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ORIGINAL ARTICLE

Open

Defining seasonal marine microbial community

dynamics

Jack A Gilbert"*?, Joshua A Steele*, ] Gregory Caporaso®, Lars Steinbriick®, Jens Reeder®,
Ben Temperton', Susan Huse’, Alice C McHardy®?, Rob Knight®>?, Ian Joint",

Paul Somerfield’, Jed A Fuhrman* and Dawn Field'®

'Plymouth Marine Laboratory, Prospect Place, Plymouth, UK; *Institute of Genomics and Systems Biology,
Argonne National Laboratory, Argonne, IL, USA; ®*Department of Ecology and Evolution, University

of Chicago, Chicago, IL, USA; *University of Southern California, Department of Biological Sciences,

Los Angeles, CA, USA; °*Department of Chemistry and Biochemistry, University of Colorado at Boulder,
Boulder, CO, USA; ®Department of Algorithmic Bioinformatics, Heinrich-Heine University, Disseldorf,
Germany; ”Josephine Bay Paul Centre for Comparative Molecular Biology and Evolution, Marine Biological
Laboratory, Woods Hole, MA, USA; ®Max-Planck-Institut fur Informatik, Max-Planck Research Group for
Computational Genomics and Epidemiology, Saarbriicken, Germany; *Howard Hughes Medical Institute,
Boulder, CO, USA and " NERC Centre for Ecology and Hydrology, Wallingford, UK

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA
tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off
Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period,
whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering
and 21130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most
abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11)
and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable
seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental
variables explained far more variation in seasonally predictable bacteria than did data on protists
or metazoan biomass. Change in day length alone explains >65% of the variance in community
diversity. The results suggested that seasonal changes in environmental variables are more
important than trophic interactions. Interestingly, microbial association network analysis showed
that correlations in abundance were stronger within bacterial taxa rather than between bacteria and

eukaryotes, or between bacteria and environmental variables.

The ISME Journal (2012) 6, 298-308; doi:10.1038/ismej.2011.107; published online 18 August 2011
Subject Category: microbial population and community ecology
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Introduction

Only recently with the introduction of molecular
techniques satisfactory descriptions of natural
microbial assemblages have been generated (Fierer
and Jackson, 2006; Rusch et al., 2007; Costello et al.,
2009; Caporaso et al., 2011). In this paper, we
summarize a 6-year time series of 16S rRNA tag
pyrosequencing of samples taken from a long-time
series station in the English Channel. The aim was
to understand seasonal variability and to try to
determine which environmental factors might have
the greatest influence on the varying diversity.
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In contrast to terrestrial environments that are
essentially static, the marine environment has the
added complication that the dispersion and move-
ment of populations will be driven by hydrography.
This adds to difficulties of interpretation of results,
particularly if the sampling design is Eulurian
(a fixed site) rather than Lagrangian (moving with
the water flow). The Western English Channel has
been studied intensively for more than 100 years
(Southward et al., 2005), and this wealth of data
provide a robust context with which to explore
temporal microbiological complexity. Inferences can
be drawn regarding how bacterioplankton assem-
blages may potentially interact with the environ-
ment as well as with specific groups of organisms.

Previous efforts to determine which factors might
affect microbial communities have largely focused
on the relative importance of temperature and
nutrient concentrations (Cullen, 1991; Kirchman
et al., 1995; Morris et al., 2005; Fuhrman et al.,
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2006; Fuhrman, 2009; Gilbert et al., 2009). These are
obvious candidates because of the strong effect of
temperature on biological processes (Nedwell and
Rutter, 1994) and the fact that nutrient availability
can drive niche structure through resource parti-
tioning (Church, 2009). Of greatest relevance to the
present study is the recent demonstration that
bacterioplankton diversity followed a latitudinal
gradient, with maximum potential richness being
primarily driven by temperature, with many other
factors modulating an intricate network of richness
at any particular temperature (Fuhrman et al., 2008).

The aim of the current study was to further
characterize seasonal patterns of bacterioplankton
diversity in the Western English Channel, beyond an
initial 1-year study by Gilbert et al. (2009). Using
these data, we tested three competing alternative
hypotheses about potential drivers of diversity
patterns, namely whether the observed seasonal
patterns correlate with (1) varying concentrations
of inorganic nutrients, (2) annual water—temperature
cycle or (3) the population structure of the eukar-
yotic phytoplankton and zooplankton. The null
hypothesis was that the seasonal patterns in micro-
bial community composition in the Western English
Channel showed no relationship with any of the
physical or biological factors measured in this study.

