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ABSTRACT 

 

Mixed Signal Neurocomputing Based on Floating-gate Memories 

 

 

by 

 

Xinjie Guo 

 

Nervous systems inspired neurocomputing has shown its great advantage in object 

detection, speech recognition and a lot of other machine-learning technology-driven 

applications from speed and power efficiency. Among handful neurocomputing 

implementation approaches, analog nanoelectronic circuits are very appealing because they 

may far overcome digital circuits of the same functionality in circuit density, speed and 

energy efficiency. Device density is one of the most essential metrics for designing large-

scale neural networks, allowing for high connectivity between neurons. Thanks to the high-

density nature of traditional memory applications, building artificial neural networks with 

hybrid complementary metal oxide semiconductor (CMOS)/memory devices would enable 

the high parallelism as well as achieve the performance advantages. 

Synapses, the most numerous elements of neural networks, are efficiently implemented 

by memory devices. This application, however, imposes a number of requirements, such as 

the continuous change of the memory resistance state, creating the need for novel 

engineering approaches. Here we report such engineering approaches for advanced 
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commercial 180-nm ESF1 and 55-nm ESF3 NOR flash memory, facilitating fabrication and 

successful test of high performance analog vector-by-matrix multiplication which is the key 

operation performed at signal propagation through any neuromorphic network. Furthermore, 

we discuss the recent progress toward neuromorphic computing implementations based on 

nonvolatile floating-gate devices, in particular the experimental results for a prototype 

28×28-binary-input, 10-output, 3-layer neuromorphic network based on arrays of highly 

optimized embedded nonvolatile floating-gate cells. The fabricated neuromorphic network’s 

active components, including 101,780 floating-gate cells, have a total area below 1 mm2. 

The network has shown a 94.7% classification fidelity on the common MNIST benchmark, 

close to the 96.2% obtained in simulation. The classification of one pattern takes sub-1 μs 

time and sub-20 nJ energy – both numbers much better than for the best reported digital 

implementations of the same task. Estimates show that a straightforward optimization of the 

hardware, and its transfer to the already available 55-nm technology may increase this 

advantage to more than 100X in speed and 10000X in energy efficiency. 

As pure analog circuits cannot address the noise accumulation problem, a practical 

solution would also require inclusion of analog-to-digital and digital-to-analog stages for 

signal restoration. High energy-efficient and compact data converters are therefore expected 

to play an important role in future computing platforms. We perform an experimental 

demonstration of 6-bit digital-to-analog (DAC) and 4-bit analog-to-digital conversion 

(ADC) operations implemented with a hybrid circuit consisting of Pt/TiO2-x /Pt resistive 

switching devices (also known as ReRAMs or memristors) and a CMOS operational 

amplifier (opamp). In particular, ADC is implemented with a Hopfield neural network 

circuit.
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I. Introduction 

In the past few years, neuromorphic computing has advanced greatly in solving 

cognitive problems such as pattern recognition, speech translation, topic classification and 

so on. Among diverse neuromorphic networks, deep learning approach is a important 

subfield for its success in both commerce and academia [1- 3]. In general, deep learning 

neuromorphic networks consist of a large number of processing layers which contain 

millions of weights (called synapses) connected simple processors called neurons [4]. 

Despite of various deep learning architectures such as multilayer perceptron, convolutional 

neural network and recurrent neural networks, all architectures are stack of processing layers 

which perform linear or nonlinear transformations of previous layer’s outputs. The concise 

and uniform structure of deep learning neuromorphic networks along with its outstanding 

performance in tremendous domains will allow a revolutionary technological leap toward 

outperforming conventional complimentary metal-oxide semiconductor (CMOS) technology 

[5]. 

Technology breakthroughs and designs are expected in implementing neuromorphic 

systems, due to the huge difference from traditional Von Neumann computational 

architecture. There is a booming of approaches to implement deep neural networks models 

with distinct analog, digital, mixed-mode analog/digital VLSI, and software systems [6 - 

14]. For example, the rapid computational capability evolving in graphics processing units 

(GPUs) facilitates the scaling up of neuromorphic networks to an extent that they can 

accomplish certain applications with configurable features. However, GPUs are relatively 

expensive, area costly and prohibitively power hungry [15]. Neuromorphic application-

specific integrated circuits (ASICs) have shown their speed and power advantages over 
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GPUs with the same technology node [14, 16], the advances ASICs achieved is still not 

adequate. To resolve previous mentioned contemporary issues, dedicated hardware 

approaches are needed to utilize the similarities between Silicon and neurobiology, e.g., 

memory, to maximize the potential of neuromorphic architectures [17].  

The concept of using nonvolatile memories for signal processing at relatively low 

precision requirements, for example analog and mixed-signal neuromorphic networks, far 

superior to digital circuits of the same functionality in speed and energy efficiency, is at 

least 30 years old [18, 19]. Limited by the technology, precision handicap was one of the 

major challenges preventing analog computation’s prevailing back then. Fortunately, with 

the technology developments, neuromorphic networks are scaled up, obtaining high 

tolerance of their operation to synaptic weight variations, and hence the precision 

requirement in neuromorphic computing is proven to be as low as several bits or even binary 

[20 - 27]. Without the precision wall, analog computing is the key to break the power, area 

and cost bottleneck [17]. Benefitting from the inherent similarities between analog circuits 

and biological systems, many theoretical and experimental works further confirm the 

advantages of analog approach [28 – 31]. Moreover, since there is storage requirement for a 

tremendous number of synapses inside any practical neuromorphic networks, utilizing 

computation in memory would be both efficient and straight forward [32, 33]. Recent works 

[27, 34 - 35] have shown that such circuits, utilizing nanoscale devices, improves the 

neuromorphic network performance dramatically, leaving far behind both their digital 

counterparts and biological prototypes, and approaching the energy efficiency of the human 

brain.  

The key component of such mixed-signal neuromorphic networks is a device with 

adjustable (tunable) conductance - essentially an analog nonvolatile memory cell, 
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mimicking the biological synapse. There have been significant recent advances in the 

development of nanoscale nonvolatile memories, such as ReRAMs, MRAM, PCRAM, 

FeRAM, NOR Flash memories, NAND Flash memories and 3D ReRAMs – for a review, 

see, e.g., Refs, 36 - 42. In particular, those emerging memories have already been used to 

demonstrate small neuromorphic networks [43 - 55]. The background of further advantages 

among different analog approaches is the fact that in memory based neuromorphic circuits, 

the vector-by-matrix multiplication, i.e. the key operation performed at signal propagation 

through any neuromorphic network, is implemented on the physical level, in a resistive 

crossbar circuit, using the fundamental Ohm and Kirchhoff laws.  

