
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Efficient Forward Prediction and Inverse Optimization in High-dimensional Spaces with
Physical Constraints

Permalink
https://escholarship.org/uc/item/8183s88b

Author
Li, Hao

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8183s88b
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Efficient Forward Prediction and Inverse

Optimization in High-dimensional Spaces with

Physical Constraints

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Statistics and Applied Probability

by

Hao Li

Committee in charge:

Professor Mengyang Gu, Chair
Professor Michael Ludkovski
Professor Ruimeng Hu
Professor M. Scott Shell

December 2023

The Dissertation of Hao Li is approved.

Professor Michael Ludkovski

Professor Ruimeng Hu

Professor M. Scott Shell

Professor Mengyang Gu, Committee Chair

October 2023

Efficient Forward Prediction and Inverse Optimization in High-dimensional Spaces with

Physical Constraints

Copyright © 2023

by

Hao Li

iii

To my cherished wife, whose unwavering love and warm companionship

have filled the past five years with countless sweet memories.

To my beloved parents, for their love, encouragement, and steadfast

support in my personal growth.

To my dear sister, for her boundless care, invaluable guidance, and

unwavering support.

And lastly, to my sweetheart daughter, whose innocence and chuckles

illuminate the path to the next chapter in my life.

iv

Acknowledgements

I would like to sincerely express my appreciation to the following individuals and

groups who have played pivotal roles in my academic journey and the completion of this

doctoral research:

First and foremost, I extend my heartfelt gratitude to my advisor, Prof. Mengyang

Gu, for his unwavering support, insightful guidance, and passionate mentorship through-

out my doctoral research. Our numerous meetings, thought-provoking discussions, and

extensive email exchanges have played a pivotal role in shaping the foundation of this

dissertation. My sincere thanks also go to my committee members, Prof. M. Scott Shell,

Prof. Michael Ludkovski, and Prof. Ruimeng Hu for their invaluable contributions to my

research. Their expertise, feedback, and willingness to answer my questions have been

invaluable in the successful completion of my research projects.

I would like to thank all my professors at UCSB for their dedicated teaching and

valuable advice during my five years of study. Their help has been instrumental in

shaping my academic and research abilities. I extend my gratitude to Prof. Jianzhong

Wu and Dr. Musen Zhou, for their support in data generation and their assistance with

background knowledge in the field of chemistry. Their collaboration significantly enriched

the scope and depth of my research.

I would like to thank my manager, Scott Geller, for his guidance and support on my

career path planning during my internship. I am grateful to my mentors, Hui Yu, and

Jeff Bliss, for their professional guidance and support on my internship project. I extend

my appreciation to my team buddy, Yijun Wu, for the support and assistance during

those three months.

I am deeply appreciative of my friends, roommates, and neighbors who have enriched

my life in numerous ways. Their support, encouragement, and shared experiences have

v

provided balance and inspiration during this challenging academic journey.

This dissertation would not have been possible without the collective support and

encouragement of these individuals and groups. Each of you has made an indelible mark

on my academic and personal growth, and I am immensely grateful for your contributions

to this milestone in my life.

vi

Curriculum Vitæ
Hao Li

Education

2023 Ph.D. in Statistics and Applied Probability (Expected), University
of California, Santa Barbara.

2018 M.S. in Financial Mathematics, University of Minnesota, Twin Cities.

2016 B.E. in Electrical Engineering, Nankai University.

2016 B.S. in Finance, Nankai University.

Experience

2018 - 2023 Teaching Assistant, Department of Statistics and Applied Proba-
bility, University of California, Santa Barbara.

2020, 2021 Graduate Student Researcher, Department of Statistics and Applied
Probability, University of California, Santa Barbara.

2022 Data Scientist Intern, Lyft Inc.

Publications

“Efficient force field and energy emulation through partition of permutationally equiva-
lent atoms.” Li, Hao, Musen Zhou, Jessalyn Sebastian, Jianzhong Wu, and Mengyang
Gu. The Journal of Chemical Physics 156, no. 18 (2022).

Presentation

Efficient Machine Learning Force-fields, Graduate Student Research Showcase, University
of California, Santa Barbara, CA, March 2021.

vii

Abstract

Efficient Forward Prediction and Inverse Optimization in High-dimensional Spaces with

Physical Constraints

by

Hao Li

Computer models and simulators are widely used for understanding complex pro-

cesses, whereas the computational cost can be large. This thesis introduces new efficient

surrogate models for predicting expensive simulations, and adaptive designs for inversely

optimizing system properties, particularly focusing on scenarios where the dimension of

the inputs or outputs is large. One such scenario is the molecular simulation, which is

an indispensable component in understanding the intricate relationship between molec-

ular configurations and their associated properties. Constructing an efficient surrogate

model can expedite predictions of molecular behaviors of many new chemical structures.

Furthermore, it can accelerate discoveries in critical fields such as materials design, drug

discovery, and chemoinformatics, through efficient designs by utilizing predictions from

surrogate models and their associated assessment of prediction uncertainty.

Gaussian process (GP) emulator has been used as a surrogate model for both scalar-

valued and vectorized outputs from computer models. In applications like predicting

molecular force fields and potential energy in ab initio molecular dynamics simulation,

the GPs can substantially improve predictive accuracy using both gradient information

and functional values whereas conventional approximation methods may not work well.

The computational cost of GPs, however, can be substantial. To address this challenge,

Chapter 2 introduces a new approach, termed the atomized force field (AFF) model,

which combines force and energy prediction in a computationally efficient manner. This

viii

model establishes a forward mapping from molecule configuration to the molecular force

field and potential energy, substantially reducing computational demands by exploiting

the naturally sparse covariance structure that adheres to energy conservation and atom

permutation symmetry constraints. Built upon the AFF model, Chapter 3 explores novel

methods to construct reverse mapping of 3D molecule structures from molecular force

fields and potential energy. This approach offers fast solutions to some applications, such

as finding the equilibrium state of the molecular through the minimization of atomic

forces. Additionally, a Python package of the surrogate model called PyRobustGaSP is

introduced in Chapter 4, for emulating computer models with massive data with robust

parameter estimation and predictions.

ix

Contents

Curriculum Vitae vii

Abstract viii

1 Introduction 1
1.1 Scalar-valued Gaussian Process Emulator 3
1.2 Gaussian Processes for Vectorized Outputs 18
1.3 Gaussian Processes on Linear Functional Observations 21
1.4 Outline . 22

2 Forward Efficient Force Field and Energy Emulation through Partition
of Permutationally Equivalent Atoms 24
2.1 Literature Review . 26
2.2 Motivation . 29
2.3 Atomic Force Field Method . 36
2.4 Potential Energy Prediction with the AFF 41
2.5 Numerical Results . 45

3 High Dimensional Optimization on Inverse Force-Fields Design 57
3.1 Background and Literature Review . 59
3.2 Bayesian Optimization . 62
3.3 Learning the Inverse Energy Mapping . 73
3.4 Minimization of Atomic Forces . 80
3.5 Numerical Results . 84

4 Python Package PyRobustGaSP and AFF 90
4.1 Main Functions of PyRobustGaSP . 91
4.2 Robust Parameter Estimation and Examples 92
4.3 Emulation of Expensive Simulations with Massive Outputs 103
4.4 An example of the AFF emulator . 105

x

5 Concluding remarks and future work 109
5.1 Future Work in Predicting Large Systems with Active Subspace Methods 111
5.2 Future Work on Computation Reduction 116

A Appendix Title 118
A.1 Fast Predictions of Potential Energies in Batches 118
A.2 Predictive Distribution of Potential Energy 119
A.3 Simulation Details . 121

Bibliography 123

xi

Chapter 1

Introduction

Computer models or simulators are widely used for generating data to understand nat-

ural and social processes. Molecular simulations provide access to microscopic details of

physical, chemical, and biological processes. Computationally scalable methods, such as

classical molecular dynamics (cMD), often lack accuracy, while ab initio molecular dy-

namics (AIMD) prioritizes accuracy over computational scalability to provide more de-

tailed molecular simulations. In principle, machine learning (ML) approaches can provide

a surrogate model to achieve accuracy at the levels of AIMD and computational scalabil-

ity even faster than cMD, thus providing new applications that would not be achievable

by conventional simulations. While recent years have witnessed enormous development

in ML potentials, the field is still rapidly evolving. Many theoretical and computational

issues remain to be addressed to efficiently represent potential-energy surfaces, partic-

ularly in the context of computationally expensive simulations for large systems. The

first goal of this thesis is to construct a computationally scalable surrogate model that

efficiently learns the mapping between system properties, including the potential energy

and atomic forces, and input parameters such as atom positions and types, all within a

high-dimensional space. Our particular focus is on the utilization of physical constraints

1

Introduction Chapter 1

to enhance the computational scalability and efficiency of the estimation process. Sta-

tistical or ML emulators, which harness machine learning and statistical techniques for

predicting molecular properties, were developed in recent years for predicting chemical

properties [1, 2, 3, 4, 5, 6, 7, 8]. These emulators established a forward mapping from

chemical space to functional space. In [5, 6], the local atomic neighborhood informa-

tion is employed as input to emulate the local atomic energy and then approximate the

total energy. Global molecule information, such as pairwise atomic distance matrix, is

used in [3, 4] and has shown the ability to emulate the energy and atomic force with

AIMD accuracy. However, the large computational complexity concerning the size of

the molecule restricts its application to larger systems. Our proposed method reduces

the computational cost while maintaining the same level of accuracy by leveraging the

physical constraints.

Estimating an inverse map from system properties to the input space is also another

critical task in various applications, including energy minimization, materials design,

and drug design. For example, the inverse map of potential energy and atomic force

field may help find the minimized energy molecule structure in energy minimization. In

other cases, the inverse map of molecule properties can facilitate the new molecules with

desired properties [9, 10]. The exhaustive exploration of the extensive chemical space is

unattainable due to the prohibitively high computational cost imposed by the intricate,

high-dimensional nature of large 3D molecular structures. Drawing from those data-

driven approaches that comprehend the forwarding mapping from sampled molecular

configurations, the challenge of the inverse mapping can be reframed as an optimization

problem, subject to specific constraints rooted in the physical setting. The Bayesian

optimization (BO) is designed to optimize functions that are source-intensive to evaluate,

and it doesn’t depend on the gradient information, which is often challenging to obtain for

certain black-box functions. A secondary goal of this thesis is to introduce an innovative

2

Introduction Chapter 1

approach that leverages the proposed forward method and Bayesian optimization. This

approach aims to unravel the inverse mapping from potential energy and atomic force

fields back to molecular configurations.

Many existing works have developed statistical or machine learning emulators using

Gaussian processes [6, 11, 12, 13, 14, 15, 16] and neural networks [7, 8, 17, 18, 19, 20]. In

general, accurate calculations of molecular dynamic simulation often come at substantial

computational costs. This limitation restricts the scale of sampled configurations for

training emulators. Consequently, kernel methods such as Gaussian process regression

(GPR) and kernel ridge regression (KRR), known for their proficiency in making pre-

cise predictions with fewer samples, have gained popularity. GPR-based emulators not

only offer flexible and efficient predictions of approximating complex, high-dimensional

functions but also provide information about their uncertainties. This makes them in-

valuable in various fields such as physical sciences, geostatistics, and surrogate modeling.

The third goal of this thesis is to develop a Python-based software package to facili-

tate the construction of fast and reliable GP emulators. In the forthcoming section, we

will provide a brief overview of the Gaussian process emulator and highlight some of its

features that we will later utilize in subsequent chapters.

1.1 Scalar-valued Gaussian Process Emulator

To begin, consider y(x) ∈ R as a real-valued outcome associated with a p-dimensional

vector of real-valued inputs x ∈ Rp. Initially, let us assume y(x) represents a deterministic

output generated by a computationally expensive simulator when provided with the given

inputs. We will later extend the model to accommodate stochastic outputs, which may

arise from numerical errors in the simulator or from observation data that includes mea-

surement noise. A Gaussian stochastic process (GaSP) or Gaussian process (GP) models

3

Introduction Chapter 1

this real-value output y(·) as an unknown random function y(·) ∼ GP (µ(·), σ2K(·, ·))

with a mean function µ(·), variance parameter σ2, and correlation function K (·, ·). The

set of physical inputs {x1, . . . ,xM}, where xi is a p × 1 vector, is commonly selected

using some “space filling” technique, such as Latin-hypercube design [21, 22], over the

input domain. For any physical inputs {x1, . . . ,xM}, the marginal distribution follows a

multivariate normal distribution

(y(x1), . . . , y(xM))T | θ, σ2,R ∼ MN
(
(µ(x1), . . . , µ(xM))T , σ2R

)
, (1.1)

where σ2 is the unknown variance and R is the correlation matrix with (i, j) element

modeled by a correlation function K (xi,xj). It is common to model the mean function

µ(·) via linear combinations of basis functions,

µ(x) = h(x)θ =

q∑
t=1

ht(x)θt, (1.2)

where h(x) = (h1(x), h2(x), · · · , hq(x)) is a vector of basis functions and θ = (θ1, ..., θq)
T

is a vector of unknown trend parameters. The GP model without the noise is an “in-

terpolator”, which means the prediction of the model at an observed or design input

xi is exactly the same as the output value at any design point. This property will be

shown in Section 1.1.2. The function K(·, ·) is often referred to as a kernel function or

a correlation function. It encodes prior knowledge about the underlying function y(·),

such as the smoothness and periodicity. This correlation function typically gets larger

when two inputs get closer in the input space, indicating that the functional values are

more similar for inputs that are closer to each other. This property holds true for any

continuous function, as the difference between functional values diminishes when two

inputs approach each other.

4

Introduction Chapter 1

Generally, there are two types of correlation functions. The first type is known as

the isotropic correlation function, where the correlation function is a function of the

Euclidean distance between any two inputs

K(xi,xj) = K(||xi − xi||), (1.3)

where ||xi − xj|| = (
∑p

l=1(xil − xjl)
2)1/2 is the Euclidean distance between any inputs

xi and xj. The isotropic correlation function is commonly used in spatial statistics. The

Euclidean distance metric is also used for emulating molecular simulation for input pa-

rameters such as positions of atoms [2, 4, 23].

Another widely used correlation for computer model emulation and calibration is

the product correlation [24, 25, 26], which is a product of p one-dimensional correlation

functions:

K(xi,xj) =

p∏
l=1

Kl(xil, xjl), (1.4)

with Kl(·, ·) being a one-dimensional correlation function for the l-th coordinate of the

input vector. With the product correlation function, the correlation matrix can be written

as follows

R = R1 ◦R2 ◦ · · · ◦Rp, (1.5)

where Rl is the correlation matrix with (i,j)-th element being Kl(xil, xjl), for l = 1, ..., p,

and ◦ denotes the Hadamard product.

Table 1.1 provides an overview of commonly used correlation functions for the prod-

uct correlation at any coordinate l. The isotropic correlation functions can be similarly

defined by using the Euclidean distance and having one range and one roughness param-

eter for each correlation. One of the most frequently employed correlation functions is

the power exponential correlation function with α = 2, commonly referred to as Gaussian

5

Introduction Chapter 1

correlation. This choice of correlation function imparts infinite differentiability to the GP

process, a desirable property in many applications. However, the correlation matrix with

a Gaussian correlation function often exhibits a low rank [27]. This low-rank property

prohibits computing the inversion of the covariance required for computing the likelihood

function and predictive distribution. To overcome this difficulty, the power exponential

correlation function with αl close to 2, such as αl = 1.9 [28], is often used in practice.

However, a GP with power exponential correlation with αl < 2 is not once differential,

which may not be ideal for some applications. Another popular choice of correlation is

the Matérn correlation function. The Matérn correlation function possesses a closed-form

expression when the roughness parameter takes the form αl =
2k+1
2

, where k ∈ N. For in-

stance, the Matérn correlation function with αl =
1
2
is the power exponential correlation

function with αl = 1. As αl goes to infinity, the Matérn correlation function converges to

the Gaussian correlation. Notably, a GP with the Matérn correlation function is ⌈αl⌉−1

times mean squared differentiable [29], an appealing property as the differentiability of

the process is directly controlled by the roughness parameter. One of the widely used

Matérn correlation functions is the one with αl =
5
2
, which has the expression below

K(xil, xjl) =

(
1 +

√
5dl
γl

+
5d2l
3γ2

l

)
exp

(√
5dl
γl

)
, (1.6)

where dl = |xil−xjl| in the product correlation function. The range parameter γl typically

controls the decay of pointwise correlations for l-th coordinate as a function of distance.

The larger value of the range parameter implies the correlation between two points is

large. In contrast, a smaller value of the range parameter means the correlation is smaller.

In building a statistical emulator, the roughness parameter α is typically predefined, and

the range parameter γl is typically estimated from data.

Let y = (y(x1), . . . , y(xM))T be a vector of observations from the simulator at M

6

Introduction Chapter 1

Table 1.1: Popular choices of correlation functions Kl using in Equation (1.4) for
l = 1, ..., p. Here, αl is a roughness parameter, γl is a range parameter and
dl = |xil − xjl| is the distance between the lth coordinate of two inputs. Γ(·) is
the gamma function and K(·) is the modified Bessel function of the second kind.

Correlation Function Formula

Power exponential exp
(
−(dl

γl
)αl

)
, αl ∈ (0, 2]

Matérn 1
2αl−1Γ(αl)

(
dl
γl

)αl

Kαl

(
dl
γl

)
, αl ∈ (0,+∞)

Rational Quadratic
(
1 + (dl

γl
)2
)−αl

, αl ∈ (0,+∞)

Spherical
(
1− 1.5(dl

γl
) + 0.5(dl

γl
)3
)
1[dl/γl≤1]

inputs x1, ...,xM , and let y(x∗) be the output at an input x∗ to be predicted. Conditional

on all parameters, the joint distribution y and y(x∗) follows

 y

y(x∗)

 ∼ MN


 Hθ

h(x∗)θ

 , σ2

 R r(x∗)

rT (x∗) K(x∗,x∗)


 , (1.7)

where H =
(
hT (x1), ...,h

T (xM)
)T

is an M × q dimensional basis matrix, and r(x∗) =

(K(x∗,x1), · · · , K(x∗,xM))T is a column vector with size M .

1.1.1 Parameter Estimation of Gaussian Process Emulation

In this section, we review parameter estimation in a GP emulator, using the general

product correlation function as an example. The parameter estimation for the isotropic

correlation is similar. The parameters include the mean parameters θ = (θ1, ..., θp)
T ,

σ2 and range parameter γ = (γ1, ..., γp)
T is the correlation. The maximum likelihood

method is one of the most frequently used approaches for parameter estimation. The

7

Introduction Chapter 1

likelihood function in the GP model follows

L(θ, σ2,γ) = (2πσ2)−
M
2 |R|−

1
2 exp

(
−(y −Hθ)TR−1(y −Hθ)

2σ2

)
. (1.8)

Given the range parameters, the MLE of θ and σ2 follows

θ̂MLE = (HTR−1H)−1HTR−1y, (1.9)

and

σ̂2
MLE =

S2

M
, (1.10)

where S2 = (y − Hθ̂MLE)
TR−1(y − Hθ̂MLE). After plugging the maximum likelihood

estimator (θ̂MLE, σ̂
2
MLE), the likelihood function in Equation (1.8) reduces to the profile

likelihood after ignoring the constant term

L(θ̂MLE, σ̂
2
MLE,γ) ∝ |R|−

1
2 (S2)−

M
2 . (1.11)

The MLE of γ typically does not have a closed-form expression. These parameters

are often estimated through numerical optimization by maximizing the profile likelihood

γ̂MLE = argmax
γ

{
L(θ̂MLE, σ̂

2
MLE,γ)

}
. (1.12)

Quasi-Newton optimization methods [30, 31] are often used for numerical optimization

in Equation (1.12).

The MLE of the parameters for GPs has been found to be unstable, particularly when

the sample size is large or when the underlying functions have many modes [32, 33, 34].

As a result, it is common to utilize a Bayesian prior to obtain robust estimation. The

8

Introduction Chapter 1

objective prior of the GP model used in practice has the expression below [35]

π(θ, σ2,γ) ∝ π(γ)

σ2
, (1.13)

where π(γ) is a prior of the range parameters. Integrating out the mean and variance

parameters, p(y | γ) ∝
∫
p(y | θ, σ2,γ)π(θ, σ2,γ)dθdσ2, the marginal likelihood follows

[35]

L(γ) ∝ |R|−
1
2 |HTR−1H|−

1
2

(
S2
)− (M−q)

2 , (1.14)

where S2 = (y−Hθ̂)TR−1(y−Hθ̂) and θ̂ =
(
HTR−1H

)−1
HTR−1y. The range param-

eters of the correlation function were sometimes estimated by maximizing the marginal

likelihood function in Equation (1.14), and the resulting estimator is commonly referred

to as the maximum marginal likelihood estimator (MMLE) [36]. However, both MLE

and MMLE can be unstable in practice [34], as the maximum value of γ can approach

the boundary of the parameter space for either the profile likelihood in Equation (1.11)

or the marginal likelihood in Equation (1.14).

One approach that helps reduce unstable estimations is to use the maximum marginal

posterior model estimator with robust parameterization of the reference prior [34]. The

reference prior of the GP model with isotropic covariances is introduced in [35]. It has

been shown to yield a proper posterior distribution, whereas the commonly used Jeffreys

prior can lead to an improper posterior distribution. The reference prior has also been

extended for the GP models with noisy measurements [37, 38], product kernel functions

[39] and vectorized outputs [40]. The reference prior of a GP model with a product kernel

function has the expression below

πR(θ, σ2,γ) ∝ πR(γ)

σ2
, (1.15)

9

Introduction Chapter 1

with πR(γ) ∝ |I∗(γ)| 12 , where I∗(·) is the expected Fisher information matrix of the

marginal likelihood given by:

I∗(γ) =



M − q tr (W1) tr (W2) · · · tr (Wp)

tr (W2
1) tr (W1W2) · · · tr (W1Wp)

tr (W2
2) · · · tr (W2Wp)

. . .
...

tr
(
W2

p

)


, (1.16)

where Wl = ṘlQ, Ṙl is the partial derivative of the correlation matrix R with re-

spect to the l-th range parameter for 1 ≤ l ≤ p, and Q = R−1PR with PR =

IM − H
(
HTR−1H

)−1
HTR−1. The marginal posterior of γ with regard to this refer-

ence prior is

p(γ | y) ∝ L(γ | y)|I∗(γ)|
1
2 . (1.17)

The Metropolis algorithm can be used to sample the posterior for full Bayesian analysis,

whereas computing the marginal posterior function takes O(M3) operations, which can

be prohibitively slow when we need thousands of posterior samples. Thus, it is common

to estimate γ using its marginal posterior mode given by

(γ̂1, · · · , γ̂p) = argmax
(γ1,··· ,γp)

{p(γ | y)} , (1.18)

where the estimator is often referred to as the maximum marginal posterior estimator

(MMPE). As shown in [34], the marginal posterior with reference prior using parameter

γ or log inverse parameters ξl = log(1/γl) for l = 1, ..., p typically results in robust

estimation. Computing the reference prior can be more computationally expensive than

the marginal likelihood. To reduce the computational cost, another prior called the jointly

10

Introduction Chapter 1

robust (JR) prior was introduced in [41] for the inverse range parameter βl = 1/γl. The

overall JR prior follows πJR(θ, σ2,β) ∝ πJR(β)/σ2, where

πJR(β) ∝

(
p∑

l=1

βl

)a

exp(−bClβl), (1.19)

with a, b and Cl being the prior parameters for l = 1, ..., p. The JR prior is a proper

prior with closed-form normalizing constant and the MMPE with the JR prior can help

reduce unstable estimation from MLE and MMLE. After obtaining the estimation β̂ by

MMPE, the estimation of range parameter can be obtained γ̂l = 1/β̂l for l = 1, ..., p.