Materials and methods

Sampling, DNA extraction, 16S rDNA V6
amplification and pyrosequencing

Seawater samples were collected on 72 instances
from January 2003 to December 2008, from the L4
sampling site (50° 15.00" N, 4° 13.02’) of the Western
Channel Observatory (http://www.westernchanne
lobservatory.org.uk). Sampling, extraction, amplifi-
cation, and sequencing protocols and environmental
parameter analysis were performed simultaneously
on the same samples as described previously by
Gilbert et al. (2009); extensive information can be
found in Supplementary Information (Supplemen-
tary Tables S1-S3). Bacterial diversity was exam-
ined in the context of the broad range of biotic
and abiotic variables that are routinely measured at
the Observatory. These included phytoplankton
and zooplankton species abundance, the concentra-
tions of ammonia, nitrate+ nitrite, phosphate,
silicate, total organic carbon and nitrogen, salinity,
chlorophyll, photosynthetically active radiation,
North Atlantic Oscillation data, day length, primary
productivity and temperature. Statistical analyses
used the routines of PRIMER (Clarke and Warwick,
2001; Clarke and Gorley, 2006).

Sequence data analysis

All sequence data were treated as reported pre-
viously (Gilbert et al., 2010), using the same quality
control that included random resampling to stan-
dardize the sequencing effort as described below,
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Sequence data noise reduction using Single-Linkage
Preclustering (SLP; Huse et al., 2010) and analysis
(sample similarity derived from Bray—Curtis indices
weighted on taxon abundance matrices) also fol-
lowed previous protocols. In addition, several noise
reduction strategies such as SLP (Huse et al., 2010)
and denoiser (Reeder and Knight, 2010) were
compared to examine the impact of pyrosequencing
errors on community diversity patterns observed
in the data (see Supplementary Figure S1a). It is
important to stress that both known and unknown
biases associated with these techniques meant that
these data could not be seen as quantitative, and
hence all analyses are based on relative changes
derived through comparison. As the same sequen-
cing and sampling effort was applied to each
sample, the operational taxonomic unit (OTU)
richness (S) was used as a diversity metric, which
showed a 97% correlation to two extrapolative
estimators of diversity (Chaol and Ace) over the 72
samples (Supplementary Figure S1b). Changes in
community diversity and relationship to environ-
mental parameters were examined using various
nonparametric multivariate methods, discriminant
function analysis (DFA), and association networks
(see Supplementary Information).

To determine whether microbial communities in
the Western English Channel demonstrated seasonal
patterns over many years, 747496 16S rDNA V6
sequences were analyzed, including those pre-
viously published for the year 2007 (Gilbert et al.,
2009). To compensate for potential overestimation
in diversity resulting from pyrosequencing and
amplification errors, a clustering technique was
used. SLP grouped OTUs at 2% sequence identity
and an average-linkage clustering followed, based
on pair-wise alignments (Huse et al., 2010), which
resulted in 8794 OTUs. To remove sequencing effort
bias, each sample was randomly resampled to the
smallest individual sample sequencing effort (4505)
as described before (Gilbert et al., 2009). This
resulted in a total of 4204 OTUs (for all 72 samples
combined). Approximately, 53% of the OTUs were
represented by only a single sequence (singletons).
These results, in terms of relative abundance, were
confirmed using a second denoising technique,
Denoiser (Reeder and Knight, 2010), which generated
greater total richness (21130 OTUs). However, com-
parison between Denoiser, SLP and no-denoising/
filtering indicated that overall, the same patterns of
community diversity were evident with each techni-
que (Supplementary Figure S1). SLP constituted by
far the most conservative OTU predictions, and was
therefore used for subsequent analysis.

Results

Seasonal variations in diversity and persistence
Bacterioplankton were very diverse at this station
and a total of 8794 different OTUs (defined using
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Figure 1 Persistence of OTUs in microbial communities at L4 over a 6-year time period. Median OTU abundance, calculated for all time
points, over a 6-year period is set proportional to node size on a logarithmic scale. Only OTUs found in at least 5% of the time-series
samples (>4) are shown. This includes 22.53% of the OTUs, representing 97.48% of the sampled organisms. Node coloring shows the
differences in persistence over time, with the color scale from orange (5%), yellow (16%), green (35%), blue (66%), red (100%) reflecting

increasing persistence.