However, for most of the emerging memories, their fabrication technology is still in 

much need for improvement and not ready yet for the large-scale integration, which is 

necessary for practically valuable neuromorphic networks. Up until recently, such devices 

were implemented mostly as floating-gate “synaptic transistors” [15, 56], which may be 

fabricated using the standard CMOS technology. Flash memory device has inherently 

adjustable conductance and the advancing to three-dimensional integration with higher 

density makes it more appealing for neuromorphic applications [57]. Recently some rather 

sophisticated neuromorphic systems were demonstrated [15, 58] using this approach. 

However, synaptic transistors have relatively large areas (~103 F2, where F is the minimum 

feature size), leading to larger time delays and energy consumption [17]. 

In this thesis, we mainly use the highly optimized, nanoscale, nonvolatile floating-gate 

memory cells which are used in the recently developed embedded NOR flash memories 

[59]. These cells are quite suitable to serve as adjustable synapses in neuromorphic 

networks, provided that the memory arrays are redesigned to allow for individual, precise 

adjustment of the memory state of each device. Recently, such modification was performed 
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[60, 61] using the 180-nm ESF1 embedded commercial NOR flash memory technology of 

SST Inc. [59], and, more recently, the 55-nm ESF3 technology of the same company [62], 

with good prospects for its scaling down to at least F = 28 nm. (The last number is just 

slightly worse than the expected size of the emerging nonvolatile memories with transistor-

based selectors.) Though such modification nearly triples the cell area, it is still at least an 

order of magnitude smaller, in terms of F2, than that of synaptic transistors [17].  

As a key step towards area and power efficient neuromorphic network, small vector-by-

matrix multipliers are separately fabricated and tested based on redesigned 180-nm ESF1 

and 55-nm ESF3 arrays [60, 62]. The demonstrated vector-by-vector multipliers are 

operating in low-power subthreshold mode, with gate coupling of array cells to the input 

(peripheral) cells. In order to reduce the temperature drift, pertinent to the subthreshold 

operation of the cells, differential versions of multipliers are implemented and characterized 

to minimize the output signal drift. 

The main result reported in this thesis is the first successful use of previous mentioned 

approach for the experimental implementation of a mixed-signal neuromorphic network 

performing high-fidelity classification of patterns of the standard MNIST benchmark, with 

record-breaking speed and energy efficiency [63]. Hardware constrains aware designs are 

applied throughout the implementation especially when training the network in software 

before importing into the fabricated chip. 

Another prototype reported in this thesis explores the implementation of synapses with 

the emerging, very promising memristor devices to build a recurrent artificial neural 

network called Hopfield analog-to-digital (ADC) network [64]. 
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II. Memory Elements 

The key component of the most advanced analog computing implementations is a 

nanodevice with adjustable conductance – essentially an analog nonvolatile memory cell, 

which could mimic synaptic transmission function by multiplying signal from the input 

neuron (e.g. encoded as voltage applied to the memory device) by its analog weight (device 

conductance) and passing the product (the resulting current) to the output. Such 

functionality enables very dense, fast, and low power implementation of dot-product 

computation, the most common operation in many artificial neural networks. However, there 

is a particular challenge for utilizing analog nonvolatile memory cell. The challenge is that 

the synapse is an analog memory element, and, e.g., at a lot of occasions, 5-bit precision is 

required for convolutional networks [27, 65].  The most promising analog memory devices 

are memristive device and floating gate device. The former one is an ideal candidate with 

super density while the later one is a more practical, mature technology for implementing 

large scale neural networks for now.  

A. 180-nm ESF1 Floating-Gate 

In this section, we have modified a commercial NOR flash memory array to enable high-

precision tuning of individual floating-gate cells for analog computing applications. The 

modified array area per cell in a 180-nm process is about 1.5 μm2. While this area is 

approximately twice the original cell size, it is still at least an order of magnitude smaller 

than in the state-of-the-art analog circuit implementations. The new memory cell arrays have 

been successfully tested, in particular confirming that each cell may be automatically tuned, 

with ~1% precision, to any desired subthreshold readout current value within an almost 

three-orders-of-magnitude dynamic range, even using an unoptimized tuning algorithm.  
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Fig. 1.  SST's ESF-1 technology [59]: (a) schematic cross-section of a supercell, (b) its 

equivalent circuit, and (c) TEM cross-section image of one half of the supercell 

implemented in a 180-nm process. 

1. Device Characterization 

The 180-nm NOR memory array consists of “supercells” (Fig. 1). Each supercell is a 

common-source assembly of two floating-gate memory cells with a highly asymmetric 

structure: the control gate (usually connected to a "word" line) overlaps the drain region of 

cell’s MOSFET transistor, while being separated from its source region by the floating gate. 

Because of that, the direct effect of the gate voltage on the process of electron emission by 

the source is very small.  This is evident from the readout characteristics of the cell, shown 

in Fig. 2: at VDS > 0, when the source-to-drain current is due to the electron emission from 

the source, a large gate voltage is necessary to open the transistor of a fully programmed cell 

(with negatively charged floating gate). On the other hand, at VDS < 0, when electrons are 
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emitted by transistor’s drain, the effect of control gate voltage on the current is much 

stronger, while that of the floating gate charge is much weaker. 
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Fig. 2.  Readout characteristics of 180-nm ESF-1 memory cells:  Drain-source 

current as a function of (a) gate and (b) drain-source voltage. 
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Fig. 3. Analog tuning of 180-nm ESF-1 memory cells, characterized by the change in 

source-to-drain current IDS (as measured at VG = 2.5V, VD = 1V, and VS = 0V) under 

effect of applied voltage pulses: (a, b) gradual programming of an (initially erased) 

device with 5-s source voltage pulses of various amplitudes VS; (c, d) gradual erasure 

of an (initially programmed) device with gate voltage pulses of various amplitudes VG 

and durations t. 