Another commonly used approach for estimating range parameters in the machine

learning community is cross-validation (CV) [2, 3]. In this method, the observed dataset

is initially randomized and divided intom folds. Each fold serves as a validation set, while

the remaining m−1 folds as the training set. The optimal values of these parameters are

then determined by numerically minimizing the predicted error by the predictions (which

will be introduced in Section 1.1.2 below) and the validation set. The cross-validation

reduces the number of samples, which can be less efficient than the mode estimator, such

as MLE, MMLE or MMPE, particularly when the sample size is small.

Directly calculating the prior likelihood or marginal likelihood function involves ma-

trix inversion which can be unstable when the conditioner number of the covariance

matrix is large. A more numerically stable way is to utilize Cholesky decomposition of

the covariance matrix and then compute the prediction distribution by solving a linear

system of equations with both forward and backward steps, as described in [42].

11

Introduction Chapter 1

1.1.2 Predictive Distributions of Gaussian Processes

After obtaining the estimates of range parameters γ, the predictive distribution of

y(x∗) for a new input x∗, given y, can be obtained by integrating out the parameters:

p(y(x∗) | y, γ̂) =
∫

p(y(x∗) | y,θ, σ2, γ̂)p(θ, σ2)dθdσ2. (1.20)

Using the reference prior for the mean and variance parameters, p(θ, σ2) ∝ 1/σ2, the

predictive distribution follows a Student’s t distribution with M − q degrees of freedom

y(x∗) | y, γ̂ ∼ T
(
ŷ(x∗), σ̂2K∗∗(x∗,x∗),M − q

)
, (1.21)

where

ŷ(x∗) = h(x∗)θ̂ + rT (x∗)R−1
(
y −Hθ̂

)
, (1.22)

σ̂2 =
1

(M − q)

(
y −Hθ̂

)T
R−1

(
y −Hθ̂

)
, (1.23)

and

K∗∗(x∗,x∗) =K(x∗,x∗)− rT (x∗)R−1r (x∗) +
(
h (x∗)− r (x∗)T R−1H

)
×
(
HTR−1H

)−1
(
h (x∗)− r (x∗)T R−1H

)T
,

(1.24)

and θ̂ = (HTR−1H)−1HTR−1y is the generalized least squares estimator for θ, which has

the same expression of the MLE with the same range parameters. The predictive mean

ŷ(x∗) is often used for predictions. Another advantage of a GP model is the availability

of uncertainty assessment of the prediction, as any posterior predictive interval can be

computed based on the predictive distribution in Equation (1.21).

The prediction of a GP model with noise-free measurement is an interpolator, meaning

that the prediction is exactly the same as the output value. This is because for x∗ = xi,

12

Introduction Chapter 1

we have

ŷ(x∗) = ŷ(xi) = h(xi)θ̂ + rT (xi)R
−1
(
y −Hθ̂

)
= h(xi)θ̂ + eTi (y −Hθ̂)

= y(xi),

where ei is a vector with value 1 in the i-th row and zeros in all other rows.

1.1.3 Gaussian Process Emulation with Noisy Measurements

In practice, y = (y(x1), . . . , y(xM))T may contain noise due to numerical errors in

the simulator output or measurement errors in field observations. The output of the

simulator may not change much when some input variables change. These inputs, often

called the “inert inputs”, can be omitted when constructing a statistical emulator [43, 41].

For all these scenarios, it is typical to include an independent normally distributed noise

in the model to account for additional uncertainty in observations:

ỹ(x) = y(x) + ϵ(x), (1.25)

where ϵ(x) ∼ N (0, σ2
0) is an independent noise and y(·) is modeled as a GP as before:

y(·) ∼ GP (µ(·), σ2K(·, ·)). The covariance function for ỹ(·) at any observations xi and

xj follows

σ2K̃(xi,xj) = σ2
(
K(xi,xj) + λ1xi=xj

)
. (1.26)

Here, λ = σ2
0/σ

2 is a parameter that represents the ratio of noise and signal variances,

often referred to as a nugget parameter, and 1xi=xj
is an indicator function which equals

13

Introduction Chapter 1

to 1 if xi = xj, and 0 otherwise. The covariance matrix becomes

σ2R̃ = σ2(R+ λIM), (1.27)

where IM represents the identity matrix of size M . The reference prior for the GP model

with the product correlation function follows [34, 37, 38]

πR
(
θ, σ2,γ, λ

)
= πR

(
θ, σ2

)
πR
(
γ, λ | θ, σ2

)
∝ πR(γ, λ)

σ2
. (1.28)

Here, π (θ, σ2,γ, λ) ∝ |Ĩ∗(γ, λ)| 12 , and the corresponding expected Fisher information

matrix has the following form:

Ĩ∗(γ, λ) =



M − q tr
(
W̃1

)
tr
(
W̃2

)
· · · tr

(
W̃p+1

)
tr
(
W̃2

1

)
tr
(
W̃1W̃2

)
· · · tr

(
W̃1W̃p+1

)
tr
(
W̃2

2

)
· · · tr

(
W̃2W̃p+1

)
. . .

...

tr
(
W̃2

p+1

)


, (1.29)

where W̃l =
˙̃RlQ̃, for 1 ≤ l ≤ p, and ˙̃Rl represents the partial derivative of the correlation

matrix R̃ with respect to the l-th range parameter. Additionally, Q̃ = R̃−1PR̃ with

PR̃ = IM −H
(
HT R̃−1H

)−1

HT R̃−1, and W̃p+1 = Q̃. Similarly, the nugget and range

parameters can be estimated through the marginal posterior mode using

(
γ̂1, · · · , γ̂p, λ̂

)
= argmax

(γ1,··· ,γp,λ)

{
L (γ, λ) πR (γ, λ)

}
. (1.30)

The robust parameterization for a GP model of noisy measurements with reference

prior is studied in [34]. The jointly robust prior was also developed for simplifying the

14

Introduction Chapter 1

computation for GP models with noisy measurements, which has the expression below

πJR(β, λ) ∝

(
p∑

l=1

βl + λ

)a

exp(−b(Clβl + λ)), (1.31)

where a, b and Cl are prior parameters for l = 1, ..., p. The estimation of γ can be

obtained by transforming the estimation back.

The predictive distribution for GP models with noisy measurements is similar to the

one without the noise in Equation (1.21) through replacing R by R̃, as follows:

y(x∗) | y, γ̂, λ̂ ∼ T
(
ŷ(x∗), σ̂2K∗∗(x∗,x∗),M − q

)
, (1.32)

where

ŷ(x∗) = h(x∗)θ̂ + rT (x∗)R̃−1
(
y −Hθ̃

)
, (1.33)

σ̂2 =
1

(M − q)

(
y −Hθ̂

)T
R̃−1

(
y −Hθ̃

)
, (1.34)

K∗∗(x∗,x∗) = K(x∗,x∗)− rT (x∗) R̃−1r (x∗) +
(
h (x∗)− r (x∗)T R̃−1H

)
×
(
HT R̃−1H

)−1 (
h (x∗)− r (x∗)T R̃−1H

)T
, (1.35)

with the generalized least squared estimator θ̃ = (HT R̃−1H)−1HT R̃−1y.

The GP models for scalar-valued noisy outputs were implemented in the RobustGaSP

package available in R [44] and MATLAB [45], and in Python [46] developed in this thesis.

1.1.4 Connection with Kernel Ridge Regression

The predictive mean in a GP model with noisy measurements is closely connected to

the kernel ridge regression estimator. Consider X as the p-dimensional input domain. We

define the reproducing kernel Hilbert space (RKHS) as H, which serves as the completion

15

Introduction Chapter 1

of the space of all functions given by:

x →
m1∑
i=1

wiK(xi,x), w1, · · · , wm1 ∈ R, x1, · · · ,xm1 ,x ∈ X , m1 ∈ N. (1.36)

This space is equipped with an inner product:

〈
m1∑
i=1

wiK (xi, ·) ,
m2∑
j=1

wjK (xj, ·)

〉
H

=

m1∑
i=1

m2∑
j=1

wiwjK (xi,xj) . (1.37)

For any function f(·) ∈ H, the RKHS norm is denoted as ∥f∥H =
√
⟨f, f⟩H. Further-

more, due to the bounded linearity of evaluation maps in the RKHS, it can be deduced

from the Riesz representation theorem that f(x) = ⟨f(·), K(·,x)⟩H for each x ∈ X and

f(·) ∈ H.

Let L2(X) denote the space of square-integrable functions f : X → R with
∫
x∈X f 2(x)dx <

∞, and ⟨f, g⟩L2(X) :=
∫
x∈X f(x)g(x)dx represents the inner product in L2(x). According

to Mercer’s theorem, there exists an orthonormal sequence of continuous eigenfunctions

{ϕj}∞j=1 with a corresponding sequence of non-increasing the non-negative eigenvalues

{ρj}∞j=1 such that

K (xa,xb) =
∞∑
j=1

ρjϕj (xa)ϕj (xb) (1.38)

for any xa,xb ∈ X .

The RKHS H encompasses all functions f(·) =
∑∞

j=1 fjϕj(·) ∈ L2(X) with fj =

⟨f, ϕj⟩L2(X) and
∑∞

j=1 f
2
j /ρj < ∞. For any g(·) =

∑∞
j=1 gjϕj(·) ∈ H and f(·), the inner

product can be expressed as ⟨f, g⟩H =
∑∞

j=1 fjgj/ρj. We refer to Chapter 1 of [47] for

more details on the properties of the RKHS.

Given a data set {(ỹi,xi)}Mi=1 comprisingM observations with ỹi ∈ R at input xi ∈ Rp.

16

Introduction Chapter 1

Consider the nonparametric regression process where

ỹi = y(xi) + ϵ(xi), (1.39)

where ϵ(xi) ∼ N (0, σ2
0) is an independent Gaussian noise with variance σ2

0 and y(·) is an

unknown deterministic function. The kernel ridge regression (KRR) [42, 48] estimates

the unknown function y(·) by solving following optimization problem:

ŷ = argmin
y(·)∈H

{
1

M

M∑
i=1

(ỹi − y(xi))
2 + λ̃∥y∥2H

}
, (1.40)

where ∥∥H is the native norm or reproducing kernel Hibert space norm [49]. The solution

simultaneously penalizes the fitting error expressed as the squared error loss and com-

plexity of the solution characterized by the native norm of the function. The complexity

can be considered as a measurement of the discontinuous level of the function. Given the

same variance, a function with more local variability, the complexity of this function is

typically larger than another function with fewer changes locally. The size of the penalty

of the native norm is determined by the kernel function or the associated RKHS.

According to the representer lemma [29], for any x∗, we have:

y(x∗) =
M∑
i=1

wiK(xi,x
∗). (1.41)

Let w = (w1, · · · , wM)T . Since ⟨K (xi, ·) , K (xj, ·)⟩H = K (xi,xj) , Equation (1.40) can

be simplified as follows

ŵ = argmin
w

{
1

M
(y −Rw)T (y −Rw) + λ̃wTRw

}
. (1.42)

17

Introduction Chapter 1

The solution of the weights follows

ŵ = (R+Mλ̃IM)−1y. (1.43)

Plugging the solution of w into Equation (1.42), the KRR estimator of y(x∗) takes the

following form:

y(x∗) = rT (x∗)
(
R+Mλ̃IM

)−1

y. (1.44)

This expression is identical to the predictive mean from the GP model of noisy mea-

surements in Equation (1.32) when the mean parameter θ is zero and nugget parameter

λ = Mλ̃. The equivalence of KRR and GP can be extended to models with a mean

function and discrepancy functions by a GP [50] or a scaled Gaussian process in model

calibration [51].

The intriguing connection underscores the interplay between GP and KRR, providing

another way to interpret the predictive mean estimator in the GP model as the solution of

the minimization problem in Equation (1.40). It is worth noting that the GP regression

also offers closed-form predictive intervals with almost no additional cost in computation,

which is useful for uncertainty assessment of predictions.

1.2 Gaussian Processes for Vectorized Outputs

Many computer simulations and real-world examples contain vectorized outputs. For

instance, the TITAN2D simulator generates pyroclastic flow properties, such as flow

heights at a massive number of space-time coordinates at each set of input variables

[40, 52]. In molecular simulations, the atomic forces in a molecule with N atoms are

represented as a 3N-dimensional vector in Cartesian coordinates.

Denote Y = [y1, ...,yM] a k×M observational matrix where yi = (y1(xi), ..., yk(xi))
T

18

Introduction Chapter 1

for i = 1, ...,M . A few GP models were used for modeling the vectorized outputs.

The most straightforward approach involves building a separate GP at each coordinate,

requiring the estimation of k sets of parameters individually. However, this can be both

time-consuming and unstable. Another way is to use a separable covariance structure,

where the covariance follows Cov(Y) = Σ⊗R where ⊗ denotes the Kronecker product,

Σ is a k× k covariance matrix between coordinates and R is a correlation matrix across

M training runs [53]. Linear models of coregionalization were also used for modeling

vectorized outputs [26, 54, 55], where covariance is generally not separable.

Here we introduce the parallel partial Gaussian process (PP-GP), which is scalable

to computer simulation with a massive number of observations, as detailed in [40]. The

PP-GP model has inspired the development of the Atomized force field model, which will

be introduced in Chapter 2. In the PP-GP model, each output coordinate contains a set

of the mean µj(x) and variance parameters σ2, which can be estimated from the data.

The mean can be modeled by a linear combination of the basis functions:

µj(x) = h(x)θj, (1.45)

where h(x) is a row vector of q basis functions, and θj is a q vector of the mean param-

eters. The M ×M correlation matrix R is assumed to be shared across all coordinates

in the PP-GP model. The assumptions of PP-GP greatly simplify the computation and

improve estimation stability, as only one set of range parameters needs to be numerically

estimated and all other parameters can be estimated using closed-form expressions.

The reference prior as shown in Equation (1.13) for the mean and variance parameters

has the following expression

πR(θ1, · · · ,θk, σ
2
1, · · · , σ2

k,γ) ∝
πR(γ)∏k
j=1 σ

2
j

. (1.46)

19

Introduction Chapter 1

Similar to the scalar-valued GP model, one can integrate out the mean and variance

parameters and estimate the range parameter in the kernel to obtain an estimation of

the range parameter γ. As γ̂ is the same across different coordinates, the predictive

distribution of PP-GP at a new input x∗ at any j-th coordinate follows a Student’s t

distribution

yj(x
∗) | yj, γ̂ ∼ T

(
ŷj(x

∗), σ̂2
jK

∗∗(x∗,x∗),M − q
)
, (1.47)

where

ŷj(x
∗) = h(x∗)θ̂j + rT (x∗)R−1

(
yj −Hθ̂j

)
, (1.48)

σ̂2
j = (M − q)−1

(
yj −Hθ̂j

)T
R−1

(
yj −Hθ̂j

)
, (1.49)

K∗∗(x∗,x∗) = K(x∗,x∗)− rT (x∗)R−1r(x∗) +
(
h(x∗)−HTR−1r(x∗)

)T
×
(
HTR−1H

)−1 (
h(x∗)−HTR−1r(x∗)

)
, (1.50)

with the generalized least squares estimator of the mean follows θ̂j =
(
HTR−1H

)−1
HTR−1yj,

and other terms were defined in the scalar-valued GP model. Estimation and predictions

of PP-GP models for noisy measurements follow similarly by replacing R by R̃ = R+λIn

in the marginal likelihood and predictive distributions, respectively.

PP-GP provides a general approach for approximating nonlinear map y(x): Rp → Rk,

which can be used for predicting high-dimensional maps in computer model simulations

[40] and forecasting dynamical systems [56]. The PP-GP only requires O(M3) +O(Mk)

operations for computing the predictive mean, which is substantially faster than some

other alternatives.

The GP emulator of scalar-valued outputs and the PP-GP emulator for vectorized

outputs were implemented in the RobustGaSP package originally available in R and MATLAB

[44, 45]. We developed the Python version of the RobustGaSP package, which will be

20

Introduction Chapter 1

introduced in Chapter 4.

1.3 Gaussian Processes on Linear Functional Obser-

vations

As the Gaussian distribution is closed under any linear transformations, one of the

appealing properties of a GP model is that the joint distribution and predictive distribu-

tion under the linear transformation of functions can be easily derived. Suppose we have

a linear operator L acting on realizations of y(·) ∼ GP (µ(·), σ2K(·, ·)) . In this context,

it indicates that Ly(·) continues to follow a Gaussian process. This feature enables us

to conduct statistical inference about linear functionals of an unknown function modeled

by GP, such as weighted averages and differential operations.

Assume that the operator L produces functions in Rk with an input in R. The mean

and covariance of Ly are given by applying L to the mean and covariance of the argument:

E[Ly(x)] = Lµ(x) : R → Rk, (1.51)

Cov(Ly(x),Ly(x′)) = Lσ2K(x,x′)LT : R → Rk×k, (1.52)

and the covariance follows

Cov (Ly(x), y(x′)) = Lσ2K(x,x′) : R → Rk. (1.53)

Taking the directional gradient operator ∇x : R → Rk as an example, where x ∈ Rp and

21

Introduction Chapter 1

p = k. The joint distribution of y(x) and ∇xy(x) follows y(x)

∇xy(x)

 ∼ MN


 µ(x)

∇xµ(x)

 , σ2

 K(x,x′) ∇xK(x,x′)

∇x′K(x′,x) ∇xK(x,x′)∇T
x′


 , (1.54)

where ∇xK(x,x′) is 1× k Jacobian matrix and ∇xK(x,x′)∇T
x′ is k × k Hessian matrix.

1.4 Outline

Chapter 2 introduces an efficient method called the atomic force field (AFF) for emu-

lating atomic forces and potential energy in ab initio molecular dynamics simulation. We

begin with an overview of the relevant methods for emulating atomic forces and discuss

the computational challenges of these methods. The AFF method is then introduced for

reducing the computational cost for large molecules by utilizing the natural sparsity of the

designed correlation matrix of GP and maintaining high accuracy in predictions. Closed-

form expressions for predictions and uncertainty quantification will be introduced in the

context of emulating both force and energy. We will compare the AFF with alternatives

in terms of computational costs and predictive accuracy using real-world simulators.

Chapter 3 proposes new methods that utilize Bayesian Optimization for optimizing

the properties of the system with a small number of iterations. Notably, this method

does not require gradient information. Recent studies of Bayesian optimization are mostly

demonstrated for systems with a low dimensional input. We show the effectiveness of the

new method for optimizing a large dimensional input space. We found directly minimizing

the energy based on Bayesian optimization leads to unstable estimation. To address this

problem, we introduce a novel inverse force design approach, showcasing its effectiveness

in force and energy minimization. This method is both robust and accurate. Only a

few iterations are needed to obtain the equilibrium state of the simulation. Numerical

22

Introduction Chapter 1

comparison will be provided for comparing energy-minimized structures obtained via

inverse force design and those generated through the simulation.

Chapter 4 discusses a Python package PyRobustGaSP for both scalar and vectorized

outputs. We also cover the atomic force field emulator for predicting atomic force and

potential energy. We provide examples to illustrate a few new applications, such as

emulating high dimensional 3D electron density. Additionally, we provide example codes

for emulation for computer models with both scalar outputs and a massive number of

observations.

Chapter 5 summarizes the developments and outlines future work related to develop-

ing efficient statistical emulators and inverse designs with high dimensional input space.

We highlight the importance of the dimension reduction approach for reducing high-

dimensional input spaces, particularly in the context of molecular simulation.

23

Chapter 2

Forward Efficient Force Field and

Energy Emulation through Partition

of Permutationally Equivalent

Atoms

Molecular dynamics (MD) [57] is a computer simulation method for analyzing the phys-

ical movements of atoms and molecules, and it has greatly enhanced our understanding

of complex chemical and biological systems. The fundamental concept underlying MD

simulations is relatively straightforward. When provided with the positions of all atoms

within a molecular system, it becomes possible to compute the forces acting on each

atom due to all other atoms. By applying Newton’s laws of motion, one can predict the

spatial coordinates of each atom as a function of time. This process involves progressing

through discrete time increments, iteratively calculating the forces acting on each atom,

and subsequently utilizing these forces to update both the position and velocity of every

atom. In classical MD simulations, empirical potential energy functions and classical

24

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

force fields are employed. Nevertheless, a notable challenge that remains is the accuracy

of underlying classical interatomic potentials, which restricts the ability to achieve truly

predictive modeling of dynamics and functionality of molecular systems. One potential

solution is to increase the accuracy level by AIMD simulation. AIMD simulations are

rooted in quantum mechanics and rely on electronic structure theory, such as density

functional theory (DFT), to compute the electronic wave function and potential energy

of the system. AIMD simulations calculate quantum-mechanical forces for atomic con-

figurations at each time step, employing density-functional approximations to solve the

Schrödinger equation for a system comprising both nuclei and electrons. However, it’s

important to acknowledge that the AIMD simulations come with a substantial compu-

tational burden, surpassing that of classical molecular dynamics. Consequently, AIMD

is typically confined to smaller systems and shorter timeframes. To address the dual

challenges of accuracy and computational cost, there arises a need for a fast and precise

emulator. Such an emulator can facilitate the construction of force fields with a high ac-

curacy level of ab initio calculations, bridging the gap between computational efficiency

and the need for precise modeling. In other words, we require an efficient method that

can learn from AIMD calculations and accurately predict the potential energy and atomic

forces at various timesteps from atomic positions, as plotted in Figure 2.1. The goal of

the surrogate model is to achieve accuracy comparable to AIMD simulations in com-

puting potential energy and atomic forces for a given configuration while substantially

reducing computational costs.

In this chapter, we propose a new surrogate model, which is called the atomized

force field (AFF) emulator, for predicting the atomic force and the potential energy in

AIMD simulations. By utilizing the physical permutationally equivalent property of the

molecules and the natural sparsity from the designed correlation function, we demonstrate

that the atomized force field is computationally more scalable than prior approaches.

25

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.1: Potential energy and atomic forces of the uracil molecule from the AIMD simulation.

2.1 Literature Review

In recent years, many approaches have been proposed to learn the map between

the molecule’s configuration and the molecule-level information. Deep neural network

(DNN) and Gaussian process regression (GPR) are two popular tools to emulate AIMD

simulation containing a large number of single atoms or small molecules (such as H2O)

[5, 12, 58]. Some effective machine-learning approaches have been developed to emulate

the dynamics of molecules containing a larger number of atoms with different types. The

kernel ridge regression approach, which is equivalent to the predictive mean of GPR, for

instance, was proposed to emulate the potential energies of organic molecules, based on

pairwise diatomic positions and nuclear charge [23]. The Gaussian approximation poten-

tial framework (GAP) [6], as another example, approximates the total energy functional

through the decomposition of local atomic energy functional by using self-designed atomic

neighborhood information. This approach is often used along with the smooth overlap

of atomic positions (SOAP) [5] to measure the local atomic neighborhood information,

such that predictions satisfy translational, permutational, and rotational symmetries of

atoms. The inducing point sparse approximation [59] is often used to improve compu-

26

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

tational scalability in these approaches. DNN architectures have also been developed to

emulate AIMD [7, 17, 60], where a large number of training samples were often used in

training the model. The GPR typically requires fewer samples for accurate predictions,

because of two reasons. First, GPR is a nonparametric model, and the complexity of

the model, such as the number of basis in predictions, increases with the sample size,

which makes it flexible to estimate the nonlinear response surface. Second, the predictive

mean in GPR has a closed-form expression, and only a few parameters are required to

be numerically estimated, whereas DNN typically relies on numerical optimization in a

large parameter space. In both approaches, an appropriate descriptor that encodes the

information of molecular geometry is important for predictions.

