population-level genetic variation
in the immune receptor loci sheds light on how the two loci evolved from their common
origins. Quantification of variation is also needed in the burgeoning field of computational
immunology [35, 95], where the relative abundances of germline variants will help in other
applications such as genome-wide association studies, measuring linkage disequilibrium, and
determining clonal lineages from VDJ sequences. For example, previous work demonstrates
that the V genes may contribute a significant proportion of the CDR3, and oftentimes lin-
eages with conserved D and J genes must be distinguished using V gene information [62].
Past methods for CDR3 determination have included integrating over all possible V genes
when information was lacking, and taking population-wide frequencies into account would
likely improve the accuracy of such methods [78]. Additionally, the common copy number
polymorphisms we find in our data agree with what has previously been documented, and
the most frequent allele we report for each gene segment corresponds to the first or second
allele (∗01 and ∗02, respectively) recorded for that gene segment in the IMGT database [37].
We emphasize, however, that the results from this genotyping are used purely for aggregate
measures of sample-level variation. Our method is not intended to be used to accurately
genotype individual genomes.

3.2 Results

A brief note about gene nomenclature: for the bioinformatic analysis, it was necessary to
group together gene segments that are operationally indistinguishable but which have distinct
names because they occupy physically different positions in the genome. Our departure from
this standard nomenclature is detailed in the Methods section and is also explained where
needed below.

To minimize confusion around terminology, we use polymorphism as a general term for a
genomic unit (nucleotide position or gene segment) that exhibits variation between genomes.
Different instances of a particular polymorphism are called variants, e.g., a single nucleotide
variant (SNV) or a gene copy number variant (CNV). In line with the usage in the immuno-
genetics community, the term allele is reserved exclusively for referring to variants of a gene,
as in the allele IGHV1-69∗01, which is a gene-length variant of the IGHV1-69 gene seg-
ment and which may differ in more than a single nucleotide from other alleles of IGHV1-69.
We use haplotype to refer to the set of operationally distinguishable gene segments that are
inherited from a single parent.
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Figure 3.1: Histogram of the number of gene segments in an individual. The results are based
on the IGHV (blue) and TRBV (green) segments present in each of the 109 individuals from
blood and saliva samples. The number of operationally distinguishable IGHV gene segments
shows greater variation than the number of TRBV gene segments. Figure B.9 shows a
histogram of the number of TRBV gene segments in the full set of 286 individuals.

Copy number variation

In general, gene duplication/deletion appears to have occurred more frequently in the IGHV
locus than in the TRBV locus. This is evident in the greater variation in the number of
operationally distinguishable IGHV gene segments than in TRBV gene segments (Figure 3.1,
Figure B.9). Using our per-segment copy number estimates and hierarchical clustering (see
Within-species analysis, Supplementary Information Figures 1 and 2 of [65]), we identified
locus-wide copy number haplotypes, some of which have been previously reported (Figure 3.2
and 3.3). To be conservative, we restricted our figure results to polymorphisms that either
involve at least two operationally distinguishable gene segments or involve a single gene seg-
ment with high levels of copy number variation. Several IGHV genes (IGHV7-4-1, IGHV4-4,
IGHV4-30-4, IGHV4-59, and IGHV4-61 ) had unusual read-coverage profiles and, to be con-
servative, were not included in the CNV calls. In contrast, TRBV genes had predominantly
well-behaved read coverages and were two-copy per individual, resulting in a more complete
list of CNVs in TRBV (Figure 3.3).
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Variant RA

Figure 3.2: The distribution of IGHV copy number polymorphisms reliably called in our
sample. Schematics in the left column show the polymorphisms while the right column dis-
plays the relative abundance (RA) in the sample of 109 individuals. For the polymorphism
involving IGHV1-69, we also show the relative abundances in the full sample of 286 individu-
als in parentheses. This is because IGHV1-69 and IGHV2-70 are located in the J-distal part
of the IGHV locus, making them less likely to be affected by VDJ recombination. Unlike the
IGHV polymorphisms that are closer to the J region, we saw negligible differences in copy
number estimates for these gene segments in the saliva versus cell-line samples. Note that we
use IGHV3-30∧ as shorthand for the set IGHV3-30, IGHV3-30-3, IGHV3-30-5, IGHV3-33
and IGHV3-23∧ for IGHV3-23, IGHV3-23D .
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Variant RA

Figure 3.3: The distribution of TRBV copy number polymorphisms reliably called in our
sample. Schematics in the left column show the polymorphisms, while the right column
displays the relative abundance (RA) in the full sample of 286 individuals. Our data in-
forms the copy number of these genes, while the genomic configuration is our best estimate
based on previous studies. The insertion of TRBV4-2, TRBV4-3 and TRBV6-2, TRBV6-3
is a frequent polymorphism also found in previous studies [110, 105, 129]. The polymor-
phism involving TRBV5-8, TRBV7-8, and TRBV6-9 was identified by first clustering using
TRBV5-8 copy number estimates alone, and then noticing that such a clustering also in-
duced a clear-cut partition of the copy number estimates for TRBV7-8 and TRBV6-9. See
Appendix.



CHAPTER 3. WORLDWIDE GENETIC VARIATION OF THE IGHV AND TRBV 31

Lack of geographical associations. We considered grouping individuals according to
the geographic regions defined by SDGP, namely, Africans, West Eurasians, Central Asians-
Siberians, East Asians, South Asians, Oceanians, and Native Americans. In the majority
of cases, we found that the distribution of copy number variants within a geographic region
is consistent with the global distribution (Figures B.11 and B.12). The two exceptions are:
(i) the polymorphism involving IGHV1-69, where the duplication/insertion variant is the
major variant among genomes sampled from Africa, despite being a minor variant (28%)
of the global sample, and (ii) the three-gene deletion of TRBV5-8, TRBV7-8, and TRBV6-
9, which is the major variant among genomes sampled from the Americas, but appears in
only 5% of our sample globally. In neither of these two cases is there evidence to suggest the
absence of any particular gene is fatal. We note, however, that the sample sizes for the IGHV
analysis of East Asians, Oceanians, and Native Americans do not have suitable statistical
power, and are included for comprehensiveness and illustrative purposes.

No correlation between copy number polymorphisms. We found effectively no cor-
relation between copy number polymorphisms in either IGHV or TRBV (Figures B.13
and B.14). The average value of R2, the square of the Pearson correlation coefficient, between
segments in the different polymorphisms is 0.021 for the IGHV gene segments (Figure 3.2)
and 0.004 for the TRBV gene segments (Figure 3.3). Thus, the polymorphisms are essen-
tially independent, and we can estimate the number of copy number haplotypes in the two
loci. From Figure 3.2, with three polymorphisms each with 2 haploid variants, and with
the set {IGHV3-30, IGHV3-30-3, IGHV3-30-5, IGHV3-33} and { IGHV3-23, IGHV3-23D}
exhibiting an estimated 7 and 4 haploid copy number variants, respectively, this gives ap-
proximately 200 IGHV haplotypes (2 × 2 × 2 × 7 × 4), assuming independence between
the common copy number polymorphisms. The analogous calculation from Figure 3.3 for
TRBV leads to only a handful of haplotypes (2 × 2). We note that this result is not meant
to be taken literally. Rather, the orders of magnitude difference between our estimates for
IGHV haplotypes compared to TRBV haplotypes strongly suggests that the two loci have
undergone different rates of gene duplication and deletion.

SNV and allelic variation in two-copy gene segments

Having quantified copy number variation of gene segments across the two loci, we sought
to compare nucleotide variation while minimizing the confounding factor of copy number
variation. A gene segment with a higher copy number could be perceived as exhibiting
greater single nucleotide or allelic variation, even though it experiences the same rate of
per-base substitution. For this reason, we compared single-nucleotide and allelic variation in
IGHV and TRBV gene segments that have two copies in the vast majority of individuals in
our sample and for which there is minimal read-mapping ambiguity (11 such IGHV segments,
40 TRBV segments, see Supplementary Information Figures 1 and 2 of [65]). We will refer to
such gene segments as “two-copy” for short. In this context, single nucleotide polymorphisms
(SNPs) are meant to refer to nucleotide positions that are polymorphic when compared across
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IGHV TRBV
Average bp difference per pairs of alleles 4.1% 5.0%
Average number of SNPs per segment 1.7% 1.9%

Fraction of novel alleles out of all observed alleles 12/28(48%) 40/99(40%)

Table 3.1: Summary statistics for single nucleotide and allelic variation in IGHV and TRBV.
The results tabulated are computed using the same set of 109 individuals and are restricted
to the two-copy segments described in the text. To calculate the average base pair difference
per pairs of alleles, for each segment we computed the average base pair difference between
all pairs of alleles, and then averaged over all segments.

individuals in our sample, while a single nucleotide variant (SNV) is a specific genetic type
occurring at a SNP. This is in contrast to a “novel allele”, which refers to a sequence of
nucleotides that do not exactly match any known allele in the IMGT database. In addition
to restricting our single-nucleotide and allelic analysis to two-copy gene segments, we were
also conservative in how we called these variants: an allele or SNV is called only if it is
present in two or more individuals. To be clear, the only analysis that is limited to 11 IGHV
genes (as opposed to 40 TRBV genes) is the allelic/SNP variation analysis.

IGHV and TRBV have comparable levels of nucleotide diversity in two-copy
genes. We find that when restricted to the set of two-copy gene segments in IGHV and
TRBV, the two loci have comparable summary measures of single-nucleotide and allelic
variation (Table 3.1, Figure 3.5). If anything, the TRBV two-copy gene segments exhibit
greater single-nucleotide and allelic diversity, given the higher number of SNVs and average
base pair differences between the 109 individuals. We find that on average, IGHV two-
copy gene segments have 1.7 SNVs, as opposed to 1.9 SNVs per TRBV two-copy gene,
which is similar to previous work reporting roughly 2 SNVs per gene [66, 110]. Our slight
underestimate of this value is reasonable given that we restrict our analysis to two-copy
genes. That TRBV exhibits greater or comparable diversity is seemingly surprising, because
if allelic diversity is estimated by taking the average number of alleles per gene segment
as per the IMGT database, without regard to the segment’s copy number, operationally
distinguishable IGHV gene segments have an average of 5 alleles while TRBV gene segments
have an average of 2 alleles. This discrepancy in the two ways of estimating sequence variation
does not seem to be due to an under-representation of TRBV alleles in the IMGT database
relative to IGHV alleles: the fraction of putative novel alleles called in our sample is similar
between the IGHV and TRBV gene segments (Table 3.1, third row). However, if high copy-
number segments were included in this allelic diversity analysis, then the per-segment allelic
diversity for the IGHV locus would likely be higher than the observed diversity for two-copy
segments, as suggested by the results of [103]. This discrepancy could indicate that our
observation of elevated nucleotide diversity in two-copy gene segments may not hold for the
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IGHV and TRBV loci as a whole; it could be that restricting to two-copy gene segments
filters out IGHV genes with higher levels of nucleotide diversity, which could have resulted
from relaxed selective pressure in higher copy-number gene segments. As a reference for
the antibody repertoire sequencing community, we have provided the relative abundances of
alleles for the two-copy gene segments calculated from our sample in Tables B.1 and B.2.

Putatively novel alleles. We called 28 IGHV alleles, of which 12 are putatively novel
and 97 TRBV alleles, of which 38 are putatively novel. Of these novel alleles, it is notable
that 5 IGHV alleles and 12 TRBV alleles appeared at least 10 times in our sample (we
count homozygous alleles as appearing twice, Table B.4). Some of these novel alleles like
IGHV1-45∗02 ga123GR, TRBV10-1∗02 gt234E , and TRBV12-5∗01 cg27HD (see Section
B.7) are present in high frequency across all geographic regions. That these novel variants
are comprehensively present supports existing evidence that the databases of IGHV and
TRBV alleles are not yet complete [103, 34, 22, 36].

SNV and allelic variants private to geographic regions. A SNV that is private to a
geographic region indicates that individual(s) all from one region have a base pair that differs
from the base pair of all other individuals at that site. Alternatively, an allele that is private
to a geographic region indicates that an entire allelic sequence is specific to individual(s) from
that region. We found 5 SNVs in the 11 two-copy IGHV gene segments that are private to
a single geographic region, and 14 such variants in the 40 two-copy TRBV gene segments
(Table B.5). These variants are not rare: a majority of them are present at greater than
10% frequency in the geographic region to which they are exclusive, with the extremes being
as high as 42%. For both loci, the geographic region of Africa had a disproportionate share
of such variants: of the 5 IGHV SNVs that were private to a geographic region, all 5 were
private to Africa, and of the 14 SNVs exclusive to a region for TRBV, 10 (71.4%) were
private to Africa (Table B.5). This particular feature of samples from the Africa region is
also apparent in our allelic variation analysis. Of the 28 IGHV alleles we called, 4 out of 4
private alleles were private to Africa. Similarly, of the 97 TRBV alleles we called, 10 out of
14 (71.4%) private alleles were private to Africa. These findings of higher levels of diversity
primarily in Africa are consistent with prior studies [66, 20, 42, 59, 91, 114, 115, 116, 129]
and with the percentage of exon-located single-nucleotide variants that are private to Africa
across the entire genome (72.1%). For a complete table of SNVs and alleles private to a
particular region, see Table B.5.

Geographical clustering of TRBV haplotypes. To investigate whether genetic vari-
ation at immune receptor loci exhibits geographical structure, we applied multidimensional
scaling to the reconstructed phased TRBV haplotypes from 286 individuals for each two-
copy gene. Figure 3.4 illustrates our result, where each point corresponds to an individual.
Figures B.15, B.16, B.18, and B.17 show results from applying multidimensional scaling to
individuals just from pairs of geographic regions.
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Figure 3.4: Multidimensional scaling of TRBV alleles. Based on 286 individuals from all
populations (including all DNA source types) in the SGDP dataset. Each point corre-
sponds to an individual and is colored by the corresponding geographic region defined by
SDGP: Africans, West Eurasians (WE), Central Asians-Siberians (CAS), East Asians (EA),
South Asians (SA), Oceanians, and Native Americans (NA). Multidimensional scaling was
performed in Python using the manifold.MDS([n components, metric, n init, ...])

function from the sklearn.manifold module. The data fit by the model uses the Euclidean
distance between xi and xj where the mth entry in vector xi is the copy number of allele m
in individual i, taking possible values 0, 1, or 2.

As shown in Figure 3.4, we observed the clearest separation between the African pop-
ulation and the rest of the populations, a trend that is also apparent in the pairwise plots
(Figure B.15) and is related to our aforementioned finding that African individuals tend to
have the most alleles private to one region. There are a few African individuals who are
exceptions to this pattern. Specifically, Masai-1 from Kenya and Saharawi-2 from Morocco
consistently cluster more closely with Eurasians.

While distinction amongst the other populations is not immediately obvious from Fig-
ure 3.4, every pairwise comparison with Native Americans showed reasonably clear separa-
tion from the other populations (Figure B.16), which may be due to the reduced genetic
diversity of Native Americans compared to that of other populations [118]. Additionally,
the individuals from Central Asia-Siberia and South Asia were fairly separable, although
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Figure 3.5: The number of alleles in the 11 two-copy IGHV (blue) and 40 two-copy TRBV
(green) segments. We report an allele only if it is found in at least two out of the 109
genomes from blood and saliva samples. The two distributions are not statistically signifi-
cantly different (p-value of two-sample Kolmogorov-Smirnov test between the blue and green
distribution is 0.97).

the degree of distinction is less prominent compared with those discussed above. Compar-
isons demonstrating significant overlap include Central Asia-Siberia versus East Asia, West
Eurasia versus Central Asia-Siberia, and West Eurasia versus South Asia, which is expected
given previous reports of high gene flow between Europe and Asia [90]. Given these results,
we would expect high fixation index values between each subpopulation and Africa/Native
America, and lower fixation index values otherwise, which is indeed what we find (Table B.3).

General variation patterns suggest distinct evolutionary dynamics

Our analysis of all functional operationally distinguishable gene segments in the two loci
indicates more gene duplication/deletions in IGHV than in TRBV (Figure 3.1). In contrast,
the observed level of nucleotide diversity within gene segments—as measured by the amount
of sequence variation per gene segment in two-copy genes—seems to be slightly higher in
the TRBV locus than in the IGHV locus (Table 3.1, Figure 3.5). If the rate of sequence
diversification were indeed higher in TRBV than in IGHV, we would expect the IGHV gene
family to comprise genes that are more similar to each other on average than the TRBV gene
family. This holds true for the genes found in the IMGT annotated gene table for humans.
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For all pairs of functional genes, we measured between-segment diversity as the pairwise
global alignment score (see Within-species analysis for details) between gene segments, which
gives significantly higher scores for the IGHV genes, indicating more mismatches and gaps
between TRBV genes. Using this same set of human genes and an annotated dog reference
genome (also curated on IMGT), we performed a similar analysis in IGHV and TRBV gene
families between humans and dogs and found similar results.