The same structure asymmetry affects the switching dynamics of the cell (Fig. 3). 

During the “programming” process, the negative charge of the floating gate may be 

increased very fast using very effective hot-electron injection from the source area of 

transistor’s channel, while the simplest way to decrease it (and hence “erase” the cell) is via 

the Fowler-Nordheim tunneling of electrons from the floating gate to the control gate, by 

applying a rather high voltage (~ 11 V) to the latter electrode. 

Our network design uses energy-saving gate coupling [17, 66, 67] of the peripheral and 

array cells, which works well in the subthreshold mode, with a nearly exponential 

dependence of the drain current IDS of the memory cell on the gate voltage VGS (Fig. 4): 
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where VT is a threshold voltage depending on the memory state of the cell (physically, 

the electric charge of its floating gate), VT  kBT/e is the voltage scale of the thermal 

excitations, equal to ~26 mV at room temperature, while  < 1 is the dimensionless 

subthreshold slope d(lnIDS/dVGS), measured in the units of VT, and characterizing the 

efficiency of the gate-to-channel coupling. As the inset in Fig. 4d shows, in the ESF1 cells 

this slope stays relatively constant in a broad region of memory states – a feature enabling 

the gate-coupled circuit operation. (For lower Vt, the slope becomes higher, apparently due 

to the cell’s split-gate design – see Fig. 1a.) 
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Fig. 4 The grey-shaded region shows the subthreshold conduction region; the currents 

below IDS = 10 pA (the level shown with the dashed line) are significantly contributed by 

leakages in the experimental setup used for the measurements. The inset shows the 

extracted slope of this semi-log plot, measured at IDS = 10 nA, as a function of the 

memory state (characterized by the corresponding gate voltage). 



 

 11 

 

Fig. 5. (a) Results of 

analog retention 

measurements for 

several memory 

states, performed in 

the gate-coupled 

array configuration, 

and (b) the average 

relative variation of 

the currents during 

the same time 

interval. The inset 

shows the equivalent 

circuit of the used 

gate coupling. Each 

point on panel (a) is 

an average over 65 

samples taken within 

a 130 ms period. (c) 

Spectral density of 

cell current’s noise 

measured at room 

temperature; the 

gray lines are just 

guides for the eye, 

corresponding to SI 

1/f 1.6. 

 

Time (103s)

0   10   20  30  40   50   60  70  80  90  100

10-6

10-7

10-8

10-9

10-10

10-11

10-12

C
u
rr

e
n
t,

 I
o
u
t
(A

)

(a)

(

I o

u
t)

rm
s
/(

I o
u
t)

a
v
e

(%
)

Read current, Iout (A)
10

-12
10

-11
10

-10
10

-9
10

-8
10

-7
10

-6
0.2

0.4

0.6

0.8

1.0

1.2(b)

A

300 nA

P

1V

Iout

0.1 1 10 100
1E-32

1E-30

1E-28

1E-26

1E-24

1E-22

1E-20

1E-18

1E-16

1E-14

1E-12

 

 

P
S

D
 (

A
2 /H

z)

Frequency (Hz)

 50nA

 5nA

 500pA

 50pA

 5pA

Frequency, f (Hz)
0.1              1             10             100

P
S

D
, 

S
I
(A

2
/H

z
)

10-15

10-20

10-25

10-30

50 nA

5 nA

500 pA

50 pA

5 pA

(c)

VDS = 1V 

VGS =  2.5V

 



 

 12 

 With the requirement to keep the relative current fluctuations (Fig. 5b) below 1%, the 

dynamic range of the subthreshold operation is about five orders of magnitude, from ~10 pA 

to ~300 nA, corresponding to the gate voltage swing of ~1.5 V.  

The ESF1 flash technology guarantees a 10-year digital-mode retention at temperatures 

up to 125˚C [59]. Our experiments have shown that these cells also feature at least a-few-

days analog-level retention, with very low fluctuations of the output current – see Fig. 5.  

2. Array Design 

The top row of Fig. 6 shows the usual structure of the NOR flash memory and its 

programming/erasure voltage protocols, employing these properties of the SST cells. In this 

architecture, cells of the same row share transistor source and control gate (“word”) lines, 

while transistor drains of all cells of the same column are connected to the same “bit” line. 

Fig. 6a shows the set of applied voltages used for programming of the top left cell, while 

avoiding state disturb in all other cells. In particular, a positive bias VD
P’ > 2V, applied to all 

unselected bit lines, inhibits unintentional hot-electron injection in all unselected cells, 

including type-A half-selected cells (sitting on the selected word line). Also, grounding of 

unselected word lines guarantees the absence of disturb processes (such as the back Fowler-

Nordheim tunneling) in all unselected cells including half-selected cells of type B (sharing 

the source voltage with the selected cell). As Fig. 3a indicates, the same programming 

protocol, only with pulsed source voltage and slightly modified voltage values, allows 

analog programming of the selected cell, also without disturbing the half-selected cells, 

regardless of their charge state. 

Unfortunately, in this memory architecture the opposite process of cell erasure (Fig. 6b) 

is much less controllable. Namely, the fully selected cell and the type-C half-selected cell 
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Fig. 6. Floating gate recharging effects: (a, b) – in the original SST array (c), and (d, f) 

– in the array with modified routing (f), on the example of a 2×2 supercell array 

fragment. Voltages shown on panels (a, d) correspond to programming of the top left 

cell, while those on panels (b, e), to its erasure. Blue and red arrows show, respectively, 

the useful and undesirable recharging processes. Line colors are for clarity only.  
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share their gate and source voltages, and due to the cell structure (Fig. 1) the process 

responsible for erasure (the Fowler-Nordheim tunneling of electrons from the floating gate 

to the control gate) is only weakly affected by the drain voltage VD – the only voltage which 

may be different for these two cells. (The possible increase of VD
E’ is limited by the onset of 

large drain-to-source current.) For digital applications, this feature is not a handicap, 

because in flash memories all cells of the same row are erased simultaneously. However, in 

analog applications it is highly desirable to perform not only a gradual programming of each 

cell, but also a gradual erasure of each cell without disturbing its neighbors. Our detailed 

measurements (see, e.g., Fig. 3c, d) have shown that in the baseline architecture (Fig. 6a-c) 

the latter operation is impossible for any bias voltage set. 