SLP) over a 6-year period were identified. Figure 1
summarizes the taxonomic identify of all the OTUs
sequenced and also gives an indication of the
persistence of OTUs in microbial communities at
L4 over a 6-year time period. Although this study
has shown high diversity of bacterioplankton in the
English Channel, as with other studies of natural
assemblages, the majority of sequences could not be
identified to species. Indeed, only 6 of the 10 most
abundant OTUs could be annotated below the level
of Class and, of the top 100 most abundant OTUs,
only 2% could be identified to the species level.
The taxonomic level to which the OTUs could be
identified was—Phylum (9%), Class (32%), Order
(10%), Family (26%), Genus (21%). This was true
using a number of different annotation strategies
(that is, GAST (Sogin et al., 2006); BLAST against
Greengenes (DeSantis et al., 2006), SILVA (Pruesse
et al., 2007) and RDP (Maidak et al., 2001); RDP
classifier (Maidak et al., 2001); data not shown,
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references in Supplementary Information). These
results suggest that a large fraction of as-of-yet
uncharacterized lineages were present, even among
the most abundant taxa, and highlights the difficul-
ties associated with accurate annotation of short
read-length tag sequences from hypervariable 16S
rRNA regions (Wang et al., 2007; Liu et al., 2008).

Although there are significant seasonal variations
in OTU frequency throughout a 6-year period
(Figure 2), there are also strong repeating patterns.
As other studies of marine microbial diversity have
demonstrated, the Alphaproteobacteria were the
most abundant Class. The OTUs most frequently
recorded were members of the Rickettsiales and
Rhodobacteriales. Other OTUs with high frequency
were the Flavobacteriales (Class: Bacteroidetes) and
there were also peaks in the Gammaproteobacteria
(Vibrionales and Pseudomonadales).

Alpha diversity of the observed OTUs (S) was
relatively constant across the time series, but
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Figure 2 Plot representing the seasonal dynamics (grouped as an
average of seasons; Winter: January—March; Spring: April-June;
Summer: July—September; Fall: October-December) of taxa
grouped at the taxonomic level of Order in the L4 6-year time
series. Frequency is recorded based on abundances within a
resampled abundance of 4101 sequences per sample. Only Orders
whose average frequency peaked above 10% of the resampled
community abundance were included.
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showed distinct cyclical patterns with maxima in
winter and minima in summer (Figure 3). The mean
S per time point was 286, with an average minimum
of 179 in summer and maximum of 437 in winter.
This pattern was further confirmed by permutation-
based analysis of variance (of S) for all taxa, and for a
range of phyla (Supplementary Table S4). S was
most similar when comparing the same time of year,
and differences between seasons and among years
were both highly significant. Seasonal differences
tended to be greater than inter-annual (greater
pseudo-F values although there were fewer d.f.).
This lack of significant interaction terms suggested
that the seasonal cycle was consistent across years.
Overall persistence (Figure 1) was linked to abun-
dance; OTUs that were present at more than three
time points accounted for 97.48% of the sequences.
In total, only 12 OTUs were found at every 1 of the
72 time-points, yet these were exceptionally abun-
dant, comprising ~35% of all the sequence reads.

Seasonal trends in most abundant bacteria

The two most abundant Orders were Rickettsiales
and Rhodobacterales, and they had different seaso-
nal abundances. The Rickettsiales sequences were
dominated by the SAR11 clade and tended to peak
in winter (Figure 4). At this time, light and primary
production were low, and inorganic nutrient con-
centrations were at their maximum. In contrast, the
Rhodobacterales, which were dominated by the
Roseobacter clade, tended to peak in Spring and
Autumn, when nutrient concentrations were lower
yet primary productivity was higher. This is con-
sistent with what is known from single-strain-level
studies; SAR11 are considered to be obligate
oligotrophs, while the Roseobacter clade contains
many genera whose cultured representatives tend to
grow in organic nutrient-rich media, and may be
likely to respond at times when rates of primary
production are higher.