Given the larger diversity among TRBV genes between these two species, we then looked
at amino acid diversity in IGHV and TRBV gene families within each of thirteen vertebrate
species (curated at vgenerepertoire.org), including five primates, six non-primate mammals,
one reptile, and one fish (Figure 3.6, Appendix B); we again found a similar pattern for
each species. The amino acid diversity for each species was calculated between the IGHV
genes and between the TRBV genes in that species’ reference genome. For all these species,
we found that the IGHV gene segments have substantially lower within-species diversity
(about 44%) than the reference TRBV gene segments (about 60% within-species diversity;
Figure 3.6). We also observed less homology between species for the IGHV gene family com-
pared to the TRBV family (Figures B.10), which together with the aforementioned lower
diversity in IGHV, suggests that IGHV homologs that are shared between species are deleted
more frequently than TRBV homologs. This is consistent with our finding that gene dupli-
cation and deletion occur more frequently in the IGHV locus. It is possible, however, that
rather than being erased, some genes accumulate sufficient amounts of nucleotide changes
that cause them to appear as an entirely new gene.

3.3 Methods

Gene nomenclature

The following sets of gene segments were considered operationally indistinguishable (of-
ten more than 95% nucleotide similarity) for our bioinformatic analysis: {IGHV3-23,
IGHV3-23D}, {IGHV3-30, IGHV3-30-3, IGHV3-30-5, IGHV3-33}, {IGHV3-53, IGHV3-
66}, {IGHV3-64, IGHV3-64D}, {IGHV1-69, IGHV1-69D}, {IGHV2-70, IGHV2-70D},
{TRBV4-2, TRBV4-3}, {TRBV6-2, TRBV6-3}, {TRBV12-3, TRBV12-4}.

SGDP Dataset

Whole-genome shotgun sequencing reads were collected in a previous study, the Simons
Genome Diversity Project [67]. Briefly, 300 genomes from 142 subpopulations were sequenced
to a median coverage of 42x, with 100 base pair paired-end sequencing on the Illumina
HiSeq2000 sequencers. The reads from 286 of these genomes were mapped to the set of
functional alleles (IGHV or TRBV), where our definition of functional is according to the
IMGT database annotations [37]. Of the 286 individuals, only those from non-cell line,
i.e. blood and saliva DNA sources (109 in total), could be used for IGHV analysis. This
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is because in these cell lines, which are based on immortalized B cells, the IGHV locus is
truncated relative to germline configuration due to VDJ recombination. Details of individual
samples can be found in Supplementary Data Table 1 of [67]. For the TRBV locus, we used
the full set of 286 genomes, unless otherwise stated. Note: we only had access to 286 genomes
of the 300 genomes: 300 minus the 14 individuals with labels SS60044XX.

Data availability

The raw data for 279 genomes are available through the EBI European Nucleotide Archive
under accession numbers PRJEB9586 and ERP010710. For additional 21 genomes (desig-
nated by code Y in the seventh column of Supplementary Data Table 1 in [67]), data are
deposited at the European Genome-phenome Archive (EGA), which is hosted by the EBI
and the CRG, under accession number EGAS00001001959. The set of filtered mapped reads
can be found at https://github.com/songlab-cal/SGDP_IGHV_TRBV.

Read mapping/filtering

For the results above we used reads mapped to a list of functional IGHV and TRBV (from
the online IMGT database [37]). The disadvantage of this procedure is that reads from
highly similar pseudogenes and orphon genes may get mixed with reads from functional
genes (Figure B.20). Thus, for each of the IGHV and TRBV loci, we filter the set of raw
reads, aiming to minimize reads that have been erroneously mapped to a functional gene
segment. This required taking into account idiosyncrasies of individual segments, especially
their similarity to pseudogenes and orphon genes. We refer the reader to the full details of
the filtering steps in the Section B.2.

Copy number calls/contig assembly

After read filtering, we have, for each individual, a set of reads binned by operationally
distinguishable segment. We next run the assembler Spades [7] to construct a contig for
each segment to obtain:

1. kmer coverage for the segment in that individual

2. A first estimate of the nucleotide sequence of the individual’s gene

For example, for a fixed individual, the script we execute to assemble the contig for
IGHV6-1 is:

spades.py –k 21 –careful –s IGHV6-1.fastq –o contigs/IGHV6-1
The choice of kmer of size 21 is because it was the longest kmer that ensured successful

contig construction for our 100 bp reads at around 40 coverage depth. The kmer coverage is
then converted to per-base coverage, scaled to account for the trapezoidal shape of the read

https://github.com/songlab-cal/SGDP_IGHV_TRBV
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coverage profile, and then normalized by the individual’s genome-wide coverage to obtain a
point estimate for copy number (details of calculation in Section B.3).

Haplotype phasing and allele/SNV calls

The contigs and reads for two-copy segments were analyzed for allelic and SNVs by phasing
these segments for each individual. Because the assembly step in the pipeline produces only
one contig, we reconstructed the two distinct allelic sequences on each chromosome through
additional steps, which are as follows:

1. Mapped the filtered set of reads to the contig constructed via the customized pipeline
using bowtie2 –local –score-min G,20, 30.

2. The results from Bowtie2 were fed to GATK [72] for variant calling, producing VCF
files identifying polymorphic sites, using the HaplotypeCaller with parameters -ploidy
2 -stand call conf 30 -stand emit conf 10.

3. The variants from GATK were then phased using HapCUT2 [30]. Procedures for han-
dling instances when HapCUT2 failed are explained in Section B.6. To be conservative,
we kept only the alleles found in at least two different individuals.

3.4 Discussion

The analysis of gene families remains a technically challenging task in modern genetics. Here,
we have made major inroads in quantifying sample-level variation in gene segments in the
IGHV and TRBV gene families. We have uncovered patterns of variation that hint at the
evolution of the two gene families as well as allelic variants that may be associated with
diseases specific to a geographic region. Our analysis suggests that the IGHV gene family
has experienced more frequent gene duplication/deletion relative to the TRBV gene family
over macro-evolutionary time scales. The lack of geographical associations for the majority
of common copy number polymorphisms in our sample suggests that IGHV and TRBV copy
number variation was established early in the history of homo sapiens, and that it is unlikely
that the presence of particular IGHV or TRBV gene segments is vital against any region-
specific pathogens. However, we found a number of alleles in both gene families to be private
to a particular region and at non-trivial frequencies. Such allelic variants may be promising
candidates for investigating genetic variants that are beneficial against infectious diseases
endemic in a geographic region. These differences in IGHV and TRBV may be associated
with the different functions of B cells and T cells, particularly the latter’s interaction with
major histocompatibility complex molecules, which itself is complex and highly variable.

Our analysis of copy number variation has practical implications for germline IGHV
haplotyping: approaches for cataloging variation by sequencing the 1 Mb locus in full [109,
121] will need to consider the possibility that even in a sample of hundreds of individuals,
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there will be copy number differences between a substantial fraction of haplotypes. Indeed,
we find that when we draw two individuals at random from our sample, there is a 98%
chance that they will have different sets of IGHV segments present or absent, but only
an 11% chance they will have different sets of TRBV segments present or absent. This
calculation is based on a coarser, more robust measure of copy number haplotypes, where we
identify each individual by the presence or absence of a segment and is therefore conservative.
These numbers remain approximately the same even when we restrict our comparisons to
individuals within geographical regions, again indicating that the presence or absence of
functional segments does not segregate by geographic region (Table B.6). These results
provide quantitative support for the conjecture made by Li et al. [58] that “no chromosomes
contain the same set of VH gene segments,” where VH refers to IGHV.

Our results are also of immediate relevance to the adaptive immune receptor repertoire
sequencing community. The greater complexity in the IGHV locus suggests that using data
analysis methods interchangeably between T cell receptor sequences and B cell receptor se-
quences may not be optimal. The majority of TRBV genes are operationally distinguishable
and appear as a single copy per haplotype. Since T cell receptors do not undergo fur-
ther somatic hypermutation, it makes sense to construct so-called “public” T-cell receptor
repertoires and analyze individual repertoires in relation to common public repertoires. In
contrast, the majority of IGHV genes either vary in copy number or share long subsequences
in common with other genes/pseudogenes/orphon genes in the IGHV family (Appendix B).
Furthermore, immunoglobulins undergo genetic modification via somatic mutation. The
analysis of the antibody repertoire may, therefore, need to be customized to each individual,
as suggested by others [22].

Many challenges remain in genotyping complex and variable regions such as IGHV and
TRBV. Our approach of using short-read data has a major advantage in being scalable to
large sample sizes, allowing population frequencies to be calculated. However, other ap-
proaches may be more appropriate if the goal is to genotype a single individual at base-pair
resolution, rather than a large set of individuals at a coarser resolution. Another challenge is
measuring the rate of nucleotide substitution in IGHV genes, which requires distinguishing
between mutations on paralogous regions from true allelic variation. We have adopted a
conservative approach here, restricting our calculation to 11 IGHV genes which we are con-
fident are two-copy. However, these 11 genes may not be representative of all the regions of
IGHV that are not subject to copy number variation. An approach that can identify larger
tracts of IGHV that are structurally conserved across hundreds of individuals will give a
better estimate of the nucleotide substitution rate.
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Figure 3.6: Box plots for pairwise diversity between IGHV segments and TRBV segments
within a species, averaged across thirteen vertebrate species. For each species, pairwise
alignments of all pairs of IGHV segments and all pairs of TRBV segments were performed
using ssw [128], an implementation of the Smith-Waterman algorithm [108].
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Chapter 4

A fast machine-learning-guided
pipeline for SWGA

This chapter is joint work with Matthew Mitchell, Yun S. Song, and Dustin Brisson.

4.1 Introduction

The rapidly expanding field of population genomics is transforming our understanding of
how evolutionary forces shape genomic diversity among a wide range of species [81]. In
microbial systems, in particular, population genomic studies are increasingly feasible due to
the minimal cost of sequencing small genomes [53, 106, 92, 85]. These studies can provide
us with the keys to understanding the origins of adaptive traits, mapping expansion, and
migration patterns, and understanding epidemiology through the lens of evolution. A prin-
cipal obstacle to sequencing specific microbial genomes from natural samples is isolating the
target microbial DNA from the DNA of contaminating organisms [70]. Although laboratory
culture is the standard practice, the overwhelming majority of microbes cannot be cultured
and direct sequencing is problematic as the microbial genome constitutes only a minuscule
fraction of the total DNA [104, 50, 31]. Thus, a primary hindrance to collecting popula-
tions of microbial genomes is the lack of an innovative, cost-effective, and practical method
to collect sufficient amounts of target microbial genomic DNA with limited contaminating
DNA.

Several technologies have been developed and utilized to overcome this obstacle including
genome capture, single-cell sequencing, and selective whole genome amplification (SWGA)
[68, 8, 55]. Of these, SWGA is the most inexpensive, flexible, and shareable culture-free
technology [97]. SWGA, which takes advantage of the inherent differences in the frequencies
of sequence motifs (k-mers) among species such that primer sets bind often in the target
genome but rarely in the contaminating genomes, can be used to selectively amplify the
target microbial genomes using Φ29 multi-displacement amplification technology [25, 55].
The Φ29 DNA polymerase is strand displacing and amplifies DNA from primers with high
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processivity (up to 70-kbp fragments) and is 100 times less error-prone than Taq, making it
ideal for genome amplification prior to sequencing [25, 86, 6]. By coupling Φ29 amplification
with selective priming, researchers can selectively amplify a target microbial genome, thus
separating the metaphorical baby (target microbial genomes) from the bathwater (off-target
DNA from vectors, hosts, or other microbes). SWGA has proven to be a powerful and cost-
effective tool for researchers looking to generate genomic data for microbial systems. Effective
SWGA protocols have resulted in next-generation sequencing (NGS)-ready samples that are
enriched for specific target microbial genomes and have been used to address biologically
important questions in several microorganisms, including Mycobacterium tuberculosis [18],
Wolbachia spp [55, 18], Plasmodium spp [112, 38, 84, 23, 63], and Wuchereria bancrofti [107].

The most recent SWGA development pipeline (swga) improved on the concept and exist-
ing tools available for SWGA primer selection [18]. Whereas the first SWGA tool only used
differential binding ratios of k-mers and melting temperature to build primer sets [55], swga
incorporated a larger a priori set of optimality criteria to use when selecting both individual
primers (primer binding frequency, improved melting temperature, evenness) and potential
primer sets (evenness, primer binding site density on the target genome) [18]. Specifically,
data from this study revealed that primer sets generated with swga that optimized primer
binding site density on the target genome, along with binding site evenness as a secondary fac-
tor, yielded the most consistent and useful results. While this program significantly improved
upon available SWGA development tools at the time, it suffers from several drawbacks. First,
data generated by swga uses only marginally-effective optimality criteria to evaluate individ-
ual primers and primer sets due to the very limited understanding of the characteristics that
result in effective amplification. While primer binding site density and evenness seem to be
broadly important, there is considerable variation in amplification success among the primer
sets chosen using these criteria. Thus, there are likely novel primer characteristics correlated
with efficient selective amplification that are not currently being considered during the pro-
cess of primer selection. Second, swga uses a computationally-expensive algorithm to search
for sets of primers that maximize the optimality criteria described above, evaluating no more
than 1-5 million viable sets, which are not selected in any optimal way. This is usually only
a very limited proportion of all potential primer sets, but can still take time frames that
are unreasonable for research projects due to the computational inefficiency. This process
of evaluation could be vastly improved by a more well-informed objective function and by
pruning unpromising search paths.

The issues just described can make it difficult to develop an effective protocol to amplify
the genome of a specific microbial species, and as such, SWGA protocol development is
costly in both time and resources. We focused on three ways in which to improve upon
current state-of-the-art methods: (i) to incorporate active learning and machine learning
for modeling primer and primer set efficacy, (ii) to incorporate novel features, including
thermodynamically-principled binding affinities, (iii) to increase computational efficiency,
particularly by multiprocessing as much as possible and caching computationally expensive
information. This chapter will first present SOAPswga (Selective Optimized Amplifying
Primers for selective whole genome amplification), a fast SWGA optimization software that
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focuses on these delineated goals. After discussing the pipeline in-depth, we demonstrate
its application to Mycobacterium tuberclosis from human blood, benchmarking results with
previous results with those from [18]. In addition to our SWGA results, we also discuss the
methods and results from a set of experiments on plasmid DNA, in which we perform rolling
circle amplification (RCA) using individual primers. These results provide insights into the
efficacy of individual primers and form the basis on which we filter out low-amplification
primers in our pipeline.

4.2 Methods

Here we first discuss each step of the SOAPswga pipeline in-depth, followed by details of
how the evaluation function for candidate primer sets was obtained. In the latter portion
of this section, we describe experiments conducted in order to understand the fundamental
properties of binding between one single primer and one genome. This simplest case allowed
us to develop a model for predicting individual primer effectiveness, which is pivotal to the
filtration step of the SWGA pipeline and the design of primer sets targeting Mycobacterium
tuberculosis.

SOAPswga pipeline

The overall pipeline for proposing primer sets takes in a set of genomes which we would
like to amplify (target genome(s)) and would not like to amplify (off-target genome(s)),
where the goal is to find sets of primers which will effectively and evenly amplify the target
genome(s) and not the off-target genome(s). The process is broken into four main stages:
1) preprocessing of locations in the target and off-target genome of all motifs in the target
genome, 2) filtering all motifs in the target genome based on individual primer properties
and frequencies in the genomes, 3) scoring the remaining primers for amplification efficacy
using a machine learning model, and 4) searching and evaluating aggregations of primers as
candidate primer sets. See Figure 4.1 for a diagram of the pipeline. Below we discuss each
step more carefully.