To resolve this problem, we have modified the array structure (without changing the 

optimized cell fabrication technology) as shown in the bottom row of Fig. 6, i.e. by re-

routing the gate lines in the “vertical” direction, i.e. perpendicular to the source lines. A 

straightforward analysis of the data shown in Figs. 2 and 3 shows that the new design 

resolves the half-selected cell disturb problem, by using the applied voltage protocol shown 

in Fig. 6d, e, with VG
E  8.5V, VS

E’  3V, and VD
E  3V. 

Indeed, for the programming operation, most of the half-selected cells are of the type B, 

while the disturb in type D cells, with VG
P’ = -1V, is even less problematic. For the erase 

operation, the new gate line routing enables taking advantage of the very strong nonlinearity 

of possible Fowler-Nordheim and hot-electron tunneling currents (as functions of, 

respectively, the drain and source voltages), to completely inhibit these effects in all 

unselected cells including half-selected cells of type E. 

The SST cell array with the architecture shown in Fig. 6d, e has been designed, 

fabricated (so far in the 180-nm technology of SST, Inc.) and successfully tested. Fig. 6f 
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Fig. 7. High-precision tuning of cells of the modified memory: (a) All cells being 

tuned sequentially to 1 μA, 100 nA, 10 nA, and 1nA readout currents (as measured 

at VG = 2.5V, VD = 1V, VS = 0V); (b, c) zoom-in on the readout of the first and the 

last of the tuned states, to highlight the current variations due to intrinsic device 

noise. On all panels, each point represents the current average over a 10-ms time 

interval.  
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shows the layout of the new array. Its area per cell is 2.3 times larger than the original one 

(Fig. 6c) due to the additional real estate needed to accommodate two gate lines for each cell 

column. 

To verify that the new array architecture enables a full inhibition of half-select disturb 

effects, we have performed a series of experiments, tuning all 8 cells in a 2×2 supercell 

array, one by one, to pre-selected goal values with a ~1% precision (Fig. 7), using a simple, 

fully automated feedback procedure that had been originally developed for tuning 

memristive devices [46, 68]. Its algorithm consists of alternating “tune” (either program or 

erase) and “read” pulses applied to the selected device. Every read measurement determines 

the necessary direction of the next tune operation, i.e. whether program or erase pulses are 

needed. If a read measurement shows that the desired value has been overshot, the tuning 

pulse polarity is changed. The tuning procedure stops when the device has reached the 

desired analog state with the pre-specified precision [46, 68]. 

In the particular series of experiments shown in Fig. 7, the initial erase was performed 

with a 10-ms, 10-V gate pulse, keeping VD = VS = 0, while the initial programming, with a 

5-s, 9-V source pulse, keeping VD = 0V and VG = 1.6 V.  The gradual programming was 

done using 5-μs source voltage pulses with an initial amplitude of 4.5 V, which was then 

ramped up to 8V in 50-mV steps, while applying dc voltages VG
P = 1.6V, VG

P’ = -1V and 

keeping other lines grounded. The gradual erase was performed using 0.6-ms gate pulses 

with an initial amplitude of 5V, which was then increased to the maximum value of 8.5V, 

also in 50-mV steps, while applying dc voltages VD
E = 2.7V, VS

E = 0V, VS
E’ = 2.7V, and 

keeping other lines grounded. (This choice of voltages is likely suboptimal and may be 

improved to increase tuning speed.) 
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B. 55-nm ESF3 Floating-Gate 

The advanced commercial 55-nm ESF3 technology of the same company [59], with 

good prospects for its scaling down to at least F = 28 nm. The modified arrays enable high-

precision individual analog tuning of each cell, with sub-1% accuracy, while keeping the 

highly-optimized cells, with their long-term state retention, intact.  The array has an area of 

0.33 μm2 per cell, and is at least one order of magnitude denser than the reported prior 

implementations of nonvolatile analog memories. 

SD D

(a)     (b)     

 

Fig. 8. SST’s 55-nm ESF3 NOR flash memory cells: (a) schematic view, and (b) TEM 

image of the cross-section of a "supercell" incorporating two floating-gate transistors 

with a common source (S) and erase gate (EG) [59]. 

1. Device Characterization 

The ESF3 NOR flash memory is based on "supercells" with two floating-gate transistors 

sharing the source (S) and the erase gate (EG), but are controlled by different word-line 

(WL) and coupling (CG) gates - see Fig. 8. In the original ESF3 memory arrays, the cells are 

connected as Fig. 9a shows, with six row lines per supercell, connecting transistor sources, 

erase gates, coupling gates, and word-line gates, while each column has only one ("bit") line 

connecting transistor drains (D). In this array topology, each cell may be programmed 

individually, by hot-electron injection into its floating gate. For that, the voltage on the 

source line (SL in Fig. 9) of the cell’s row is increased to 4.5 V (while those in other rows 

are kept at 0.5 V), with the proper column selected by lowering the bit line (BL) voltage to 
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Fig. 9. (a, c) Original and (b, d) modified circuitry and layout for 4-supercell ESF3 55-

nm memory array. 
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0.5 V (while keeping all other bit line voltages above 2.25 V). This process works well for 

providing proper digital state, with 1- or even 2-bit accuracy. However, it is insufficient for 

cell tuning with analog (say, 1%) precision. Unfortunately, the reverse process  (“erasure”), 

using the Fowler-Nordheim tunneling of electron from the floating gates to the erase gates, 

may be performed, in the original arrays, only in the whole row, selected  by applying a high 

voltage of ~ 11.5 V to the corresponding erase gate line (with all other EG voltages kept at 0 

V). So, these arrays do not allow for a precise analog cell tuning, which unavoidably 

requires an iterative, back-and-forth (program-read-erase-read-program...) process, with the 

run-time result control. The required modification details will be discussed in the next 

section. 