Rare taxa may dominate the assemblage
The largest bacterial ‘bloom’ occurred during
August 2003, and this constituted a single Vibrio sp.,
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Figure 4 Plot representing the seasonal dynamics of the bacterial Orders, Rickettsiales and Rhodobacterales, and environmental
parameters, chlorophyll a and soluble reactive phosphorus (SRP) in the L4 6-year time series. Frequency is recorded based on
abundances (abundance of sequences per taxa) within a resampled abundance of 4505 sequences per sample.
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which represented 54% of the sequences.
Yet, for the rest of the time series, this taxon was
relatively rare, having an abundance of 0-2%.
Interestingly, this peak was correlated with an
increase in the relative abundance of the diatom,
Chaetoceros compressus. This diatom was also
typically present at low abundance, between
0.002-0.2% of total phytoplankton biomass
(Supplementary Table S2). However, in August
2003, C. compressus accounted for 1.2% of total
eukaryotic phytoplankton. Our data do not distin-
guish between a causal relationship—a specific
dependence of a bacterial species on a specific
phytoplankton species—and simple co-occurrence,
which might be a response to unusual environmen-
tal conditions. Certainly at this time point, the
highest total organic nitrogen and carbon concentra-
tions, and second highest chlorophyll a concentra-
tion were measured in the whole time series
between 2003 and 2008 (Supplementary Table S1).

Seasonal succession in the community composition

is robust

The dataset of environmental and biological
variables was examined to investigate potential
relationships between bacterioplankton and the
environmental and eukaryotic abundance data.
The community composition (rather than richness)
was used, after determining whether seasonal
patterns in community composition were as robust
as those for species richness. Three different subsets
of the bacterial OTUs, that is, the most abundant,
most common and most variable (see Supplemen-
tary Materials) were defined. These definitions were
robust across the different denoising strategies (that
is, the same OTUs (based on sequence identity, with
the same taxonomic inference defined). Using DFA,
an eigenvector technique that, in this case, searches

50 Most Abundant

50 Most Common

out the taxa which are best able to predict the month
(Fuhrman et al., 2006), we found that for each
subset, the bacterial community could correctly
predict the month with 100% accuracy, showed a
clear repeating pattern (Figure 5), and was able to
explain >60% of the variance in the community
structure (Supplementary Table S5).

These patterns for most abundant, common and
variable subsets are similar to those reported for
similar subsets in a Californian near-surface bacter-
ioplankton time series (Fuhrman et al.,, 2006),
suggesting that seasonal succession patterns of
marine surface water bacterial communities in
temperate regions may be conserved across different
biomes. The Californian study was based on auto-
mated ribosomal RNA intergenic spacer analysis
fingerprint technology, but the sequence-based
annotation provided by this study allowed consid-
erably better predictions for the bacterial taxa
contributing most strongly to these signals. In
this instance, these were members of the Alphapro-
teobacteria (for example, SAR11 and Rhodobacter-
iaciae groups), the Gammaproteobacteria (for
example, Pseudomonas, Pseudoalteromonas, and
Vibrio groups), the Cyanobacteria, and the Bacter-
oidetes (for example, Flavobacteriaceae group;
Supplementary Table S6).

Seasonal variance in community composition

The relative significance of environmental versus
biological factors in describing the seasonal varia-
tion in bacterioplankton assemblages was investi-
gated using DFA. DFA, via multiple regression using
environmental factors and eukaryotic counts, was
used to predict the first discriminant function (DF1)
from each subset of the community (that is,
most abundant, most common and most variable).
Environmental parameters explained 49-91% of the
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Figure 5 Annual repeating patterns from the bacterioplankton community sampled monthly from 2003—-2008 in the English Channel
determined by DFA where the model used the bacterioplankton community to predict the month. Upper row of graphs shows the time-
series analysis of the first discriminant function (DFA1) over 72 months. The lower row shows the autocorrelation of the discriminant
function with up to a 50-month lag. The lines in the lower row represent correlations with P<0.05.
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variance in DF1, while eukaryotic variables
explained 18-51% of the variance (Supplementary
Table S6). This suggests that that the seasonally
responsive members of the microbial community
were responding to changing environmental factors,
while interactions between the bacteria and the
eukaryotes may have had a less comprehensive
influence. Obviously, as shown for the Vibrio bloom
in 2003, this trend is not absolutely uniform,
and blooms of rare taxa can be influenced by the
presence of eukaryotes. However, as defined by the
robust annual cyclicity, the community recovers
from these ‘rare-bloom’ events, suggesting an overall
bottom-up influence on the community composition
and structure. Essentially this suggests that nutrient
concentrations, physical parameters and biology all
demonstrate significant influence in an extraordina-
rily complex matrix.