Combining force and energy samples with energy conservation constraints can improve

the predictive accuracy of atomic forces and potential energies in AIMD simulation [2, 3,

4, 7, 8]. The approach, known as gradient-domain machine learning (GDML) [4], starts

with the conservation of energy. Here, we denote E(x) as the potential energy of the

molecule configuration x, which is the outcome of the computer simulation, denoted as

f(x) in Chapter 1 in general. We also denote Fi(x) the force vector of the i-th atom within

the molecule configuration x, another vectorized outcome from computer simulations to

be predicted for i = 1, ..., N in a system with N atoms. The 3D force vector of each atom

Fi(x) is related to the potential energy E(x) by

Fi(x) = −∇riE(x), (2.1)

where x = [r1, r2, · · · , rN] is a 3 × N matrix of atomic Cartesian coordinates for a

system with N atoms, and ri denotes the 3D coordinates for each atom. Given M con-

figurations of a molecule containing N atoms, parameter estimation and predictions of

the atomic forces by the GDML approach and the symmetric gradient-domain machine

27

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

learning (sGDML) [61] involve constructing and inverting a 3NM × 3NM Hessian co-

variance matrix. The computational cost of constructing this covariance matrix scales

as O(M2N3) and the cost of its inversion scales as O(M3N3), both increasing rapidly

along with the number of atoms and the number of simulation runs for training the sur-

rogate model. The large computational cost of the surrogate model prohibits predicting

molecular information in larger and more complex systems.

A wide range of approximation methods for alleviating the computational cost of

GP models has been proposed in recent years, including, for instance, the induced point

approach [59], low-rank approximation [62], covariance tapering [63], hierarchical nearest

neighbor methods [64], stochastic partial differential equation approach [65], and local

Gaussian process approach [66]. Although these methods are useful for approximating

GP models with observations at a low dimensional input space, none of them focuses

on approximating GP models with high-dimensional gradient observations. The large

computational cost prevents the direct applications of GP models with high-dimensional

gradient information in large-scale systems, a problem which was recently realized in the

statistics and machine learning communities [67]. Low-rank approximation and sparse

approximation of the covariance were studied [68], yet the predictive accuracy can be

degraded. The recent approach [67] reduces the computational complexity for GP with

gradient observations with respect to the dimension of gradients, but the method requires

O(M6) computational operations, which is prohibitive for moderately large training runs

M . Surprisingly, we found that after enforcing energy conservation and permutation

symmetry of atoms onto the covariance function, the covariance matrix of atomic forces is

approximately sparse. This property can be utilized to reduce computational operations

substantially without sacrificing the accuracy of predictions.

28

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

2.2 Motivation

2.2.1 Invariance Constraints on Molecular Representation

Several essential requirements are important to consider when emulating potential

energy and force fields, with a focus on rotational, translational, and permutational

invariance. Rotational and translational invariance imply that the molecule-level in-

formation should remain unchanged following rotations or translations applied to the

same molecular configuration. This consistency ensures that the measurement of the

molecule’s configuration remains identical, irrespective of the chosen coordinate system,

as the physical configuration of the molecule itself remains unaltered. Meeting these two

invariance requirements can be achieved through the construction of a representation,

often referred to as a descriptor, possessing the desired properties. An example of such

a descriptor is the inverse pairwise distances matrix of the atoms within the molecule,

as utilized in previous work [4]. Denote x = [r1, r2, · · · , rN] is a 3×N matrix of atomic

Cartesian coordinates for a system with N atoms, and ri denotes the 3D coordinates for

each atom., the descriptor D(x) of x can be represented as:

D(x)ij =


∥ri − rj∥−1 for i > j,

0 o.w. ,

(2.2)

where ||.|| denotes the Euclidean distance. This representation is complete, meaning that

it can accurately and uniquely describe any conceivable configuration of the system.

Another important consideration arises from the indistinguishability of identical atoms

within a system. The potential energy surface (PES) of a chemical system relies solely

on the charges and positions of the nuclei. Consequently, the PES exhibits symmetry

under permutations of atoms with the same nuclear charge. In molecular simulations,

29

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.2: A benzene molecule with six carbon and six hydrogen atoms.

atoms may rotate or switch positions, and emulators that encode this physical symmetry

information can achieve higher predictive accuracy [3, 5, 69, 70, 71]. Emulators based

on machine learning methods that do not account for and treat these symmetries equiv-

alently might yield varying predictions when atoms are permuted. Using the benzene

molecule illustrated in Figure 2.2 as an example, it’s important to note that all six car-

bon and six hydrogen atoms are physically equivalent. Consequently, there exist twelve

distinct ways to arrange these twelve atoms within the same benzene molecule. This vari-

ability arises because the first atom can be any of the carbon atoms, and the arrangement

can proceed either clockwise or counterclockwise.

2.2.2 GDML method based on KRR

GDML stands out as a pioneering method that incorporates the law of energy con-

servation in Equation (2.1) into the joint modeling of the force vector and scalar-valued

potential energy within the kernel ridge regression framework. In contrast to methods

that first emulate energy and then perform numerical differentiation to compute atomic

forces, GDML represents a significant advancement, enhancing the accuracy of AIMD

trajectories for small molecules. Moreover, it enables the development of force fields with

accuracy levels akin to ab initio methods. The improved version of this method, sGDML

30

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

[3], takes into account permutation invariance, further elevating the accuracy threshold.

In this section, we will provide a brief overview of GDML, explore its limitations, and

delve into the underlying principles that form the basis for our proposed atomic force

field method.

Given a dataset comprising M configurations of a molecule containing N atoms,

denoted asX = (x1,x2, · · · ,xM), The first step is to convert the 3D Cartesian coordinates

of each molecule xi into a corresponding descriptor D(xi) (as defined in Equation (2.2)).

This transformation is essential for distinguishing between physically equivalent geometry

in the Cartesian space. In the GDML method, the entire 3MN force vector of M

configuration, denoted as F(X), is modeled by the following representation

F(X) = (KHess(X,X) + λI3MN)V , (2.3)

where the Hessian matrix KHess(X,X) is a 3MN × 3MN matrix, with the (i,j)-th block

matrix defined as∇xi
K(D(xi),D(xj))∇T

xj
, and V is the weight vector of dimension 3MN

to be estimated. Various kernel functions can be used, and due to the smoothness and

the response surface, the isotropic kernel function in Equation (1.3) with a Matérn kernel

function with α = 5/2 is used. Consequently, only one range parameter γ and one nugget

parameter λ are required to be numerically estimated from the data. Furthermore, the

input for the kernel function consists of the vectorized descriptors, in contrast to the

original Cartesian coordinates, because of the translational and rotational invariance.

Direct computation through the chain rule gives

∇xaK(D(xa),D(xb))∇T
xb

= JD(xa)
∂2K(D(xa),D(xb))

∂D(xa)∂D(xb)
JD(xb)

T , (2.4)

where JT
D(xa)

is the Jacobian of the descriptor D(xa) w.r.t xa, and
∂2K(D(xa),D(xb))
∂D(xa)∂D(xb)

is the

31

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Hessian matrix of K(D(xa),D(xb)) w.r.t D(xa) and D(xb). Based on the form of the

descriptor matrix D(xa) in Equation (2.2), the gradient of (p, q)-th element of D(xa)

w.r.t ri follows

∂D(xa)pq
∂ri

=


− rp−rq

∥rp−rq∥3 p > q and i = p,

rp−rq
∥rp−rq∥3 p > q and i = q,

0 o.w .

(2.5)

The trained force field estimator within this framework aggregates the contributions

of partial derivatives, totaling 3N , from all M training configurations to formulate the

prediction. It can be expressed as:

F(x∗) =
M∑
i=1

3N∑
j=1

Vij
∂

∂xj

∇x∗K(x∗,xi). (2.6)

The corresponding potential energy predictor is obtained by integrating F(x∗) and is

expressed as:

E(x∗) =
M∑
i=1

3N∑
j=1

Vij
∂

∂xj

K(x∗,xi), (2.7)

which describes how the potential energy predictor is derived from the integrated force

field estimator.

The sGDML model builds upon the GDML model while taking into account the

permutational symmetry of atoms. To treat all permutationally symmetric molecules as

equivalent molecules, it employs a symmetric version of the kernel function defined as:

Ksys(xa,xb) =
1

S2

S∑
p=1

S∑
q=1

K(D(Ppxa),D(Pqxb)). (2.8)

Here, Pp represents the p-th permutation matrix within the molecular permutational

group, and S is the number of permutations for the molecule. By utilizing this sym-

32

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

metric kernel function, it ensures that the measured similarity remains consistent for the

same molecule configuration with different permutations. This modification significantly

enhances the accuracy when modeling molecules with diverse permutational symmetries,

such as benzene, toluene, and paracetamol. However, the analytical solution of V involves

the inversion of matrix KHess(X,X) + λI3MN , which has dimensions of 3MN × 3MN .

The computational cost of this matrix inversion scales as O(M3N3), limiting its appli-

cation to small systems and hindering predictions in systems with a moderately large

number of atoms.

2.2.3 Intuition of AFF

Given the connections between KRR and GP models discussed in Section 1.1.4, we

start with a GP model for any molecule configuration x. Let’s consider treating the

energy E(x) ∈ R as a noisy observation that follows a GP:

E(x) ∼ GP
(
µE(x), σ

2(K(x,x′) + λ)
)
, (2.9)

where K(·, ·) represents the correlation function, and λ is the nugget parameter. Due

to the relation between the potential energy and the force vector in Equation (2.1), the

distribution of the force vector of configuration x follows

F(x) = −∇xE(x) ∼ GP(−∇xµE(x), σ
2(∇xK(x,x′)∇T

x′ + λI3N)). (2.10)

This reformulation relies on the linear transformations of GP discussed in Section 1.3. If

a constant mean is employed in Equation (2.9), it leads to −∇xµE(x) = 0.

Denote R(xa,xb) as the correlation matrix between the forces of two molecules, la-

beled as a and b, with positions denoted as xa and xb. The element at position (i, j)

33

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

follows:

(R(xa,xb))ij = ∇raiK(D(xa),D(xb))∇T
rbj . (2.11)

The correlation between the i-th atom of molecule a and the jth atom of molecule b can

be calculated as follows:

(R(xa,xb))ij = ∇raiK(D(xa),D(xb))∇T
rbj

=
NN∑

pq=11

NN∑
mn=11

∂2K

∂Dpq∂Dmn

∂D(xa)pq
∂rai

∂D(xb)mn

∂rbj

=



∂2K
∂Dij∂Dij

∂D(xa)ij
∂rai

∂D(xb)ij
∂rbj

if i > j,

∂2K
∂Dji∂Dji

∂D(xa)ji
∂rai

∂D(xb)ji
∂rbj

if i < j,∑
p or q=i;

∑
m or n=i

∂2K
∂Dpq∂Dmn

∂D(xa)pq
∂rai

∂D(xb)mn

∂rbj
if i = j,

(2.12)

where ∂2K
∂Dpq∂Dmn

is the simplified notation of ∂2K(D(xa),D(xb))
∂D(xa)pq∂D(xb)mn

.

Based on the equation (2.12), when i = j, the number of terms in the summation is

much larger than the number of terms when i ̸= j. This implies that the absolute corre-

lation between different atoms is typically smaller than the correlation between identical

atoms. This empirical observation usually holds true for common kernel functions such as

the Gaussian kernel and Matérn kernel before enforcing the constraint of permutational

symmetry.

It’s worth noting that, after applying the permutational symmetric kernel function

from Equation (2.8), the absolute correlation between some parts of atoms is typically

smaller than the correlation between the other set of atoms. This is a consequence of

the permutation operation of R(xa,xb))ij for permutable atoms. This observation is

empirically confirmed in simulated datasets.

For instance, in part (a) of Figure 2.3, which pertains to benzene, after adopting the

34

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

permutational symmetric kernel function, the correlation between “same type” atoms is

substantial due to permutational symmetries, whereas the correlation of forces between

atoms in different atom sets remains low. In section 2.3.1, we will provide a detailed

explanation of what constitutes a “same type” set of atoms.

This intriguing phenomenon suggests a natural sparsity in the correlation matrix,

which we can potentially leverage to further reduce computational complexity when em-

ulating the force fields of molecules.

Figure 2.3: Covariance structure between atomic forces. Displayed are permutation-
ally symmetric covariance matrices of atomic forces on three simulated configurations
for (a) benzene, (b) uracil, (c) aspirin, and (d) naphthalene. Lighter colors indicate
smaller absolute covariance values, and they indicate most elements in these matrices
are near zero.

35

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

2.3 Atomic Force Field Method

2.3.1 Permutationally Equivalent Set

Because of the existence of different permutation orders of the atoms for the same

molecule, one molecule might have several relevant physical permutation symmetries,

leading to the same potential energy surface and force field [3, 72]. To follow this idea,

we first define a group of atoms to be permutationally equivalent if they are interchange-

able through any permutational operation. It is worth noting that the permutational

symmetry here does not consider the reflection symmetry. In other words, atoms are

not considered as the same PE set because they may have very different local chemical

environments, and thus different forces even if they are plane symmetry. We call atoms

from different PE sets permutationally distinct atoms. The AFF approach predicts the

force of an atom in a molecule based on the force from its PE group of atoms rather

than all atoms in this molecule. Figure 2.3 indicates that we may not need to include all

atoms in a large covariance matrix for predicting atomic force to achieve computational

efficiency in emulation, as many elements in the Hessian kernel matrix are near-zero.

For example, all four hydrogen atoms in methane (CH4) form one set of PE atoms,

while the carbon atom itself is another PE set, as the coordinates of all hydrogen atoms

are interchangeable among all permutation symmetries. Benzene (C6H6), as another

example, is comprised of just two sets of PE atoms–the first PE set containing the six

carbon atoms and the second PE set containing the six hydrogen atoms. By contrast,

all twelve atoms in a uracil molecule (C4H4N2O2) are permutationally distinctive, due

to the unique atomic environments of each atom, which leads to twelve PE atom sets.

The PE sets of atoms can be found by minimizing the loss function through the

36

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

permutation matrix P∗ [61, 73]

P∗ = argmin
P

∥PAHP
T −AG∥, (2.13)

where AH and AG are adjacency matrices of two isomorphic molecules, and Aij = ∥ri −

rj∥. By analyzing the index location from the permutation matrices of all permutation

symmetries on the same type of molecule, we can partition the atoms from the same

molecule into sets of PE atoms Si = {ri1, · · · , rili}, where ri1, · · · , rili are atoms belonging

to the ith atom set, for i = 1, ..., L.

As shown in Figure 2.3, the absolute correlation between the atoms in a PE set in

Equation (2.8) is much larger than zero. We found that using the PE atoms significantly

improves the predictive accuracy of atomic forces, compared with the approach that

groups each atom as one set. This result is sensible as the forces of PE atoms are similar,

and the correlation of forces from the PS kernel between PE atoms can capture the

similarity. In contrast, the conventional Hessian kernel does not encode the permutational

symmetries into the model. Note that the correlation of atomic forces from different PE

sets is close to zero. This feature allows us to model atomic forces in each PE set

separately, which substantially reduces the computational complexity.

2.3.2 Atomized Force Field Model

Consider a molecule that has N atoms grouped into L PE atom sets, each set con-

taining li atoms, for i = 1, ..., L, we decompose the large covariance matrix to construct

predictive models for each PE atom set in parallel, as illustrated in Figure 2.4. Let

X = {x1, ...,xM} be M configurations of this molecule that have been simulated from

AIMD, and let xi
j be a 3 × li matrix that contains the ith PE set’s atomic coordinates

in xj. Denote the forces of the atoms of ith PE set in M training configurations by a

37

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.4: AFF force field on Uracil. This figure shows covariance matrices of atoms
in the AFF method on uracil, a molecule for which each atom is its own PE set.
Here there is a large correlation between atomic force on the same atom at different
configurations, but a very small correlation between different atoms at the same or
different configurations. The rightmost part of the figure shows the sub-covariance
matrix of the atomic force of each atom in uracil across five simulated configurations.

3Mli vector Fi. For a new molecular configuration x∗, the KRR estimator minimizes

the loss function that penalizes both squared error fitting loss, and the complexity of the

latent function simultaneous [42], leading to a weighted average of the force vectors at

M training configurations:

F̂i(D(x∗)) = ω∗
iFi, (2.14)

where the weights follow ω∗
i = RT

x∗(R+ λI3Mli)
−1 with I3Mli being an identity matrix of

size 3Mli × 3Mli. Here R is a 3Mli × 3Mli covariance matrix with the (j,k)-th 3li × 3li

block term being the Hessian matrix of the kernel function ∇xi
j
K(D(xj),D(xk))∇T

xi
k
; λ is

an estimated regularization parameter; Rx∗ is a 3Mli×3li matrix, where the jth 3li×3li

block term is ∇xi
j
K(D(xj),D(x∗))∇T

x∗i .

38

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

In addition to a point prediction on an untested run, the GP regression can provide

closed-form predictive intervals, which is useful for uncertainty assessment of predictions.

Thus, we can construct a GP regression model of atomic forces separately for each PE

atom set. Given any M training simulation runs, the marginal distribution of the force

vector Fi follows a multivariate normal distribution:

(
Fi | R, σ2

i , λ
)
∼ MN

(
0, σ2

i (R+ λI3Mli)
)
, (2.15)

for i = 1, · · · , L, where σ2
i is a variance parameter for the i-th PE set, and λ is the

nugget parameter shared across all PE sets. Here the variance parameter σ2
i can differ

across different PE sets, as the scale of the force can vary significantly for atoms in each

PE atom set. The range and nugget parameters are assumed to be the same, as the

smoothness of the latent function that maps atoms’ positions to forces is approximately

the same across different atom sets. The computational complexity of the predictive

mean in a GP emulator with the same kernel and nugget parameters across atom sets is

much smaller than the GP emulator with different parameters [40].

The power exponential covariance and the Matérn covariance function are widely used

as the covariance function in GP models [42]. The Matérn kernel function with roughness

parameter 5/2 is used as the default covariance function of a few GP emulator packages

[44, 74], as well as the GDML approach for energy-conserving force field emulation [4].

This is partly because the sample path of GP with this kernel is twice differentiable,

leading to relatively accurate predictions for both rough and smooth response surfaces.

Here we also use the Matérn kernel function with roughness parameter 5/2:

K(D(xa),D(xb)) =

(
1 +

√
5
d

γ
+

5d2

3γ2

)
exp

(
−
√
5
d

γ

)
, (2.16)

39

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

where γ is the range parameter, and d is the Euclidean distance between D(xa) and

D(xb). Similar to the adjustment of the kernel function used in sGDML [3], we transform

the Matérn kernel to the PS kernel function in Equation (2.8) in the AFF emulator, to

capture permutational symmetries between PE atoms. The range parameter from this PS

isotropic kernel function is related to the descriptors, which is a high dimensional vector

of the inverse pairwise distance of a molecule generated from the simulator. Conditional

on γ and λ, the maximum likelihood estimator of σ2
i is σ̂2

i = S2
i /(M3li) with S2

i =

FT
i (R + λI3Mli)

−1Fi for the i-th PE atom set. The nugget parameter λ and the range

parameter γ can be estimated by numerically optimizing the profile likelihood or by

cross-validation with respect to squared error loss in predictions. When the number

of training configurations is small, the marginal posterior mode may be used to avoid

unstable estimation of the range and nugget parameters [41].

Conditional on the estimated parameters θ̂i = [σ̂2
i , γ̂, λ̂], the predictive distribution

of the atomic forces in the i-th PE atom set Fi(D(x∗)) at any configuration x∗ follows a

multivariate normal distribution

(
Fi(D(x∗)) | Fi, θ̂i

)
∼ MN (F̂i(D(x∗)), σ̂2

iK
∗
i (x

∗,x∗)), (2.17)

where the predictive mean vector and predictive covariance matrix follows

F̂i(D(x∗)) = RT
x∗(R+ λ̂I3Mli)

−1Fi, (2.18)

σ̂2
iK

∗
i (x

∗,x∗) = σ̂2
i (R

∗ −RT
x∗(R+ λ̂I3Mli)

−1Rx∗), (2.19)

with R∗ being a 3li×3li Hessian matrix of the kernel function ∇x∗iK(D(x∗),D(x∗))∇T
x∗i .

40

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

2.4 Potential Energy Prediction with the AFF

Emulating energy based on integrating both simulated force vector and energy can

also induce high computational costs, due to computing the inversion of a large covariance

matrix of simulated force vectors and energies [2]. Here we introduce a computationally

feasible approach to emulate the potential energy. For any molecule with atomic con-

figuration x∗, the potential energy E(x∗) correlates with the vector of potential energy

from previously simulated molecular configurations E = (E(x1), ..., E(xM)), and the

unobserved atomic force at this molecular configuration F(x∗). Conditional on E and

F(x∗), the correlation between E(x∗) and forces at other configurations is small. De-

note the forces of all atoms in M training configurations by a 3MN vector F. Thus

the predictive distribution of E(x∗) conditional on both simulated energy and atomic

force [E(x∗) | E,F] can be approximated by (E(x∗) | E,F(x∗)), where F(x∗) can be

estimated by the predictive distribution in the AFF model discussed in Section 2.3.2.

The motivation of the method is relevant to the inducing point approximation approach

[59], where given outcomes of a function at a set of well-chosen induced pseudo-inputs,

the predictive distribution of the outcome at a new input is assumed to be condition-

ally independent of outputs in the training dataset. Here, the inducing input points of

E(x∗) are [E,F(x∗)], due to a large correlation between these variables. Conditional

on (E,F(x∗)), we assume the force vector F(x∗) at this configuration is approximately

independent of other training configurations of force vectors. This simplification avoids

constructing and computing the large Hessian covariance matrix of force vectors, allow-

ing us to perform inversion of a (3N + M) × (3N + M) covariance matrix, instead of

inversion of a (3N + 1)M × (3N + 1)M covariance matrix, in energy prediction. When

predicting energy in many new molecular settings, matrix inversion of the sub-covariance

matrix for simulated energy is shared among all predictive distributions. Thus, they are

41

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

only needed to be computed once. Details of efficient computation for predicting energy

are discussed in Appendix A.1.

For any molecule with atomic coordinates x∗, the learning objective can be repre-

sented by a combined vector of force and energy EF = (E(x∗),ET ,FT (x∗))T , where

E(x∗) is the potential energy of the molecule with atomic coordinates x∗, and F(x∗)

is the force field vector of this molecule. Assuming a GP model for potential energy

with covariance function K(·, ·) and mean function µ(·), the random vector EF follows

a multivariate normal distribution:

EF ∼ MN (µEF ,ΣEF) , (2.20)

where the mean vector is given as follows

µEF =
(
µ(x∗),µT

X,−∇rµ(x
∗)T
)T

,

with µ(x∗) assumed to be an unknown constant m (estimated by MLE in this work), and

µX = m1M . The covariance matrix in Equation (2.20) is given as follows

ΣEF = σ2



Kx∗,x∗ KX,x∗ −JT

x∗,x∗

Kx∗,X KX,X −JX,x∗

−Jx∗,x∗ −Jx∗,X Rx∗,x∗

+ λIM+3N+1

 ,

where the upper left four matrix blocks are the covariance of energy vectors (E(x∗),ET)T .

The (i, j) element of the correlation matrix KX,X is K(D(xi),D(xj)), for i = 1, ...,M

and j = 1, ...,M , and Kx∗,x∗ = 1. The vector Kx∗,X is defined as:

Kx∗,X = KT
x∗,X = (K(D(x∗),D(x1)), ..., K(D(x∗),D(xM)))T , (2.21)

42

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

which represents the correlation between the potential energy at input x∗ and the poten-

tial energy at training inputs X. In addition, the 3N × 3N correlation matrix between

forces is denoted by R(x∗,x∗) = ∇x∗K(D(x∗),D(x∗))∇T
x∗ . Finally, J denotes the corre-

lation between energy and forces. Here Jx∗,X is a 3N ×M matrix with the jth column

being ∇x∗K(D(x∗),D(xi)), and Jx∗,x∗ is the correlation matrix between force and energy

for molecule configuration with atom positions x∗.

Similar to the parameter estimation of AFF model discussed in Section 2.3.2, the

mean and variance parameters can be estimated by the MLE of the simulated (training)

energy vector below

m̂ = (1T
M(KX,X + λIM)−11M)−11T

M(KX,X + λIM)−1E,

σ̂2 =
(E− 1m̂)T (KX,X + λIM)−1 (E− 1m̂)

M
.