Step 1. k-mer preprocessing: identifying all 6-12mers in the target genome. The
primary step in the program identifies the k-mers of length 6 to 12 in the target genome,
which serve as possible candidate primers for downstream steps. The counts of these k-mers
in the target and off-target genome(s) are computed using jellyfish ([69]), a fast, parallel
k-mer counter for DNA. An h5py file is then created for storing primers and their respective
locations for each genome (or chromosome). This entire preprocessing step is parallelized,
and we have provided pre-computed files for Mycobacterium tuberculosis as well as human.
If parameters of the pipeline are changed, this step will not need to be re-run.
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Figure 4.1: Overview of the SOAPswga pipeline. The process is broken into four main stages:
1) preprocessing of locations in the target and off-target genome of all motifs in the target
genome, 2) filtering all motifs in the target genome based on individual primer properties
and frequencies in the genomes, 3) scoring the remaining primers for amplification efficacy
using a machine learning model, and 4) searching and evaluating aggregations of primers as
candidate primer sets.

Step 2. Candidate primer filtering: excluding candidate primers which may mis-
prime. In this step, we filter out candidate primers from the set of all motifs in the target
genome based on having certain properties of each primer (as suggested by [89]). These are
as follows:

1. Melting temperature: the melting temperature must be within the standard tempera-
ture range of min_tm (default 15◦C) and max_tm (default 45◦C) as established in [55].
These temperatures are computed based on [5].

2. Self-dimer: candidate primers that could possibly form self-dimers are eliminated at
this stage. This is estimated by the longest common subsequence between the candidate
primer and its reverse complement being greater than default_max_self_dimer_bp

(default 4).

3. Number of consecutive runs of a single base pair: primers with runs of 5 of five or
longer are eliminated.
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4. GC content: The GC content for each primer is maintained to be within min_GC and
max_GC (default 0.375 and 0.625 respectively). Three or more G or C’s are avoided in
the last five and three base pairs of the 3′-end of the primer.

5. Di-nucleotide repeats: di-nucleotide repeats of 5 or more are avoided.

6. Binding frequency: binding frequency is computed as the number of exact matches of
a primer in the genome, normalized by the total genome length. Primers that bind too
sparsely to the target genome (lower than parameter min_fg_freq) or too frequently
to the off-target (higher than max_bg_freq) are removed.

7. Binding evenness: the evenness of binding is calculated by finding the Gini index of
the distances between each primer binding site on the target, and primers with Gini
indices higher than max_gini are removed.

While the melting temperature filter is more a requirement of the experimental procedure,
most of these filters are done in an effort to reduce mis-priming (binding to an undesirable
location, e.g. the off-target genome or another primer). The computing of the frequencies
of these candidate primers in the genomes is critical for estimating the number of possible
binding positions in the target and off-target genomes, the former of which we would like to
maximize and the latter of which we would like to minimize. Binding evenness as measured
by the Gini index of the gap distances is important for downstream analysis such as short-
read assembly and copy number estimation.

Finally, primers are ranked by the ratio of the binding frequency in the target genome(s)
to the binding frequency in the off-target genome(s) and those primers with the highest ratio
are identified for downstream use (by default, this currently identifies the top 500 primers,
and is modifiable via the max_primers parameter).

Step 3. Amplification efficacy scoring: predicting individual potential strength
to amplify. In this step, before we optimize over the combinatorial space of primer sets,
we score each individual candidate primer from the previous step. To do this we use a
random forest regressor model trained from prior experimentation (discussed in Amplification
efficacy model). In short, this non-linear regression model is trained on plasmid experiments
conducted using sets of a single primer and a single plasmid genome. The goal of this
regressor is to predict amplification efficacy from various properties of the primer, including
computed thermodynamically-principled features estimating a primer’s binding affinity for
the target genome (see Random forest features). After predicting an on-target amplification
value for each of the candidate primers from the previous step, the primers are filtered
out according to the minimum predicted on-target amplification threshold (min_amp_pred)
parameter, which by default is set to 5. This step significantly reduces search computation
by weeding out low-amplification primers.
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Step 4. Primer set search and evaluation. Using the filtered list of primers from the
previous step, SOAPswga searches for primer sets using a machine-learning guided scoring
function and a breadth-first, greedy approach. At a high level, max_sets number of top
primer sets are built in parallel, primer by primer, by adding primers which increase the
evaluation scores the most. More specifically, we run the following algorithm.

Algorithm 1: Primer Set Search

Input: primer list (list of candidate primers)
max sets (maximum number of sets to explore at each step)
amp efficacy scores (amplification efficacy scores predicted from random

forest model)
drop indices (defines which iterations are dropout layers)

Output: top sets
top sets ← RandomInitialStart (primer list, amp efficacy scores, max sets);
top scores ← Evaluate (top sets);
curr sets = ← [];
curr scores ← [];
for i = 1 to max iterations do

for top set in top sets do
for primer in S do

if Compatible (top set ∪ [primer]) then
new set ← [top set ∪ [primer]];
score ← Evaluate (new set);
curr scores ← curr scores ∪ [score];
curr sets ← curr sets ∪ new set;

end

end

end
if i is in drop indices then

top sets, top scores = DropOut (curr scores, curr sets, max sets)
end
else

top sets, top scores = ChooseMaxSets (curr scores, curr sets, max sets)
end

end
return top sets
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The function RandomInitialStart randomly chooses the first primer in each of the
max_sets number of primer sets where probabilities are the normalized amplification efficacy
scores from the previous step. This allows for randomization of the search initialization and
permits better exploration of the search space. The function Compatible checks that no two
primers have subsequences longer than default_max_dimer_bp that are complementary.
This is done in an effort to reduce the risk of primers binding with each other rather than
the target genome. The function DropOut allows each of the highest-scoring primer sets
to drop one primer by taking the subset of size one less than the current set with the
highest evaluation score. This is particularly useful, for example, if a primer set has an
evaluation score much higher than the primer set excluding the initially chosen primer.
“Dropping” a primer also allows for the possibility of adding a primer that would otherwise
be barred because of its risk in forming dimers with the dropped primer. ChooseMaxSets

simply chooses up to max_sets number of best sets based on evaluation scores. Evaluate

evaluates the primer set using the following equation: Score = β0 + β1 freq_ratio +
β2 mean_gap_ratio + β3 coverage_ratio + β4 on_gap_gini + β5 off_gap_gini where
Table 4.1 contains the coefficient values, and the score is a prediction of the percent coverage
(1×) per base pair sequenced. This step can be re-run multiple times and includes the option
of withholding primers too frequently used in previous primer sets until after the dropout
layer.

Primer set evaluation model

Training data. Here we discuss how we developed the function for scoring primer sets
given a target and off-target genome. In order to learn this function, we used the 46 sets of
SWGA data for M. tuberculosis/H. sapiens (3-6 trials each) from [18]. From the bam files,
we computed the percent genome coverage at 1×, scaled by the sequencing effort (number of
base pairs sequenced), which serves as the dependent variable to be predicted. This metric
is also discussed in [18].

Feature selection. The model uses five variables, which are all normalized appropri-
ately by the genome lengths so as to generalize to other genomes. The variables and their
respective coefficients values are described in Table 4.1. The variables freq_ratio and
mean_gap_ratio are summary statistics that Clarke et al. [18] found to either or both be
useful for assessing amplification and should be large and small, respectively (equivalent
to positive and negative regression coefficient values). To understand why we included the
remaining features, we note that mean_gap_ratio actually measures the average gap sizes
in the genome, using positions on both the forward and reverse strand where the computa-
tion is indifferent to which strand a binding position lies. In theory, however, each binding
position on the forward strand should have at least one position downstream on the reverse
strand in close proximity (see Figure 4.2). One way to measure this is to sum the number of
positions that are within 70 kbp distance (the observed maximum length of the synthesized
DNA chain [9]) for each binding site on the forward strand. Normalizing by the total genome
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Figure 4.2: Simple depiction of multiple displacement amplification. The red lines indicate
a primer while the green blocks indicate a φ29 enzyme. The blue line is the original 5’
to 3’ template strand and the purple indicates DNA polymerized by φ29. For exponential
amplification, each primer binding site on the 5’ to 3’ strand should have a binding site in
close proximity (within 70 kbp distance–the observed maximum length of the synthesized
DNA chain ([9])) on the 3’ to 5’ strand. In this way, primers on opposing strands work
together to alternately amplify the region in the forward and reverse direction.

length gives a rough approximation of coverage, and the ratio of this value computed using
the off-target to that computed using the on-target is referred to as the coverage_ratio,
which we would like to be as small as possible, i.e., have a negative regression coefficient
value. Additionally, for evenness purposes, we want binding sites to be evenly distributed on
each individual strand—not necessarily on the genome, as a whole. To measure this, we use
on_gap_gini and off_gap_gini which averages across strands the Gini index of distances
between binding sites.

Aside from the described features, we tried a number of other features, which included
variables like the number of nucleotides between on-target binding sites that exceed 70 kbp
as well as entropy and generalized entropy of the on-target binding site distribution. For
the off-target binding site distribution, we experimented with summary statistics such as
kurtosis, skewness, bimodality, and variance.

Model selection. We tested a number of different models built from various feature sets,
and normally model error would be our only guiding intuition for which model to select.
However, in our unique case we were able to leverage domain knowledge—that is, for most
of these variables, we have a strong intuition for what the sign of the coefficient should
be. For example, we know that the model should be encouraging the total number of on-
target binding sites and penalizing the number of off-target binding sites, meaning the signs
should be positive and negative respectively. After filtering out the nonsensical models, we
performed a 10-fold cross validation and selected the best model according to cross-validation
error.

Given so few data points, the risk of overfitting and not being able to generalize to
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Variable name Variable description Coef. Coef. value

intercept Intercept β̂0 −3.14× 10−15

freq ratio Ratio of the binding site rate in the β̂1 0.321
on-target to off-target.

mean gap ratio Ratio of the mean distance between β̂2 −0.0368
binding sites of the on-target to off-target
genome, aggregating across strands.

coverage ratio Ratio of the coverage approximation of the β̂3 −0.0318
on-target to that of the off-target.

on gap gini Mean gini index of on-target binding β̂4 −0.0131
site gap sizes, averaging across strands.

off gap gini Mean gini index of off-target binding β̂5 0.281
site gap sizes, averaging across strands.

Table 4.1: Ridge regression variable descriptions and respective coefficient values for primer
set evaluation. SWGA experiments from Clarke et al. [18] were used as training data.

new sets is high. Consequently, we utilize ridge regression which uses regularization to
upper bound the complexity and to reduce the variance of the model, without a substantial
increase in bias. Because variables on a larger scale are unfairly penalized by regularization
more so than others, we use standardized features for training by subtracting the data by
the respective means and dividing by the respective standard deviations.

Amplification efficacy model

Here we discuss the development of the random forest regressor used to predict the amplifi-
cation efficacy of individual primers in step 3 of the pipeline. In the SWGA setting, multiple
primers are usually used on large genomes, making it challenging to isolate the efficacy of
a single primer. Thus, we performed a series of rolling circle amplification (RCA) [3, 25]
experiments of circular plasmid DNA and a single primer using Φ29 DNA polymerase. From
this data, which was iteratively collected in an active learning fashion, we trained a model
using various properties of the primer sequence and binding affinities for the target genome,
estimated by the thermodynamic nearest-neighbor DNA model [99].

Plasmid experiments. Our RCA reactions were designed to (i) use a primer with one
exact binding site to exponentially amplify target template plasmid DNA [3] and (ii) use the
same single primer to assess the degree of amplification when there were no exact binding
sites on the off-target plasmid DNA. We used plasmids because they allowed for long-range
amplification similar to what we would expect with most genomes.
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Figure 4.3: Illustration of singly-primed rolling circle amplification.

We obtained plasmid DNA from Addgene (Watertown, MA) and chose two plas-
mids of equivalent length (approximately 6kb). pcDNA3-EGFP was provided to Ad-
dgene by Doug Golenbock (Addgene plasmid #13031; http://n2t.net/addgene:13031;
RRID:Addgene 13031) and pLTR-RD114A [127] was provided to Addgene by Jakob Reiser
(Addgene plasmid #17576; http://n2t.net/addgene:17576; RRID:Addgene 17576). We iso-
lated plasmid DNA from liquid cultures of bacteria containing each plasmid using the QI-
AGEN Plasmid Mini Kit (Qiagen, Valencia, CA). We verified the identity of the purified
plasmids using a restriction digest analysis. We digested our plasmids using EcoRI and MscI
individually and in combination (Thermo Fisher Scientific, Waltham, MA), both of which
have different numbers of cut sites on each plasmid. We confirmed the size and conformation
of both undigested and digested plasmids using gel electrophoresis.

In a set of experimentation, 96 primers were chosen, and each primer was used in two
reactions, one with the target plasmid and one with the off-target plasmid. In order ensure
that primers would not be degraded by the exonuclease activity of Φ29 DNA polymerase, we
added two 3′-terminal phosphorothioate modifications to every primer We ran the amplifi-
cation reactions using a modified version of previously published methods for singly-primed
RCA [40] (see Figure 4.3). We mixed 5 ng of template plasmid DNA with 5 µL of 10X Re-
action Buffer (New England Biolabs, Ipswich, MA), 1 µL of 10 mg/mL BSA (New England
Biolabs), 1 µL 10 mM dNTPs (New England Biolabs), 2.5 µL of 10 µM primer (final reac-
tion concentration of 0.5 µM of primer), and molecular grade water to 49 µL. We denatured
these mixtures at 95◦C for 3 minutes and rapidly cooled them to 4◦C and placed them on ice.
We amplified the denatured plasmid DNA using 1µL of Φ29 DNA polymerase (10 U/µL,
New England Biolabs) with a one-hour ramp-down step from 35-30◦C [55], followed by a
16-hour amplification step at 30◦C, and a denature step for 15 minutes at 65◦C. Following
amplification, we measured the resulting concentration of DNA in each reaction using the
QubitTM dsDNA HS Assay Kit.

An active learning approach. Active learning, a type of iterative supervised machine
learning, was used to maximize information gain per each experiment. In other words, we
purposely did successive rounds of experimentation, improving our model with each round
and querying primer/plasmid combinations with specific goals in mind. In total, we designed
three rounds of experiments, each of 96 primers, except the initial experimentation round
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which had 204, designed to differentially target two different plasmids as explained in the
previous section.

For Round 1, we first used a previously published SWGA Perl script [55] to generate a
list of ‘uniquely targeted’ primers for each plasmid (i.e., a primer with a binding site that
occurred once in the ‘target’ plasmid sequence and zero times in the ‘off-target’ plasmid
sequence). We then tried to pick primers based on a discretization of the search space
in terms of sequence length, melting temperature, GC content, the proportion of different
nucleotides, longest G repeat, longest C repeat, longest A repeat, and longest T repeat.
Amplification values for Rounds 2 and 3 primers were predicted based on the random forest
regressor to be discussed in the following sections.

Random forest features. Before we discuss model selection and training, we first describe
the model features. To start, we chose 22 primer attributes for which we had a priori
evidence may impact the efficacy of a primer to accurately bind to template DNA and
to promote amplification under standard PCR or RCA conditions [26]. See Table 4.3 for
a list of these features and their feature importances. We quantified and characterized
all candidate primers tested in this study for these 22 primer attributes. However, these
22 attributes such as melting temperature are not specific to the target genome. While
computing the exact matches of a primer in a genome is a good heuristic for a primer’s
ability to amplify, using exact matches is a coarse metric. Therefore, we included features
which capture the thermodynamic likelihood of the primer binding along the genome using
a unified thermodynamic nearest-neighbor DNA model [99]. This model is widely used
to calculate primer melting temperature in a wide variety of available primer design tools
[98]. Empirical thermodynamic parameters (∆G◦T ) are available for most primer binding
and single mismatch scenarios and include thermodynamic data for initiation, symmetry
correction, all Watson-Crick pairs, Terminal ‘AT’ penalties, and internal mismatches [99].
Empirical thermodynamic data for terminal mismatches are not publicly available [99, 98],
and were not incorporated into our predictive model.

Measuring binding affinities is not sufficient, however, since all genomes are not the same
length. Consequently, we need a transformation of the features such that the resulting
features are invariant to the genome length. In order to apply this thermodynamic model to
produce features that can be used for any genome and any primer, we do the following for
each primer and each genome:

1. Compute the ∆G◦T values for each position in the genome according to [99].

2. Compute a histogram of the list of ∆G◦T < 3 with bins ranging from −20 to 3.

3. Scale the counts by the length of the genome.

Step 1 produces a list of ∆G◦T at every position, which is a smoother metric for a primer’s
propensity for binding along the genome than the number of exact matches. Step 2 is
necessary for converting this list of values into a fixed number of features, which is necessary
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for building a model. Lastly, in Step 3 we normalize by genome length because we would
like our model to be applicable to different sized genomes. In the end, we have features
that capture the percentage of positions that have a particular binding propensity with the
primer.