 

The ability to tune the floating gate cells of the modified arrays continuously is 

illustrated in Fig. 10 which shows the readout current as a function of the coupling gate 

voltage for a selected equidistant series of cell states. These semi-log plots have wide quasi-

Noise Floor
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I D
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Fig. 10. Drain-source current of a modified ESF3 cell as a function of the coupling gate 

voltage, for several different memory states. 
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linear segments, corresponding to the nearly-exponential behavior of the current in the 

subthreshold region. In the current range from 100 pA and 30 nA, the subthreshold slope 

factor n, defined by the well-known relation I  exp{qVCG/nkBT}, varies only from 5 to 5.1 

for all the 15 states shown in Fig. 10. This low variability of n enables the implementation of 

highly linear signal transfer in gate-coupled current mirrors using these cells [17]. 
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Fig. 11. (a) Retention measurements for several cells in different memory states at 85C, and (b) 

the average relative variation of the readout currents during this time interval. 
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The ESF3 flash technology guarantees a 10-year digital-mode retention at temperatures 

up to 125˚C [59]. To explore its analog mode retention, we have programmed 7 memory 

cells to 7 different states from around 100 pA to 100 nA covering the whole subthreshold 

region, and then were continuously monitoring their output current within a day under 85 ˚C 

as shown in Fig. 11a. Each point on this panel is an average over 128 samples taken during 

16 ms periods. Fig. 11b shows the relative r.m.s. variation of the current during the 

measurement period for the 7 states shown in Fig. 11a. For larger currents the variation is 

below 1%, increasing to ~4% only at the lower boundary of the range. 

Temperature ( C)

I D
S

(A
)

 

Fig. 12. Temperature dependence of drain-source current for several memory cells 

with different memory states, with the initial readout currents close to 1 nA, 10 nA and 

100 nA. 

 

In order to fairly characterize the temperature dependence of the cell output current in 

the subthreshold region, we have programmed 8 cells to 8 different states, equally spread 

over the useful dynamic range. Then, in 3 different experiments, appropriate coupling gate 

voltages were applied to each cell, to make the readout currents of them all equal to, 
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sequentially, 1 nA, 10 nA and 100 nA at 25 ˚C. After that, temperature was ramped up from 

25˚C all the way to 85˚C, and the readout current of each cell was monitored. Fig. 12 shows 

the results of these 3 experiments. In accordance with our expectations (and the measured 

values of n), the currents increased significantly – more than by an order of magnitude for 

the lowest initial current. Though in the gate-coupling scheme (see below) this changes are 

mostly compensated by similar changes in the input (peripheral) transistors, this fact still 

shows that the temperature sensitivity of the subthreshold current requires special attention. 

2. Array Design 

We have modified the ESF3 memory arrays as shown in Fig. 9b, by connecting the erase 

gates of all cells of one column with an additional line, while eliminating the row lines 

connecting these gates. (Note that this redesign is different from the one performed by our 

group earlier [60] with the 180-nm ESF1 technology, because of a different structure of its 

supercells.) Fig. 13 shows our test 10×10 modified ESF3 cell array. The peripheral cells 

designed for multiplier purpose are located in the additional columns on the left and the 

right from the basic array. (Two columns are necessary because with the ESF3 supercell 

structure we can use only one half of each supercell as the peripheral cell.) 

In the modified arrays, the analog hot-electron programming of each cell may be 

performed by applying 10 s pulses of a fixed amplitude of 4.5 V to the source line of the 

corresponding row. In this process, the proper column is selected by applying a positive 

voltage ~4 V between the erase-gate and bit lines, while keeping this voltage negative for all 

un-selected columns [69]. Fig. 14a documents the inhibition of the unwanted programming 

process in a half-selected cell at the increase of the bit-line (i.e. drain) voltage. 
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Fig. 13. Gate-coupled vector-by-matrix multiplier based on a 10×(10+2)  array of ESF3 

floating-gate cells, together with auxiliary pass-gates (which are disabled during tuning 

with IE signal): (a) schematics; (b) layout for 55-nm fabrication. 
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Fig. 14. (a) Programming inhibition and (b) erasure inhibition in the transistors of 

half-selected cells. Unless specified otherwise, the shown readout (source-to-drain) 

currents have been measured at VWL = 2.5 V, VCG = 2.5 V, VD = 1 V, VS = 0 V, and VEG 

= 0 V. 
 

The opposite process of individual analog erasure via the Fowler-Nordheim tunneling is 

now also possible, by using the new column lines to apply high-amplitude (11.5 V), 0.5 ms 

pulses to the erasure gates of the selected column. The proper row is selected by grounding 
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the corresponding coupling gate line, while keeping a high voltage (+8 V) on these lines of 

unselected rows. As Fig. 14b shows, such a positive bias inhibits the Fowler-Nordheim 

tunneling in half-selected cells, due to a relatively high capacitance between the coupling 

gate and the floating gate of the same transistor [70]. 

Due to the line rerouting, the array area per cell has nearly tripled – cf. Figs. 9c and 9d. 

However, even with this increase the area is still as small as 0.33 m2, i.e. ~ 110 F2, much 

smaller than in any other design we are aware of. 

C. Memristive Device 

Another synapse candidate with high density is nonvolatile memristive devices. In their 

simplest form, memristors are two-terminal passive elements, the conductance of which can 

be modulated reversibly by applying electrical stress.  Due to the simple structure and ionic 

nature of their memory mechanism, metal-oxide memristors have excellent scaling 

prospects, often combined with fast, low energy switching and high retention [36]. Many 

metal oxide based memristors can also be switched continuously, i.e. in analog manner, by 

applying electrical bias (current or voltage pulses) with gradually increasing amplitude 

and/or duration. The Pt/TiO2-x/Pt memristive device we fabricated is shown Fig.15. 

1. Device Characterization 

Fig. 16a shows typical continuous switching I-Vs for the considered Pt/TiO2-x/Pt devices 

[71]. The devices were implemented in “bone-structure” geometry with an active area of ~1 

µm2 using the atomic layer deposition technique. An evaporated Ti/Pt bottom electrode 

(5nm/25nm) was patterned by conventional optical lithography on a Si/SiO2 substrate (500 

µm/200 nm, respectively). A 30 nm TiO2 switching layer was then realized by atomic layer 

deposition at 200°C using Titanium Isopropoxide (C12H28O4Ti) and water as precursor and 
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Fig. 15. TEM images of 50-nm-thick titanium dioxide devices with e-beam defined 

protrusion 
 

reactant, respectively. A Pt/Au electrode (15nm/25nm) was evaporated on top of the TiO2 

blanket layer, and the device was finally rapidly annealed at 500° C in an N2 and N2+O2 

atmosphere for 5 minutes to improve the crystallinity of the TiO2 material. Details of the 

fabrication and characterization of the considered memristors are given in Ref. [67].  