Annual day length cycle explains most of the

variability in the seasonal pattern of species diversity
To test whether changes in nutrients or temperature
provided the best correlation with changes in
community diversity, distance-based linear model-
ling was used (described in detail in Supplementary
Material). This showed that, although a significant
fit could be ascribed to a combination of tempera-
ture and photosynthetically active radiation and the
richness of all OTUs, the most significant fit
was always to the annual change in day length
(Supplementary Table S7). This was best modelled
by a cosine term (DX1) with the peak centered on
December 22. When day length (DX1) was combined
with serial day (D), it described 66.3% of the
variance in OTU richness. However, when examin-
ing the phototrophic Cyanobacteria (Supplementary
Table S7), the relationship of richness to day
length was not always evident, for example, diver-
sity peaked in spring but not in winter, and hence
coincided with the lowest annual temperatures at
L4. To account for the Cyanobacteria and to signi-
ficantly improve the fit of our model (SAIC> -2),
a second seasonal artificial term centered on
March 22 (a sine-derived term—DX2) was added
that closely tracked temperature. Also, because most
of the taxa show subtle changes in their seasonal
cyclicity over these years, it was possible to
significantly improve the model further by adding
a linear time trend term (D). However, this did not
improve the fit for the cyanobacterial community
diversity, which was remarkably stable over the 6
years. Strikingly, the Cyanobacteria were unique in
that a combination of photosynthetically active
radiation, temperature and nitrate/nitrite concentra-
tion provided as good a fit as the artificial descrip-
tors (DX1, DX2 and D; Supplementary Table S7).
Not unexpectedly, this suggests that, unlike other
groups, the species diversity of these primary
producers can be well defined by a combination
of light availability, nitrogen availability and

Marine microbial community structure
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temperature, reflecting a different set of niches
compared with the other potentially heterotrophic
bacterioplankton.

Discussion

The repeating cycles in bacterioplankton diversity
in this Eulerian study raise the question of whether
unique water masses pass through the English
Channel, and whether those water masses contain
characteristic bacterioplankton assemblages. This is
almost certainly not the case as the hydrography of
the Western English Channel has been studied
extensively (Southward et al., 2005). From the
earliest studies in the 1930s using drift-bottles, it
was known that there was a strong flow through the
English Channel from west to east. Later modelling
and observational studies showed the importance of
wind over a very wide shelf region (including the
North Sea) in determining flow through the Western
English Channel (Pingree and Griffiths, 1980).
Southerly winds resulted in the greatest net trans-
port of water along the English Channel through the
Straits of Dover and into the southern North Sea;
westerly winds were less effective.

It has recently been calculated that average
residence time at the sampling site is on the order
of 2 weeks (Lewis and Allen, 2009), although
dispersion occurs continuously. The repeating an-
nual patterns of bacterioplankton demonstrated in
this study cannot be due to the repeated intrusion
of water mass with an annual periodicity. We do not
know how representative these robust annual
patterns are of the entire English Channel. It may
be that the observed patterns represent seasonal
changes in bacterioplankton on the Celtic Sea Shelf,
which is advected into the Western English Chan-
nel. Given that this advection will largely depend on
wind conditions, it seems unlikely that such similar
patterns would occur over a 6-year period. Clearly,
further sampling on the European Shelf will be
required to answer the question of the representa-
tiveness of this station.

The relationship between OTU richness and day
length is interesting. To the best of our knowledge,
this is the only example from a marine dataset where
a single variable has such explanatory capacity
(66.3% of the variance in OTU richness). There are
examples from terrestrial systems; for example,
tRFLP analysis identified an r* value of 0.7 between
bacterial community richness and pH (Fierer and
Jackson, 2006). Temperature would imply a clear
mechanism; we can see no such direct mechanism
that result in day length directly controlling bacter-
ioplankton assemblages.