Model selection and hyperparameter optimization. We tested a number of different
regressors: linear, logistic, random forest, gradient boosting, and support vector machine.
We found that non-linear regressors did much better than linear models, and in particular
the random forest regressor from the sklearn.ensemble.randomforestregressor module
in python performed the best. We also did a hyperparameter search and found that the opti-
mal parameters were n_estimators=1500, min_samples_split=10, min_samples_leaf=4,
max_depth=50, bootstrap=False.

4.3 Results

Plasmid experiments

As touched upon in our discussion of an active learning approach, we conducted experiments
in 3 stages, so as to maximize information gained from each experiment. In the initial round
1, there was no prior data for this type of experiment, so the goal in this iteration was to
maximize our exploration of the search space and test 204 primers with varying length, GC
content, and molarity. In Round 2, we used data collected from Round 1 to train a random
forest regression model to accurately predict the amplification of 96 primers. Finally, in
Round 3, we focused on predicting 96 high-amplification primers.

Non-linear model is able to predict high-amplification primers after two rounds.
In the initial Round 1 the primers were selected near randomly, but as apparent in Fig-
ure 4.4A, which shows plots of the target amplification per round, Round 1 did not have
many high-amplification primers. In Round 2, we used data collected from Round 1 to
train a random forest regression model to predict primers with poor, mediocre, and high
amplification. Figure 4.4A additionally demonstrates that in Round 2 many of the primers
also did not have high amplification, likely because Round 1 data did not have many high-
amplification primers, which made extrapolation to the high-amplification regime difficult.
After two rounds, however, the non-linear model was able to learn from the data sufficiently
enough to predict many more high-amplification primers (Figure 4.4A).

Low-amplification regime has lower variance and can be predicted more accu-
rately. For Round 3, we retrained the model on data collected from both Round 1 and
2, focusing on predicting high-amplification primers. Though many more high-amplification
primers were predicted in Round 3 than in the first two rounds (Figure 4.4A), the error of
the predictions measured in terms of the mean squared error increased (Figure 4.5A). This is
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Figure 4.4: Target amplification per round and replicate standard deviation per amplification
regime. (A) Categorical dot plots of target amplification in each round of experiments,
controlling for molarity = 0.5 µ. Points are adjusted along the axis so that they do not
overlap. (B) Standard deviation of target amplification among three trials per experiment
for all the data. The primers in the high-amplification regime exhibit a larger standard
deviation.

likely due to the large variance in terms of experiment replicates (Figure 4.4B), which makes
accurate prediction of high-amplification primers a much more difficult problem than the
prediction of poor amplification primers given the increased noise. However, overall it seems
that the model has a high accuracy rate in terms of predicting poor amplification primers,
i.e., primers with true amplification scores less than 10 (Figure 4.5)). In other words, if the
regression predicts a primer will have amplification less than 10, the true amplification is
often also less than 10. For this reason, we reframe our regression as a classification prob-
lem, using this model as a basis for filtering out low-amplification primers in Step 3 of the
pipeline. Table 4.2 reports the average percent of primers that were incorrectly filtered out
over 100 iterations using the random forest regressor trained on 75% of the data and tested
on the mutually exclusive 25% of the dataset. Based on the results, a default threshold of
5 was chosen, given its small error rate and substantial 26% filtration rate, which can be
hugely beneficial for reducing the time complexity of the program. The default value of 5 is
customizable according to the parameter min_amp_pred.

Feature importances indicate significance in binding affinities. Having trained this
random forest model, a natural way to understand the significance of each feature is to
investigate the feature importances, which are computed from the variance reduction from
each split in each tree (see Table 4.3). The third column indicates that the binding affinities
are informative to the model while the last column of Table 4.3 aggregates the feature
importances for subsets of features. The binding affinities account for 16% of the feature



CHAPTER 4. A FAST MACHINE-LEARNING-GUIDED PIPELINE FOR SWGA 54

Figure 4.5: Predicted versus true target amplification for Mycobacterium tuberculosis. The
left displays regression lines based on the random forest regression trained only on data
prior to that round. The right displays the regression fit based on the model trained on
all the data. (A) Predicted versus experimental amplification for Rounds 2 and 3. Round
3 has much higher margin of error because of higher variance in experimental trials with
high-amplification primers. Round 1 primers were not predicted. (B) Predicted versus
experimental amplification value after retraining the random forest regression on all the
data (396 datapoints), essentially showing overall training error which is smallest in the low
amplification (< 10) regime.

Threshold Percent incorrect Percent filtered
2 0.04 6.51
5 1.62 26.5
10 3.76 47.1
15 4.42 58.9
20 5.44 66.6

Table 4.2: Summary statistics of various thresholds for filtering out low-amplification primers
after scoring with the random forest regressor. For each threshold, we report the percent
incorrect (number of primers incorrectly filtered out—i.e., the predicted amplification is less
than the threshold but the true amplification is greater than the threshold) and percentage
of primers filtered out. Percentages were computed from averages of 100 iterations, training
on 75% of the data and testing on a hold out set of 25%.
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Figure 4.6: Target and off-target amplification of 13 primers at 4 different molarities. (A)
Target amplification per molarities 2.5, 1.5, 1.0, and 0.5 µ using a set of 13 primers. (B)
Target vs off-target amplification according to molarities 2.5, 1.5, 1.0, and 0.5 µ.

importances, which could be because they capture more information than exact matches,
and in particular, capture information about binding sites which may have a few mismatches
but may still be a binding site. Perhaps unsurprisingly, features involving GC content or
the number/proportion of G’s or C’s are the most important subset of features. In fact,
selecting a random decision tree from the random forest model will often use a decision rule
suggesting that greater numbers of G’s or C’s will contribute to higher amplification power.
This is in agreement with the thermodynamic nearest-neighbor DNA model because the
more G’s and C’s in a primer, the more negative the ∆G◦T values, according to the model in
[99]. Additionally, many of the decision rules involving molarity suggest that amplification
increases with molarity. This is in line with the findings in the proceeding paragraph.

Primer concentration affects amplification. In Round 1, we experimented with 4
different molarities of the same 13 primers—the four molarities being 2.5, 1.5, 1.0, and
0.5 µ. As one might expect from the principles of chemical equilibrium, an increase in the
concentration of primers increases the amount of amplification product (Figure 4.6A). It does
not, however, seem to suggest that molarity affects the target to off-target amplification ratio
(Figure 4.6B).

M. tuberculosis and H. sapiens SWGA experiments

Using the pipeline, we experimented with nine primer sets (A1-A9) targeting the genome
Mycobacterium tuberculosis where the off-target genome is Homo sapiens. For these sets
of primers (which we will refer to as “Round A”) we used a simpler evaluation function,
which does not incorporate coverage_ratio and measures the Gini index from aggregating
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Subset Description Feature Description Feature Imp. Subset Feature Imp.

sequence length sequence length 2.56 2.6

molarity molarity 10.2 10.2

melting temperature melting temperature 6.33 6.3

G/C content features number of G’s 11.8 27.9
proportion of G’s 2.68

number of C’s 2.76
proportion of C’s 6.54

GC content 4.08

A/T content features number of A’s 1.16 6.42
proportion of A’s 1.25

number of T’s 1.03
proportion of T’s 2.98

repeat features longest A repeat 0.43 19.2
longest T repeat 0.61
longest G repeat 4.10
longest C repeat 3.51

AA repeat number 0.33
CC repeat number 2.37
TT repeat number 0.46
GG repeat number 7.30

last five bases features GC.clamp 1.92 10.2
first base from 3’ end 1.08

second base from 3’ end 2.48
third base from 3’ end 1.32
fourth base from 3’ end 1.41
fifth base from 3’ end 1.96

binding affinities −20 to −12 0.87 18.1
−12 to −6 1.16
−6 to 0 5.47
0 to 3 10.5

Table 4.3: Percent feature importances of the random forest regressor model. We include
aggregated feature importances (computed by summing the individual feature importances
in the subset) as an additional means of interpretation. The 27 binding affinity features were
aggregated for brevity and clarity.
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positions on both the forward and reverse strands. We will refer to this evaluation function
as “Function A” and the function first described in Section 4.2 as “Function B”. Moreover,
instead of taking the top 9 primers from the pipeline, we tried to diversify the sets by limiting
too much intersection between sets. Lastly, we included one primer set (A5) which had a low
predicted evaluation score in order to have a more informative benchmark of our evaluation
function.

Computational costs reduced from weeks to minutes. Creating files which store
information on all 6-mers to 12-mers for Mycobacterium tuberculosis and Homo sapiens
takes a few hours, but needs to be done only once. Using these precomputed files and a 2013
MacBook Pro with a 2 GHz Intel Core i7 with 16 GB of memory, where the max_sets is set
to 5 (the algorithm searches for 5 sets in parallel) and max_primers is 200 (optimization is
done over 200 primers), the pipeline runs in roughly 58 minutes. This is a huge improvement
from the swga which runs for an estimated two weeks. While it is difficult to benchmark
the two programs given that it would take weeks to do so, it is clear that multi-processing
in many aspects of the pipeline and the change to an efficient rather than exhaustive search
algorithm greatly improves the speed. Additionally, we have used new file formats like h5py,
which allows for O(1) read access to the binding positions of a particular primer, and added
new data structures in the search algorithm, which stores the score for every primer set
evaluated, barring unnecessary recalculation for future iterations. The way in which the
current pipeline computes Gini index is also modified; it is no longer an approximation
(which can be unstable in small samples) but an efficient calculation of the exact Gini index
using an alternate expression of the equation and taking advantage of efficiencies in array
computations in the Python library numpy.

Experimental values far exceed those of previous experiments and predicted
scores. Figure 4.7 shows the side-by-side bar plots of Round A primer sets and the primer
sets from Clarke et al. [18] evaluated for two metrics. The first is “% Reads Mapped” which
measures the percentage of reads which mapped to Mycobacterium tuberculosis. The second
metric is “Percent coverage per bp sequenced” which is the percent of the genome with 1×
coverage, normalized by the total base pairs sequenced and scaled by 107 for readability.
Primer sets with an “A” in the prefix refer to those evaluated by our pipeline and far exceed
the results from Clarke et al. [18]. However, looking at Mtb6 and Mtb9, which we ran
alongside the Round A primer sets, we can see that some of these differences are likely due
to a difference in experimental setup, the lack of replicates, and/or the lower sequencing
depth at which Round A primers were sequenced. Indeed, the average total number of reads
sequenced for the Clarke sets was 1.5 million whereas for the Round A primer sets it was
21,000. We intend to rerun these primer sets at comparable sequencing depth, given that
Figure 4.7 displays promise. Compared to Mtb6 and Mtb9, many of the Round A primers
that we predicted would do reasonably well performed on par.
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In addition to surpassing the results reported in Clarke et al. [18], the results from
Round A also greatly surpassed predictions. Figure 4.8 summarizes these predicted values
alongside the second metric, percent coverage per bp sequenced. Predictions were done using
both evaluation functions for Round A primers as well as Mtb6 and Mtb9 which were two of
the most successful primer sets in Clarke et al. [18]. Overall it seems that the two functions
perform similarly in terms of ranking the Round A sets, but whereas Function A scored A7,
A8, and A9 on par with Mtb6 and Mtb9, Function B puts them much lower and consequently
would not have been selected. In fact, if we count the number of sets which have predicted
values greater than Mtb6 but experimental values less than Mtb6 (number of false positives)
there are 3 using Function A and 0 using Function B. In this sense, Function B seems
preferable because there is greater confidence in the sets scoring greater than the baseline
Mtb6. While the predicted values certainly fall short of the true values of A1, A2, A3, A4,
and A6, it’s understandable when looking at Figure 4.9, which plots the experimental value
against the predicted values. The black dots plotted indicate the training set, while the
blue/orange dots are the Round A primer sets. It is clear that for the function to correctly
predict the outliers (particularly A1 and A4) requires extrapolation, for which there is likely
not enough data. It also remains to be seen if the outliers are an artifact of low sequencing
depth.

4.4 Discussion

SWGA is a highly complex set optimization problem involving scalability challenges and
limited prior data, which is often also noisy. In Mycobacterium tuberculosis alone there are
over five million candidate primers that must be filtered into a reasonable working set. On
the practicality side, one of the immediate challenges in implementing a solution for SWGA
is designing data structures and files which efficiently store the information needed for evalu-
ation without having to make expensive searches of a genome for potential binding locations.
These challenges are exacerbated by large genomes, particularly the human genome which is
over three billion base pairs. Probably the greatest challenge is identifying a way to search
and evaluate primer sets, the former which demands combinatorial optimization techniques
and the latter which demands understanding prior data. Understanding and learning from
prior data has its own challenges, due to the limited availability of data, often high variability
in replicates, and indirect inference of the polymerization process via short read data.

SOAPswga offers a number of novel improvements. Most obviously is the difference in
speed due to the implementation of parallelization, caching, and branch-and-bound tech-
niques as well as storing data in efficient formats like h5py. Additionally, computations
of Gini index are no longer an approximation and take advantage of efficiencies in array
operations. In step 1, we use jellyfish [69] which is much faster than DSK [93] used in
swga. In step 2 we have added a number of new filters recommended for good primer de-
sign and prevention of self-dimers. In step 3 we have added a novel machine-learning model
for scoring individual primers based on amplification capability, which uses a unique set of
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Figure 4.7: Bar plots of Mycobacterium tuberculosis results for both the primer sets from
Clarke et al. [18] and from using evaluation function Function A in SOAPswga—primer
sets which we term “Round A”. The top bar plot measures all primer sets according to
the percentage of reads which mapped to Mycobacterium tuberculosis and the second metric
which measures the percent genome coverage at 1×, normalized by the total number of base
pairs sequenced. The Clarke primer sets have a dash and a suffix appended to them, which
indicates which experiment replicate it is. For the Round A primer sets, only one replicate
was done. Mtb6 and Mtb9 from Clarke et al. [18] were also done alongside Round A primer
sets for benchmarking purposes.
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Figure 4.8: Bar plots of predicted and experimental values for percent genome coverage at
1× (normalized by the total number of base pairs sequenced) of Round A primers as well
as Mtb6 and Mtb9, which were two of the most successful primer sets in Clarke et al. [18].
Predictions were done using Function A and Function B, which is described in the Methods
section. Mtb6 and Mtb9 were repeated alongside the Round A primers for benchmarking
purposes.

thermodynamically-principled binding affinities. Lastly, while predecessor software to this
pipeline made great strides in implementing methods for SWGA, optimization is no longer
done by hand or via exhaustive search. In step 4 we implement branch-and-bound techniques
and utilize evaluation functions learned from prior data using machine learning. To better
explore the search space, we also employ randomization and a novel concept of dropouts.

In our results, we demonstrate the ability of the random forest model to meaningfully
learn from the data after two rounds of data, the accuracy of the random forest model in terms
of weeding out low-amplification primers, and the utility of our novel thermodynamically-
principled binding affinities. Moreover, our results demonstrate a large reduction in terms
of time complexity, and the SWGA results exhibit promise in terms of performance. For
future work, in addition to replicating Round A primer sets, we intend to test a new set
of primer sets, which we will call “Round B”. Round B sets were chosen using Function
B, and ensuring no two primers sets had an intersection of 4 or more. While we cannot
evaluate Round B in terms of experimental results, we benchmark the sets according to its
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Figure 4.9: Experimental values plotted against predicted values for percent genome coverage
at 1×, normalized by the total number of base pairs sequenced according to Function A and
B. Predictions according to Function A are shown in orange, and predictions according to
Function B are shown in blue. Black dots correspond to experimental and predicted values
according to Function B of the primer sets from Clarke et al. [18]. The predicted values
greatly underestimate the experimental values likely because of the low sequencing depth of
Round A results and/or the lack of training data with values in the high range. The largest
experimental value of the Round A primers is roughly 7 times that of the Clarke primer sets,
and extrapolation to that extent, would have seemed unreasonable.

predicted scores and the average mean gap distance in the target genome, which Clarke et
al. [18] found important and negatively correlated with amplification. The average mean
target distances of the Round B primer sets is roughly a fourth of that of the Clarke primer
sets. In addition, the evaluation scores according to both Function A and Function B are
well above those of the previous sets.