The range parameter γ and the nugget parameter λ in the kernel function can be esti-

mated through numerical optimization by cross-validation or MLE.

Based on the previous discussion, assuming that the given [E,F(x∗)], E(x∗) is ap-

proximately independent of the rest of force vectors, then we have

(
E(x∗) | E,F, m̂, σ̂2, γ̂, λ̂

)
.∼ N

(
Ê(x∗), σ̂2K∗

E(x
∗,x∗)

)
, (2.22)

where
.∼ denotes the approximation of the predictive distribution, and the predictive

mean is a weighted average of training energy E and training force F:

Ê(x∗) = ω∗
EE+ ω∗

FF. (2.23)

Closed-form expressions of ω∗
E, ω

∗
F and K∗

E(x
∗,x∗) are derived in Appendix A.2.

43

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.5: Schematic representation of different approaches in predicting atomic force
and potential energy of molecules. GDML and sGDML methods predict the force of
molecule at a new configuration based on forces on simulated configurations. The
predictive force and energy were used to estimate the energy of this molecule. The
FCHL method estimates the energy and atomic force by a joint model fitted using
both the simulated force and energy samples. The AFF method partitions the atoms
into PE atoms set and the atomic force of atoms of a new configuration is predicted
based on the simulated force of atoms in the same PE set. The energy of the molecule
at this configuration is predicted based on the predicted atomic force and energy from
simulated samples.

In practice, the energy on the testing set is estimated in batches using the conditional

distribution in Equation (2.22). The advantage of our method is that we exploit the

estimable information from the force vector, but avoid computing the inverse of the

gigantic kernel matrix on F, which substantially simplifies the computation.

The comparison between the AFF and GDML models for predicting the molecular

energy is illustrated in Figure 2.5. For GDML, as well as for both sGDML and FCHL,

all simulated energy and force are used, but the inversion of a large covariance matrix

is computationally expensive. Here, conditional on the simulated energy and force of

a new molecular configuration, we assume the potential energy of a new molecule is

independent of the forces of other molecular configurations simulated before. Since AFF

does not need to handle the 3MN × 3MN covariance matrix of simulated force vectors,

it is more scalable for predicting the molecular level information of larger systems.

44

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

2.5 Numerical Results

We begin by comparing full Gaussian process regression and sparse Gaussian process

regression for simple energy emulation using the global descriptor defined in sGDML and

the AFF model. Subsequently, we evaluate the performance of the AFF approach by ana-

lyzing the required training time and learning curves on a variety of molecules, including

benzene, uracil, and naphthalene from the MD17 dataset, and aspirin, alpha-glucose,

and hexadecane from our simulated dataset (see Appendix A.3 for simulation details).

We compare the predictive error and required training time from AFF with some of the

most commonly used KRR-based models, such as the GDML and sGDML approaches

for force and energy predictions. We also conducted a performance comparison between

AFF and SOAP-GAP, which is based on the sparse approximation of covariance in a GP

model. All comparisons are implemented under the same training and testing set. In

addition, we provide the uncertainty assessment of predictions from our model through

the proportion of held-out outcomes covered in the 95% predictive interval and the aver-

age length of the predictive interval (see Table 2.2 for details on the prediction accuracy,

required training time, and uncertainty assessment of the AFF predictions). The ra-

tio of the average length of the predictive interval to the range of testing forces Lnorm,

and the difference between the 95% confidence level and the proportion of the held-out

samples contained in the predictive interval ∆p0.95CI on the held-out dataset are shown in

Figure 2.9. An efficient method should have a small predictive error, small training cost,

short average length of the predictive interval, and around 95% of the held-out test data

covered by the 95% predictive interval.

45

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.6: The learning curves for force and energy on naphthalene, benzene, and
uracil from the MD17 dataset, and aspirin, alpha-glucose, and hexadecane from our
simulated dataset (ordered from left to right). Learning curves are presented for the
GDML and sGDML methods as well as the AFF method under the same training,
validation, and testing set. The training sample size (x-axis) is tweaked for the AFF
method on force prediction. The AFF uses a larger training set for predicting forces
for the first four molecules, and the computational time(shown as the blue bars) is
still much lower compared with the GDML and sGDML approaches. The top row
contains the learning curve [in terms of mean absolute error (MAE)] and training
time for the out-of-sample force prediction. The bottom row contains the learning
curve and training time for the out-of-sample energy prediction. GDML and sGDML
approaches are equivalent on uracil, alpha-glucose, and hexadecane, as all atoms are
permutationally distinct. Thus only two learning curves are shown for those molecules.

46

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

2.5.1 Comparison between Full GPR and Sparse GPR

Constructing a sparse model on Gaussian process regression [11, 75, 76] is a common

approach to address the computational cost associated with full Gaussian process models.

Unlike the local descriptors used in the GAP model, both the GDML and our AFF

method utilize global descriptors as inputs. To highlight the practical significance of

the AFF model in reducing complexity through the natural sparsity of the correlation

matrix, we will initially compare the performance of energy emulation between the full

Gaussian process regression model using only energy information and the sparse GPR

(SGP) model employing a similar sparse representation as used in the GAP approach,

all under the same settings.

In this section, both the full GPR and SGP models employ the same descriptor D(x),

as demonstrated in the AFF model, and utilize the same Matérn kernel function with a

roughness parameter of 5/2 to define the kernel function. In the full GPR setting, the

energy E is assumed to follow a multivariate normal distribution, given by:

E | X, θ, σ2, γ, λ ∼ MN (µ(X), σ2(R+ λIM)), (2.24)

whereR is the correlation matrix among the data with (i, j)th elementRij = K(D(xi),D(xj)),

λ is the nugget parameter of the random noise in E, and µ(X) = [θ, · · · , θ]T with θ be

the mean parameter. Conditional on γ and λ, the maximum likelihood estimator of θ is

θ̂ = (HT (R+ λIM)−1H)−1HT (R+ λIM)−1E, where H = [1, · · · , 1]T , and the maximum

likelihood estimator of σ2 is σ̂2 = S2/M with S2 = (E − Hθ̂)T (R + λIM)−1(E − Hθ̂).

The γ̂ and λ̂ are estimated numerically following the parameter estimation procedure in

Section 1.1.1.

Conditional on the estimated parameter θ̂, σ̂2 γ̂ and λ̂, the predictive distribution E∗

47

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

of an unknown test configuration x∗ for the potential energy follows

E∗ | x∗,E, θ̂, σ̂2, γ̂, λ̂ ∼ N (µ∗, σ̂2K∗), (2.25)

µ∗ = θ̂ +R∗M(R+ λ̂IM)−1E, (2.26)

K∗ = K(D(x∗),D(x∗))−R∗M(R+ λ̂IM)−1RT
∗M , (2.27)

where R∗M is the 1 × M correlation matrix for x∗ and data X with i-th element be

K(D(x∗),D(xj)). The Equation (3.14) is the defining equation for the full Gaussian

process regression.

In the sparse Gaussian process emulation, we denote M∗ as the number of repre-

sentative points, and Xr represents the set of representative samples. The selection of

the representative set is carried out using the leverage-score CUR [77] method, which is

similar to the approach used for selecting representative environments in GAP [6]. Using

the low-rank approximation of correlation matrices

R ≈ RMM∗R−1
M∗M∗RT

MM∗ , (2.28)

R∗M∗ ≈ R∗M∗R−1
M∗M∗RT

MM∗ , (2.29)

where RMM∗ is cross correlation matrix between Xr and X.

Using the Woodbury matrix identity, the predictive mean of this SGP is given by

µ∗ ≈ θ̂ +R∗M∗(λ̂RM∗M∗ +RT
MM∗RMM∗)−1RT

MM∗(E− θ̂H), (2.30)

48

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.7: The learning curves (RMSE/STD) of Full GP (blue) and SGP (red)
for energy on naphthalene, benzene, uracil from the MD17 dataset, and aspirin, al-
pha-glucose, hexadecane from our simulated dataset (ordered from left to right). The
descriptor and kernel function are the same between Full GP and SGP methods. The
number of representative samples used in SGP equals 200.

.

The comparison between full GP and SGP is presented in Figure 2.7. When using a

global descriptor to encode molecule configurations, the figure suggests that the sparse

GP based on our global descriptor doesn’t perform as well in terms of accuracy compared

to the simple single-energy-based GP model. This is because it’s challenging to find an

ideal representative set that accurately represents the entire training set using the global

descriptor.

2.5.2 Comparison with GDML and sGDML Methods

Previous studies have shown that the GDML and sGDML have relatively small errors,

compared with other approaches [2, 3]. Indeed, according to Figure 2.6, the predictive

error is relatively small for both approaches. However, both GDML and sGDML have a

large computational cost, mainly due to the inversion of 3NM×3NM covariance matrix

of force vectors at all training configurations. Because of the reduced computational

order on force prediction by partitioning the atoms into PE atom sets, the AFF model

has a smaller predictive error of force prediction (blue curves) when using similar or even

less training time (blue histograms) compared to GDML and sGDML approaches. The

improved accuracy of force predictions by the AFF model is even more noticeable in the

49

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

additional simulation of aspirin, alpha-glucose, and hexadecane as shown in Figure 2.6.

For some small molecules in the MD17 dataset, the AFF method could achieve better

accuracy with less computational cost by using more training samples. For the larger

molecules such as glucose and hexadecane, the proposed AFF method shows no loss of

accuracy compared to the sGDML predictions at the same number of training samples.

The sGDML approach typically has a smaller predictive error compared with GDML

for molecules with at least two PE atom sets, such as benzene, aspirin, and naphthalene

molecules, consistent with the result reported in the previous study [3]. This is because

sGDML approach encodes the PS kernel to properly represent the large correlation of

forces between atoms in the PE atom set. Note that here the reduced computational

cost in AFF allows us to train our models with more observations than the GDML and

sGDML approaches for predicting the force with an even smaller computational budget.

The number of training observations required in training the AFF model, however, is

still very small (from a few hundred to a thousand).

In comparison, neural network (NN) approaches typically need a larger set of training

observations (ranging from 104 to 105) to achieve similar or better predictive performance

[7, 8, 78, 79]. Several recent NN methods are worth exploring [80, 81], as they seem to

require fewer samples than conventional NN approaches. On the other hand, only two

parameters (range and nugget parameters) in the GP model need to be numerically

optimized, whereas a large number of parameters may need to be numerically optimized

in NN approaches.

Given the same number of observations, the error in predicting the potential energy

by the AFF model is typically smaller than the sGDML and GDML approaches, as

shown in the second rows of Figure 2.6. For some molecules, such as naphthalene and

benzene in the MD17 data set, and alpha-glucose and hexadecane in our simulated data

set, the AFF model has much smaller predictive error than sGDML approach. This is

50

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

because our approach incorporates both force and energy vectors in energy prediction

when making predictions on energy. Applying the sGDML with the hybrid loss function,

the predictive error of it is about the same as the AFF model for alpha-glucose and

hexadecane. Jointly modeling force and energy was recently studied in [2], which could

have a large computational cost. Here the approximated approach introduced in Section

2.4 allows us to keep the computational complexity of predicting the energy the same as

predicting the force, while maintaining relatively high predictive accuracy as that in [2].

For larger molecules, such as alpha-glucose, aspirin, and hexadecane (with 21 - 51 atoms)

in our simulated dataset, the computation reduction is huge (see the blue histograms in

Figure 2.6). For these examples, AFF achieves higher accuracy in predicting atomic force,

despite costing less than 10% of the training time of the sGDML approach, as given in

Table 2.2. Furthermore, the sGDML method requires a larger memory size to store the

covariance of the simulated force vectors. Since we only need to store the covariance of

force vectors in each PE atom set, the memory requirement is often much smaller.

Among all the molecules we compared, the AFF model has a larger predictive error

for the uracil, using the same number of training inputs (third panel in the second row

in Figure 2.6). Since the AFF model estimates the energy based on the emulated atomic

force, the accuracy of energy prediction would be reduced when the emulated force is not

accurate. As shown in Figure 2.6, the estimated force by AFF for uracil is not accurate

when the number of the training sample is small. This problem can be solved by using

a moderately large sample size (≈ 1000) to achieve similarly accurate predictions as

the sGDML model. The predictive energy vector by the AFF model along the AIMD

trajectories is graphed in Figure 2.8 along with the held-out energy in the simulation.

Also plotted are the predictive atomic forces and the truth at two held-out configurations.

Based on M = 800 simulated forces and energies, predictions of potential energies and

forces by the AFF model are accurate.

51

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.8: Energy of uracil obtained from the AFF method along the AIMD trajec-
tories, where the AIMD energies are displayed in the black curve and predictions of
held-out energies from the AFF model are graphed in yellow crosses. The green bars
are the 95% predictive intervals of the AFF energies. As the length of the intervals is
very small, the intervals almost overlap with the AIMD energies and they are nearly
invisible. Depicted above the panel of energy in the upper half of the figure is a com-
parison of AIMD atomic forces and predicted atomic forces by the AFF model on two
randomly selected molecules. Within each of the two pairs shown, the same molecule
is illustrated twice with the depiction on the left displaying AIMD atomic forces and
the depiction on the right displaying the atomic forces by the AFF model. M = 800
simulated forces and energies were used to train the AFF model for predictions.

2.5.3 Comparison with Gaussian Approximation Potential Method

The Gaussian approximation potential (GAP) [6] framework is another widely used

method to reproduce the potential energy surface, based on sparse approximation of

the covariance in a GP model. In GAP, the total energy of a system is decomposed

into atomic energies and then generates the ML-based interatomic potentials using local

atomic neighborhood descriptors such as SOAP vector [5], instead of global descriptors

used in GDML and AFF methods. We are also interested in comparing the performance

of the AFF with a naturally sparse covariance matrix to that of GAP, which relies on a

sparse approximation of the covariance matrix.

52

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Following the steps from [77], we use the leverage-score CUR for the sparse set selec-

tion. Table 2.1 compares the accuracy of predicted energy between AFF and SOAP-GAP

(using QUIP code [82]) on three molecules from the MD17 dataset. The predictive er-

ror of the AFF method is around one order of magnitude smaller than the SOAP GAP

method for all scenarios.

Compared with the SOAP-GAP method, the AFF method does not enforce additional

sparse approximation, as the sparsity comes naturally from the kernel function of atomic

forces that satisfies energy conservation and permutation symmetry of atoms, leading to

a faster learning rate given a small set of observations

Unlike the local descriptor used in the Gaussian Approximation Potential model, the

AFF method uses a global descriptor to characterize correlation across all atoms. For em-

ulating a system of particle interactions with a large number of particles, approximation

based on local information would be needed to reduce the computational speed. Though

a few recent works have shown local descriptors are efficient for emulating interactions

between a large number of small molecules (e.g. water molecule) [7, 8, 58], emulating

interactions for larger molecules shown here are harder, due to complex molecule struc-

tures and chemical bonds. It is interesting to extend the AFF approach to systems of

interactions of moderately large molecules. Additional modeling steps and approxima-

tion steps would be needed to accelerate the AFF approach for emulating systems with

a large number of particles.

2.5.4 Numerical Performance of AFF

Table 2.2 gives the predictive error of force vectors and energy, the percentage of

forces covered in the predictive interval, the average length of the predictive intervals of

forces and computational costs in emulation from different methods. First, the predictive

53

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

RMSE/STD Performance
Molecule GAP Energy AFF Energy GAP Force AFF force
Naphthalene 0.54 0.024 0.56 0.022
Benzene 0.47 0.043 0.49 0.015
Uracil 0.326 0.05 0.365 0.05

Table 2.1: The second to last columns show the root mean square error (RMSE) over
the standard deviation of test samples on estimated energy and force. We use 2000
samples to train the SOAP-GAP method and the size of the induced-point set is 100.
As a comparison, the AFF model is trained by only 200 samples.

Performance of AFF
Molecule Energy [kcal/-

mol]
Force
[kcal/mol/Å]

Training
Time [s]

PCI

(95%)
LCI

(95%)
Naphthalene 0.07 (0.12) 0.11 (0.11) 68 (345) 98.5% 1.36
Benzene 0.04 (0.07) 0.173 (0.176) 23 (45) 85% 0.7
Uracil 0.10 (0.10) 0.239 (0.249) 16 (43) 97.8% 2.37
Alpha-glucose 0.09 (0.36) 0.0003 (0.012) 32 (543) 100% 0.03
Hexadecane 0.008 (0.35) 0.0008 (0.003) 37 (767) 99% 0.05
Aspirin 0.06 (0.09) 0.0028 (0.009) 32 (629) 99.8% 0.08

Table 2.2: The second and third columns show the MAE on estimated energy and
force. The fourth column is the training time of the model at shown force accu-
racy, which is provided in seconds. The numbers in parentheses are the sGDML
results, and they are tested under the same held-out test set. The specific criteria
employed are the following: PCI(95%) = 1

3NM∗
∑M∗

i=1

∑3N
j=1 1{F(x

∗
i)j} ∈ CIij(95%),

LCI(95%) = 1
3NM∗

∑M∗

i=1

∑3N
j=1 length{CIij(95%)}, where M∗ is the number of test

samples, F(x∗
i)j is the jth element from the force vector prediction of the output of

the ith held-out molecule; CIij(95%) is the 95% predictive credible interval from the
multivariate normal distribution in (2.17); and length{CIij(95%)} is the length of the
95% predictive credible interval. The number of training samples used in the AFF and
sGDML (in parentheses) method is naphthalene 1600 (1000), benzene 1200 (1000),
uracil 1600 (1000), alpha-glucose 1000 (1000), aspirin 1200 (1000), and hexadecane
600 (600).

error of AFF methods for both forces and energy is typically not larger than the sGDML

approach. For some molecules such as alpha-glucose and hexadecane, the predictive

error of the AFF model seems to be one order of magnitude smaller, based on the same

held-out test set. It is worth noting that it takes the AFF model less computational

costs (ranging from 1/2 to 1/30 of costs compared to sGDML) to achieve a similar or

54

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

Figure 2.9: The bar charts show the proportion of average AFF predicted atomic
force confidence interval LCI(95%) over the range from testing samples changing
with the number of training samples. The blue line charts show the difference ∆p
between confidence level 0.95 and actual coverage of AFF predicted atomic force con-
fidence level. The proportion Lnorm is given by ρ = LCI(95%)/range(F(x∗)),
where LCI(95%) = 1

3NM∗
∑M∗

i=1

∑3N
j=1 length{CIij(95%),

and range(F(x∗)) = max(F(x∗))−min(F(x∗)). The
∆p0.95CI is given by ∆p0.95CI = 0.95− PCI(95%), where

PCI(95%) = 1
3NM∗

∑M∗

i=1

∑3N
j=1 1{F(x∗

i)j} ∈ CIij(95%).

higher level of predictive accuracy. These results indicate the AFF model is more efficient

in emulating atomic forces and energy in AIMD simulation. Furthermore, around 95%

(or higher percentage) of the held-out atomic forces are covered by relatively short 95%

predictive intervals from the AFF approach, indicating that the AFF model provides a

reliable way to quantify the uncertainty in predictions.

Furthermore, it is worth mentioning that the reduction of computational cost by the

AFF model is more pronounced on molecules with more PE atoms’ sets, such as alpha-

glucose, aspirin, and hexadecane. For molecules with fewer PE sets such as benzene

(where we can only partition the atoms into two PE sets for each configuration), the

computational reduction will be smaller. Thus, our approach may be useful for reducing

the computational cost of interactions between a large number of molecules, as most PE

sets may only contain one atom.

Finally, uncertainty assessments of predictions of the AFF approach are shown in

Figure 2.9. Compared with the range of observations, the average length of 95% (pink

55

Forward Efficient Force Field and Energy Emulation through Partition of Permutationally
Equivalent Atoms Chapter 2

bar) is much shorter, indicating a small uncertainty associated with predictions. The

difference between the number of held-out test samples covering the 95% interval and

the nominal 95% range (blue curves) is small, meaning that the uncertainty is accurately

quantified. The internal assessment of the uncertainty of the AFF model can be used to

identify the input region with large uncertainty, and sequentially design simulation runs

for uncertainty reduction or Bayesian optimization [83, 84]. With a fast and accurate

emulator of the force vectors of the particles, one can also utilize experimental data from

optical or electronic microscopy to inversely estimate dynamical properties of the system

[85, 86], and to identify new features by statistical tests to improve simulation models

[87].

56

Chapter 3

High Dimensional Optimization on

Inverse Force-Fields Design

A fundamental goal of materials design is to optimize specific materials properties while

accounting for practical constraints rooted in chemistry and physics, enabling the syn-

thesis of new materials. Due to the high dimensionality involved in molecular geometry

including the atom positions, types of atoms, and chemical bonds, it is challenging to

optimize the entire input space. Even if optimizing the positions of N atoms and explor-

ing variations from a fixed initial structure within a pre-specified number of grids c, the

number of unexplored configurations cN becomes astronomically large with the increase

of c and N .

Many years ago, researchers embarked on a quest to build consistent and predic-

tive quantum-chemical models aimed at uncovering valuable structure-function relation-

ships in various realms of materials chemistry [88]. The physics and chemistry of these

molecules are governed by quantum mechanics, which can be solved via the Schrodinger

equation. In general, the challenge of molecular design involves nonlinear optimization

[89]. Alterations in molecular structure, and consequently, changes in the matrix elements

57

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

of the corresponding Hamiltonian, result in variations in wave functions, energy eigen-

values, and derived properties. The contributions from these quantities are inherently

nonlinear.

In recent years, the rapid development of statistical and machine learning surrogate

models provided an alternative way of learning the mapping from molecule structure to

molecular properties, while maintaining a high level of accuracy and greatly reducing the

complexity order compared to simulation methods such as AIMD. From the simulated set

of samples, the surrogate models are able to accurately predict the molecular properties

given molecule structure information. The surrogate models facilitate the exploration of

the mapping from molecular properties to molecular configurations, thereby providing a

set of configurations for molecules that attain the desired properties.

Facilitating the inverse mapping from potential energy to the molecular configuration

is crucial in the field of computational chemistry such as energy minimization. However,

the abundance of degrees of freedom on atomic position for describing potential energy

surfaces makes the prediction of a molecular structure satisfying certain energy a chal-

lenging task. This chapter focuses on the inverse mapping problem, aiming to construct

molecule structures that meet predefined potential energy conditions. This problem is

relevant to finding the optimized structure with a local or global potential energy min-

imum. Instead of employing conventional optimization techniques that often require

gradient evaluations or a large number of iterations, we explore the capacity to resolve

the geometry optimization problem through a learned inverse mapping by leveraging the

AFF emulator introduced in Chapter 2 and using a Bayesian optimization (BO) approach

[84, 90].

58

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

3.1 Background and Literature Review

The potential energy function, denoted as E(rN), serves as the foundational deter-

minant of the thermodynamic and kinetic characteristics of a classical atomic system

comprising N atoms. The input of this function has 3N dimensions for a system of

N atoms. Energy optimization is of paramount importance because the lowest-energy

structural arrangement of a molecule fundamentally governs a majority of its properties.

As a result of energy minimization, a detailed molecular structure is obtained, including

geometric information such as Cartesian coordinates.

Within the landscape of the potential energy function, various significant points exist,

commonly referred to as stationary points including local minimizers and global mini-

mize. Local minimizers represent configurations where the potential energy reaches a

local minimum within their immediate surroundings, offering insights into stable states.

Global minimizer, on the other hand, is particularly significant as they correspond to the

lowest energy state across the entire landscape, signifying the most stable configuration.

These points are characterized by the property that the gradient of the potential energy

landscape is zero for each atom’s coordinate:

∇riE(rN) = 0, i = 1, 2, . . . , N. (3.1)

This condition implies that the atomic force vectors are all zero when the potential energy

is minimized, in accordance with the law of energy conservation, and these configurations

represent mechanically stable states of the atoms within the system.