After programming the memristors to the desired resistance, it was important for their 

state to remain unchanged during operation of the Hopfield network, so to prevent any 

disturbance the voltage drop across them was always kept within the |V | ≤ 0.2V “disturb-

free” range [71].  

2. Modeling 

The static I-V characteristics (i.e., those within disturb-free regime) for several different 

memory states are shown in Fig. 16b.  

To assist SPICE simulation, the experimental I-V curves at small biases were fitted by 

the following static equation with a single memory state G: 
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21 )( VGGGGVI   .  (2) 

where β = 1, α1 = 14.7 V-3, α2 = -5.9×104 ΩV-3, α3 = 1.5 ×108 Ω2V-3
 for V > 0, and α1 = 34.6 

V-3, α2 = -1.9×105 ΩV-3,  α3  = 3.65 ×108 Ω2V-3
 for V < 0. As it is obvious from Equation 2, 

memory state G is simply a conductance (I-V slope) at zero voltage. 
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Fig. 16. (a) Typical I-V curves with current-controlled set and voltage-controlled reset 

switching for the considered Pt/TiO2-x/Pt memristors. (b) Modeling of static I-V 

curves at small disturb-free voltages for several different states. 

 

 



 

 28 

III. High-Precision Tuning of Memory Elements 

Based on the detailed characterization of multilevel property (Figs. 4 and 10) in 

commercial NOR memory developed by SST Incorporation, it confirms the potential of 

flash memories as analog weights. Although for many analog computing applications, 

weights are typically changed infrequently so that tuning time and energy are of less 

importance, it is still essential to demonstrate feasibility of high precision tuning in flash 

memories and potential fast tuning methodology for large scale analog systems. 

A. Model-Based Fast Tuning of 180-nm ESF1 Floating-Gate Array 

For ESF1 NOR flash memory, high-precision tuning experiments were performed within 

10×10 array of modified memory cells with an additional two rows of supercells included to 

implement gate-coupled vector matrix multiplier, which is the most critical component in 

neural network classifiers [35] (Fig. 17). The main idea of the algorithm (Fig. 18) is to use 

switching dynamics of the erasure and programming processes to calculate appropriate write 

pulse amplitudes. Based on the fitted behavior, a formula for the required voltage amplitude 

required to change the readout current (i.e. from current to desired state) is derived. Due to 

significant device-to-device variations in switching behavior, the parameters of the model 

are adjusted at the initial stage of the algorithm for the specific cell being tuned (Fig. 18). 

Due to significant cycle-to-cycle variations, the tuning cannot be implemented by applying a 

single pulse. Instead, the iterative scheme with the feedback is realized in which a sequence 

of a write (erase or program) and read pulses are applied in each iteration.  Due to much 

steeper erase switching, governed by Fowhler-Nordheim tunneling as opposed to hot-

electron injection for programming, overshooting at the programming stage was avoided by 

using smaller than ideal (i.e. determined by the model amplitude) program pulses. The  
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Fig. 17. Fabricated gate-coupled vector-matrix multiplier with (10+4) ×10 memory 

cells: (a) layout in 180-nm process, and (b) its schematics. The first and the last row of 

supercells are part of current mirror circuitry [66] that converts input currents into 

voltages that are applied to the gates of FG transistors in the array. 
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Fig. 18. Flowchart of the proposed tuning algorithm. 
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Fig. 19. (a) Measured versus target final states for 100 devices when taking into 

account half-select problem, and (b) tuning error as a function of the required number 

of tuning (erase & program) pulses. Panel a confirms that the disturbance of half-

selected devices during tuning is negligible, while panel b shows that the number of 

tuning pulses grows exponentially with the tuning accuracy. (c) Average number of 

pulses and (d) tuning error for tuning 100 devices to different logarithmically-spaced 

target states. 
 

optimal algorithm parameters leading to the smallest number of tuning pulses (i.e. faster 

tuning time) were found via exhaustive search.  The tuning algorithm functionality was 

successfully verified in variety of conditions (Fig. 19). Naturally, the tuning was faster when 

tuning precision was low with roughly exponential increase in the number of tuning pulses 

required to get higher precision (Fig. 19b), which is similar to the tuning of phase change 

memory [72, 73].    
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B. Tuning of 55-nm ESF3 Floating-Gate Array 

In order to gain continuous analog levels in memory cells and performing high precision 

and fast tuning for analog computing applications using 55-nm ESF3 flash memory, 

different amplitude and duration programming and erasing pulses will be applied. 

Considering the similar tuning strategy as fully automated feedback procedure in [61] for 

180-nm reconfigured Flash memory, we explore the erasure dynamics by applying 

continuously pulses on EG with pulse amplitude (PA) of 7 V, 7.3 V, 7.6 V, 7.9 V, 8.2 V and 

pulse width (PW) of 10 us, 25 us, 50 us at a fully programmed device. As illustrated in Fig. 

20 (a), we observe an exponential dependent on PA during erasure under subthreshold 

region. Moreover, the curves in different color are sited in good consistency on each other 

demonstrating total erasing time other than individual PW is essential for erasing. If we take 

advantage of that property, we can apply one long pulse instead of many short pulses when 

we have a model based on short pulse measurement [61]. In that way, we would save huge 

time on module communication for sending pulses. We observe similar programming 

dynamics when applying continuous programming pulses on source with PA of 3.2 V, 3.4 

V, 3.6 V, 3.8 V, 4 V and PW of 2 us, 4 us at a fully erased device as shown in Fig. 20 (b). 

Exponential dependent on programming PA is observed. Similar to erasure process, 

matched curves on different color demonstrate a total programming time dependent 

property. That property could also be used to facilitate fast programming and save control 

module communication time. 