This pipeline could be used in a number of contexts where primer design is critical
such as in generating forensic DNA profiles, detecting pathogens during infection, or species
identification in metagenomics. In many such scenarios, it would be undesirable to have
primers that also favor other genomes that are present in the same sample. In some contexts,
there may be separate portions of the same genome which may serve as the “target” and “off-
target” genome. For example, base editors like CRISPR have seen a number of undesirable
off-target mutations [45, 130], which have the potential to be incredibly deleterious. The
design of gRNA sequences would be a natural application of the same principles used to
design primer sets for SWGA.
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Figure 4.10: A comparison of all three primer sets (those from Clarke et al. [18], Round A,
and a proposed Round B) according to the mean target distance, and scores according to
Function A and B. The average mean target distance for the Clarke, Round A, and Round
B primers is roughly 3200, 2240, and 720, respectively.
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Chapter 5

Conclusions

In this dissertation, we take a close look at two distinct problems in the subfield of compu-
tational genomics. In the first two chapters, we present a customized genotyping pipeline
that produces an accurate characterization of the IGHV and TRBV loci without the need to
reconstruct the complete sequence. The IGHV and TRBV loci are genomic regions critical
for the adaptive immune system and hence of great medical relevance. Because these loci
are comprised of numerous duplicated genes that are highly similar and harbor substantial
copy number variation, cataloging and analyzing genetic variation in these gene families has
remained challenging thus far. We have also applied our method to the first study of both
the IGHV and TBRV loci in a globally diverse sample of humans, in addition to simulated
data and a family composing three generations. Our work provides a quantitative analysis
of genetic variation relevant to the fields of population genetics and medicine, as well as to
the greater understanding of the long-term evolution of these gene families.

In the penultimate chapter, we turn to a separate problem in sequencing—selective se-
quencing of a target genome in a heterogeneous sample. Given the correct primer set, Φ29
multi-displacement amplification technology is the most inexpensive, flexible, and shareable
culture-free technology for amplifying a specific genome. While previous methods utilize
exhaustive search based on heuristic functions, SOAPswga is an efficient pipeline integrating
machine learning and optimization principles for proposing primer sets. We present an appli-
cation of this pipeline to the target genome Mycobacterium tuberculosis in a sample of human
blood, benchmarking against previous work. This work is not necessarily limited to the con-
text of SWGA, but can be extended to other contexts involving targeted genomic regions
and provides insight into individual primer efficacy relevant to primer design in general.

As more reference sequences become available and as sequencing technology improves, we
expect the power and precision of these tools to improve. Assembly of the IGHV and TRBV
genes, for instance, would become more reliable given longer and less error-prone reads.
Additionally, with longer reads, the endpoints and distribution of DNA strands polymerized
by φ29 could be better estimated, which would help in understanding the exact behavior of
multiple displacement amplification. These problem settings will also undoubtedly benefit
from the growth in available whole-genome sequencing data and computational power in an
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age where sequencing is cheaper than ever before, and GPUs are becoming more powerful
and increasingly commonplace.
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Appendix A

Chapter 2 Supplementary Information

A.1 Supplementary Figures

Figure A.1: Hierarchical clustering applied to Hamming distance between all family 2 alle-
les. Heatmap color scale is same as in the main text, with red=0% nucleotide differences,
white=10% or more.



APPENDIX A. CHAPTER 2 SUPPLEMENTARY INFORMATION 76

Figure A.2: Hierarchical clustering applied to Hamming distance between all family 5 alle-
les. Heatmap color scale is same as in the main text, with red=0% nucleotide differences,
white=10% or more.
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Figure A.3: Hierarchical clustering applied to Hamming distance between all family 3 alleles.
Allele labels are in cladogram above matrix. Heatmap color scale is same as in the main
text, with red=0% nucleotide differences, white=10% or more.
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Figure A.4: Hierarchical clustering applied to Hamming distance between all family 4 alle-
les. (A) Simple average of ‘TN93’ evolutionary distance and indel distance. (B) Hamming
distance. Allele labels are in cladogram below matrix. Because TN93 and indel distances
cannot be interpreted in terms of nucleotide similarity, the distances in each matrix have been
normalized by the maximum value in the matrix for comparison. Heatmap color scale ranges
from cyan=0 to blue=1. The clustering that uses ‘TN93’ and ‘indel’ distances has clearer
block diagonal structure and fewer conflicts with IMGT nomenclature. It was therefore used
to define the operational segments for family 4 in Table 1.
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Figure A.5: Dotplots of coverage calls for each individual in the Platinum Genomes dataset.
The data points are the same as in Fig. 4 but grouped by individuals. Y axis is normalized
read coverage depth.

Figure A.6: Normalized coverage of subjects NA12886 and NA12890. The absence of 1-8 /3-9
and 5-10-1 /3-64D variants does not appear to be due to VDJ recombination.



APPENDIX A. CHAPTER 2 SUPPLEMENTARY INFORMATION 80

Figure A.7: Pairwise alignment of the putative 7-4-1 allele, 7-4-1∗04 5, with its closest
matching IMGT allele, 7-4-1∗04. The allele 7-4-1∗04 5 was found in individuals NA12877,
NA12878, NA12879, NA12883, NA12884, NA12886, NA12888, NA12891, and NA12893.
Pairwise alignment was performed using the online IgBLAST tool [124].
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Figure A.8: Allele calls arranged according to family pedigree. Only segments for which
there were two alleles in the family are shown (colored grey and white). Individuals who did
not carry the segment are denoted by boxes with dashed outlines.
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Figure A.9: Mapped start position versus original start position in segment 3-48 of each
250 bp read whose alignment exceeds the score threshold. Axis values are centered at position
chr14:1,062,766,005. (A) With default Bowtie2 local alignment threshold of 20 + 8.0 ln(L),
where L is the read length, reads originally from pseudogenes or similar functional segments
are incorrectly mapped to 3-48, as seen by multiple vertical strips of dots. (B) With the
threshold increased to 20 + 70 ln(L), a single diagonal row of dots indicates that only reads
from 3-48 are mapped to segment 3-48. (C) When the threshold is increased to 20+85 ln(L)
however, this is too restrictive and too few reads are mapped. Assessing analogous plots for
the rest of the segments led to a threshold of 20 + 70 ln(L) being chosen. The README
of the package provides more detail on how to modify the threshold. (Coordinates are for
chromosome 14 on GRCh37).

Figure A.10: Error profiles of simulated reads under default ART parameters. Plots are
shown for 30x, 40x, and 50x coverages and are only displayed for GRCh37 (plots for GRCh38
are similar). Note the high error rates for 100 bp and 70 bp reads. This difference is at-
tributed to the fact that ART automatically selects one of several built-in read quality profiles
according to the read length provided. Mutation rates are computed by first calculating, for
each position in the read, the number of mismatches between the position of the simulated
nucleotide and the original nucleotide. The number of mismatches was then divided by the
total number of reads.
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Figure A.11: Error profiles of simulated reads after parameter adjustment. To make the
profiles for 70bp and 100bp comparable to that of 250bp, the parameter for quality score
shifting (-qs and -qs2) was used: 12.896 for 100bp and 7.99 for 70bp.

Figure A.12: Fraction of reads from an individual which matches a psuedogene before and
after filtering using paired reads. Filtering using mate-pair information decreases reads from
pseudogenes. For each individual, we calculated the fraction of reads that more closely match
a pseudogene than an IMGT allele (blue). We then did the same calculation after filtering
reads using the location of the paired read (green).
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A.2 Supplementary Tables

Table A.1: Table of IMGT alleles to which simulated GRCh37 reads map ambiguously. Note
that the in cases where reads map exactly to one allele, i.e. 3-72∗01, 2-26∗01, 1-24∗01, and
3-20∗01, these are the only full-length and functional alleles corresponding to a segment.
Simulated reads are 100 bp long and have coverage depth of 30x.

Read from Is mapped to

3-74∗01 3-74∗01, 3-74∗02, 3-74∗03
3-73∗02 3-73∗01, 3-73∗02
3-72∗01 3-72∗01
2-70∗13 2-70∗01, 2-70∗10, 2-70∗11, 2-70∗12, 2-70∗13
1-69∗06 1-69∗01, 1-69∗02, 1-69∗04, 1-69∗05, 1-69∗06, 1-69∗08, 1-69∗09, 1-69∗12, 1-69∗14
3-66∗03 3-30∗14, 3-53∗01, 3-53∗04, 3-66∗02, 3-66∗03
3-64∗02 3-64∗01, 3-64∗02
4-61∗08 4-59∗01, 4-59∗02, 4-59∗03, 4-59∗07, 4-61∗01, 4-61∗03, 4-61∗08
4-59∗01 4-4∗08, 4-59∗01, 4-59∗02, 4-59∗03, 4-59∗04, 4-59∗07, 4-59∗08, 4-61∗01, 4-61∗03, 4-

61∗05, 4-61∗08
1-58∗02 1-58∗01, 1-58∗02
3-53∗01 3-53∗01, 3-53∗02, 3-53∗03, 3-53∗04, 3-66∗02, 3-66∗03
5-51∗01 5-51∗01, 5-51∗02, 5-51∗03, 5-51∗04
3-49∗03 3-49∗01, 3-49∗02, 3-49∗03, 3-49∗04, 3-49∗05
3-48∗02 3-13∗01, 3-13∗04, 3-23∗04, 3-48∗01, 3-48∗02, 3-48∗04
1-46∗01 1-46∗01, 1-46∗02, 1-46∗03, 3-11∗04, 3-11∗06, 3-48∗03, 3-48∗04, 3-66∗01, 3-7∗01, 3-

7∗02, 3-7∗03
1-45∗02 1-45∗01, 1-45∗02
3-43∗01 3-43∗01, 3-43∗02, 3-43D∗01
4-39∗01 4-30-2∗03, 4-39∗01, 4-39∗02, 4-39∗05, 4-39∗06, 4-39∗07, 4-59∗05, 4-61∗05
4-34∗01 4-34∗01, 4-34∗02, 4-34∗04, 4-34∗05, 4-34∗08, 4-34∗12
3-33∗01 3-30∗02, 3-30∗06, 3-30∗07, 3-30∗11, 3-30∗12, 3-30-3∗02, 3-33∗01, 3-33∗02, 3-33∗03,

3-33∗04, 3-33∗05, 3-33∗06
4-31∗02 4-30-4∗01, 4-31∗01, 4-31∗02, 4-31∗03, 4-31∗04, 4-31∗05, 4-59∗06
3-30∗03 3-30∗02, 3-30∗03, 3-30∗04, 3-30∗05, 3-30∗06, 3-30∗07, 3-30∗10, 3-30∗13, 3-30∗17, 3-

30∗18, 3-30-3∗02, 3-30-3∗03, 3-33∗01, 3-33∗05
4-28∗01 4-28∗01, 4-28∗02, 4-28∗03, 4-28∗04, 4-28∗05, 4-28∗07
2-26∗01 2-26∗01
1-24∗01 1-24∗01
3-23∗01 3-23∗01, 3-23∗02, 3-23∗03, 3-23∗04, 3-23D∗01
3-21∗01 3-11∗06, 3-21∗01, 3-21∗02, 3-21∗03, 3-21∗04
3-20∗01 3-20∗01
1-18∗01 1-18∗01, 1-18∗03, 1-18∗04
3-15∗01 3-15∗01, 3-15∗02, 3-15∗04, 3-15∗05, 3-15∗06, 3-15∗07
3-13∗01 3-13∗01, 3-13∗03, 3-13∗04, 3-13∗05, 3-23∗04, 3-48∗02, 3-7∗01, 3-7∗02, 3-7∗03
3-11∗01 3-11∗01, 3-11∗03, 3-11∗04, 3-11∗05, 3-11∗06
3-9∗01 3-9∗01, 3-9∗02, 3-9∗03
1-8∗01 1-2∗01, 1-2∗02, 1-2∗04, 1-8∗01, 1-8∗02
3-7∗01 1-46∗01, 1-46∗02, 1-46∗03, 3-21∗01, 3-21∗02, 3-64∗01, 3-7∗01, 3-7∗02, 3-7∗03
2-5∗01 2-5∗01, 2-5∗02, 2-5∗04, 2-5∗05, 2-5∗08, 2-5∗09
4-4∗07 4-39∗07, 4-4∗07, 4-4∗08, 4-59∗03, 4-59∗04, 4-59∗10, 4-61∗02
1-3∗02 1-3∗01, 1-3∗02
1-2∗02 1-2∗01, 1-2∗02, 1-2∗03, 1-2∗04, 1-2∗05
6-1∗01 6-1∗01, 6-1∗02
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Table A.2: GRCh37 and GRCh38 in terms of our gene clusters. When there is one allele
listed for a gene cluster, that gene cluster is considered to be in single copy. If there are two
alleles listed, the gene cluster has two copies.

Gene cluster GRCh37 GRCh38

6-1 6-1∗01 6-1∗01
1-2 1-2∗02 1-2∗04
1-3 1-3∗02 1-3∗01

4-4∗01 - 4-4∗02
7-4-1 7-4-1∗01
2-5 2-5∗01 2-5∗02
3-7 3-7∗01 3-7∗03
1-8 1-8∗01 -
3-9 3-9∗01 -

5-10-1 - 5-10-1∗03
3-11 3-11∗01 3-11∗06
3-13 3-13∗01 3-13∗05
3-15 3-15∗01 3-15∗01
1-18 1-18∗01 1-18∗04
3-20 3-20∗01 3-20∗02
3-21 3-21∗01 3-21∗01
3-23 3-23∗01 3-23∗04
1-24 1-24∗01 1-24∗01
2-26 2-26∗01 2-26∗01
4-28 4-28∗01 4-28∗07
4-30-2 - 4-30-2∗01
3-30 3-33∗01, 3-30∗03 3-30∗18, 3-33∗01
4-31 4-31∗02 -
4-34 4-34∗01 4-34∗01
4-39 4-39∗01 4-39∗01
3-43 3-43∗01 3-43∗01
1-45 1-45∗02 1-45∗02
1-46 1-46∗01 1-46∗01
3-48 3-48∗02 3-48∗03
3-49 3-49∗03 3-49∗04
5-51 5-51∗01 5-51∗01
3-53 3-53∗01, 3-66∗03 3-53∗02, 3-66∗03
1-58 1-58∗02 1-58∗01
4-59 4-4∗07, 4-59∗01 4-59∗01
4-61 4-61∗08 4-61∗01
3-64 3-64∗02 3-64∗02, 3-64D∗06
1-69-2 - 1-69-2∗01
1-69 1-69∗06 1-69D∗01, 1-69∗06
2-70 2-70∗13 2-70D∗04, 2-70∗01
3-72 3-72∗01 3-72∗01
3-73 3-73∗02 3-73∗02
3-74 3-74∗01 3-74∗01
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Appendix B

Chapter 3 Supplementary Information

B.1 Read Mapping

For each individual’s whole genome sequencing FASTQ file, we retained reads from two
separate procedures: (i) reads that map to the IGHV and TRBV loci on the GRCh37
reference, (ii) reads that map to a list of functional IGHV and TRBV (from the online
IMGT database).

Procedure (i) used bwa mem (https://github.com/lh3/bwa) with default parameters:

bwa mem grch37.fa read1.fq read2.fq | gzip -3 > aln-pe.sam.gz

Procedure (ii) used minimap (https://github.com/lh3/minimap):

minimap -w1 -f1e-9 imgt ighv.fa.gz read-se.fa.gz > out ighv.mini

minimap -w1 -f1e-9 imgt trbv.fa.gz read-se.fa.gz > out trbv.mini

Although procedure (i) was sufficient in our previous study [64] for identifying all the
IGHV genes in an individual, it was clear that for the Simons dataset, the mapped reads
were biased to the GRCh37 reference (Figure B.19). This is possibly due to differences in
mapping algorithms in the different sample sets. For this reason, procedure (ii) was needed
instead to ‘catch’ the reads that are not in the reference genome but which map to known
IGHV and TRBV gene segments. Such gene segments for the GRCh37 reference genome are
IGHV7-4-1, IGHV4-4, IGHV5-10-1, IGHV4-30-2, IGHV4-30-4, IGHV4-38-2, IGHV1-69-2,
IGHV3-NL1, TBRV5-8, TRBV6-2, TRBV7-2, TRBV7-7, TRBV7-9, TRBV10-3, TRBV11-
3, TRBV12-3, TRBV12-5, TRBV13, TRBV14, TRBV15, TRBV16, and TRBV18.