In general, energy minimization commences from a non-equilibrium molecular ge-

ometry. It leverages mathematical optimization techniques, often employing numerical

methods such as the Newton-Raphson method [91] and the conjugate gradient method

59

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

[92], to iteratively adjust the atomic positions. This iterative process reduces the forces

acting on the atoms (corresponding to the gradients of potential energy) until these forces

become negligibly small.

Quantum mechanics can be employed to precisely calculate the energy and force field

of a molecule. Among these methods, the most accurate representation of a molecule’s

potential energy is achieved through AIMD. However, AIMD is not always feasible in

practice because of the large associated computational cost. In Chapter 2, we introduced

the AFF emulator, which demonstrates the remarkable capability to predict energy and

force fields with accuracy comparable to AIMD but at a significantly reduced compu-

tational cost. This approach enables us to focus on optimizing the machine learning

learned function, enhancing the minimization process to discover local or global minima

more effectively.

In recent years, various methods have emerged to tackle the challenging problem of

molecule design. One approach, as demonstrated in [9], utilizes a generative model to

generate molecule conformation given the molecular graph learned from a large pair of

different molecules, each paired with a reference conformation obtained by optimizing

the molecular geometry with density function theory. In this approach, molecules are

represented as an undirected, complete graph, which is a common representation in the

context of message-passing neural networks [17]. By employing a conditional variational

graph autoencoder to capture the conformation distribution given the molecular graph,

one is able to generate a set of plausible conformations.

The G-SchNet model introduced in [10] is designed for the generation of 3D point

sets with rotational invariance. It builds upon the foundation of SchNet, a forward

deep learning-based model mapping from molecule structures to molecular properties as

proposed in [7], which utilizes continuous-filter convolutional layers to model molecular

interactions. Unlike some methods focusing on generating molecular graphs, G-SchNet

60

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

directly generates atomic types and positions. In another study [93], a generative ad-

versarial network architecture is proposed to learn the distribution of Euclidean distance

matrices and generate these matrices for molecular structures.

However, all those generative models rely on a large number of simulated structures,

and none of them have yet been used to discover the inverse mapping from potential

energy surface to 3D molecule structure. As discussed before, an accurate representation

of a molecule’s potential energy achieved through AIMD is a computation-consuming

procedure. Mapping from molecule structure to potential energy surface or force fields

can be considered an expensive, black-box function. Bayesian optimization [84, 90] is a

popular method for finding the global minimum of expensive functions within a bounded

set of parameters without the need to compute the gradient. It has been extensively

used in optimizing time-consuming engineering simulations and fitting machine learning

models on large datasets. For example, A BO framework named ChemBO was proposed

in [94] to optimize the arrangement of atoms and bonds in organic molecules for de-

sired molecular properties. In [95], the authors demonstrated that by reformulating the

search procedure as a constrained Bayesian optimization problem, the validity of gen-

erated molecules from a variational autoencoder is significantly improved. Additionally,

in [96], Bayesian optimization was shown to be significantly more efficient than random

search and grid search in solving large-scale hyperparameter search problems for machine

learning methods such as KRR in computational chemistry.

The key element of BO is its predictive component, which relies on Gaussian process

regression. It is natural to draw a connection between the inverse mapping problem of

potential energy surface and force fields with our AFF method.

Estimating the inverse mapping from molecular properties to molecular structure

presents two primary difficulties for Bayesian optimization. First, Bayesian optimization

is typically applied to optimizing functions with input dimensions that are not exces-

61

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

sively large (usually less than 20). In contrast, the input for molecular PES and force

field simulations involves the molecular structure, which encompasses the positions of all

atoms, resulting in a 3N dimensional space, where N represents the system size. Second,

our model training data consists of a limited number of samples, and the configurations

of sampled molecules only cover a small portion of the vast PES landscape. This means

that a successful method for inverse mapping from PES and force fields must possess

the ability to explore the broader, unsampled regions within the constraints of physical

validity. In essence, the molecules suggested by this method should, at a minimum, be

chemically valid and able to be simulated by the underlying physics-based simulator.

Our GP-based AFF emulator demonstrates the capability to construct the forward

PES and force-field mapping using a relatively small set of samples while providing valid

uncertainty quantification. In the subsequent sections, we will commence by introducing

BO. Following that, we will illustrate how we leverage the AFF method and BO to

address the inverse mapping of the PES and force fields in the high-dimensional molecule

structure space. Through this inverse mapping process, we will demonstrate how it

enhances the energy minimization process.

3.2 Bayesian Optimization

The Bayesian optimization is an approach for optimizing objective functions that are

resource-intensive to evaluate:

min
x∈A

f(x), (3.2)

where f(x) is a function that lacks ideal properties such as convexity or concavity, and A

defines the design space of interest. In global optimization, A is often a compact subset

of Rd, typically assumed as a hyper-rectangle x ∈ Rd : ai ≤ xi ≤ bi, or locates within

62

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

a d-dimensional simplex, denoted as x ∈ Rd :
∑

i xi = 1. For some real applications,

the input space A is not a hyper-rectangle, where obtaining an efficient initial design

may be achieved by simply first obtaining a ‘space-filling’ design, such as the Latin-

hypercube design [22] in a hyper-rectangle that contains the A and then only use the

sample within the input space A. The observed or output value y from f(x) may contain

noise or noise-free. The typical structure of the BO algorithm consists of two main

components: a surrogate model with internal uncertainty assessment, typically Gaussian

process regression, for modeling the objective function, and an acquisition function that

guides the selection of the next evaluation location.

Suppose we have an initial dataset of M observation pairs (xi, y(xi)). For simplicity,

let’s assume these observations are noise-free. Following the GPR framework outlined

in the introduction, we treat the vector (y(x1), · · · , y(xM)) as a random draw from a

multivariate normal distribution, as shown in Equation (1.1). Given this initial dataset

and a selected correlation function, our next step is to infer the value of y(x∗) at a new

input x∗. By constructing the joint distribution of (y(x1), · · · , y(xM))T and y(x∗), we

can derive the posterior probability distribution

y(x∗)|y(x1), · · · , y(xM) ∼ N (µ∗(x∗), σ2K∗(x∗,x∗)), (3.3)

where µ∗(x∗) represents the posterior mean function, and σ2K∗(x∗,x∗) is the posterior

variance. The parameters associated with this posterior probability distribution can be

estimated following the standard procedure outlined in Section 1.1.1. Once the esti-

mated parameters are plugged into the posterior probability distribution, we obtain the

predictive mean and predictive variance at the new input point x∗.

The subsequent step involves selecting the input value to be sampled in the next

round. We require an acquisition function to guide us in exploring the input space to

63

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

minimize the objective function. We first provide a brief overview of several commonly

used acquisition functions, such as probability of improvement, expected improvement,

and upper confidence bound.

3.2.1 Acquisition Functions

Probability of Improvement

The Probability of Improvement (PI) [97] is quite straightforward, as its name implies.

Let f ∗
n denote the minimum value of the objective function f(·) observed thus far. PI

assesses the function f(·) at the point most likely to yield an improvement over this

value. This corresponds to the following utility function associated with evaluating f(·)

at a given point x:

uPI(x) =


0 if f(x) > f ∗

n

1 if f(x) ≤ f ∗
n

(3.4)

It simply means that PI aims to find the location most likely to yield a lower minimum

value compared to the lowest value observed so far. Given observations (xi, f(xi)) with

i = 1, 2, · · · , n, let µn(x) and σ2
n(x) represent the mean and variance from the poste-

rior distribution f(x)|f(x1), · · · , f(xn). This PI acquisition function can be explicitly

expressed as:

aPI(x) = E[uPI(x)|(f(x1), · · · , f(xn))] = Φ(f ∗
n;µn(x), σ

2
n(x)). (3.5)

Here Φ(x;µn(x), σ
2
n(x)) represents the cumulative distribution of a normal distribution

with mean µn(x) and variance σ2
n(x). The point x with the highest probability of im-

provement will be selected. One of the main limitations of this PI acquisition function is

that it only considers the locations where the objective can be reduced, without quan-

64

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

tifying how much improvement can be achieved. This leads to another commonly used

acquisition function known as Expected improvement.

Expected Improvement

Expected improvement (EI) [98, 99] is one of the most commonly used acquisition

functions in BO. It evaluates objection function f(·) at the point that, in expectation,

improves upon f ∗
n the most. The utility function of EI is

uEI(x) = max(0, f ∗
n − f(x)). (3.6)

It means the reward we can receive is the improvement f ∗
n − f(x) if the f(x) is less than

the observed minima, and do not receive a reward otherwise. The EI acquisition function

is expressed as

aEI(x) = E[uEI(x)|f(x1), · · · , f(xn)] = ∆n(x)Φ(
∆n(x)

σn(x)
) + σn(x)φ(

∆n(x)

σn(x)
), (3.7)

where ∆n(x) = f ∗
n −µn(x), and φ(x;µn(x), σ

2
n(x)) represents the probability distribution

of a normal distribution with mean µn(x) and variance σ2
n(x). Unlike the objective func-

tion f(·), which may be computationally expensive to evaluate, the acquisition function

aEI(x) is typically inexpensive to compute. Its first and second-order derivatives are easy

to evaluate, making it amenable to optimization using methods like the quasi-Newton

L-BFGS-B algorithm [100].

Upper Confidence Bound

The upper confidence bound, commonly referred to as GP-UCB, was first introduced

in [101]. The UCB is often used for maximizing a certain property. In this context,

65

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

GP-UCB combines a weighted sum of mean predictions and uncertainties:

aUCB(x, β) = µn(x) +
√
βσn(x), (3.8)

where
√
β is the tradeoff parameter controlling the exploitation and the exploration. A

larger value of
√
β indicates that the optimization becomes more exploratory, favoring the

evaluation of locations where the posterior uncertainty is largest. Conversely, a smaller

value suggests that the optimization becomes more exploitative, focusing on locations

with a higher predicted mean value. This can be explained as selecting the point for the

next sampling such that it provides a reasonable upper bound on f(x)|f(x1), · · · , f(xn).

3.2.2 Examples of Bayesian Optimization

There are several popular packages available for performing baseline Bayesian opti-

mization (BO) in low-dimensional spaces. Notable examples include GPyOpt [102] and

bayesian-optimization [103], both of which are Python tools designed for optimizing black-

box functions using GPs. In R, DiceOptim [74], can be used for optimizing expensive-to-

evaluate deterministic functions. Here, we will use two simulated functions as examples

with Python package GPyOpt and bayesian-optimization to illustrate the typical procedure

of Bayesian optimization.

One-dimensional Function

Suppose we aim to maximize a one-dimensional simulated function over the interval

[3, 7.5], which is defined as:

f(x) = sin(x) + sin(
10x

3
). (3.9)

66

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.1: Predictive distribution and acquisition function for an unobserved sample based

on the first five initial observations. The blue curve represents the true function, the red points

denote the observed data, the black dashed curve shows the predicted mean function, and the

green-shaded region corresponds to the 95% confidence interval.

Using the GP-UCB acquisition function with a tradeoff parameter
√
β = 5 and given

the initial six observations randomly selected from the interval, we obtain the predictive

distribution and acquisition function values for an unobserved sample within the range

x ∈ [3, 7.5], as shown in Figure 3.1. In this example, we utilize the Python package

bayesian-optimization to compute these quantities. Based on the acquisition function

plot, the next best guess for the maximum occurs at x = 4.24.

After evaluating the function defined in Equation (3.9) at the suggested location

x = 4.24, the observation set is expanded, leading to an update in the predictive distri-

bution and acquisition function value. This update is illustrated in Figure 3.2. As more

observations are acquired, the predictive curve aligns more closely with the real function

67

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.2: Predictive distribution and acquisition function for an unobserved sample given

the first six observations and one additional sample evaluated at x = 4.24. The blue curve

represents the true function, the red points denote the observed data, the black dashed curve

shows the predicted mean function, and the green-shaded region corresponds to the 95%

confidence interval.

curve, resulting in a more accurate prediction interval.

The function will be evaluated iteratively at a location with the best acquisition value,

and the observation set will be expanded until we reach the predefined evaluation limit.

After eight additional evaluations, given the existing fourteen observations, the updated

predictive distribution and acquisition function are plotted in Figure 3.3. The suggested

location for maximum exploration is x = 6.22, which is very close to the global maximizer

located around x = 6.217.

68

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.3: Predictive distribution and acquisition function for an unobserved sample given

the initial six observations and additional eight samples evaluated beforehand. The blue curve

represents the true function, the red points denote the observed data, the black dashed curve

shows the predicted mean function, and the green-shaded region corresponds to the 95%

confidence interval.

Two-dimensional Ackley Function

The Ackley function [104] is defined as

f(x1, x2) = −20e−0.2
√

0.5∗(x2
1+x2

2) − e0.5(cos(2πx1)+cos(2πx2)) + e+ 20. (3.10)

As shown in Figure 3.4, the Ackley function is a non-convex function characterized by

multiple local minima and a global minimum at the point (0, 0). It is commonly used to

test the performance of optimization algorithms. In this example, we employ Bayesian

optimization to minimize the Ackley function within a constrained space, where x1 ∈

69

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.4: Two-dimensional Ackley function.

[−5, 5], and x2 ∈ [−5, 5], utilizing the Python package GPyOpt.

We begin with ten initial observations, represented as colored dots in the first two

plots, and for this example, we opt to use the EI acquisition function. With these obser-

vations, we can determine the posterior mean and posterior standard deviation at any

unsampled location x∗. The posterior standard deviation provides valuable information

about the degree of uncertainty regarding the prediction at x∗. The subsequent step

involves selecting the points to be sampled in the next round. As illustrated in the third

plot of Figure 3.5, the location of the colored dot is the location of the maximum value

of the EI acquisition function, which will be selected to be evaluated in the next round.

After updating the observed dataset, the posterior distribution is also updated, and

this iterative process continues until we reach a predefined threshold or time limit of

evaluation. Figure 3.6 presents the distances between consecutive selected xi values and

the values of the best-selected samples over the 20 iterations. In this example with mul-

70

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

tiple minima, we find that BO can effectively explore a broad input space and eventually

converge to the global minimum when the input dimension is small. The pseudo-code

for BO is outlined in Algorithm 1.

Although BO works fine for problems with a small dimension, our primary objective

is to minimize potential energy with respect to atoms’ positions, and the position vector

often has a high dimension. This endeavor presents a challenge due to the consider-

ably higher input dimensionality compared to the previously illustrated BO examples.

Furthermore, to find the molecular structures with any desired target energy value or

atomic force value, we require a suitable loss function. This function, similar to the ac-

quisition function in BO, serves to guide the inverse exploration process. Additionally,

the molecules we seek to identify must adhere to chemical constraints, which include

maintaining reasonable chemical bond lengths and bond angles. For molecules outside

the reasonable range of bond lengths and angles, the simulation will not converge to a

finite value. The conventional BO approach, designed for lower-dimensional input spaces

is not efficient to solve problems with high-dimensional inputs. As we showed later, di-

rect minimization of the energy is hard, as we do not have enough data to predict energy

around minimum values. Instead, we will introduce a novel methodology to minimize

the atomic force, whereas we often have abundant data for the entire range to train the

AFF emulator. When the atomic forces are minimized around zero, the molecule is at

the equilibrium state with minimum energy.

71

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.5: The plots illustrate the posterior distribution y(x∗)|(y(xi), · · · , y(xn)) and the

value of the acquisition function (expected improvement) in the Ackley function minimization

example. In the first two plots, the colored dots represent ten initial observations. The

heatmap indicates the values of the posterior mean, posterior standard deviation, and the

acquisition function. The dot in the third plot denotes the selected location for the next

sampling, corresponding to the maximum acquisition function value. This figure is generated

using GPyOpt

Algorithm 1 Pseudo-code for Bayesian optimization

1: Place a Gaussian process prior to f(x)

2: Observe f(·) at n0 points according to an initial space-filling experimental design on

designed space A . Set n = n0

3: while n ≤ N do

4: Update the posterior probability distribution using all available data

5: Let xn be a maximizer of the acquisition function over x, where the acquisition

function is computed using the current posterior distribution

6: compute f(xn) at xn

7: increment n

72

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.6: The left plot illustrates the distances between consecutive selected xi values

during Bayesian Optimization iterations. The right plot displays the values of the best-selected

samples throughout the iterations. In this example, the predefined evaluation limit is set to

20. This plot is generated by GPyOpt

3.3 Learning the Inverse Energy Mapping

Let us first consider the strategy for constructing an inverse mapping from the

molecule’s potential energy to its molecular structure. Given a desired potential en-

ergy value ET , with the subscript T meaning the target value, our goal is to provide a set

of valid molecule structures that satisfy the condition E(x∗) = ET . The desired property

value such as the target potential energy value ET is predefined by the user. Firstly, we

define a loss function without considering the predictive uncertainty:

L(x∗) = ∥ET − Ê(x∗)∥22, (3.11)

where Ê(x∗) represents the predicted value at x∗ obtained from the emulator. This

transforms the inverse mapping problem into an optimization problem concerning the

loss function. In this context, the loss function plays the role of the acquisition function

in BO. Minimizing the loss function provides us with guidance in finding the direction

73

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

towards the structure with the desired properties.

To illustrate the steps involved in this inverse mapping process, we will employ

the GPR as the surrogate model with the same descriptor and kernel function uti-

lized in the AFF method. Let X = {x1, ...,xM} be M training configurations, and

E = (E1, E2, · · · , EM)T be a energy vector of those configurations. We use the same

descriptor D(·) and the same Matérn kernel function with roughness parameter 5/2 as

shown in the AFF method. Let K(D(xa),D(xb)) =
(
1 +

√
5 d
γ
+ 5d2

3γ2

)
exp

(
−
√
5 d
γ

)
de-

fine the correlation between xa and xb, where γ is the range parameter, and d is the

Euclidean distance between the descriptors D(xa) and D(xb). The energy E is assumed

to follow a multivariate normal distribution given by

E | θ, γ, σ2, λ ∼ MN (µ, σ2(R+ λIM)), (3.12)

whereR is the correlation matrix among the data with (i, j)th elementRij = K(D(xi),D(xj)),

λ is the nugget parameter of the random noise in E, and µ = [θ, · · · , θ]T with θ being

the mean parameter.

Conditional on γ and λ, the maximum likelihood estimator of θ is θ̂ = (HT (R +

λIM)−1H)−1HT (R + λIM)−1E, where H = [1, · · · , 1]T , and the MLE of σ2 is σ̂2 =

S2/M with S2 = (E − Hθ̂)T (R + λIM)−1(E − Hθ̂). The nugget parameter λ and the

range parameter γ can be estimated through MLE by numerically optimizing the profile

likelihood or through cross-validation with respect to squared error loss in predictions.

Conditional on the estimated parameter θ̂, γ̂, σ̂2, and λ̂, the predictive distribution of

potential energy E∗(x∗) at a test input x∗ follows

E∗(x∗) | E, θ̂, γ̂, σ̂2, λ̂ ∼ N
(
Ê∗(x∗), σ̂2K∗(x∗,x∗)

)
, (3.13)

74

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

with

Ê∗(x∗) = θ̂ +R∗M(R+ λ̂IM)−1(E− θ̂H), (3.14)

and

K∗(x∗,x∗) = K(D(x∗),D(x∗))−R∗M(R+ λ̂IM)−1RT
∗M , (3.15)

where R∗M is the 1×M correlation matrix for x∗ and input configurations X with the

ith element being K(D(x∗),D(xi)).

The predicted value Ê(x∗) from predictive mean function in nature is a weighted sum

of the kernel function K(D(x∗),D(xi)) on all training samples. The analytical form of

the gradient of K(D(x∗),D(xi)) w.r.t x
∗ can be easily calculated through chain rule.

The primary concern of using the loss function in Equation (3.11) lies in the mis-

match of the region of the training sample and target value, which limits the predictive

accuracy for the region from the training sample space. To illustrate this point, consider

the case where a target energy value of θ̂ is set. Due to the nature of the predicted value

as a weighted sum of kernel functions, the minimization of the initial loss function might

eventually favor a structure situated far from all training molecule configurations. Con-

sequently, the weighted kernel function values K(D(x∗),D(xi)) all become zero, often

resulting in a structurally invalid configuration with implausible bond lengths and angles.

In this context, “invalid structure” refers to a chemically unrealistic arrangement where

the bond lengths and bond angles deviate significantly from typical values. As plotted in

Figure 3.7, after optimizing this initial loss function, the obtained structure with bond

lengths and angles significantly deviating from expected ranges, is chemically unrealistic.

Fortunately, we can utilize the uncertain information provided by the GP model. The

predictive variance from the forward GP model could help us avoid the over-exploration

of potentially invalid regions. Inspired by the GP-UCB acquisition function, the loss

75

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.7: The black, blue, and red dots in the figure represent carbon, hydrogen, and

oxygen atoms, respectively. The initial salicylic acid structure is shown on the left, while

the structure on the right, obtained through the optimization of the initial loss function, is

evidently chemically unrealistic.

function is defined as

L(x∗) = ∥ET (x
∗)− Ê(x∗)∥22 + βσ̂2∥K∗(x∗,x∗)∥2. (3.16)

Here, σ̂2K∗(x∗,x∗) represents the predictive variance of energy at x∗, and β serves as

the trade-off parameter governing the balance between exploration and exploitation. In

practice, we employ the maximum likelihood estimator σ̂2 in the evaluation of the loss

function. The trade-off parameter β is determined via a logarithmic grid search. We

usually initiate the selection of the trade-off parameter β with a smaller value and increase

it if the simulator is unable to perform the calculation on the proposed structure. Unlike

the GP-UCB acquisition function, this approach tends to prioritize exploitation in the

vicinity when a large value of β is set, and it leans more towards exploration with a

smaller β. The loss function in Equation (3.16) aims to guide the search towards regions

that are closer to the target while ensuring that these regions are not too distant from

76

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

the observed space. This approach prevents the exploration from becoming trapped in

invalid regions.

The procedure for inversely optimizing potential energy is outlined in Algorithm 2.

Due to the high dimensionality of the input space, which is of size 3N , conducting a grid

search exploration strategy to minimize the loss function is unrealistic, despite the loss

function’s computational simplicity. Existing BO packages cannot handle optimization

tasks in such a high-dimensional space. Nevertheless, with the existing AFF framework, it

is feasible to readily compute the gradient vectors for both predictive mean and predictive

variance terms, using the specified descriptor and kernel function. We undertake this

optimization within the AFF model, which leverages PyTorch’s automatic differentiation

functionality [105]. In practice, we employ the Adam optimizer [106] with empirically

selected parameters to optimize the loss function.

To aid the algorithm in escaping local optima and finding better solutions, we in-

troduce random noise to the most recently proposed configuration. The resulting con-

figuration with added random noise can then serve as the starting point for the next

iteration of exploration. Finally, this approach will yield a proposed configuration x∗. It

is worth noting that the proposed configuration is not unique and may vary depending on

the initial structure and the loss minimization process following the stochastic gradient

descent algorithm.

77

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Algorithm 2 Pseudo-code for inverse optimization of potential energy

Input: Pairs of molecules’ configuration xi and potential energy E(xi), where i =

1, · · · ,M . User-specified target energy value ET

1: Fit a forward energy GPR model on all training samples

2: Select an initial molecular structure x∗, and apply the adam optimizer to minimize

the loss L(x∗)

3: Calculates the real energy of x∗: E(x∗) from the simulator.

4: while ∥E(x∗)− ET (x
∗)∥22 ≥ c do

5: Adds x∗ into the training set and updates the posterior distribution

6: x∗ = x∗ + ϵ , and select x∗ as the initial molecular structure

7: Apply the adam optimizer to minimize the loss L(x∗)

8: Calculates the real energy E(x∗) of x∗ from the simulator

Return: the proposed configuration x∗

One of the practical application goals behind constructing this inverse potential en-

ergy mapping is to discover an alternative approach to energy minimization that reduces

the need for extensive evaluations from the computationally expensive AIMD simulator.