Since our proposed memory array will be used to implement large scale analog 

computing systems, it is crucial to understand device to device variations in switching 

dynamics for whole memory array tuning. Fig. 21 (a, b) illustrate the threshold voltage 

spread for programming and erasing in 100 memory cells respectively. The programming  
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PA = 4 V 3.8 V 3.6 V 3.4 V 3.2 V

 

PA = 8.2 V 7.9 V 7.6 V 7.3 V 7 V

 

Fig. 20. Switching dynamics of a single FG transistor with different pulse amplitude 

(PA) as well as different pulse width: (a) programming from fully erased state for each 

curve, (b) erasure from fully programmed state for each curve. 
 

threshold voltage is defined as a source voltage that will change the device from fully erased 

state by 30% and the erasing threshold voltage is defined as an EG voltage that will change 

the device from fully programmed state by 30%. A very tight spread in programming 

threshold voltage with few outliers and relatively larger spread in erasing voltage are 

observed. That is mainly because hot electron injection process is less affected by the gate 
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oxide thickness compared with Fowler-Nordheim tunneling, and gate oxide thickness is 

severely affected when technology scaling down. As a result, a programming pulse is 

preferred when we are approaching the target during tuning when utilizing a model based 

tuning strategy [61]. 
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Fig. 21. (a, b) Device-to-device variations for programming and erasing voltage 

thresholds for 100 devices. 
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Fig. 22. (a) Measured versus target weights for 100 devices, and (b) Measured tuning 

error for 100 devices at a tuning precision target of 5%. 
 

Fig. 22 illustrates the analog tuning capability of the array.   All 10×10 array cells have 

been tuned one-by-one by an automatic feedback controlled application of alternating 

programming pulses to their source electrodes and erasing pulses to their erase gates. After 

each tuning pulse, the external control circuitry read out the cell output current at standard 

bias conditions, and made a decision about the next pulse’s destination and amplitude, until 

the read-out current has reached the target value with the 5% precision [68]. Fig. 22a shows 

the results of 3 separate experiments of tuning all 100 cells of the array to different target 
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values of the output current: 1 nA (red line), 100 nA (green line), and an exponential 

function of the cell number, within the rage from 100 pA to 1 μA (yellow line). Fig. 22b 

shows the relative errors achieved in last experiment. The data mean that larger tuning errors 

(of the order of 10%) take place for smaller target currents, because of the relative large 

intrinsic noise of the devices. 
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IV. Vector Matrix Multiplication 

The essence of the advantages using nonvolatile memory for neuromorphic network is 

the fact that in analog circuits, the vector-by-matrix multiplication, i.e. the key operation 

performed at signal propagation through any neuromorphic network, is implemented on the 

physical level, in a resistive crossbar circuit, using the fundamental Ohm and Kirchhoff laws 

(Fig. 23). On the other hand, the basic handicap of analog circuits, their finite precision, is 

not crucial in neuromorphic networks, due to the inherently high tolerance of their operation 

to synaptic weight variations [27]. 
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Fig. 23. Analog vector-by-matrix multiplication in a crossbar with adjustable 

crosspoint devices. For clarity, the output signal is shown for just one column of the 

array. 
 

A. Based on 180-nm ESF1 Floating-Gate Array 

We redesigned and optimized the ESF1 Flash memory from Silicon Storage Technology, 

Inc. (SST) (See Fig. 6) to build an analog vector-by-matrix multiplier in 180-nm technology 

for deep learning friendly hardware implementations. Because the original Flash memory 

from SST was optimized for digital memory applications, we reconfigured the original 
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memory array to enable precise tuning of individual cell inside the array for analog 

computing purposes [61].  

As a first step, we have used the high-precision tuning in the modified array for a 

preliminary demonstration of a small-scale four-quadrant gate-coupled vector-by-matrix 

multiplication [66], in which peripheral floating-gate transistors had been implemented with 

the same SST memory technology and integrated on the same chip shown in Fig. 17.  

To implement the vector-by-matrix multiplication, we have used the gate coupling of the 

tunable floating gate cells of each column of the array with a similar “peripheral” cell, with 

the virtual-bias condition imposed (by external circuitry) on the output (row) wires [18] 

(Fig. 24a). Since all the cells sharing the same gate have the same gate voltage, in the 

subthreshold operation mode the component wi of the output Iout is proportional to the input 

Iin: 
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with current-independent proportionality coefficients wi, which are determined by the 

differences of threshold voltages Vth of the array cells and the peripheral transistors: 

                                    

 







 


Tnk

VV
qw

ip

i

B

)(

ththexp
 

In turn, each threshold voltage is determined by the analog state (physically, the floating 

gate charge) of the cell, so that each wi may be adjusted to the desirable value. 

(3) 

(4) 
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The results (Fig. 24) show an excellent linearity (derivate variation below 1%) of circuit’s 

transfer characteristics over a wide range of input currents. In the meanwhile, we achieved 

an area of ~50F2 for multiply-and-accumulate (MAC) unit. 
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Fig. 24.  Preliminary experimental results for a gate-coupled vector-by-matrix 

multiplier: (a) circuit schematics and (b) measured transfer characteristics for two sets 

of “weights” (matrix elements) w1
-. Dotted lines show another column of the array, 

disengaged in these experiments. 
 

As a simple illustration of multiplier’s operation, we also fabricated and tested a 4  4 

analog vector-by-matrix multiplier (See Fig. 25) to better evaluate the performance of 

nonvolatile memory approach. Fig. 26 shows the results of multiplication of 4 input signals 

by 16 different weights: {w11, w12,···, w44} = {0.1875, 0.5, 0.125, 1; 0.125, 0.9375, 0.0625,  

0.4375, 0.875, 0.125, 0.375, 0.125, 0.0625, 0.6875, 0.8125, 0.25}, performed by 4 columns 

and 4 rows of the array, tuned with a 1% precision. We also investigated the sensitivity of 

multiplier precision on a selected range of array and peripheral weights, current range, and 

find optimal operating conditions with presence of mismatch, variations, weight-dependent 

subthreshold conductance slope, capacitive cross-talk, noise, retention and tuning precision. 
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With all factors mentioned above, we evaluate our fabricated 4  4 analog vector-by-matrix 

multiplier to achieve a total precision of ~5%. 
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Fig. 25. Fabricated 4  4 analog vector-by-matrix multiplier based on 180-nm ESF1 

NOR flash memory and high voltage pass-gate integrated on chip. 
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Fig. 26. Real outputs at a 4-input vector-by-vector multiplication, and their difference 

(red lines). The four inputs are quasi-DC currents sampled from sine function 50 nA × 

[1+ Sin(2π × Input Index# × f)], with f  = 1/8, 1/36, 1/180, and 1/360. 