Thus, unless otherwise stated, all our results are based on reads that were mapped using
procedure (ii) only.

https://github.com/lh3/bwa
https://github.com/lh3/minimap
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B.2 Read Filtering

We will call the set of reads obtained via procedure (ii), RIMGT. RIMGT includes reads from
all parts of an individual’s genome (functional, pseudo, and orphon genes) that share some
sequence similarity with the list of functional IGHV alleles [37]. Our goal is to remove reads
from pseudogenes and orphon genes and also resolve instances where a single read maps
equally well to more than one functional gene. We devised gene-specific filtering rules to
minimize erroneously mapped reads.

Operationally indistinguishable IGHV genes

First, we established that some IGHV genes are operationally indistinguishable from each
other. Specifically, IGHV genes at distinct genomic locations have alleles that are highly
similar (more than 95% nucleotide similarity). These indistinguishable sets are:

• {IGHV3-23, IGHV3-23D}

• {IGHV3-30, IGHV3-30-3, IGHV3-30-5, IGHV3-33}

• {IGHV3-43, IGHV3-43D}

• {IGHV3-53, IGHV3-66}

• {IGHV3-64, IGVH3-64D}

• {IGHV1-69, IGHV1-69D}

• {IGHV2-70, IGHV2-70D}

The basis for grouping these IGHV genes together was detailed in [64]. Note, however,
that here we do not use the operational clusters that mix IMGT segment labels so as to
minimize confusion with IMGT nomenclature. For the purposes of our study, we do not
attempt to discriminate between IGHV genes in the above sets. Taking the full set of 54
IMGT functional gene segments and combining those in the above sets gives a set of 45
operationally distinguishable functional IGHV segments.

Discarding reads that map uniquely to pseudogenes and orphon genes. Our
filtering begins by performing IgBLAST on all these reads against an expanded set of IGHV
alleles that includes orphon genes and pseudogenes. Once we obtain the results of the
IgBLAST procedure, we first discard all reads for which all the top hits are alleles of a single
orphon gene or pseudogene.

For example, consider the following read:
>HS2000-1266 146:7:1206:16772:59318/1
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GCTTGAGTGGATGGGATGGATCAACACTTACAATGGTAACACAAACTACCCACAGAAGCT

CCAGGGCAGAGTCACCATGACCAGAGACACATCCACGAGC

This read matches the orphon gene IGHV1/OR15-2∗01 exactly and is therefore likely to
have come from the orphon gene. However, it was originally included in RIMGT because it is
similar to positions 132-191 of functional alleleIGHV1-18∗01, deviating by four nucleotides.
Having established through IgBLAST that there is little ambiguity about where this read
comes from, we discard it.

Functional IGHV genes to which 100 bp reads map uniquely. The set of reads
we have left, call it RIMGT fcn, consist of reads that either uniquely map to a functional
IGHV gene, or map equally well to regions of functional and pseudogenes/orphon genes.
The former category is most straightforward to deal with. The 16 (out of 45) operationally
distinguishable functional IGHV genes for which the reads in RIMGT fcn can be unambiguously
mapped are:

IGHV6-1, IGHV3-9, IGHV5-10-1, IGHV1-18, IGHV3-20, IGHV1-24,
IGHV2-26, {IGHV3-43, IGHV3-43D}, IGHV1-45, IGHV3-49∗, IGHV5-51,

IGHV1-58, {IGHV1-69, IGHV1-69D}, IGHV1-69-2 ∗ , IGHV3-72, IGHV3-73.

∗These gene segments have inflated coverage in a subregion, see Supplementary Information
Figure 1 of [65].

Functional IGHV genes to which 100 bp reads are not uniquely mapped. For
reads that map equally well to more than one IGHV gene (functional or otherwise), we do
not have enough information to assign reads to genes with 100% confidence. If we assign a
read to all the functional genes that are tied for the top hit, some functional genes will have
extra reads assigned to them. If we only assign the reads with a unique top hit, then we
will lose information on functional genes that share subsequences of substantial length with
other genes. Compounding matters is the fact that the presence/absence and copy number
of IGHV genes can vary from individual to individual, so that an approach that works in
one individual may have a different effect in another.

To determine the rules for filtering out reads that would have the least error on average,
we used the read coverage profile for each IGHV segment, aggregated over all individuals in
our sample. We compare the coverage profiles for a given segment under two read filtering
rules:

1. ‘All top hits’: keep all reads which have that segment as a top hit (unique or tied), or

2. ‘Unique top hits’: keep only reads which have that segment as a unique top hit.

As an example of a well-behaved case, see Figure B.1 for a profile of IGHV6-1. Note that
the per-base read coverage, averaged over all 109 individuals (from blood/saliva samples),
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Figure B.1: Example of a well-behaved profile: IGHV6-1

matches very closely with what is expected theoretically. Specifically, the coverage decreases
linearly towards the edges because reads that only partially cover the segment will have
lower mapping scores and therefore were not in our original set RIMGT. The per-base read
coverage of around 40 is also consistent with the median genomic coverage of 42 across
the full Simons sample (Supplementary Data Table 1 of [67]). This profile is evidence the
set of reads that map to IGHV6-1 does not contain reads from other similar IGHV genes,
which is consistent with our earlier observation that IGHV6-1 is a gene to which reads
map uniquely. See Supplementary Information Figure 1 of [65] for the profiles of all the
operationally distinguishable gene segments.

Figure B.2: Read coverage profile of IGHV1-2

We will describe a few representative examples of problematic cases here. See Figure B.2
for the profile for IGHV1-2. Some of the reads that map to IGHV1-2 also map equally well
(in lengths > 75 base pairs) with alleles of IGHV1-8 and IGHV1-OR15-1 (an orphon gene on
chromosome 15). Indeed, the per-base read coverage of IGHV1-2 average across our sample
of 109 individuals shows that there is an overabundance of reads mapping to the first 100 base
pairs of the gene. However, when we only keep the reads for which IGHV1-2 is the unique top
hit, the per-base read coverage more closely resembles what is expected theoretically. That
this correction works suggests that reads mapping equally well to IGHV1-2 and another gene
in fact do not align with either very well, and therefore should be discarded as most likely
not coming from IGHV1-2. Similar reasoning holds for IGHV1-3, IGHV7-4-1, IGHV2-5,
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IGHV3-7, IGHV1-8, IGHV3-11, IGHV3-13, IGHV3-21, IGHV3-23, IGHV4-30-2, IGHV4-
30-4, IGHV3-30, IGHV4-34, IGHV1-46, IGHV3-48, IGHV3-53, IGHV3-64, IGHV2-70, and
IGHV3-NL1. It should be noted that we achieve varying levels of success. In particular for
IGHV3-15, there was still quite elevated coverage after performing this step (see Table S1
of [65]). In other cases, we probably undercount the reads for some of these genes, giving us
a conservative estimate of the segment copy number.

Figure B.3: Read coverage profile of IGHV4-31

See Figure B.3 for the profile for IGHV4-31. It was clear from the per-base coverage
of IGHV4-31 that if we discarded all the reads that mapped equally well to other genes,
we would not obtain full sequence reconstruction of the gene even for the individuals it is
present in. Moreover, counting all the reads that map to IGHV4-31 did not suggest we were
over counting. Thus, for IGHV4-31, we kept all the reads that had IGHV4-31 as a top hit.
This reasoning also held for IGHV4-39 and IGHV4-28.

Figure B.4: Read coverage profile of IGHV3-74

See Figure B.4 for the profile for IGHV3-74. Among all the functional IGHV segments,
IGHV3-74 is unique in that it shares a long subsequence with an orphon gene that seems
to be present in single copy on all haplotypes. Specifically, positions 46-182 (137 base pairs)
of IGHV3-74 (alleles ∗01 and ∗02, the two most common alleles) are identical to IGHV1-
OR/16-13∗01. In this special case, we can toss a fair coin to determine whether to assign a
read to IGHV3-74 and be fairly confident we are counting accurately.
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For IGHV4-4, IGHV4-59, IGHV4-61, and to a lesser extent IGHV4-38-2 (see Figure B.5
for a representative profile), there are too many subregions that exactly match other IGHV
genes. Counting only reads with a single top hit is a severe underestimate, and counting
reads with ties for top hits is a severe overestimate. Thus, for lack of a better option, we
sample the IGHV gene from the top hits at random, in proportion to the coverage of the top
hits in the region outside the mapping region. Unlike the case with IGHV3-74, we know that
the copy number of the other genes that share subsequences will differ between individuals.
Hence, we know this approach is flawed. However, it gives our best estimate for the reads
that come from these IGHV genes and our overall conclusions are not sensitive to the calls
we make for these genes.

Figure B.5: Read coverage profile of IGHV4-4

After the above filtering steps have been performed, for each operationally distinguishable
IGHV gene indexed by i, we have a set of reads, call it Rfiltered,i.

Operationally indistinguishable TRBV genes

There were fewer issues in read filtering for the TRBV locus compared to the IGHV locus
in general. As with the IGHV locus, there are some TRBV genes that are operationally
indistinguishable from each other when using 100 bp reads. These are:

• {TRBV4-2, TRBV4-3}

• {TRBV6-2, TRBV6-3}

• {TRBV12-3, TRBV12-4}

For our purposes, we do not attempt to distinguish between segments within these sets.
Taking the full set of 48 IMGT functional TRBV segments and combining those that are in
the above sets gives 45 operationally distinguishable functional TRBV segments. Coinciden-
tally, this is the same number of operationally distinguishable functional IGHV segments.
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Discarding reads that map uniquely to pseudogenes and orphon genes. As with
the IGHV reads, we begin by performing IgBLAST (for T cell receptors) on all the reads
against an expanded set of TRBV alleles that includes orphon genes and pseudogenes. Once
we obtain the results of the IgBLAST procedure, we first discard all reads for which the top
hits are all alleles of a single orphon gene or pseudogene.

For example, consider the following read: >HS2000-1266 146:7:1205:14671:84576/2

GCTCCGGGCTTAGTGCTGTCGTCTCTCAACATCCGAGCAGGGTTATCTGTAAGAGTGGAA

CCTCTGTGAACATCGAGTGCCGTTCCCTGGACTTTCAGGC

This read matches the orphon gene TRBV20/OR9-2∗01 exactly and is therefore likely
to have come from the orphon gene. However, it was originally included in RIMGT because
it matches positions 1-89 of functional allele TRBV20-1∗02, deviating by two nucleotides.
Having established through IgBLAST that there is little ambiguity about where this read
comes from, we discard it.

Functional TRBV genes to which 100bp reads map uniquely. The set of reads we
have left, call it RIMGT fcn, consist of reads that either uniquely map to a functional IGHV
gene, or map equally well to regions of functional and pseudogenes/orphon genes. The former
category is most straightforward to deal with. The 38 (out of 45) operationally distinguish-
able functional TRBV genes for which the reads in RIMGT fcn can be unambiguously mapped
are:

TRBV2, TRBV3-1, TRBV4-1, {TRBV4-2, TRBV4-3}, TRBV5-1, TRBV5-4,
TRBV5-5, TRBV5-8, {TRBV6-2, TRBV6-3}, TRBV6-4, TRBV6-6, TRBV7-2,

TRBV7-3, TRBV7-4, TRBV7-6, TRBV7-7, TRBV7-8, TRBV7-9, TRBV9,
TRBV10-1, TRBV10-2, TRBV10-3, TRBV11-1, TRBV11-2, TRBV11-3,

{TRBV12-3, TRBV12-4}, TRBV12-5, TRBV13, TRBV14, TRBV15, TRBV16,
TRBV18, TRBV19, TRBV20-1, TRBV27, TRBV28, TRBV29-1, TRBV30

Functional TRBV genes to which 100 bp reads are not uniquely mapped. As
with the IGHV genes, we also have TRBV genes for which we cannot determine the correct
reads with 100% confidence. This is a much smaller set of genes and again we compare the
coverage profiles for a given TRBV gene under two read filtering rules:

1. ‘All top hits’: keep all reads which have that segment as a top hit (unique or tied), or

2. ‘Unique top hits’: keep only reads which have that segment as a unique top hit.

Supplementary Information Figure 2 of [65] contains the profiles of all the TRBV genes
with summaries of how we cleaned up the reads mapping to them. We will describe two
representative examples here. See Figure B.6 for a representative example: TRBV5-5. As
with IGHV3-74, taking all top hits versus taking only unique top hits gave coverage profiles
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Figure B.6: Read coverage profile of TRBV 5-5

that were equally displaced above and below the theoretical expectation. Note that the
displacement is much smaller than for IGHV3-74. Thus, for each read that has multiple top
hits including TRBV5-5, we sample uniformly over the segments that are the top hits. This
strategy was also used for TRBV6-1, TRBV6-5, TRBV6-8, TRBV6-9.

Figure B.7: Read coverage profile of TRBV24-1

See Figure B.7 of an example segment with a highly unusual coverage profile. For a lack
of a better strategy, we also sampled uniformly over the segments that are top hits for reads
with multiple top hits.

Figure B.8: Read coverage profile of TRBV25-1
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See Figure B.8 for a last example profile. This segment also had a strange profile, but
for a different reason. As with IGHV3-15, there seems elevated coverage, perhaps due to yet
uncharacterized segments that share sequence similarity (Supplementary Information Figure
2 of [65]).

After the above filtering steps have been performed, for each operationally distinguishable
TRBV gene indexed by i, we have a set of reads, call it Rfiltered,i.

B.3 Copy number from kmer coverage

Suppose the kmer coverage of the reconstructed contig for a gene segment in an individual
is d and the genome-wide coverage is g. Our point estimate for copy number would be:

c = d× 5

4
× 4

3
× 1

g
× 2

where 5/4 is the factor to convert 21-mer coverage of 100 bp to per-base coverage, 4/3
corrects for the fact that the trapezoidal coverage profiles (see Supplementary Information
Figures 1 and 2 of [65]) gives per-base coverage depth that is 3

4
of true uniform coverage

depth, 1/g normalizes by the genome-wide average coverage depth, and we multiply by 2 so
that a c of 2 corresponds to one copy per haplotype (two copies per individual).

However, we found that in practice, the distributions for copy number using this formula
consistently led to underestimates of copy number across the segments. For example, the
bulk of our point estimates for well-behaved and typically single copy per haplotype genes
such as IGHV6-1, IGHV2-5, and IGHV5-51, were clustered just below the value two. The
likely explanation is that the genome-wide coverage value we used is an overestimate of the
true read coverage depth. We found that by multiplying the genome-wide coverage by 0.9,
we obtained distributions for copy number that clustered more symmetrically around integer
values, i.e., our point estimates were calculated as:

c = d× 5

4
× 4

3
× 1

0.9g
× 2

Finally, to obtain an integer from this point estimate, we simply round to the nearest
whole number. The exception to this is when the point estimates look systematically biased
across all the individuals, as is the case with IGHV7-4-1, IGHV3-7, IGHV3-49, and IGHV1-
69-2. In these three cases, we calculate the mean shift of the points from integer values and
move them all down by that shift before rounding to the nearest integer.

B.4 Hierarchical clustering

To call the copy number variants for common polymorphisms involving multiple genes, we
use the point estimates for copy number. The reason we do not round the point estimates
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to whole integers is that the rounding process may introduce additional error into our vari-
ant calls. In order to leverage knowledge of existing multi-gene CNVs to improve our copy
number estimates, we performed hierarchical clustering (scipy.cluster.hierarchy) on the set of
individuals, representing each individual as a vector comprised of the copy number estimate
for each gene in the polymorphisms in Figure 3.2 and 3.3. For example, a scaled coverage
value of 2.5 for IGHV1-69 could be consistent with a copy number of 2 or 3, but if IGHV2-70
has scaled coverage value of 2.1, it is more likely that IGHV1-69 is copy number 2. Further-
more, given that IGH1-69-2 had no reads mapping to it, we would be even more certain.
Note that we did not use this method for any CNVs beyond those in Figure 3.2 and 3.3
involving two or more operationally distinguishable gene segments, because it would merely
bin the copy number calls by intervals (e.g. Figure B.22B, Figure B.24B, Figure B.24C).

B.5 Determination of two-copy segments

To determine the set of 11 two-copy IGHV genes and 40 two-copy TRBV, we selected genes
which are two copies in the vast majority of individuals in our sample and for which there is
minimal read-mapping ambiguity. In other words, we selected genes for which the “Notes”
column in Supplementary Information Figures 1 and 2 of [65] have “No subsequences shared
with other known IGHV genes” and “Predominantly single copy per haplotype” .