However, in practice, we have found that inversely maximizing the potential energy is

easy whereas minimizing the energy directly is hard. In Figure 3.8, we present the ac-

tual performance of the inverse energy mapping on aspirin and salicylic acid. The initial

forward energy GP model was trained using 400 simulations randomly selected from a

small trajectory of the simulation runs. The results reveal that we can easily identify a

valid structure with potential energy close to the predefined target energy value, as long

as the value of energy falls within the training energy range or is above the minimum

energy value obtained from the training samples. The heatmaps show that this method

is capable of exploring regions far from the initial input space in this direction within

78

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.8: The inverse energy mapping for aspirin (top) and salicylic acid (bottom). The

two figures on the left depict the proposed energy (eV) versus the number of evaluations. The

green dashed line represents the predefined target energy value, while the purple and blue

dashed lines indicate the minimum and maximum energy values observed among the initial

400 training samples. Blue solid points represent the predicted value from the GP energy

emulator, while red solid points represent the real energy values evaluated by the simulator.

The two heatmaps on the right show the Euclidean distances between the training and pro-

posed structures. Red indicates different structures, while blue indicates similar structures.

The target energy value represents an arbitrary, user-specified energy value that we aim to

achieve.

just a few evaluations.

Directly minimizing the energy is challenging due to the lack of structure with small

energy in the training data set. The simulated energy from the proposed structure always

falls above the lower bound of the training set, even when the predicted mean from the

previous posterior distribution is less than this lower bound. This observation aligns with

the laws of physics, as it is inherently challenging to locate structures with very low energy

values. Unlikely the potential energy from the randomly selected configurations always

79

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

lies on one side of the energy axis, while our ideal target energy value is on the other

side, atomic forces are more evenly spaced and also bring the important information. To

solve this energy minimization problem, we can learn the inverse mapping from atomic

positions to atomic force vectors.

3.4 Minimization of Atomic Forces

The primary challenge encountered with energy minimization through inverse energy

mapping is that the training trajectories selected from the simulation samples consis-

tently fall on the higher-energy side of the threshold we aim to reach. However, in con-

trast to the potential energy, most of the atomic forces exhibit variations on both sides

of the target value, which is zero, as shown in Figure 3.9. Now, the inverse mapping

also operates within a high-dimensional space, with the objective of locating structures

where all atomic forces closely approximate zero. Fortunately, our previously developed

AFF emulator inherits the physical connection between energy and force vectors, and

it demonstrates state-of-the-art accuracy at the level of AIMD while reducing computa-

tional complexity. Therefore, it serves as a reliable forward model that we can utilize in

inverse force mapping.

Following the notations in the AFF force field model, consider a molecule that has

N atoms grouped into L PE atom sets, each set containing li atoms, for i = 1, ..., L, and

denote Fi with dimension 3Mli as the forces of the atoms of ith PE set in M training

configurations. Let FT
i (x

∗) be the target force vector of x∗ on the atoms of ith PE set.

Given the training set, we can build an AFF model of l prior distributions in parallel,

numerically fitting the range parameter γ and the nugget parameter λ. The predictive

distribution of the atomic forces in the i-th PE atom set Fi(D(x∗)) at any configuration

80

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.9: The histograms represent the atomic forces on the first 25 dimensions observed

in a randomly selected segment of the aspirin AIMD simulation. Each individual subplot

displays the distribution of atomic forces along one specific dimension.

x∗ follows a multivariate normal distribution

(
Fi(D(x∗)) | Fi, θ̂i

)
∼ MN (F̂i(x

∗), σ̂2
iK

∗
i (x

∗,x∗)), i = 1, · · · , L, (3.17)

81

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

where the predictive mean vector and predictive covariance matrix follows

F̂i(x
∗) = RT

x∗(R+ λ̂I3Mli)
−1Fi, (3.18)

σ̂2
iK

∗
i (x

∗,x∗) = σ̂2
i (R

∗ −RT
x∗(R+ λ̂I3Mli)

−1Rx∗), (3.19)

with R∗ being a 3li×3li Hessian matrix of the kernel function ∇x∗iK(D(x∗),D(x∗))∇T
x∗i .

Similar to the inverse energy map, the loss function is defined as:

L(x∗) =
L∑
i=1

∥FT
i (x

∗)− F̂i(x
∗)∥22 + β

L∑
i=1

σ̂2
iTr(K

∗
i (x

∗,x∗)), (3.20)

where σ̂2
i is the MLE estimator of σ2

i and the FT
i (x

∗) is desired force vector, which is

intentionally set to a zero-force vector in order to optimize the energy structure. The

second term of the loss function can be interpreted as a summation of the predictive

variance of all atomic forces. The gradient of this ∇x∗L(x∗) also can be analytically

solved through:

∇x∗L(x∗) = 2
L∑
i=1

(FT
i (x

∗)−∇x∗F̂i(x
∗)) + 2β

L∑
i=1

σ̂2
i

3li∑
j=1

∇x∗ [K∗
i (x

∗,x∗)]jj, (3.21)

where [K∗
i (x

∗,x∗)]jj denote the j-th diagonal element of matrix K∗
i (x

∗,x∗).

82

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Algorithm 3 Pseudo-code for Inverse Force Design

Input: target force vector FT , molecule’s configuration xi and force vectors F(xi), where

i = 1, · · · ,M .

1: Partition the PE atoms and force vectors follow the AFF method and fit a forward

AFF force field model on all training samples.

2: Select an initial molecular structure x∗, and apply the adam optimizer to minimize

the loss L(x∗).

3: Calculates the simulated force vector of x∗: F(x∗) from the simulator.

4: while ∥F(x∗)− FT∥22 ≥ c do

5: Adds x∗ into the training set and updates the posterior distribution.

6: x∗ = x∗ + ϵ , and select x∗ as the initial molecular structure.

7: Apply the adam optimizer to minimize the loss L(x∗).

8: Calculates the simulated force F(x∗) of x∗ from the simulator

Return: the proposed configuration x∗.

Algorithm 3 presents the pseudo-code for the proposed inverse force design method.

It’s worth noting that during the iterative procedure in practice, the estimated range

parameter γ and nugget parameter λ can be held constant, and there’s no need to retrain

the model every time new data points are added to the training set. This won’t impact

the model’s prediction performance, and these parameters only need to be retrained

after batches of iterations. A similar approach was employed in [107]. By keeping the

range and nugget parameters fixed, we can significantly reduce computational costs when

updating the posterior distribution. The primary computational load arises from the

matrix inversion of (R + λ̂I3Mli)
−1, and we can apply a similar block matrix inversion

technique as described in Appendix A.1 to optimize this computation.

83

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.10: The histograms represent the L2-norm value of the force vectors observed in

initial training simulations on formaldehyde, salicylic acid, uracil, and aspirin. The red dashed

line shows the L2-norm value of force from the proposed structures within 10 evaluations. The

initial training sample sizes are 200 (formaldehyde), 100 (salicylic acid), 400 (uracil) and 400

(aspirin).

3.5 Numerical Results

We applied the proposed inverse force design approach to various simulated molecule

structures, including formaldehyde, uracil, aspirin, and salicylic acid. Our goal was to

identify valid structures with the desired target of zero atomic force vectors and subse-

quently locate local or global energy-minimized structures. To collect training configu-

rations, we initiated simulations with an initial structure and gathered the first several

hundred configurations at fixed intervals along the AIMD trajectories. These configura-

tions obtained from the simulator typically exhibited relatively high energy values and

large L2 norm values for atomic force vectors.

84

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.11: The histograms represent the potential energy value (negative in ev) of the

force vectors observed in initial training simulations on formaldehyde, salicylic acid, uracil,

and aspirin. The red dashed line shows the potential energy value from the proposed structures

within 10 evaluations. The initial training sample sizes are 200 (formaldehyde), 100 (salicylic

Acid), 400 (uracil) and 400 (aspirin).

As shown in Figure 3.10, the estimated inverse force mapping effectively pinpointed

valid saddle structures with force vectors close to zero. These structures were identified

starting from the initial configurations, which had high L2 norm force values and were

randomly selected from the initial training set. This outcome shows the effectiveness

of the proposed approach in mapping the force field back to the input molecule’s 3D

structures.

We are also interested in the potential energy values of the proposed structures.

From Figure 3.11, we can observe that the energy of the proposed structures with force

vectors close to zero falls below the lower threshold of the potential energy observed

in the simulated trajectories. This achievement was not attainable using the previous

85

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

inverse energy mapping method. This demonstrates the feasibility of energy optimization

through inverse force mapping, as the gradients provide equally vital information.

It’s important to note that the AFF model, trained with only a few hundred sim-

ulations, can identify structures with force vectors close to zero in just two evaluations

for simpler molecules like formaldehyde (H2CO). For these simpler structures, the AFF

model demonstrates impressive learning capabilities, achieving state-of-the-art accuracy

in predicting atomic force vectors from 3D structural inputs. Therefore, inverse mapping

of the force vector can be accomplished in just one or two evaluations. However, for

molecules like aspirin, the L2 norm of the force vector for the proposed structure after

10 evaluations remains somewhat distant from zero. This is due to the lower accuracy of

the AFF model trained on 400 simulations compared to other molecules. It may require

more evaluations or a more accurate forward model to optimize the force vector towards

zero, but the potential energy of the displayed proposed structures already significantly

exceeds the lower bound set by the training potential energy data.

We also illustrate the proposed molecular structure during the inverse force design

process using salicylic acid as an example. Figure 3.12 presents 3D configurations of

salicylic acid along with atomic force vectors during the inverse zero force vector design

process. In practice, we can initiate this process from any structure in the training set.

For comparative purposes, we start with the molecular configuration characterized by the

lowest L2 norm value of the force vector. Notably, the initial structure exhibits significant

atomic forces. Nevertheless, as each iteration progresses, the values of the atomic force

vectors in the proposed structure consistently decrease. The capability to discover zero-

force structures improves with additional evaluations. After just five evaluations, we are

able to propose a 3D salicylic acid structure with atomic forces that are close to zero.

Finally, we are interested in assessing the similarity between the minimized structures

obtained using our method and those from classical conventional geometry optimization

86

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.12: The atomic force graph of salicylic acid during the inverse force design is shown

here. In this visualization, carbon, oxygen, and hydrogen atoms are denoted by black, red,

and blue solid dots, respectively. The grey arrows represent the atomic force vectors acting on

each atom. The length of each arrow corresponds to the magnitude of the force vector, and

all arrows are drawn to the same scale for comparison. The top-left configuration represents

the initial structure, while the bottom-left configuration depicts the proposed structure after

five evaluations. All the force vector values are computed using the AIMD simulator.

simulations. We continue to use salicylic acid as an example, as its atoms are permuta-

tionally distinguishable, and the order of atoms can be uniquely identified. To highlight

the structural differences between two 3D molecule structures, we plot the absolute dif-

ference between their pairwise distance matrices, which is not affected by rotation and

translation. Specifically, the color value of the difference between structures xa and xb at

the (i,j)-th element is given by |Dij(xa)−Dij(xb)|, whereDij(xa) represents the Euclidean

distance between the i-th and j-th atoms of structure xa.We kept the initial structure

the same for both the calculation of the converged energy-minimized structures in the

simulator and our inverse force design approach. The first eleven heatmaps illustrate

87

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

Figure 3.13: The pairwise distance matrix differences between salicylic acid molecule con-

figurations and the converged optimized configuration from the simulator are shown in the

heatmaps. Each 16× 16 heatmap shows the absolute difference between the pairwise distance

matrices of two molecule configurations. The first eleven heatmaps represent Molecule 0 to

Molecule 10, which correspond to randomly selected configurations from the training set. The

final heatmap illustrates the difference between our proposed structure and the converged

structure calculated by the simulator.

significant differences between the training structures and the converged structure cal-

culated by the simulator. However, the last heatmap reveals a remarkable structural

similarity between our proposed structure and the converged one, affirming the practical

utility of our inverse force design approach for geometry optimization.

The proposed inverse energy and force design method has demonstrated its efficacy in

establishing a reliable backward mapping from the potential energy and atomic force field

to 3D molecular structures. Leveraging the foundation laid by the efficient and precise

forward AFF emulator, which offers the valuable capability of quantifying prediction

uncertainties, this method effectively navigates the solution space towards target energy

or force values while intelligently avoiding potentially invalid regions. Moreover, our

88

High Dimensional Optimization on Inverse Force-Fields Design Chapter 3

exploration extends to the domain of energy minimization, presenting a novel alternative

approach to performing energy minimization, distinct from conventional methods that

rely on solving physical equations.

We acknowledge that while the inverse energy and force design method exhibits

promising capabilities, it builds upon the forward AFF emulator. While the AFF em-

ulator has significantly reduced computational costs and broadened its applicability to

larger systems compared to previous methods like sGDML, it can be expensive when the

number of simulations is large. This constraint hinders its application to even larger sys-

tems comprising hundreds or thousands of atoms. A few future to address this challenge

is discussed in Chapter 5.

89

Chapter 4

Python Package PyRobustGaSP and

AFF

In this chapter, we first introduce a Python version package called PyRobustGaSP, which

can be easily installed from [46]. This package is a Python version of the RobustGaSP

package in R [44] and MATLAB [45], provides a versatile toolset for conducting fast GP

emulation on large datasets, achieving robust parameter estimation, and prediction of

GaSP emulators. Additionally, we also demonstrate how to utilize the AFF package to

predict molecule potential energy and atomic force fields with uncertainty quantification

using our proposed AFF method, as discussed in Chapter 2.

Parallel partial Gaussian stochastic process (PP-GP), introduced in [40], is a popular

technique for accelerating the emulation of computer models with vectorized outputs

[108, 109, 110] and forecasting nonlinear dynamical systems [111]. Moreover, the robust

parameter estimation approaches through marginal posterior mode can make estimation

of the model parameters in GPs and PP-GPs more stable [34, 41]. Recognizing the

widespread adoption of Python in the realms of data science and machine learning, it

becomes imperative to make these fast and resilient GP emulation methods accessible

90

Python Package PyRobustGaSP and AFF Chapter 4

to a broader audience. Our Python package, PyRobustGaSP, seamlessly mirrors the

complete functionality of RobustGaSP. This means that researchers who are more inclined

towards Python can harness the power of this package without the need to switch between

programming languages.

In the subsequent sections, we will provide a concise overview of PyRobustGaSP and

a few illustrative examples.

4.1 Main Functions of PyRobustGaSP

To construct a GP model using PyRobustGaSP, the initial step involves creating a

task using the function PyRobustGaSP.create_task(). This function serves to generate

a data structure of a custom-type task, which allows users to specify the mean function,

correlation function, prior distribution for the parameters and to include a noise term

or not. Much like the RobustGaSP package in R, these settings are pre-specified in the

default setting. The PyRobustGaSP.create_task() function is a very important function

in PyRobustGaSP, since it delineates all essential components required for model fitting.

The only mandatory arguments for this function are design, which is an array-like M×p

design matrix [xT
1 , ..,x

T
M]T , and response, which is the M-dimensional output vector y

for M simulation runs for scalar-valued output. In PP-GP, the entire output matrix has

dimension M × k for M vectorized outputs, each having k coordinates.

The default setting in the argument trend is a constant function, i.e., h(x) =

1M . If assume the mean function in the GP model is zero, we can set the argument

zero_mean="Yes". By default, the GP model is defined to be noise-free, which means

the nugget parameter is zero. A noise term can be added by specifying the argument

nugget_est=True. The default setting for the correlation function is the Matérn cor-

relation is α = 5
2
, and other correlation function choices can be specified by using the

91

Python Package PyRobustGaSP and AFF Chapter 4

argument kernel_type. For additional details on those settings, we refer to [44].

Once a task has been created, the subsequent step involves training the PP-GP model

of a vectorized output using train_ppgasp() or the Robust-GP model of a scalar-valued

output using train_rgasp(), utilizing the previously obtained task data structure as in-

put. The return data structure encompasses all crucial estimated parameters, including

the mean, variance, noise, and range parameters to perform prediction. Upon obtain-

ing the fitted model from either train_ppgasp() or train_rgasp(), the final step is to

compute the predictive distribution of the GP model previously established. This can

be accomplished through predict_ppgasp() or predict_rgasp(). The resulting dictio-

nary includes predictive means, the 95% predictive credible intervals, and the predictive

standard deviations at each test point, providing comprehensive insight into the model’s

predictions.

4.2 Robust Parameter Estimation and Examples

Parameter estimation of covariance parameters such as range and nugget parameters

are critical for training a GP model. It’s widely recognized that maximum likelihood

estimation of these parameters is unstable under certain conditions [32, 33, 112]. For

instance, instability may arise due to the Cholesky decomposition of covariance matrices,

which can become close to singular. Another scenario is when the covariance matrix

is estimated to be nearly diagonal. The objective of robust estimation is to estimate

parameters in a way that ensures the following situations do not occur:

(i) R̂ = 1n1
T
n

(ii) R̂ = In,

92

Python Package PyRobustGaSP and AFF Chapter 4

where R̂ is the estimated correlation matrix. The RobustGaSP and PyRobustGaSP im-

plement robust parameter estimation without compromising the predictive accuracy of

the emulator, through utilizing the marginal posterior mode with robust parameter esti-

mation [34, 41].

4.2.1 Example of a One-Dimensional Input Function

The code below provides an example of fitting a robust GaSP using the train_rgasp()

function from PyRobustGaSP. We utilize a simulated one-dimensional function to gener-

ate the input and output datasets, defined as:

y(x) = sin(x) + sin(
10

3
x). (4.1)

1 from PyRobustGaSP import PyRobustGaSP

2 from src.functions import *

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy.stats import qmc

6

7 # Create a PyRobustGaSP model instance

8 P_rgasp = PyRobustGaSP ()

9 # Generate the training sample

10 sampler = qmc.LatinHypercube(d=1)

11 sample_input = 10 * sampler.random(n=20)

12

13 # objective function

14 def simulated_f(x):

15 return np.sin(x) + np.sin ((10.0 / 3.0) * x)

16

93

Python Package PyRobustGaSP and AFF Chapter 4

17 sample_output = simulated_f(sample_input)

The RobustGaSP model is trained on a randomly selected subset of 20 observations,

and subsequently, predictions are made for 1000 test points uniformly selected from the

interval [0, 10].

18 # Create a task for model training

19 task = P_rgasp.create_task(sample_input , sample_output)

20

21 # Fit a rgasp model using created task

22 model = P_rgasp.train_rgasp(task)

23

24 # Get testing input and output

25 testing_input = np.arange (0 ,10 ,1/100).reshape (-1,1)

26 testing_output=simulated_f(testing_input)

27

28 # Get the rgasp predict object

29 testing_predict = P_rgasp.predict_rgasp(model ,

30 testing_input)

The predictive means of those testing inputs can be accessed through the key mean,

while the upper bound and lower bound of 95% predictive credible interval can be ob-

tained through the lower95 and upper95 keys, respectively. The corresponding plot

generated by the following code is shown in the upper part of Figure 4.1. In the plot,

the yellow curve represents the actual output values derived from Equation (4.1), while

the blue curve depicts the predicted mean values for evenly spaced testing inputs using

the trained GP model. The light blue shaded region signifies the 95% prediction interval.

The lower part of Figure 4.1 is created using RobustGaSP in R. It’s worth noting that the

results generated by PyRobustGaSP and RobustGaSP are exactly the same.

32 # Display the plot

94

Python Package PyRobustGaSP and AFF Chapter 4

33 fig , ax = plt.subplots ()

34 # Plot the first line on the axes

35 ax.plot(testing_input ,testing_predict[’mean ’], label=’predicted ’,

36 color = ’blue ’)

37

38 # Plot the second line on the axes

39 ax.plot(testing_input , testing_output , color = ’yellow ’, label=’real ’)

40 ax.fill_between(testing_input [:,0], testing_predict[’upper95 ’],

41 testing_predict[’lower95 ’], alpha =0.2, color = ’gray ’)

42 # Set the labels and title of the plot

43 ax.set_xlabel(’input ’)

44 ax.set_ylabel(’output ’)

45 # Add a legend to the plot

46 ax.legend ()

47 plt.show()

4.2.2 Example of Multiple-Dimensional Input Function

Branin Function

The Branin Function is a commonly used two-dimensional test function in computer

experiments. It is defined as follows:

f(x1, x2) = (x2 − bx2
1 + cx1 − 6)2 + 10(1− t) cos(x1) + 10. (4.2)

Here, the parameters are defined as b = 5.1
4π2 , c =

5
π
, and t = 1

8π
. The Branin Function is

typically evaluated within the square region defined by x1 ∈ [−5, 10] and x2 ∈ [0, 15].

For the purpose of demonstration, we aim to construct a GP emulator for the Branin

Function. To do this, we first generate 40 Latin hypercube samples within the specified

square region using the following code:

95

Python Package PyRobustGaSP and AFF Chapter 4

Figure 4.1: The predicted function value, actual function value, and their 95% prediction

interval are shown in the graph. The predicted function value is represented by the blue solid

line, the actual function value by the yellow solid line, and the shaded area corresponds to the

95% prediction interval. The upper figure is generated using PyRobustGaSP in Python, while

the lower figure is created using RobustGaSP in R.

1 from PyRobustGaSP import PyRobustGaSP

2 from src.functions import *

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy.stats import qmc

6

7 # simulated branin function

8 def branin(x):

9 x1 = x[0]

10 x2 = x[1]

11 t = 1/(8* np.pi)

12 ans = 1*(x2 -5.1/(np.pi **2*4)*x1 **2+5/ np.pi*x1 -6)**2

96

Python Package PyRobustGaSP and AFF Chapter 4

13 +10*(1 -t)*np.cos(x1)+10

14 return ans

15

16 def rescale(arr ,x1_range ,x2_range):

17 # rescale the samples from [0 ,1]*[0 ,1] to x1_range * x2_range

18 arr[:,0] = x1_range [0] + arr[:,0] * (x1_range [1] - x1_range [0])

19 arr[:,1] = x2_range [0] + arr[:,1] * (x2_range [1] - x2_range [0])

20 return arr

21

22 # Create a PyRobustGaSP model instance

23 P_rgasp = PyRobustGaSP ()

24

25 # Generate the training sample

26 sampler = qmc.LatinHypercube(d=2)

27 sample_input = sampler.random(n=40)

28 x1_range = (-5, 10)

29 x2_range = (0, 15)

30 sample_input = rescale(sample_input ,x1_range ,x2_range)

31 num_obs=sample_input.shape [0]

32 sample_output= np.zeros ((num_obs ,1))

33 for i in range(num_obs):

34 sample_output[i,0]= branin(sample_input[i,:])

Next, we construct a GP emulator using these 40 samples under the default settings.

We then evaluate its performance by calculating metrics such as the ratio of root mean

square error to the standard deviation of the testing output. This evaluation is conducted

on 400 random input points within the parameter space of the Branin function, as shown

in the following code:

1 # Create a task for model training

2 task = P_rgasp.create_task(sample_input , sample_output)

97

Python Package PyRobustGaSP and AFF Chapter 4

3 # Fit a rgasp model using created task

4 model = P_rgasp.train_rgasp(task)

5

6 # Get testing input and output

7 dim_inputs=sample_input.shape [1]

8 num_testing_input = 400

9 testing_input = np.random.uniform(size =num_testing_input*

10 dim_inputs).reshape(

num_testing_input ,-1)

11 testing_input = rescale(testing_input ,x1_range ,x2_range)

12 testing_output = np.zeros(num_testing_input)

13 for i in range(num_testing_input):

14 testing_output[i]= branin(testing_input[i,:])

15

16 # Get the rgasp predict object

17 testing_predict = P_rgasp.predict_rgasp(model ,

18 testing_input)

19

20 m_rmse=np.sqrt(np.mean((testing_predict[’mean ’]- testing_output)**2))#/

np.std(testing_output [:,0])

21 print(’RMSE/std is ’, m_rmse/np.std(testing_output))

22 >> RMSE/std is 0.02755

23

24 prop_m = np.sum((testing_predict[’lower95 ’]<= testing_output) & (

testing_predict[’upper95 ’]>= testing_output))/(testing_output.shape

[0])

25 print("The Proportion of the test output covered by 95% CI is ",prop_m)

26 >> The Proportion of the test output covered by 95% CI is 0.965

98

Python Package PyRobustGaSP and AFF Chapter 4

Ackley Function with Noise

The following example presented here involves fitting the two-dimensional simulated

Ackley function as shown in Equation (3.10), and illustrated in Figure 3.4, with the

addition of random noise. We constructed the GP emulator with a nugget term based

on 80 Latin hypercube design samples on [−5, 5]× [−5, 5] through the following code.