Other environmental factors that could suggest
direct mechanisms did have significant relation-
ships. They did not, however, apply to the most
common and abundant taxa, but the composition
of the most variable taxa could be significantly
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predicted by nutrient concentrations (NH.", total
organic nitrogen (TON), soluble reactive phosphate,
primary production and broad shifts in ocean
currents indicated by the North Atlantic Oscillation
(Supplementary Table S6). Overall, we conclude
that the monthly pattern and response to broad
seasonal changes indicate that the most common
and most abundant bacterial OTUs have temporally
defined niches. In contrast, the most variable OTUs
have niches that can be defined temporally as well
as by nutrient pulses and changes in currents.
Temporal niche structure suggests taxa with a
resilient seasonal pattern, for example, SAR11 and
Rhodobacteriaciae, although tracking nutrient
pulses and currents, are potentially less resilient to
changing environmental conditions. However, the
relationship is complex, and potentially a function
of abundance, commonality and variability, as both
SAR11 and Rhodobacteriaciae are in the most
abundant, most common and most variable subset.

Interestingly, interactions were strongest within
the bacterial and eukaryotic domains rather than
between them, and relationships were stronger
between bacterial taxa than with environmental
variables. Association network analysis was em-
ployed in an attempt to deconvolute the complex
network of relationships that were driving the
observed DFA results. However, this revealed that
the strongest correlations exist between bacterial
OTUs (whether abundant, common or variable) and,
to a slightly lesser extent among eukaryotes, com-
pared with correlations between these two domains
or between either bacteria or eukaryotes and
environmental factors (Figure 6). Also, the integrity
of these relationships was maintained across the
three chosen subsets of OTUs (Figure 6). Even
among the highly variable OTUs, which might
be expected to respond to changing conditions
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enabling growth from rare to abundant, most
significant correlations were still between bacteria
(Supplementary Figure S2). Also, at a highly
correlated (r>0.7, P<0.001, g<0.0012) level, there
were many eukaryotic taxa in a loosely intercorre-
lated group (Supplementary Figure S2a), but there
are still very few specific connections between the
eukaryotes and the bacteria. Mostly the bacteria
were correlated to one another and to the environ-
mental factors, and the eukaryotes were also
connected to one another and the environmental
factors. The highly intercorrelated group (Supple-
mentary Figure S2b) was almost completely devoid
of eukaryotes, but was connected to an herbivorous,
parasitic copepod (Poescilostomatoida), and to the
seasonal factor DX1, NO, +NO,, and an intercon-
nected cluster of Gammaproteobacteria, Bacillus
and Actinobacteria OTUs.

Interactions between eukaryotes and bacteria
became more apparent when moderate correlations
were examined between different subsets of the
eukaryotic community and the 300 most abundant
bacterial OTUs. Mixotrophic eukaryotes (potential
grazers on bacteria) and autotrophic eukaryotes both
showed complex interactions with the prokaryotic
community (Supplementary Figure S3). Although
flagellates (when grouped by size) were correlated
to each other (r=0.59, P<0.001, ¢g<0.0012) and,
naturally, to the total number of flagellates, only two
bacterial OTUs (a single Rhodobactereaceae OTU
and a single Cyanobacteria OTU) are correlated to
all three groups (Supplementary Figure S3a). There
were many bacterial and eukaryotic OTUs, which
correlate to two of the flagellate subgroups, and a
smaller number, which correlate to only one of the
flagellate subgroups. The 5um flagellates were
negatively correlated to a Betaproteobacterial and a
Gammaproteobacterial OTU, and the diatom Paralia
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Figure 6 Broad view of correlation network for the microbial community and the environment at station L4. The network shows strong
correlations (r>0.8, P<0.001, g<0.002) between microbial and environmental parameters for the 300 most abundant bacterial taxa (a),
the 300 most common bacterial taxa (b), and the 300 most variable bacterial taxa (c). Bacteria are shown in blue, eukaryotes are shown in

red and environmental variables are shown in yellow.
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sulcata in samples with a 1-month lag, which
reflects an increase in those abundant members of
the community following a decrease in 5 pm-sized
flagellates (Supplementary Figure S3a).