Exceptions to this rule include IGHV3-74, TRBV5-5, TRBV5-8, TRBV6-1, TRBV6-5,
TRBV6-8, and TRBV6-9. For these segments, the red solid line (the read profile for the
filtered set of reads in Supplementary Information Figures 1 and 2 of [65]) lies roughly halfway
between the green dotted line (the read profile resulting from taking the unique top hit) and
the blue dashed line (the read profile resulting from taking all top hits). In such cases, the
red line results from tossing a fair coin to determine which of the two genes to assign a given
read. Because the resulting red read profile aligns with the expected trapezoidal shape, we
believe that the alternative gene which shares the subsequence is present at the same copy
number. Additionally, since the shared subsequence is identical in both genes, this should not
lead to significant mis-mapping errors. TRBV7-4 and TRBV7-6 are also included in the set
of two-copy genes since these two genes share a subsequence that is not 100% identical, and
because the blue and green lines align, implying that the shared subsequence does not lead
to mis-mapping. Consequently, we have included these operationally distinguishable gene
segments in the set of two-copy segments, given that they are also predominantly single-copy
per haplotype.

B.6 Alternative procedure for unphased variants

from HapCUT2

When few or no reads covered two SNPs, HapCUT2 failed to phase the full segment. To
account for this issue, we took all combinations of completely phased blocks as potential
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allele sequences. As a toy example, consider a sequence of length three, each position hav-
ing an unphased polymorphic site with A on one chromosome and G on the other. Taking
combinations results in four pairs of haplotypes (AAA, GGG), (AGA, GAG), and (AAG,
GGA), and (AGG, GAA). With the resulting pairs of phased sequences, we compute the
probability of observing each candidate pair of allele sequences (a1, a2), which is calculated
by taking the maximum of P(a1| a2)P(a2) and P(a2| a1)P(a1), where P(ax| ay) is the fraction
of individuals observed to have both allele sequences ax and ay out of all individuals observed
to have allele ay, and P(ax) is defined as the fraction of observations of ax out of all indi-
viduals. If all candidate pairs of allele sequences were not observed in any other individual,
then the following was selected as the individual’s phased allele sequence pair: the pair of
haplotypes that contains allele sequence ax, which is the allele with the greatest frequency. If
all candidate sequences ax for an individual were not observed in the rest of the population,
then no allele sequence was reported for that segment for that individual. This, however,
does not affect our analysis of the presence/absence of gene segments.

B.7 Novel allele/SNV notation

Alleles were given IMGT names if their sequence exactly matched an allele in the IMGT
database. Otherwise, the name of the closest allele was given with an appended suffix for
each mutational difference from the closest IMGT allele. Each mutation is represented as
{reference base pair} {alternative base pair} {position} {reference amino acid} {alternative
amino acid}. For example, allele ‘IGHV1-18∗01 ag168ND’ denotes an allele whose sequence
is that of IMGT allele IGHV1-18∗01, but with a ‘g’ at position 168 rather than an ‘a’. The
two letters following the position are the amino acids corresponding to the reference base
pair ‘a’ and to the mutation ‘g’, respectively (the reference amino acid is N and the alternate
amino acid is D). If the sequence was equally close to more than one IMGT allele, the IMGT
allele of the lowest numeric order was chosen. Alleles were called “novel” if it differed in at
least one nucleotide from an existing IMGT allele. For SNVs, the notation is similar but
mutations are represented simply as {alternative base pair} { position}.

In several tables, a ‘P’ and ’T’ in parentheses indicates a stop codon and a truncation in
one individual or more, respectively.

B.8 Method performance

The method utilized in this work is an extension of the method used in [64], which provides
tests on simulated data and an application of the method to a sixteen-member pedigree of
European descent. To summarize, we simulated reads using all combinations of read length
(70, 100, 250bp), reference genomes (GRCh37 and GRCh38), and coverage depth (30x, 40x,
50x), and measured the recall, the fraction of operationally distinguishable gene segments
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that are correctly called by the pipeline. All except 2 of the 18 combinations demonstrated
100% recall, and the remaining 2 simulations had a recall of 97%.

In this work, we have added steps towards haplotype phasing since the method from only
constructed a single contig. In addition, we have now also performed simulations for both
IGHV and TRBV. Simulating with the set of genes from 109 individuals for IGHV and 286
for TRBV that we empirically inferred from the SGDP dataset, we ran the reads through
our pipeline to identify the accuracy rate. Specifically, out of all the alleles identified, we
measured how many matched what was originally simulated. For IGHV this was 95.92%
and for TRBV this was 98.43%. However, we emphasize again that other approaches may
be more appropriate if the goal is to genotype a single individual at base-pair resolution,
rather than a large set of individuals at a coarser resolution.

B.9 Analysis of IGHV and TRBV gene segments in

13 vertebrate species

Within-species analysis

For this analysis, we first measured the between-segment diversity of the nu-
cleotide sequences annotated in the IMGT human gene table located at http:

//www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=

genetable&species=human&group=IGHV. In this study, we used only those functional
alleles for which a position in the locus was recorded. Note that this resulted in a list of
one allele sequence per gene segment. As a measure for diversity, we used pairwise global
alignment with default BLASTN parameters (match=1, mismatch=–3, gap opening=–5,
gap extension=–2). Alignment was done in python using the pairwise2 module in the
Biopython package [19]. Averaging over all possible pairs for IGHV gives a mean score of
–44 and for TRBV this was –179.

We then expanded our analysis to thirteen vertebrate species, including human.
For this analysis, we used amino acid sequences for IGHV segments and TRBV seg-
ments obtained from vgenereportoire.org [82]. For each species, the IGHV gene seg-
ments and TRBV gene segments were downloaded for one reference genome for that
species. For reasons beyond our control, only the amino acid sequences and not the
nucleotide sequences were available on the website. Species are: homo sapiens (hu-
man, http://www.ncbi.nlm.nih.gov/nuccore/ABBA00000000.1), pan troglodytes (chim-
panzee, http://www.ncbi.nlm.nih.gov/nuccore/AADA00000000.1), gorilla gorilla go-
rilla (gorilla, http://www.ncbi.nlm.nih.gov/nuccore/CABD000000000.3), pongo abelii
(orangutan, http://www.ncbi.nlm.nih.gov/nuccore/ABGA00000000.1), macaca mulatta
(rhesus macaque, http://www.ncbi.nlm.nih.gov/nuccore/AANU00000000.1), mus mus-
culus (mouse, http://www.ncbi.nlm.nih.gov/nuccore/AAHY00000000.1), canis lupus fa-
miliaris (dog, http://www.ncbi.nlm.nih.gov/nuccore/AAEX00000000.3), oryctolagus cu-
niculus (rabbit, http://www.ncbi.nlm.nih.gov/nuccore/AAGW00000000.2), orcinus orca

http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=genetable&species=human&group=IGHV
http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=genetable&species=human&group=IGHV
http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=genetable&species=human&group=IGHV
http://www.ncbi.nlm.nih.gov/nuccore/ABBA00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/AADA00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/CABD000000000.3
http://www.ncbi.nlm.nih.gov/nuccore/ABGA00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/AANU00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/AAHY00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/AAEX00000000.3
http://www.ncbi.nlm.nih.gov/nuccore/AAGW00000000.2
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(orca, http://www.ncbi.nlm.nih.gov/nuccore/ANOL00000000.2), monodelphis domestica
(opossum, http://www.ncbi.nlm.nih.gov/nuccore/AAFR00000000.3), ornithorhynchus
anatinus (platypus, http://www.ncbi.nlm.nih.gov/nuccore/AAPN00000000.1), crocody-
lus porosus (crocodile, http://www.ncbi.nlm.nih.gov/nuccore/JRXG00000000.1), danio
rerio (zebrafish, http://www.ncbi.nlm.nih.gov/nuccore/CABZ00000000.1). The results
are displayed in Figure 3.6 in the main text.

Between-species analysis

Given larger diversity between gene segments in TRBV than IGHV, we mea-
sured diversity between gene segments in humans and dogs. The set of nu-
cleotide sequences used for humans were the same as those used previously in
the human within-species analysis. The set of nucleotide sequences used for dogs
are curated at http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&
repertoire=genetable&species=dog&group=IGHV. Again, only functional alleles were uti-
lized in the study. Because identifying orthologous IGHV/TRBV genes in two species is very
challenging, for each gene in the human reference, we computed the average alignment score
to all other genes in the dog reference. For each gene in the human reference we could have
used the alignment score to the closest aligning gene in the dog reference, but this might
underestimate the amount of true gene diversity. Taking averages, we computed a mean
score of –91 for IGHV and –306 for TRBV.

Figure B.9: The distribution of TRBV segments present in the sample of 109 individu-
als (from blood and saliva DNA; green) does not differ markedly from the distribution in
extended sample of 286 individuals (blood, saliva, and cell line DNA; red).

http://www.ncbi.nlm.nih.gov/nuccore/ANOL00000000.2
http://www.ncbi.nlm.nih.gov/nuccore/AAFR00000000.3
http://www.ncbi.nlm.nih.gov/nuccore/AAPN00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/JRXG00000000.1
http://www.ncbi.nlm.nih.gov/nuccore/CABZ00000000.1
http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=genetable&species=dog&group=IGHV
http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=genetable&species=dog&group=IGHV
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Figure B.10: The level of homology between homo sapiens segments and segments in other
species plotted by the estimated divergence time between the species. The level of homology
is defined as the fraction of homo sapiens segments that are more similar to segments in
another species than another homo sapiens segment. Species are the same as in Figure 6.
Divergence times are median estimates as reported by TimeTree.org.

First column Second column
Allele name Frequency
TRBV10-1*01 0.634
TRBV10-1*02 gt234E (P) 0.239
TRBV10-1*02 0.127
TRBV10-2*01 0.894
TRBV10-2*01 tc191YY (T) 0.106
TRBV10-3*01 0.39
TRBV10-3*02 0.462

Continued on next page
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Table B.1 – continued from previous page
Allele name Frequency

TRBV10-3*03 0.124
TRBV10-3*01 ga118GE (T) 0.024
TRBV11-1*01 0.94
TRBV11-1*01 ag85HR ct98YY ag142QR 0.06
TRBV11-2*01 0.662
TRBV11-2*03 0.338
TRBV11-3*01 0.885
TRBV11-3*02 0.115
TRBV12-5*01 0.551
TRBV12-5*01 cg27HD 0.417
TRBV12-5*01 ga154RQ 0.032
TRBV13*01 0.977
TRBV13*01 ct78PS (T) 0.023
TRBV14*01 0.866
TRBV14*02 0.134
TRBV15*02 0.977
TRBV15*01 0.023
TRBV16*01 0.976
TRBV16*02 0.024
TRBV18*01 0.953
TRBV18*01 ag75MV 0.047
TRBV19*01 0.875
TRBV19*01 ag23PP (T) 0.125
TRBV2*01 1.0
TRBV20-1*01 0.444
TRBV20-1*02 0.422
TRBV20-1*05 0.125
TRBV20-1*02 ga227LL 0.009
TRBV27*01 1.0
TRBV28*01 1.0
TRBV29-1*01 0.944
TRBV29-1*01 ac246ML (T) 0.056
TRBV3-1*01 1.0
TRBV30*01 0.707
TRBV30*02 0.211
TRBV30*01 ct108R ct204PS (T) 0.02
TRBV30*02 ct108R ct204PS (P,T) 0.02
TRBV30*01 ga33VM (T) 0.014
TRBV30*04 0.027

Continued on next page
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Table B.1 – continued from previous page
Allele name Frequency

TRBV4-1*01 0.991
TRBV4-1*01 cg181PR 0.009
TRBV5-1*01 1.0
TRBV5-4*01 0.991
TRBV5-4*01 tg213YD (T) 0.009
TRBV5-5*02 0.67
TRBV5-5*01 0.33
TRBV5-6*01 0.948
TRBV5-6*01 ta205FY ct236NN 0.019
TRBV5-6*01 ta205FY 0.014
TRBV5-6*01 tg244LW 0.009
TRBV5-6*01 gt118GV 0.009
TRBV5-8*01 ct236NN (T) 0.09
TRBV5-8*01 ct55AV (T) 0.142
TRBV5-8*01 0.711
TRBV5-8*01 ct55AV ct236NN (T) 0.057
TRBV6-1*01 0.991
TRBV6-1*01 ag183ND 0.009
TRBV6-4*01 0.869
TRBV6-4*02 0.085
TRBV6-4*02 ga49RQ 0.019
TRBV6-4*02 gc49RP 0.019
TRBV6-4*02 ac51SR 0.009
TRBV6-5*01 1.0
TRBV6-6*01 0.64
TRBV6-6*02 0.327
TRBV6-6*03 gt216DY 0.009
TRBV6-6*01 ga31RH (T) 0.014
TRBV6-6*01 ca278SR (T) 0.009
TRBV6-8*01 0.962
TRBV6-8*01 ag250QR 0.038
TRBV6-9*01 0.787
TRBV6-9*01 ag263VV 0.213
TRBV7-2*02 0.584
TRBV7-2*01 0.416
TRBV7-3*01 0.933
TRBV7-3*01 gt255DY (T) 0.067
TRBV7-4*01 0.954
TRBV7-4*01 ga214RK 0.037

Continued on next page
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Table B.1 – continued from previous page
Allele name Frequency

TRBV7-4*01 ct240RC 0.009
TRBV7-6*01 1.0
TRBV7-7*01 1.0
TRBV7-8*01 0.967
TRBV7-8*02 0.024
TRBV7-8*01 tc258SP (T) 0.009
TRBV7-9*01 0.226
TRBV7-9*03 0.747
TRBV7-9*03 ga67CY ct105R ag111TA (P) 0.028
TRBV9*01 0.894
TRBV9*02 0.106

Table B.1: Relative TRBV allele frequencies called from our sample of 109 individuals.
Alleles are listed only if they were called in two or more individuals. The putative novel
alleles are named by the closest matching allele in the IMGT database followed by muta-
tions separated by ’ ’. Each mutation is represented as reference base pairalternative base
pairpositionreference amino acidalternative amino acid. Note that ‘ ’ can also correspond to
a stop codon, but this will be indicated by a ‘P’ in parentheses. A ‘T’ in parentheses denotes
that the reconstructed allele sequence was truncated in one individual or more.
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Figure B.11: Variant abundances for common IGHV polymorphisms within different geo-
graphical regions. (A) The IGHV polymorphism involving IGHV1-8, IGHV3-9, IGVH5-
10-1 and IGHV3-64. (B) The IGHV polymorphism involving IGHV4-38-2 and IGHV3-43,
IGHV3-43D. (C) The IGHV polymorphism involving IGHV1-69, IGHV1-69-2, and IGHV2-
70. For all graphs, y-axis is the number of individuals. Figures are based on the 109
individuals with blood/saliva samples, except for the plot on the right in (C), where, be-
cause VDJ recombination is not believed to have a marked influence on copy number calls
for the segments in the polymorphism, we use the full sample of 286 individuals from all
DNA sources. Sample sizes for each region are 14 Africans, 31 West Eurasians, 23 Central
Asians-Siberians, 2 East Asians, 27 South Asians, 4 Oceanians, 8 Native Americans. Grey
shading indicates the distribution within a region is significantly different from the global
distribution at the 0.01 level in a chi-squared goodness-of-fit test. Our data inform the
copy number of these genes, while the genomic configuration is our best estimate based on
previous studies [121, 87, 16, 10, 101, 100, 17, 74] (see Figure 3.2).
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Figure B.12: Variant abundances for common TRBV copy number polymorphisms within
different geographical regions. (A) The TRBV polymorphism involving TRBV4-2, TRBV4-
3, TRBV6-2, and TRBV6-3. (B) The TRBV polymorphism involving TRBV5-8, TRBV7-8,
and TRBV6-9. For both graphs, y-axis is the number of individuals. Both plots are based
on the full sample of 286 individuals with 73 West Eurasians, 27 Central Asians-Siberians,
45 East Asians, 49 South Asians, and 22 Oceanians. Grey shading indicates the distribution
within a region is significantly different from the global distribution at the 0.01 level in a
chi-squared goodness-of-fit test. Our data informs the copy number of these genes, while the
genomic configuration is our best estimate based on previous studies (see Figure 3.3).
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Figure B.13: Pairwise coefficient of determination between segments that appear in any
IGHV copy number polymorphism. For each pair of segments, we calculate the coefficient
of determination (also known as R squared) between the scaled copy number estimates
at different gene segments over the sample of 109 individuals. A value of 1 corresponds
to perfect correlation, a value of 0 to no correlation. Segments that are not in the same
polymorphism have values very close to zero. Note that ‘IGHV3-23 ’ refers to IGHV3-23,
IGHV3-23D , ‘IGHV3-30 ’ to IGHV3-30, IGHV3-30-3, IGHV3-30-5, IGHV3-33 , ‘IGHV3-43 ’
to IGHV3-43, IGHV3-43D , ‘IGHV3-64 ’ to IGHV3-64, IGHV3-64D , ‘IGHV1-69 ’ to IGHV1-
69, IGHV1-69D , and ‘IGHV2-70 ’ to IGHV2-70, IGHV2-70D .
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Figure B.14: Pairwise coefficient of determination between segments that appear in any
TRBV copy number polymorphism. For each pair of segments, we calculate the coefficient
of determination (also known as R squared) between the scaled copy number estimates at
different gene segments over the full sample of 286 individuals. A value of 1 corresponds
to perfect correlation, a value of 0 to no correlation. Segments that are not in the same
polymorphism have values that are virtually zero. Note that ‘TRBV4-2 ’ refers to TRBV4-2,
TRBV4-3 and ‘TRBV6-2 ’ to TRBV6-2, TRBV6-3 . Note that Figure 3.3 in the main text
would suggest a correlation of 1 between the pairs of genes in TRBV5-8, TRBV6-9, TRBV7-
8 . However, as evidenced in Figure B.25, a large majority have two copies of all three genes,
but the normalized coverage values have a large spread around 2. The lower correlation on
the off-diagonal is likely due to the independent noisiness of the short-read whole-genome
sequencing data.
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Figure B.15: Multidimensional scaling of 44 Africans and A) 73 West Eurasians, B) 27
Central Asians or Siberians, C) 45 East Asians, D) 49 South Asians, E) 22 Oceanians, and
F) 26 Native Americans using inferred TRBV haplotypes. Data used includes all DNA source
types in the SGDP dataset. The metric used for scaling was based on the Euclidean distance
between the set of alleles of each individual. Individuals are labeled by an abbreviated version
of their sample ID in the SGDP dataset.
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Figure B.16: Multidimensional scaling of 26 Native Americans and A) 73 West Eurasians, B)
27 Central Asians or Siberians, C) 45 East Asians, D) 49 South Asians, and E) 22 Oceanians
using inferred TRBV haplotypes. For comparison of Native Americans and Africans, refer
to panel F) of Fig. S9. Data used includes all DNA source types in the SGDP dataset. The
metric used for scaling was based on the Euclidean distance between the set of alleles of
each individual. Individuals are labeled by an abbreviated version of their sample ID in the
SGDP dataset.
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Figure B.17: Multidimensional scaling of 27 individuals from Central Asia–Siberia and A)
49 individuals from South Asia and B) 45 individuals from East Asia using inferred TRBV
haplotypes. Data used includes all DNA source types in the SGDP dataset. The metric used
for scaling was based on the Euclidean distance between the set of alleles of each individual.
Individuals are labeled by an abbreviated version of their sample ID in the SGDP dataset.