36 from PyRobustGaSP import PyRobustGaSP

37 from src.functions import *

38 import numpy as np

39 import matplotlib.pyplot as plt

40 from scipy.stats import qmc

41

42 # simulated ackley function

43 def ackley(x):

44 ans = -20*np.exp(-0.2*np.sqrt (0.5*(x[0]**2 + x[1]**2)))

45 -np.exp (0.5*(np.cos(np.pi*2*x[1]+np.pi*2*x[0])))+np.exp (1) +20

46 return ans

47

48 # rescale the input space

49 def rescale(arr ,x1_range ,x2_range):

50 # rescale the samples from [0 ,1]*[0 ,1] to x1_range * x2_range

51 arr[:,0] = x1_range [0] + arr[:,0] * (x1_range [1] - x1_range [0])

52 arr[:,1] = x2_range [0] + arr[:,1] * (x2_range [1] - x2_range [0])

53 return arr

54

55 # Create a PyRobustGaSP model instance

56 P_rgasp = PyRobustGaSP ()

57

58 # Generate the training sample

59 sampler = qmc.LatinHypercube(d=2)

99

Python Package PyRobustGaSP and AFF Chapter 4

60 sample_input = sampler.random(n=80)

61 x1_range = (-5, 5)

62 x2_range = (-5, 5)

63 sample_input = rescale(sample_input ,x1_range ,x2_range)

64 num_obs=sample_input.shape [0]

65 sample_output= np.zeros ((num_obs ,1))

66 for i in range(num_obs):

67 sample_output[i,0]= ackley(sample_input[i,:])

68

69 noise = np.random.normal(0, 1e-3, sample_output.shape)

70 sample_output = sample_output+noise

71

72 # Create a task for model training

73 task = P_rgasp.create_task(sample_input , sample_output , nugget_est=True

)

74 # Fit a rgasp model using created task

75 model = P_rgasp.train_rgasp(task)

We then assess the performance of the trained model on 200 uniformly selected testing

inputs, and the resulting plot is displayed in Figure 4.2. In this plot, the x-axis represents

the predicted means generated by the trained model, while the y-axis represents the real

output values from the Ackley function.

76 # Get testing input and output

77 dim_inputs=sample_input.shape [1]

78 num_testing_input = 200

79 testing_input = np.random.uniform(size =num_testing_input*

80 dim_inputs).reshape(

num_testing_input ,-1)

81 testing_input = rescale(testing_input ,x1_range ,x2_range)

82 testing_output = np.zeros((num_testing_input ,1))

100

Python Package PyRobustGaSP and AFF Chapter 4

83 for i in range(num_testing_input):

84 testing_output[i,0]= ackley(testing_input[i,:])

85

86 # Get the rgasp predict object

87 testing_predict = P_rgasp.predict_rgasp(model ,

88 testing_input)

89 ratio_rmse_std=np.sqrt(np.mean((testing_predict[’mean ’]- testing_output

[:,0]) **2))/np.std(testing_output)

90 print(’RMSE/STD is ’, ratio_rmse_std)

91 >> RMSE/STD is 0.06525564678324436

92

93 # Display the plot

94 fig , ax = plt.subplots ()

95 # Plot the first line on the axes

96 ax.scatter(testing_predict[’mean ’],testing_output , label=’Predicted ’,

97 color = ’blue ’)

98 ax.set_xlabel(’prediction ’)

99 ax.set_ylabel(’real output ’)

100 ref_line_x = np.array([-8, -20])

101 ref_line_y = np.array([-8, -20])

102 ax.plot(ref_line_x , ref_line_y , linestyle=’--’, color=’r’)

103 plt.show()

An Example for Emulation of Potential Energy from Atomic Positions

In the following example, we will demonstrate how to perform energy emulation

using the GPR model introduced in Section 2.5.1. The GPR model is trained on a

dataset consisting of 400 alkane molecule simulations with transformed descriptors and

potential energy values. We reserve 200 simulations as the testing dataset. The isotropic

correlation function is applied, and the nugget parameter needs to be estimated in this

101

Python Package PyRobustGaSP and AFF Chapter 4

Figure 4.2: The predicted function value and actual function value of Ackley function.

example.

The printed output reveals that the ratio between the RMSE and the standard de-

viation of the testing energy is approximately 0.005. Furthermore, the 95% prediction

interval effectively covers 100% of the real energy values, indicating the accuracy and

reliability of the GPR model’s predictions.

104 # Create a task for model training

105 task_energy = P_rgasp.create_task(X_train , Y_train , isotropic = True ,

nugget_est = True)

106 # Fit a rgasp model using created task

107 model = P_rgasp.train_rgasp(task_energy)

108 # Get the rgasp predict object

109 Y_predict = P_rgasp.predict_rgasp(model ,

110 testing_input)

111

102

Python Package PyRobustGaSP and AFF Chapter 4

112 # Show the performance: RMSE/STD

113 ratio_rmse_std = np.sqrt(np.sum((Y_predict[’mean ’]- Y_test)**2)/n_test)

/np.std(Y_test)

114 print(’RMSE/STD is ’, ratio_rmse_std)

115 >> RMSE/STD is 0.005083512072227473

116 # Show the proportion of samples coverd by 95% predictive interval

117 prop_m = np.sum((Y_predict[’lower95 ’]<= Y_test) &

118 (Y_predict[’upper95 ’]>= Y_test))/(Y_test.shape [0])

119 print("The Proportion of the test output covered by 95% CI is ",

120 round(prop_m ,4)*100,’%’)

121 >> The Proportion of the test output covered by 95% CI is 100.0 %

4.3 Emulation of Expensive Simulations with Mas-

sive Outputs

PP-GP is designed to tackle the challenge of emulating computer models that generate

massive outputs. For instance, consider a simulator that produces electron density data

over a straightforward 3D grid with 100 grid points on each axis of coordinates, resulting

in a total of 106 data points. PP-GP is ideally suited for efficiently constructing fast

emulators capable of handling such extensive electron density outputs.

In the example below, we aim to simulate electron densities of benzene molecules

across a 3D grid with 50 grid points along each axis of coordinates. We use high-

dimensional coefficients on this grid to represent the potential energy function as in-

put data. In this emulation problem, both the input coefficients and the output electron

densities for each observation have dimensions of 125,000. The following example demon-

strates how to fit a PP-GP model to the given dataset using PyRobustGaSP. Firstly, we

load the PyRobustGaSP module, followed by importing the input coefficients and output

103

Python Package PyRobustGaSP and AFF Chapter 4

electron densities for both the training and testing set. The training set comprises 50 sim-

ulated observations, while the testing set encompasses a separate set of 50 observations

reserved for validation.

48 from PyRobustGaSP import PyRobustGaSP

49 from src.functions import *

50 import numpy as np

51

52 # Create a PyRobustGaSP model instance

53 P_rgasp = PyRobustGaSP ()

54 # Load the training input and output

55 X_train = np.genfromtxt ("./ src/dataset/X_train.txt", skip_header =1)

[:,1:]

56 Y_train =np.genfromtxt ("./ src/dataset/Y_train.txt", skip_header =1)

[:,1:]

57 # Load the testing dataset

58 X_test =np.genfromtxt ("./ src/dataset/X_test.txt", skip_header =1) [:,1:]

59 Y_test = np.genfromtxt ("./ src/dataset/Y_test.txt", skip_header =1) [:,1:]

Subsequently, we proceed to create the PP-GP mode task using create_task().

Here, we have specified the utilization of an isotropic correlation function. Following

this, we proceed with fitting a PP-GP model employing train_ppgasp() and proceed

to compute the predictive distribution for the testing input via predict_ppgasp().

60

61 # Create a task for model fit

62 task = P_rgasp.create_task(X_train , Y_train ,isotropic=True)

63 # Fit a PP-GP model

64 model = P_rgasp.train_ppgasp(task)

65 # Get the prediction on testing input

66 testing_predict = P_rgasp.predict_ppgasp(model , X_test)

104

Python Package PyRobustGaSP and AFF Chapter 4

Similar to the prediction object from predict_rgasp() function, the predictive means

of those testing inputs also can be accessed through the key mean, while the upper bound

and lower bound of 95% predictive credible interval can be obtained through the lower95

and upper95 keys, respectively.

67 # Show the performance: RMSE/STD

68 m_rmse=np.sqrt(np.mean((testing_predict[’mean ’]-

69 Y_test)**2))/np.std(Y_test)

70 print(’RMSE/STD is ’, m_rmse)

71 >> RMSE/STD is 0.001024979836884022

72 # Show the proportion of samples coverd by 95% predictive interval

73 prop_m = np.sum((testing_predict[’lower95 ’]<= Y_test) &

74 (testing_predict[’upper95 ’]>= Y_test))/(Y_test.shape [0]*

Y_test.shape [1])

75 print("The Proportion of the test output covered by 95% CI is ", round(

prop_m ,4))

76 >> The Proportion of the test output covered by 95% CI is 0.9332

The graphs in Figure 4.3 compare the held-out electron density with the predicted

electron density for a single benzene molecule. Figure 4.4 displays the uncertainty quan-

tification, measured by the length of the 95% prediction interval for the same molecule.

4.4 An example of the AFF emulator

In this section, we provide an example to demonstrate how to generate AFF force

fields using the code available in [113]. The dataset format employed in this package

aligns with the MD17 dataset format [3]. To generate the AFF force fields, we need to

first apply the function aff.create_task() to create a task, which specifies the training

set, validation set, and some other settings such as the nugget parameter, whether to

add uncertainty quantification and so on. Then, the function aff.train() returns a

105

Python Package PyRobustGaSP and AFF Chapter 4

Figure 4.3: The comparison between PP-GP predicted electron density and simulated elec-

tron density on benzene molecule.

model fitted using the provided dataset. Predictions for new datasets are achieved using

aff.predict().

122 import numpy as np

123 from utils import aff

124

125 # load the dataset contains the geometry information and the force -

fields

126 dataset=np.load(’./ dataset/uracil_dft.npz ’)

127

128 AFF_train=aff.AFFTrain ()

129 n_train =100

130

131 # create the task file contains the training , validation and testing

dataset

132 task=AFF_train.create_task(train_dataset=dataset ,

106

Python Package PyRobustGaSP and AFF Chapter 4

Figure 4.4: Length of the 95% predictive interval.

133 n_train = n_train ,

134 valid_dataset=dataset ,

135 n_valid =50,

136 n_test =50,

137 lam = 1e-15,

138 uncertainty=False)

139

140 # train the model based on the training dataset

141 trained_model = AFF_train.train(task ,sig_candid_F = np.arange (10 ,20 ,10)

)

142

143 # predict the force -field using the trained_model

144 prediction=AFF_train.predict(task = task ,

145 trained_model = trained_model ,

146 R_test = task[’R_test ’][[0 ,1] ,: ,:])

147 # force field prediction

107

Python Package PyRobustGaSP and AFF Chapter 4

148 predicted_force = prediction[’predicted_force ’]

108

Chapter 5

Concluding remarks and future work

This thesis has considered the Gaussian process surrogate model and Bayesian opti-

mization for learning the mapping between high-dimensional atomic positions and the

potential energy surface, as well as the high-dimensional atomic force vectors of molecules.

Chapter 2 introduced the AFF emulator, a computational tool designed for efficient

and accurate modeling of potential energy surfaces and molecular force fields in ab initio

simulations, with the added benefit of providing valid uncertain quantification. While

the theoretical framework of the gradient-based KRR and GP models such as GDML,

sGDML, and FCHL, were already established, the challenge posed by the huge computa-

tional cost limited the applicability of these methods in emulating systems with a larger

size of molecules. The AFF emulator was shown to overcome this computational chal-

lenge without compromising its accuracy. The efficient emulation of forces was hinged

upon the fact that the similarity of atomic forces between permutationally equivalent

atoms is high, whereas the correlation is small across different permutationally equiv-

alent atom sets. By partitioning the atoms of a molecule into different atom sets, the

AFF model can capture a large correlation of forces between PE atoms, thereby pro-

viding accurate predictions of atomic forces of the molecule at a new configuration with

109

Concluding remarks and future work Chapter 5

less computational cost. Second, a new approach was developed to reduce the computa-

tional complexity for emulating the potential energy, compared to a joint model of energy

and atomic forces of simulated configurations. Numerical results have shown predictions

by the AFF emulator are more accurate than alternative approaches, given the same

computational budget.

Chapter 3 introduced the concepts of inverse energy and atomic force design, both

aimed at constructing the inverse mapping from potential energy surfaces and atomic

force fields to 3D molecule structures. These approaches were developed to efficiently

address high-dimensional optimization problems. Leveraging the accuracy and efficiency

of the forward AFF emulator, the chapter demonstrated the good performance of inverse

energy and force field design in discovering the equilibrium structure with minimum

potential energy. These methods provide an innovative alternative for conducting geom-

etry optimization through machine learning-based forward models, reducing the need for

computationally expensive simulator evaluations.

Chapter 4 introduced the Python package called PyRobustGaSP, which provides a

powerful and robust solution for Gaussian stochastic process emulation on large datasets.

The chapter includes several example codes to illustrate its functionality. By offering the

full capabilities of PP-GP and Robust GaSP to Python users, PyRobustGaSP extends

these methods to a wider audience of researchers and practitioners familiar with the

Python ecosystem.

110

Concluding remarks and future work Chapter 5

5.1 Future Work in Predicting Large Systems with

Active Subspace Methods

The primary challenge in applying machine learning methods to simulation prob-

lems and inverse molecule or material design in the fields of chemistry and material

science remains the efficient handling of large systems while maintaining accuracy. For

instance, most proteins consist of thousands of molecules, resulting in an extremely high-

dimensional structural information space. Navigating or optimizing complex functions

or forward models in such a high-dimensional space is a daunting task. One approach

to overcoming the challenge of high dimensionality is dimensionality reduction, which

aims to reduce the dimension of structural information without compromising valuable

insights.

Many multivariate functions exhibit primary variations along a few specific directions

in the input space. In cases where these directions align with the original coordinate

axes, dimensionality reduction can be achieved through sensitivity analysis, as discussed

in [114]. This approach involves identifying the variables that exert the most influence

on model predictions, allowing for the construction of response surfaces that focus on the

most influential factors.

However, these methods tend to perform poorly when the directions of variability

do not align with the natural coordinates of the input space. In scenarios involving

molecule structure information, the coordinate system is often randomly selected, making

traditional sensitivity analysis methods less suitable. To address this challenge, [115]

introduced the active subspace method. This technique first identifies the directions

of the most significant variability using gradient evaluations and subsequently leverages

these directions to construct a response surface within a lower-dimensional subspace of

the original high-dimensional inputs.

111

Concluding remarks and future work Chapter 5

Figure 5.1: The descriptor values (y-axis) are plotted against the descriptor index (x-axis)

for 200 alkane configurations. Each color represents an individual configuration.

The gradient information of the PES, force fields, is naturally accessible in the PES

emulation problem. It inspires us to reduce the input dimension with the active sub-

space method. In the following paragraph, we will briefly show how to reduce the input

dimension on the PES emulation problem.

Consider the potential energy function f of a system withN atoms withM continuous

inputs:

f = f (D(x)) , (5.1)

where x = (x1, x2, · · · , x3N), and we still use the same vectorized inverse pairwise distance

matrix D(x) as a descriptor to encode the input original Cartesian coordinate. We use

112

Concluding remarks and future work Chapter 5

lD to denote the dimensionality of D(x), and in fact lD = N(N − 1)/2. Denote the force

vector, which is the gradient of f , by the column vector ∇xf(x) = (∂f
∂x1

, · · · , ∂f
∂x3N

)T .

Unlike the normal active subspace method working the original input x, it is more suitable

to treat descriptor D(x) as input with the full-dimensional space. This is due to the

rotational and translational invariance discussed in Chapter 2. As shown in Figure 5.1,

the descriptor values of different configurations of the same molecule share a similar

pattern, making it easier to find a valid subspace. The gradient information is the key

to finding the valid active subspace.

Given the fact that we have the observed ∇xf(x) and not ∇D(x)f(x). For simplicity,

we use ∇Df to represent ∇D(x)f(x). According to the chain rule, ∇Df can be approxi-

mated through

∇Df ≈ ∇xf(x) (∇xD(x))† , (5.2)

where (∇xD(x))† is the pseudoinverse of matrix ∇xD(x).

Define the lD × lD matrix C by

C = E[(∇Df)(∇Df)
T]. (5.3)

The matrix C can be interpreted as the uncentered covariance of the gradient vector.

The matrix C is symmetric and positive semidefinite and it can be decomposed into real

eigenvalues as follows

C = WTWT , (5.4)

where T is a diagonal matrix with elements (τ1, · · · , τlD) in descending order. The eigen-

vectors W define a rotation of RlD and, consequently, in the domain of function f. The

components of the rotated coordinate system contain a set with greater value variation

113

Concluding remarks and future work Chapter 5

and another set with smaller average variation, as shown below.

T =

T1

T2

 , W =

[
W1 W2,

]
(5.5)

where T1 = diag(τ1, · · · , τk) with k < lD, and W1 is an lD × k matrix. The rotated

coordinates y ∈ Rk and z ∈ RlD−k are defined as

y = WT
1 D(x), z = WT

2 D(x). (5.6)

According to the Lemma 2.2 in [115], the mean-squared gradients of f with respect to

the coordinates y and z satisfy

E[(∇yf)
T (∇yf)] = τ1 + · · ·+ τk (5.7)

E[(∇zf)
T (∇zf)] = τk+1 + · · ·+ τlD . (5.8)

The active subspace is actually motivated by the equations above, which indicate that

the function f exhibits greater average variation along the directions defined by the

columns of W1 than along the other directions defined by columns of W2. In practice,

with samples of the gradient observations, the matrix C is approximated through

C ≈ C̄ =
1

M

M∑
j=1

(∇Df(xj))(∇Df(xj))
T , (5.9)

where ∇Df(xj) can be approximated by Equation (5.2).

As shown in Figure 5.2, in our simulated alkane example, the sum of the first one

hundred eigenvalues in matrix C̄ already accounts for 99.999% of the sum of all eigen-

values. Compared to the original input with a dimension of 1225, the emulator, based

114

Concluding remarks and future work Chapter 5

Figure 5.2: The proportion of first i-th eigenvalue over the summation of all eigenvalues

(y-axis) are plotted against the number of eigenvalues (x-axis) for alkane simulated configu-

rations.

on the active subspace y, reduces the original dimension by 91.8% without sacrificing

accuracy. The graph in Figure 5.3 provides a comparison of potential energy predictions

between two GP models. One model utilizes the full descriptor space with a dimension of

1225, while the other uses a reduced subspace with a dimension of 50, both trained on the

same set of 400 alkane simulations and tested on the same hold-out set of 200 simulations.

The results demonstrate that both models achieve a similar level of prediction accuracy.

These promising results indicate that, in large-scale simulation calculations with gradient

observations, it is possible to significantly reduce the dimension of large systems using

the above approach. This is a significant step towards the goal of inverse molecule or

115

Concluding remarks and future work Chapter 5

Figure 5.3: The comparison of potential energy predictions between the GP model using

full space (dimension 1225) and reduced active subspace (dimension 50) for alkane simulated

configurations. The y-axis displays prediction values from the model with the full descriptor

space, while the x-axis presents prediction values from the model using the reduced subspace.

system design, where a stable and computationally efficient approach is needed for future

advancements.

5.2 Future Work on Computation Reduction

Based on our discussion in Chapter 2, Gaussian processes have emerged as a valu-

able tool for emulating calculations due to their high accuracy, especially in the context

of molecular dynamics simulations. However, one major limitation of GP inference is

116

Concluding remarks and future work Chapter 5

its computational infeasibility for large systems. One potential avenue for applying GP

emulation to large systems is to explore scalable GP inference techniques, such as the

Vecchia GP approximations introduced in [116, 117, 118]. Initially designed for spa-

tial inputs, this approximation method has recently been extended to nonspatial in-

puts. Vecchia’s approximation hinges on an exact decomposition of the joint density

p(y) =
∏M

i=1 P (yi | y1, · · · , yi=1) into a product of univariate conditional densities. It

approximates this joint density as follows:

p̂(y) =
M∏
i=1

p
(
yi | yc(i)

)
. (5.10)

Here, c(i) ⊂ 1, · · · , i− 1 represents a conditioning index of size |c(i)| = min(m, i − 1),

where m is a relatively small conditioning set size m ≪ M . It’s worth noting that the

computation of each p(yi | yc(i)) involves the computation complexity O(m3) not O(M3).

Vecchia’s approximation boasts several advantageous properties, including the fact that

the implied joint distribution p̂(y) remains multivariate Gaussian. Additionally, the

Cholesky factorization of the correlation matrix inversion becomes highly sparse. It’s es-

sential to highlight that, unlike local GP approximations, the Vecchia approach provides

a global approximation to the underlying model. The accuracy of this approximation

depends on the choice of variable ordering and conditioning sets. For future work in the

context of molecule structure information, it may be worthwhile to develop approximate

algorithms tailored to this setting. Such efforts could significantly reduce the compu-

tational cost of applying GPs to MD calculations, particularly for quantities like force

vectors.

117

Appendix A

Appendix Title

A.1 Fast Predictions of Potential Energies in Batches

This section discusses the efficient way to calculate the inversion of the covariance

matrix in the AFF model on energy prediction. We achieve the reduced computational

cost by predicting the molecules’ energies in batches rather than the energy for one con-

figuration each time. Let b be the batch size, and xb∗ = [x∗
1, · · · ,x∗

b] be b configurations

of a molecular structure. For predicting the energy of a new configuration of this molec-

ular structure, we need to calculate the inversion of Σsub, where Σsub =

A B

C D

, with
A = KX,X + λIM being a M × M matrix, B = −JX,xb∗ being a M × 3Nb matrix,

C = −Jxb∗,X being a 3Nb × M matrix, and D = Rxb∗,xb∗ + λI3Nb being a 3Nb × 3Nb

matrix. Note that the sub-covariance matrix of training energy samples A is the same

among all different batches in prediction. Thus we need to invert A once and by applying

118

Appendix Title Chapter A

the block matrix inversion for Σsub, we have:

Σ−1
sub =

A−1 +A−1BD∗−1CA−1 −A−1BD∗−1

−D∗−1CA−1 D∗−1

 , (A.1)

where D∗ = D − CA−1B. Accordingly, for each batch samples, we just need to do a

matrix inversion on a 3Nb × 3Nb matrix D∗, which is much faster than inverting the

entire covariance matrix Σsub for each batch sample.

A.2 Predictive Distribution of Potential Energy

To simplify the notation, we would use the batch size b = 1 in this section. Conditional

on simulated energies in the training dataset E, and the atomic force F(x∗) at the

new configuration x∗, and the estimated parameters θ̂ = [m̂, σ̂2, γ̂, λ̂], the conditional

distribution of the energy at this configuration follows

E(x∗) | E,F(x∗), θ̂ ∼ MN
(
µ∗
E(x

∗), σ̂2K∗∗
E (x∗,x∗)

)
, (A.2)

where the conditional mean follows

µ∗
E(x

∗) = m̂+

[
Kx∗,X −JT

x∗,x∗

]
Σ−1

sub

E− m̂1M

F(x∗)

 ,

119

Appendix Title Chapter A

with Σsub =

 KX,X −JX,x∗

−Jx∗,X Rx∗,x∗

+ λI3N+M , and the conditional variance follows

K∗∗
E (x∗,x∗) = Kx∗,x∗ −

[
Kx∗,X −JT

x∗,x∗

]
Σ−1

sub

 KT
x∗,X

−Jx∗,x∗

 .