A similar situation was applied to correlations
between autotrophic eukaryotes and abundant bac-
terial OTUs. The diatom, P. sulcata, correlated
negatively to the total diatom counts with a 1-month
time lag (Supplementary Figure S3b). This may
indicate a situation where P. sulcata dominated
the diatom community, while the total number of
diatoms decreased. These two eukaryotic nodes
shared 26 bacterial OTUs that correlated positively
to P. sulcata and negatively with a 1-month time lag
to the total diatom count (Supplementary Figure
S3b). These bacterial OTUs may reflect a community
shift indicated by the increase of P. sulcata and the
26 Proteobacteria, Bacteroidetes and Verrucomicrobia
when the total number of diatoms decreased.
The winter peak seasonal cycle, DX1, also positively
correlated to P. sulcata and negatively correlated,
with a 1-month lag, to total diatoms in the same way,
possibly implying seasonal community succession.
There were positive contemporaneous correlations
between P. sulcata and NO; 4+ NO,, between silicate
and mixed layer depth, and a negative 1-month
lagged correlation between the North Atlantic Oscil-
lation and total diatom counts; these results indicate
that nutrient concentrations may be drivers of this
succession (Supplementary Figure S3b). Interestingly,
there were only positive correlations between bacter-
ial OTUs and 2pm flagellates (Supplementary
Figure S3a), even though 2pm flagellates might be
expected to be the major grazers of bacterioplankton.
Bacterial OTUs were also positively correlated to total
flagellates, total phytoplankton, coccolithophores
and Emiliania huxleyi (Supplementary Figure S3b).

Many environmental factors were highly corre-
lated (r>0.7, P<0.001, g<0.0012) with both eukar-
yotic OTUs and bacterial OTUs, when both the 300
most variable bacteria (Supplementary Figure S4a)
and the 300 most common bacteria (Supplementary
Figure S4b) were considered. Strikingly, the seaso-
nal index peaking in winter (DX1) was correlated
almost exclusively to bacterial OTUs, including
Proteobacteria (for example, Alphaproteobacteria,
Gammaproteobacteria, Nitrospira), unidentified
bacteria, Deferribacteres and Owenweeksia in both
the common and variable sub-networks (Supple-
mentary Figure S4). Cladocera and Echinodermata
were the only eukaryotes that connected to DX1 and
they were negatively correlated with no lag and a
1-month lag, respectively. This suggests that seaso-
nal factors (for example, day length, which is a
proxy for DX1) may be more important for the
bacterioplankton than for the eukaryotic commu-
nity. The spring seasonal factor, DX2 was correlated
with a 3-month lag to Cladocera (indicating a
summer increase in abundance), and was negatively
correlated to a Bacteroidetes OTU in the most
variable subset (Supplementary Figure S4a).
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Positive correlations were widespread in the
microbe—environment network. Primary production
(monthly average) was correlated to total diatoms,
total ciliates, total microzooplankton and a Rhodo-
bacteriaceae OTU (which also correlated to daily
primary production and temperature). Daily primary
production (ML primary production, calculated
from observed chlorophyll values and integrated
over the observed mixed layer depth) was also
positively correlated to total diatoms, total
phytoplankton, total ciliates and echinodermata
(Supplementary Figure S4). This suggests that, as
productivity and nutrients increased, these bacteria
and eukaryotes also increased in abundance, that is,
these taxa appear to perform best in a productive
system. There was little correlation-based evidence
for top-down effects in this system, although
this may be a function of a lack of resolution of
bacterivores among the eukaryotes or perhaps a
limitation of this kind of analysis.

Local similarity analysis, with its ability to see
time-lagged correlations, also provided insight into
the relationships between environmental factors
themselves. Although day length was not correlated
to temperature at the 0.7 level, the Winter seasonal
cycle (DX1) was negatively correlated to day length
with no time delay, and to temperature and primary
production with a 1-month time delay (Supplemen-
tary Figure S4); that is, day length changed season-
ally, followed by a change in temperature. DX1 and
day length (which was positively correlated to
photosynthetically active radiation and primary
production) may be serving as combinatory signals
of seasonal environmental change, involving factors
such as changes in input of energy into the system.
These combinatory variables may more closely map
the changes in the whole community of bacterio-
plankton as well as the individual bacterial OTUs
connected to them. NO,+ NO, were highly corre-
lated with soluble reactive phosphate and silicate
(Supplementary Figure S4). However, soluble reac-
tive phosphate was correlated only to a Gammapro-
teobacteria OTU and a Rhodobacteriaciae OTU,
while silicate was not highly correlated to any
bacteria or eukaryotes. NO,+NO,; was positively
correlated to 12 bacterial OTUs, which were
also positively correlated to DX1, and there were
10 bacterial taxa that were positively correlated
solely to NO,+ NOs. The close coupling between
these taxa and NO, +NOQO; (that is, these taxa were
only abundant when there was an increased avail-
ability of nitrogen) suggests that these taxa may be
seasonally nitrogen limited in this ecosystem.