Figure B.18: Multidimensional scaling of 73 individuals from West Eurasia and A) 27 in-
dividuals from Central Asia-Siberia and B) 49 individuals from South Asia using inferred
TRBV haplotypes. Data used includes all DNA source types in the SGDP dataset. The
metric used for scaling was based on the Euclidean distance between the set of alleles of
each individual. Individuals are labeled by an abbreviated version of their sample ID in the
SGDP dataset.
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Figure B.19: Differences in copy number estimation using reads mapped to GRCh37 versus
reads mapped to IMGT alleles. IGHV and TRBV gene segments that are not in GRCh37
assembly are systematically missing from the reads collected via read mapping to GRCh37
(blue, ‘bam mapped’, procedure (i)) compared to reads mapped to functional IMGT alleles
(green, ‘imgt mapped filtered’, procedure (ii) with additional filtering).
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Figure B.20: Directly calculating copy number from IMGT-mapped reads (blue,
‘imgt mapped’, procedure (ii)) leads to overestimates of copy number. This is most likely
due to reads from similar pseudogenes and orphon genes being erroneously mapped to a func-
tional gene. These overestimates are reduced when further filtering procedures are applied
(green, ‘imgt mapped filtered’).
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Figure B.21: Individuals (dots) colored according to results of hierarchical clustering of copy
number estimates (as described in Supplementary Text) for IGHV1-8, IGHV3-9, IGHV5-
10-1, and IGHV3-64, IGHV3-64D gene segments. Colors correspond to the variants in
Figure B.11 and the plot titles describes the genes used in the clustering. (A) shows clustering
using copy number estimates from all four segments. These are the results we report in
Figure 3.2. (B) and (C) shows clustering using copy number estimates of only subsets of
the genes comprising the polymorphism. Note that even when only subsets of the genes are
used, the clustering is still clear in the genes that were not used in the clustering but which
are part of the polymorphism.
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Figure B.22: Individuals (dots) colored according to results of hierarchical clustering of copy
number estimates (as described in Supplementary Text) for IGHV4-38-2 and IGHV3-43,
IGHV3-43D gene segments. Colors correspond to the variants in Figure B.11 and the plot
titles describe the genes used in the clustering. (A) shows clustering using copy number
estimates from both segments. These are the results we report in Figure 3.2. (B) shows
clustering using just the copy number estimates for IGHV3-43, IGHV3-43D . Note that when
only one operationally distinguishable gene is used for performing clustering, the clusters are
determined by hard numerical thresholds.
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Figure B.23: All 286 individuals (dots) colored according to results of hierarchical clustering
of copy number estimates (as described in Supplementary Text) for IGHV1-69, IGHV1-69D ,
IGHV1-69-2, and IGHV2-70, IGHV2-70D gene segments. Colors correspond to the variants
in Figure B.11 and the plot titles describe the genes used in the clustering. (A) shows
clustering using copy number estimates from all segments. These are the results we report
in Figure 3.2. (B) and (C) shows clustering using copy number estimates of only subsets of
the genes comprising the polymorphism. Note that even when only subsets of the genes are
used, the clustering is still clear in the genes that were not used in the clustering but which
are part of the polymorphism.
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Figure B.24: All 286 individuals (dots) colored according to results of hierarchical clustering
of copy number estimates (as described in Supplementary Text) for TRBV4-2, TRBV4-3
and TRBV6-2, TRBV6-3 gene segments. Colors correspond to the variants in Figure B.12
and the plot titles describe the genes used in the clustering. (A) shows clustering using
copy number estimates from both segments. These are the results we report in Figure 3.3.
(B) and (C) show clustering using just the copy number estimates for each operationally
distinguishable gene individually. Note that as with Figure B.22 (IGHV4-38-2, IGHV3-
43 ), when only one operationally distinguishable gene is used for performing clustering, the
clusters are determined by hard numerical thresholds.
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Figure B.25: All 286 individuals (dots) colored according to results of hierarchical clustering
of copy number estimates (as described in Supplementary Text) for TRBV5-8, TRBV6-9,
and TRBV7-8 gene segments. Colors correspond to the variants in Figure B.12 and the
plot titles describe the genes used in the clustering. (A) shows clustering using copy number
estimates from all segments. These are the results we report in Figure 3.3. (B) and (C)
shows clustering using copy number estimates of only subsets of the genes comprising the
polymorphism. Note that even when only subsets of the genes are used, the clustering
is still clear in the genes that were not used in the clustering but which are part of the
polymorphism.



APPENDIX B. CHAPTER 3 SUPPLEMENTARY INFORMATION 117

Allele name Allele frequency
IGHV1-18*01 0.824
IGHV1-18*04 0.167

IGHV1-18*01 ag168ND 0.009
IGHV1-24*01 1.0
IGHV1-45*02 0.839

IGHV1-45*02 ga123GR 0.161
IGHV1-58*01 0.465
IGHV1-58*02 0.498

IGHV1-58*02 gt57VF 0.037
IGHV2-26*01 0.821

IGHV2-26*01 ct257NN ct294RW 0.113
IGHV2-26*01 ct257NN 0.066

IGHV3-20*01 0.561
IGHV3-20*01 ct282HY 0.198
IGHV3-20*01 gt64CF 0.231

IGHV3-20*01 ag88DG ct282HY 0.009
IGHV3-72*01 0.991

IGHV3-72*01 tc170SS 0.009
IGHV3-73*01 0.502
IGHV3-73*02 0.479

IGHV3-73*01 ag55KR 0.018
IGHV3-74*01 0.986
IGHV3-74*02 0.014
IGHV5-51*01 0.824
IGHV5-51*03 0.157

IGHV5-51*01 ga112RH 0.019
IGHV6-1*01 0.963

IGHV6-1*01 ct207R (P) 0.037

Table B.2: Relative IGHV allele frequencies called from our sample of 109 individuals. Alle-
les are listed only if they were called in two or more individuals. The putative novel alleles are
named by the closest matching allele in the IMGT database followed by mutations separated
by ’ ’. Each mutation is represented as reference base pairalternative base pairpositionrefer-
ence amino acidalternative amino acid. For example, allele ‘IGHV1-18*01 ag168ND ’ denotes
an allele whose sequence is that of IMGT allele IGHV1-18*01, but with a ‘g’ at position 168
rather than an ‘a’. The two letters following the position correspond to the amino acid with
the reference base pair ‘a’ and the amino acid with the mutation ‘g’, respectively. Note that
‘ ’ can also correspond to a stop codon, but this will be indicated by a ‘P’ in parentheses.
A ‘T’ in parentheses denotes that the reconstructed allele sequence was truncated in one
individual or more.
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Africans WE CAS EA SA Oceanians
WE 0.126
CAS 0.165 0.0453
EA 0.195 0.0416 0.0181
SA 0.0899 0.0082 0.0495 0.0635
Oceanians 0.152 0.0402 0.0384 0.0188 0.0489
NA 0.15 0.1336 0.129 0.17 0.121 0.202

Table B.3: FST results using SNP information for the two-copy TRBV gene segments of
289 individuals for the seven defined regions. FST computations were done using Genepop
for the seven geographic regions: 44 Africans, 73 West Eurasians (WE), 27 Central Asian-
Siberians (CAS), 45 East Asians (EA), 49 South Asians (SA), 22 Oceanians, and 26 Native
Americans (NA). Overall estimate of FST is 0.0955 (prior estimates are 0.14 using the entire
TRBV region [110].
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Allele name A WE CAS EA SA O NA Total
IGHV1-45*02 ga123GR 0.04 0.08 0.26 0.5 0.17 0.25 0.25 0.16
IGHV2-26*01 ct257NN ct294RW 0.04 0.05 0.24 0 0.11 0 0.19 0.11
IGHV2-26*01 ct257NN 0.35 0.02 0.09 0 0 0.14 0 0.07
IGHV3-20*01 ct282HY 0.52 0.11 0.09 0 0.24 0.25 0.19 0.2
IGHV3-20*01 gt64CF 0.11 0.33 0.26 0 0.2 0 0.25 0.23
TRBV10-1*02 gt234E (P) 0.19 0.28 0.24 0.33 0.15 0.62 0.25 0.24
TRBV10-2*01 tc191YY (T) 0.11 0.13 0.02 0 0.21 0 0 0.11
TRBV11-1*01 0.07 0.16 0 0 0.02 0 0 0.06
ag85HR ct98YY ag142QR
TRBV12-5*01 cg27HD 0.11 0.4 0.57 0.25 0.5 0.88 0.12 0.42
TRBV18*01 ag75MV 0.36 0.02 0 0 0 0 0 0.05
TRBV19*01 ag23PP (T) 0.04 0.11 0.18 0.25 0.09 0 0.33 0.12
TRBV29-1*01 ac246ML (T) 0 0 0.16 0.25 0 0 0.25 0.06
TRBV5-8*01 ct236NN (T) 0 0.08 0.07 0.25 0.15 0 0.17 0.09
TRBV5-8*01 ct55AV (T) 0.39 0.08 0.07 0.25 0.15 0 0.17 0.14
TRBV5-8*01 ct55AV ct236NN (T) 0.07 0.03 0 0 0.12 0 0.17 0.06
TRBV6-9*01 ag263VV 0.5 0.13 0.09 0.25 0.27 0 0.33 0.21
TRBV7-3*01 gt255DY (T) 0 0 0 0.25 0.24 0 0 0.07

Table B.4: Allele frequencies in our sample of 109 individuals (218 haplotypes) for putatively
novel alleles that appear at least 10 times in the sample for IGHV (top) and TRBV (bot-
tom), by geographic region (14 Africans (A), 31 West Eurasians (WE), 23 Asians–Siberians
(CAS), 2 East Asians (EA), 27 South Asians (SA), 4 Oceanians (O), 8 Native Americans
(NA)) and all regions (Total). The putative novel alleles are named by the closest matching
allele in the IMGT database followed by mutations separated by ’ ’. Each mutation is rep-
resented as reference base pairalternative base pairpositionreference amino acidalternative
amino acid. Note that ‘ ’ can also correspond to a stop codon, but this will be indicated by
a ‘P’ in parentheses. A ‘T’ in parentheses denotes that the reconstructed allele sequence was
truncated in one individual or more.
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Variant name Variant type Region # Regional freq Global freq

IGHV1-18 g168 SNV Africa 2 0.07 0.01
IGHV1-58 t57 SNV Africa 8 0.29 0.04
IGHV2-26 a118 SNV Africa 2 0.07 0.01
IGHV3-72 c170 SNV Africa 2 0.07 0.01
IGHV3-74 t20 SNV Africa 3 0.11 0.01
IGHV1-18*01 ag168ND Allele Africa 2 0.07 0.01
IGHV1-58*02 gt57VF Allele Africa 8 0.29 0.04
IGHV3-72*01 tc170SS Allele Africa 2 0.07 0.01
IGHV3-74*02 Allele Africa 3 0.12 0.01

TRBV13 t78 SNV CAS 5 0.11 0.02
TRBV20-1 a227 SNV Africa 2 0.08 0.01
TRBV30 a33 SNV CAS 2 0.08 0.01
TRBV4-1 g181 SNV Africa 2 0.07 0.01
TRBV5-4 g213 SNV Africa 2 0.08 0.01
TRBV5-6 t118 SNV SouthAsia 2 0.04 0.01
TRBV5-6 a205 SNV Africa 8 0.29 0.04
TRBV5-6 t236 SNV Africa 4 0.14 0.02
TRBV6-1 g183 SNV Africa 2 0.08 0.01
TRBV6-6 a31 SNV Africa 3 0.12 0.01
TRBV6-6 t216 SNV Africa 2 0.08 0.01
TRBV6-6 a278 SNV SouthAsia 2 0.04 0.01
TRBV6-8 g250 SNV Africa 8 0.42 0.04
TRBV7-4 t240 SNV Africa 2 0.07 0.01
TRBV13*01 ct78PS (T) Allele CAS 5 0.11 0.02
TRBV20-1*02 ga227LL Allele Africa 2 0.08 0.01
TRBV30*01 ga33VM (T) Allele CAS 2 0.08 0.01
TRBV4-1*01 cg181PR Allele Africa 2 0.07 0.01
TRBV5-4*01 tg213YD (T) Allele Africa 2 0.08 0.01
TRBV5-6*01 ta205FY ct236NN Allele Africa 4 0.15 0.02
TRBV5-6*01 ta205FY Allele Africa 3 0.11 0.01
TRBV5-6*01 gt118GV Allele SouthAsia 2 0.04 0.01
TRBV6-1*01 ag183ND Allele Africa 2 0.08 0.01
TRBV6-6*03 gt216DY Allele Africa 2 0.08 0.01
TRBV6-6*01 ga31RH (T) Allele Africa 3 0.12 0.01
TRBV6-6*01 ca278SR (T) Allele SouthAsia 2 0.04 0.01
TRBV6-8*01 ag250QR Allele Africa 8 0.42 0.04
TRBV7-4*01 ct240RC Allele Africa 2 0.07 0.01

Table B.5: SNVs and putative novel alleles in our sample of 218 haplotypes that are private
to a geographic region (14 Africans, 31 West Eurasians, 23 Central Asians-Siberians (CAS),
2 East Asians, 27 South Asians, 4 Oceanians, 8 Native Americans). See Section B.7 for
notation explanation.
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Region IGHV (n=109) TRBV (n=286)
Africans 0.98 0
Native Americans 1 0.34
Central Asians or Siberians 0.98 0.08
East Asians 1 0
Oceanians 1 0
South Asians 0.99 0
West Eurasians 0.98 0.1

Table B.6: Table of probabilities that two individuals drawn at random from the same
geographic region in our sample have different sets of IGHV or TRBV segments. Two sets
are considered different if there is at least one operationally distinguishable segment that is
present (in any number of copies) in one set but is absent in the other set.
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