Note that we do not observe F(x∗) and thus Equation (A.2) cannot be directly used

for predicting energy at the new configuration x∗. Given the energy of training set E

and the atomic force of training set F, we use the total expectation to integrate the

unobserved force vector by its predictive distribution:

Ê(x∗) = E[E(x∗) | E,F]

= E[E[E(x∗) | E,F,F(x∗)]]

.
= E[E[E(x∗) | E,F(x∗)] | F]

= E[µ∗
E(x

∗) | E,F],

where
.
= denotes the approximation of E[E(x∗) | E,F,F(x∗)] by E[E(x∗)|E,F(x∗)], which

is equivalent to assume that given (E,F(x∗)), E(x∗) is independent of the rest of force

vectors in simulated configurations. Plugging the predictive mean F̂(x∗) from the above

equation to replace F(x∗) in µ∗
E(x

∗), we approximate the predictive mean of energy for

E[Ê(x∗) | E,F] by Ê(x∗) with the following expression:

Ê(x∗)=m̂+

[
Kx∗,X −JT

x∗,x∗

]
Σ−1

sub

E− m̂1M

F̂(x∗)

 .

The predictive variance in Equation (2.22) can be computed by properties of multivariate

120

normal distributions:

K∗
E(x

∗,x∗) = Kx∗,x∗ −
[
Kx∗,X −JT

x∗,x∗

]
Σ−1

sub

 KT
x∗,X

−Jx∗,x∗

 .

Let W1 and W2 be the first 1×M block matrix and the latter 1×3N block matrix of[
Kx∗,X −JT

x∗,x∗

]
Σ−1

sub, respectively, and F̂(x∗) = ωFF, where ωF follows from Equation

(2.14). We can also write the Ê(x∗) as the weighted average value of E and F̂(x∗):

Ê(x∗) = ω∗
EE+ ω∗

FF, (A.3)

where

ω∗
E = (1−W11M)(1T

MK−1
X,X1M)−11T

MK−1
X,X +W1,

and ω∗
F = W2ωF .

A.3 Simulation Details

In Chapter 2, in addition to molecules available from the MD17 dataset, the force

and energy of additional molecules with more atoms and complicated structures are

generated in this work. AIMD simulation is performed via Q-Chem to generate highly

accurate molecular force and energy to benchmark AFF and other machine learning force

fields. In this work, all AIMD simulations are carried in NVT ensemble with timestep

of 1 fs at room temperature (300 K). All the calculations were performed at the level of

Perdew-Burke-Ernzerhof(PBE)/6-31G(d,p). vdW interactions are taken into account by

using TS-vdW method. The Nosé-Hoover thermostat is used to control the temperature.

In Chapter 3, all simulations, including the evaluation of energy and force fields, were

121

conducted using the same settings as demonstrated above through Q-Chem.

122

Bibliography

[1] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K.-R. Müller,
Bypassing the kohn-sham equations with machine learning, Nature
communications 8 (2017), no. 1 872.

[2] A. S. Christensen, L. A. Bratholm, F. A. Faber, and O. Anatole von Lilienfeld,
FCHL revisited: Faster and more accurate quantum machine learning, The
Journal of Chemical Physics 152 (2020), no. 4 044107.

[3] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko, Towards exact
molecular dynamics simulations with machine-learned force fields, Nature
communications 9 (2018), no. 1 1–10.

[4] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R.
Müller, Machine learning of accurate energy-conserving molecular force fields,
Science advances 3 (2017), no. 5 e1603015.

[5] A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments,
Physical Review B 87 (2013), no. 18 184115.

[6] A. P. Bartók and G. Csányi, Gaussian approximation potentials: A brief tutorial
introduction, International Journal of Quantum Chemistry 115 (2015), no. 16
1051–1057.

[7] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
Schnet–a deep learning architecture for molecules and materials, The Journal of
Chemical Physics 148 (2018), no. 24 241722.

[8] L. Zhang, J. Han, H. Wang, R. Car, and E. Weinan, Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics, Physical
review letters 120 (2018), no. 14 143001.

[9] E. Mansimov, O. Mahmood, S. Kang, and K. Cho, Molecular geometry prediction
using a deep generative graph neural network, Scientific reports 9 (2019), no. 1
20381.

123

[10] N. Gebauer, M. Gastegger, and K. Schütt, Symmetry-adapted generation of 3d
point sets for the targeted discovery of molecules, Advances in neural information
processing systems 32 (2019).

[11] V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and
G. Csányi, Gaussian process regression for materials and molecules, Chemical
Reviews 121 (2021), no. 16 10073–10141.

[12] A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine learning a
general-purpose interatomic potential for silicon, Physical Review X 8 (2018),
no. 4 041048.

[13] J. Cui and R. V. Krems, Gaussian process model for collision dynamics of
complex molecules, Physical review letters 115 (2015), no. 7 073202.

[14] S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan, Gaussian process
emulation of dynamic computer codes, Biometrika 96 (2009), no. 3 663–676.

[15] R. M. Hathout and A. A. Metwally, Towards better modeling of drug-loading in
solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian
processes machine learning, European Journal of Pharmaceutics and
Biopharmaceutics 108 (2016) 262–268.

[16] H. Sugisawa, T. Ida, and R. V. Krems, Gaussian process model of 51-dimensional
potential energy surface for protonated imidazole dimer, The Journal of Chemical
Physics 153 (2020), no. 11.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural
message passing for quantum chemistry, in International conference on machine
learning, pp. 1263–1272, PMLR, 2017.

[18] L. Zepeda-Núñez, Y. Chen, J. Zhang, W. Jia, L. Zhang, and L. Lin, Deep density:
circumventing the kohn-sham equations via symmetry preserving neural networks,
Journal of Computational Physics 443 (2021) 110523.

[19] L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, et. al., End-to-end symmetry
preserving inter-atomic potential energy model for finite and extended systems,
Advances in neural information processing systems 31 (2018).

[20] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth,
N. Molinari, T. E. Smidt, and B. Kozinsky, E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials, Nature
communications 13 (2022), no. 1 2453.

[21] J. Sacks, S. B. Schiller, and W. J. Welch, Designs for computer experiments,
Technometrics 31 (1989), no. 1 41–47.

124

[22] T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis of
computer experiments. Springer Science & Business Media, 2003.

[23] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld, Fast and
accurate modeling of molecular atomization energies with machine learning,
Physical review letters 108 (2012), no. 5 058301.

[24] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, et. al., Design and analysis of
computer experiments, Statistical science 4 (1989), no. 4 409–423.

[25] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H.
Lin, and J. Tu, A framework for validation of computer models, Technometrics 49
(2007), no. 2 138–154.

[26] D. Higdon, J. Gattiker, B. Williams, and M. Rightley, Computer model calibration
using high-dimensional output, Journal of the American Statistical Association
103 (2008), no. 482 570–583.

[27] J. Muré, Propriety of the reference posterior distribution in Gaussian process
modeling, The Annals of Statistics 49 (2021), no. 4 2356–2377.

[28] E. T. Spiller, M. Bayarri, J. O. Berger, E. S. Calder, A. K. Patra, E. B. Pitman,
and R. L. Wolpert, Automating emulator construction for geophysical hazard
maps, SIAM/ASA Journal on Uncertainty Quantification 2 (2014), no. 1 126–152.

[29] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning,
vol. 2. MIT press Cambridge, MA, 2006.

[30] J. Nocedal, Updating quasi-newton matrices with limited storage, Mathematics of
computation 35 (1980), no. 151 773–782.

[31] D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale
optimization, Mathematical programming 45 (1989), no. 1-3 503–528.

[32] R. Li and A. Sudjianto, Analysis of computer experiments using penalized
likelihood in gaussian kriging models, Technometrics 47 (2005), no. 2.

[33] P. Ranjan, R. Haynes, and R. Karsten, A computationally stable approach to
gaussian process interpolation of deterministic computer simulation data,
Technometrics 53 (2011), no. 4 366–378.

[34] M. Gu, X. Wang, and J. O. Berger, Robust Gaussian stochastic process emulation,
The Annals of Statistics 46 (2018), no. 6A 3038–3066.

[35] J. O. Berger, V. De Oliveira, and B. Sansó, Objective Bayesian analysis of
spatially correlated data, Journal of the American Statistical Association 96
(2001), no. 456 1361–1374.

125

[36] M. J. Bayarri, J. O. Berger, E. S. Calder, K. Dalbey, S. Lunagomez, A. K. Patra,
E. B. Pitman, E. T. Spiller, and R. L. Wolpert, Using statistical and computer
models to quantify volcanic hazards, Technometrics 51 (2009), no. 4 402–413.

[37] C. Ren, D. Sun, and C. He, Objective bayesian analysis for a spatial model with
nugget effects, Journal of Statistical Planning and Inference 142 (2012), no. 7
1933–1946.

[38] H. Kazianka and J. Pilz, Objective Bayesian analysis of spatial data with
uncertain nugget and range parameters, Canadian Journal of Statistics 40 (2012),
no. 2 304–327.

[39] R. Paulo, Default priors for Gaussian processes, Annals of statistics 33 (2005),
no. 2 556–582.

[40] M. Gu and J. O. Berger, Parallel partial Gaussian process emulation for computer
models with massive output, Annals of Applied Statistics 10 (2016), no. 3
1317–1347.

[41] M. Gu, Jointly robust prior for Gaussian stochastic process in emulation,
calibration and variable selection, Bayesian Analysis 14 (2018), no. 1.

[42] C. E. Rasmussen, Gaussian processes for machine learning. MIT Press, 2006.

[43] C. Linkletter, D. Bingham, N. Hengartner, D. Higdon, and Q. Y. Kenny, Variable
selection for gaussian process models in computer experiments, Technometrics 48
(2006), no. 4 478–490.

[44] M. Gu, J. Palomo, and J. O. Berger, RobustGaSP: Robust Gaussian Stochastic
Process Emulation in R, The R Journal 11 (2019), no. 1 112–136.

[45] M. Gu, RobustGaSP: Robust Gaussian Process Emulation In MATLAB, August,
2019. Zenodo, https://doi.org/10.5281/zenodo.3370575.

[46] “Python package: PRobustGP.” https://github.com/HaoLiHL/PyRobustGaSP.
Accessed: 2023-05-30.

[47] G. Wahba, Spline models for observational data. SIAM, 1990.

[48] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur, Gaussian
processes and kernel methods: A review on connections and equivalences, arXiv
preprint arXiv:1807.02582 (2018).

[49] H. Wendland, Scattered data approximation, vol. 17. Cambridge university press,
2004.

126

https://github.com/HaoLiHL/PyRobustGaSP

[50] M. Gu, F. Xie, and L. Wang, A theoretical framework of the scaled Gaussian
stochastic process in prediction and calibration, SIAM/ASA Journal on
Uncertainty Quantification 10 (2022), no. 4 1435–1460.

[51] M. Gu and L. Wang, Scaled Gaussian stochastic process for computer model
calibration and prediction, SIAM/ASA Journal on Uncertainty Quantification 6
(2018), no. 4 1555–1583.

[52] A. Patra, A. Bauer, C. Nichita, E. B. Pitman, M. Sheridan, M. Bursik, B. Rupp,
A. Webber, A. Stinton, L. Namikawa, and C. Renschler, Parallel adaptive
numerical simulation of dry avalanches over natural terrain, Journal of
Volcanology and Geothermal Research 139 (2005), no. 1 1–21.

[53] S. Conti and A. O’Hagan, Bayesian emulation of complex multi-output and
dynamic computer models, Journal of statistical planning and inference 140
(2010), no. 3 640–651.

[54] R. Paulo, G. Garćıa-Donato, and J. Palomo, Calibration of computer models with
multivariate output, Computational Statistics and Data Analysis 56 (2012), no. 12
3959–3974.

[55] M. Gu and W. Shen, Generalized probabilistic principal component analysis of
correlated data, Journal of Machine Learning Research 21 (2020), no. 13.

[56] M. Gu, Y. Lin, V. C. Lee, and D. Qiu, Probabilistic forecast of nonlinear
dynamical systems with uncertainty quantification, Accepted in Physica D:
nonlinear phenomena, arXiv preprint arXiv:2305.08942 (2023).

[57] S. A. Hollingsworth and R. O. Dror, Molecular dynamics simulation for all,
Neuron 99 (2018), no. 6 1129–1143.

[58] D. Lu, H. Wang, M. Chen, L. Lin, R. Car, E. Weinan, W. Jia, and L. Zhang, 86
pflops deep potential molecular dynamics simulation of 100 million atoms with ab
initio accuracy, Computer Physics Communications 259 (2021) 107624.

[59] E. Snelson and Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs,
Advances in neural information processing systems 18 (2006) 1257.

[60] H. Wang, L. Zhang, J. Han, and E. Weinan, Deepmd-kit: A deep learning package
for many-body potential energy representation and molecular dynamics, Computer
Physics Communications 228 (2018) 178–184.

[61] S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller, and A. Tkatchenko,
sGDML: Constructing accurate and data efficient molecular force fields using
machine learning, Computer Physics Communications 240 (2019) 38–45.

127

[62] N. Cressie and G. Johannesson, Fixed rank kriging for very large spatial data sets,
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70
(2008), no. 1 209–226.

[63] C. G. Kaufman, M. J. Schervish, and D. W. Nychka, Covariance tapering for
likelihood-based estimation in large spatial data sets, Journal of the American
Statistical Association 103 (2008), no. 484 1545–1555.

[64] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand, Hierarchical
nearest-neighbor gaussian process models for large geostatistical datasets, Journal
of the American Statistical Association 111 (2016), no. 514 800–812.

[65] F. Lindgren, H. Rue, and J. Lindström, An explicit link between gaussian fields
and gaussian markov random fields: the stochastic partial differential equation
approach, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73 (2011), no. 4 423–498.

[66] R. B. Gramacy and D. W. Apley, Local Gaussian process approximation for large
computer experiments, Journal of Computational and Graphical Statistics 24
(2015), no. 2 561–578.

[67] F. de Roos, A. Gessner, and P. Hennig, High-dimensional Gaussian process
inference with derivatives, arXiv preprint arXiv:2102.07542 (2021).

[68] D. Eriksson, K. Dong, E. H. Lee, D. Bindel, and A. G. Wilson, Scaling Gaussian
process regression with derivatives, arXiv preprint arXiv:1810.12283 (2018).

[69] Z. Xie and J. M. Bowman, Permutationally invariant polynomial basis for
molecular energy surface fitting via monomial symmetrization, Journal of
Chemical Theory and Computation 6 (2010), no. 1 26–34.

[70] B. Jiang and H. Guo, Permutation invariant polynomial neural network approach
to fitting potential energy surfaces. iii. molecule-surface interactions, The Journal
of Chemical Physics 141 (2014), no. 3 034109.

[71] D. Koner and M. Meuwly, Permutationally invariant, reproducing kernel-based
potential energy surfaces for polyatomic molecules: From formaldehyde to acetone,
Journal of Chemical Theory and Computation 16 (2020), no. 9 5474–5484.

[72] S. Chmiela, Towards exact molecular dynamics simulations with invariant
machine-learned models. Technische Universitaet Berlin (Germany), 2019.

[73] S. Umeyama, An eigendecomposition approach to weighted graph matching
problems, IEEE transactions on pattern analysis and machine intelligence 10
(1988), no. 5 695–703.

128

[74] O. Roustant, D. Ginsbourger, and Y. Deville, Dicekriging, diceoptim: Two R
packages for the analysis of computer experiments by kriging-based metamodeling
and optimization, .

[75] E. Snelson and Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs,
Advances in neural information processing systems 18 (2005).

[76] J. Quinonero-Candela and C. E. Rasmussen, A unifying view of sparse
approximate Gaussian process regression, The Journal of Machine Learning
Research 6 (2005) 1939–1959.

[77] M. W. Mahoney and P. Drineas, Cur matrix decompositions for improved data
analysis, Proceedings of the National Academy of Sciences 106 (2009), no. 3
697–702.

[78] Y. Zhang, C. Hu, and B. Jiang, Embedded atom neural network potentials:
Efficient and accurate machine learning with a physically inspired representation,
The journal of physical chemistry letters 10 (2019), no. 17 4962–4967.

[79] O. T. Unke and M. Meuwly, Physnet: a neural network for predicting energies,
forces, dipole moments, and partial charges, Journal of chemical theory and
computation 15 (2019), no. 6 3678–3693.

[80] O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K.-R.
Müller, Spookynet: Learning force fields with electronic degrees of freedom and
nonlocal effects, Nature communications 12 (2021), no. 1 1–14.

[81] J.-f. Xia, Y.-l. Zhang, and B. Jiang, Efficient selection of linearly independent
atomic features for accurate machine learning potentials, Chinese Journal of
Chemical Physics 34 (2022), no. 6 695.

[82] B. A. P. Kermode, James R, M. C. Payne, R. Kondor, and G. Csányi, “QUIP.”
http://www.libatoms.org.

[83] J. Snoek, H. Larochelle, and R. P. Adams, Practical bayesian optimization of
machine learning algorithms, Advances in neural information processing systems
25 (2012).

[84] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, Taking the
human out of the loop: A review of Bayesian optimization, Proceedings of the
IEEE 104 (2015), no. 1 148–175.

[85] R. Cerbino and V. Trappe, Differential dynamic microscopy: probing wave vector
dependent dynamics with a microscope, Physical review letters 100 (2008), no. 18
188102.

129

http://www.libatoms.org

[86] M. Gu, Y. He, X. Liu, and Y. Luo, Ab initio uncertainty quantification in
scattering analysis of microscopy, arXiv preprint arXiv:2309.02468 (2023).

[87] M. Gu, X. Fang, and Y. Luo, Data-driven model construction for anisotropic
dynamics of active matter, PRX Life 1 (2023), no. 1 013009.

[88] S. R. Marder, D. N. Beratan, and L.-T. Cheng, Approaches for optimizing the
first electronic hyperpolarizability of conjugated organic molecules, Science 252
(1991), no. 5002 103–106.

[89] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
recipes: The art of scientific computing, cambridge university press, cambridge,
new york, new rochelle, melbourne, sydney, 1986, 20+ 818 pp., 1990.

[90] P. I. Frazier, A tutorial on Bayesian optimization, arXiv preprint
arXiv:1807.02811 (2018).

[91] T. J. Ypma, Historical development of the newton–raphson method, SIAM review
37 (1995), no. 4 531–551.

[92] I. Štich, R. Car, M. Parrinello, and S. Baroni, Conjugate gradient minimization of
the energy functional: A new method for electronic structure calculation, Physical
Review B 39 (1989), no. 8 4997.

[93] M. Hoffmann and F. Noé, Generating valid euclidean distance matrices, arXiv
preprint arXiv:1910.03131 (2019).

[94] K. Korovina, S. Xu, K. Kandasamy, W. Neiswanger, B. Poczos, J. Schneider, and
E. Xing, Chembo: Bayesian optimization of small organic molecules with
synthesizable recommendations, in International Conference on Artificial
Intelligence and Statistics, pp. 3393–3403, PMLR, 2020.

[95] R.-R. Griffiths and J. M. Hernández-Lobato, Constrained Bayesian optimization
for automatic chemical design using variational autoencoders, Chemical science
11 (2020), no. 2 577–586.

[96] A. Stuke, P. Rinke, and M. Todorović, Efficient hyperparameter tuning for kernel
ridge regression with Bayesian optimization, Machine Learning: Science and
Technology 2 (2021), no. 3 035022.

[97] H. J. Kushner, A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise, .

[98] J. Močkus, On Bayesian methods for seeking the extremum, in Optimization
Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974, pp. 400–404,
Springer, 1975.

130

[99] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of
expensive black-box functions, Journal of Global optimization 13 (1998) 455–492.

[100] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization, ACM Transactions on
mathematical software (TOMS) 23 (1997), no. 4 550–560.

[101] T. L. Lai, H. Robbins, et. al., Asymptotically efficient adaptive allocation rules,
Advances in applied mathematics 6 (1985), no. 1 4–22.

[102] T. G. authors, “GPyOpt: A Bayesian optimization framework in python.”
http://github.com/SheffieldML/GPyOpt, 2016.

[103] F. Nogueira, Bayesian Optimization: Open source constrained global optimization
tool for Python, 2014–.

[104] D. Ackley, A connectionist machine for genetic hillclimbing kluwer acad, 1987.

[105] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, Advances in neural information processing
systems 32 (2019).

[106] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[107] X. Fang, M. Gu, and J. Wu, Reliable emulation of complex functionals by active
learning with error control, The Journal of Chemical Physics 157 (2022), no. 21.

[108] K. R. Anderson, I. A. Johanson, M. R. Patrick, M. Gu, P. Segall, M. P. Poland,
E. K. Montgomery-Brown, and A. Miklius, Magma reservoir failure and the onset
of caldera collapse at k̄ılauea volcano in 2018, Science 366 (2019), no. 6470.

[109] H. Zhao, F. Amann, and J. Kowalski, Emulator-based global sensitivity analysis
for flow-like landslide run-out models, Landslides 18 (2021), no. 10 3299–3314.

[110] P. Ma, G. Karagiannis, B. A. Konomi, T. G. Asher, G. R. Toro, and A. T. Cox,
Multifidelity computer model emulation with high-dimensional output: An
application to storm surge, Journal of the Royal Statistical Society Series C:
Applied Statistics 71 (2022), no. 4 861–883.

[111] M. Gu, Y. Lin, V. C. Lee, and D. Y. Qiu, Probabilistic forecast of nonlinear
dynamical systems with uncertainty quantification, Physica D: Nonlinear
Phenomena 457 (2024) 133938.

[112] J. Oakley, Bayesian uncertainty analysis for complex computer codes. PhD thesis,
University of Sheffield, 1999.

131

http://github.com/SheffieldML/GPyOpt

[113] “Python package: Atomized Force Fields.”
https://github.com/UncertaintyQuantification/AFF. Accessed: 2022-04-28.

[114] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, Global sensitivity analysis: the primer. John Wiley
& Sons, 2008.

[115] P. G. Constantine, E. Dow, and Q. Wang, Active subspace methods in theory and
practice: applications to kriging surfaces, SIAM Journal on Scientific Computing
36 (2014), no. 4 A1500–A1524.

[116] A. V. Vecchia, Estimation and model identification for continuous spatial
processes, Journal of the Royal Statistical Society: Series B (Methodological) 50
(1988), no. 2 297–312.

[117] M. Katzfuss and J. Guinness, A general framework for Vecchia approximations of
Gaussian processes, .

[118] M. Katzfuss, J. Guinness, and E. Lawrence, Scaled Vecchia approximation for fast
computer-model emulation, SIAM/ASA Journal on Uncertainty Quantification 10
(2022), no. 2 537–554.

132

https://github.com/UncertaintyQuantification/AFF

	Curriculum Vitae
	Abstract
	Introduction
	Scalar-valued Gaussian Process Emulator
	Gaussian Processes for Vectorized Outputs
	Gaussian Processes on Linear Functional Observations
	Outline

	Forward Efficient Force Field and Energy Emulation through Partition of Permutationally Equivalent Atoms
	Literature Review
	Motivation
	Atomic Force Field Method
	Potential Energy Prediction with the AFF
	Numerical Results

	High Dimensional Optimization on Inverse Force-Fields Design
	Background and Literature Review
	Bayesian Optimization
	Learning the Inverse Energy Mapping
	Minimization of Atomic Forces
	Numerical Results

	Python Package PyRobustGaSP and AFF
	Main Functions of PyRobustGaSP
	Robust Parameter Estimation and Examples
	Emulation of Expensive Simulations with Massive Outputs
	An example of the AFF emulator

	Concluding remarks and future work
	Future Work in Predicting Large Systems with Active Subspace Methods
	Future Work on Computation Reduction

	Appendix Title
	Fast Predictions of Potential Energies in Batches
	Predictive Distribution of Potential Energy
	Simulation Details

	Bibliography