Regardless of the subset of OTUs (for example,
abundant, variable, or common) analysed, each
subset was able to predict the month. In addition,
each of the networks appeared to identify many of
the same connections when we examined 300 taxa
from any of the subsets (Figure 6, Supplementary
Figures S2-S4). OTUs were ranked differently with-
in each subset, but they produced similar patterns,
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which were nearly identical at the r>0.8 correlation
level (Figure 6). This was partly due to the stability
of the bacterioplankton community at L4 and the
depth of sampling into this community. It was also
an effect of using statistical analyses that require a
certain number of occurrences in order to detect a
pattern; by design, these analyses would ignore the
once-a-decade occurrence, for example, the spike
in Vibrio spp. abundance in the summer of 2003.
However, comparing these subsets allowed for a
better sense of the ecology behind these bacterial
OTUs. This is demonstrated most clearly when
restricting the correlations to the 50 most common
and most variable bacterial taxa, and their

relationship to environmental factors (Figure 7).
For instance, a SAR11 (Alphaproteobacteria_03_2),
although common, changed abundance seasonally
(it was the 6th most variable bacterial OTU) and
increased in abundance when inorganic nutrient
concentrations increased. A Rhizobiales member
(Alphaproteobacteria 03_121)  that  correlated
with NO,+NO; (Figure 7a) was not as variable
(Figure 7b), whereas the Deferribacteres member
(Deferribacteres_03_12) that correlated with NO, +
NO; (Figure 7b) was not common (Figure 7a), but
increased in abundance along with increased
NO, +NO; concentration. Among these observa-
tions of common influence, there were also hints

Figure 7 Sub-networks of highly correlated (r>0.7, P<0.001) variables built around environmental factors from the 50 most common
(a) and 50 most variable (b) bacterial OTUs. Interactions between environmental variables and eukaryotic interactions with
environmental variables have been removed for clarity. OTU identifications are from http://vampsarchive.mbl.edu/diversity/
diversity_old.php. Identifications more specific than the taxonomic order are shown in parentheses. Solid lines represent positive
correlations, dashed lines represent negative correlations. Black lines show no time delay while red arrows are delayed by 1 month.
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at ecological differences between these OTUs.
Although some taxa seemed to follow inorganic
nutrient concentrations (for example, SAR11 and
Deferribacteres), others followed system producti-
vity (for example, Rhodobacteriales) or temperature
(Gammaproteobacteria OTUs; Figure 7). These
observations, made possible by extended studies
of microbial assemblages, will lead to deeper
understanding of microbial niches in the ocean
and elsewhere.

This study has confirmed that strong seasonal
patterns occur in this surface water microbial com-
munity and that potential drivers of this structure
could be identified from the observatory data. Strik-
ingly, the variable with most explanatory power for
overall bacterial richness was day length, which
appears to be as important for describing temporal
community structure in coastal temperate seas as pH
is for describing spatial microbial structure in
terrestrial ecosystems. This study has highlighted
the added value of much longer temporal observa-
tions of natural communities. Although the overall
community succession was robust, subtle changes in
the patterns of individual taxa were observed and
were only detectable because of the long (6 years)
time series. Examples of different taxa showing
different seasonal cycles were SAR11 and Roseo-
bacter, which had nearly exactly opposite peaks in
richness. Additionally, blooms of rare OTUs may
be linked to changes in eukaryotic species and
environmental variables. Seasonal succession in the
community composition was robust and the most
variable OTUs were best at predicting the time of year.
Environmental factors, rather than interactions with
eukaryotes, were better at explaining seasonal
variance in bacterial community composition.
Meanwhile, interactions were strongest within do-
mains rather than between them, and correlative
relationships were stronger between taxa than with
environmental variables. This may indicate that
biological rather than physical factors can be more
important in defining the fine-grain community
structure. Finally, in making comparisons of the
bacterial OTU subsets, a fundamental stability in
the community has been shown, which suggests that
the robust seasonal cyclicity noted for the alpha- and
beta-diversity is also self-evident in the interactions
between members of the community.
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