 

B. Based on 55-nm ESF3 Floating-Gate Array  

Similar to 180-nm ESF1 technology, to implement the vector-by-matrix multiplication, 

we have used the gate coupling of the tunable floating gate cells of each row of the array 

with a similar “peripheral” cell, with the virtual-bias condition imposed (by external 

circuitry) on the output (column) wires (Fig. 27). 
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Fig. 27. The vector-by-matrix multiplication scheme based on gate coupling of the 

floating-gate cells. (For clarity, only one peripheral (P) and two array (O) cells of the 

same (jth) row are shown. 
 

Since all cells of the same row share the same coupling gate voltage Vj, in the 

subthreshold operation mode the j-th component Oij of the output current Oi in the i-th 

column is proportional to the input current Ij in the j-th-row: 
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with current-independent proportionality coefficients wij, which are determined by the 

differences of threshold voltages Vth of the array cells and the peripheral transistors: 
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In turn, each threshold voltage is determined by the analog state (physically, the floating 

gate charge) of the cell, so that each wij may be adjusted to the desirable value (typically, 

below 1). 

As a simple illustration of multiplier’s operation, Fig. 28 shows the results of 

multiplication of 4 input signals by 4 different weights: w1 = 0.25, w2 = 1, w3 = 0.5, and w4 = 

0.125, performed by 4 cells of one column of the array, tuned with a 1% precision. This 

experiment demonstrates that the relative error, incorporating contributions from all sources 

(device noise, state retention, impedance mismatch, parameter variation, tuning precision, 

and capacitive crosstalk) does not exceed 2%. 
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Fig. 28. Ideal (green line) and real (blue dashes) outputs at a 4-input vector-by-

vector multiplication, and their difference (red dots). The four inputs are quasi-DC 

currents sampled from sine function 50 nA × [1+ Sin(2π × Input Index# × f)], with f  

= 1/8, 1/36, 1/180, and 1/360. 

 

According to Eq. (6), in the coupled-gate operation mode, much of the thermal 

dependence of the subthreshold current is compensated, but besides the special case wij = 1, 

the compensation is incomplete. Indeed, our measurements have confirmed that in 
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agreement with this relation, that as temperature is raised from 25C to 85C, weight wij, 

initially equal to 0.9, increases by ~10%.  

However, there is a straightforward way to decrease the temperature sensitivity, at the 

cost of a two-fold increase of hardware. For that, one can subtract output currents of two 

cells (say, those shown in Fig. 27), with their individual weights tuned to, respectively, (wb 

+ w/2) and (wb - w/2). Here w is the desired net weight, and wb is the “bias weight”, which 

may be optimized to suppress the temperature dependence of the new output current. A 

straightforward analysis of this scheme, using Eq. (6), shows that after such optimization, 

the temperature drift of the output may be reduced to less than 1% at the [25C, 85C] 

interval, for any weight 0 < wij < 1. Fig. 29 shows the results of our preliminary experiments 

with this mode, showing the drifts not exceeding 2.7% in that temperature interval. 
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Fig. 29. The total relative error of the reproduction of a 100 nA input signal for several 

values of w, at various temperatures. 
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V. Mixed-Signal Neurocomputing Systems 

A. Fabricated Pattern Classifier based on NOR Flash Array 

Here we report a prototype 28×28-binary-input, 10-output, 3-layer neuromorphic 

network based on arrays of highly optimized embedded nonvolatile floating-gate cells, 

redesigned from a commercial 180-nm NOR flash memory. The implemented network could 

perform a high-fidelity classification of patterns of the standard MNIST benchmark with 

record-breaking speed and energy efficiency. 

1. Network Deisgn 

The implemented neuromorphic network (Fig. 30) is a 3-layer (one-hidden-layer) 

perceptron with 784 binary inputs bi, which may represent, for example, 28×28 black-and-

white pixels of an input image (such as the MNIST dataset images shown in Fig. 30a), 64 

hidden layer neurons with the rectified-tanh activation function, and 10 output neurons (Fig. 

30b). The goal of the network is to perform the pattern inference by the following sequential 

transformation of the input signals: 

         
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Here hj and fj (with j = 1, 2, ···, 64) are, respectively, the input and output signals of the 

hidden-layer neurons, ck (with k = 1, 2, ···, 10) are the output signals, providing the class of 

the input pattern, while w(1) and w(2) are two matrices of tunable synaptic weights,  

(7) 
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Fig. 30. Network architecture: (a) Typical examples of B/W hand-written digits of the 

MNIST benchmark set. (b) Graph representation of our 3-layer perceptron network. 

Each synapse is implemented using a differential pair of floating-gate memory cells. 

(c) High-level architecture, with the weight tuning circuitry for the second array (like 

that of the first one) not shown for clarity. (d) A 2×2-cell fragment of the first crossbar 

array shown together with a hidden-layer neuron, consisting of a differential summing 

operational amplifier pair and an activation-function circuit. (e) A 2×2-cell fragment 

of the second crossbar array with an output-layer neuron; these neurons do not 

implement an activation function. The voltage shifter, shown on panel (c), enables 

using voltage inputs of both polarities over a 1.65V bias, and is also used to initiate the 

classification process by increasing the input background from 1.8 V to 4.2 V. 
 

characterizing the coupling of the adjacent network layers. In our network, these weights are 

provided by floating-gate cells of two crossbar arrays of the floating-gate memory cells 

providing tunable weights (Fig. 30c). Each neuron also gets an additional input from a bias 
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node, with a tunable weight based on a similar cell (Fig. 30b). With the differential-pair 

implementation of each synapse (see below), the total number of utilized floating-gate 

memory cells is 2×[(28×28+1)×64 + (64+1)×10] = 101,780. 

The mixed-signal vector-by-matrix multiplication in the first crossbar array is 

implemented by applying input voltages (4.2 V for black pixels or 0 V for white ones) 

directly to the gates of the array cell transistors, with fixed voltages on their sources (1.65 

V) and drains (2.7 V) – see Fig. 30d. As a result, the transistor source-to-drain current of the 

cell located at the crosspoint of the ith column and the jth row of the array does not depend on 

the state of any other cells, and is equal to the product of the binary input voltage bi by the 

analog weight wji
(1) pre-recorded in the memory cell. The sources of the transistors of each 

row are connected to a single wire (with an externally-fixed voltage on it), so that the jth 

output current of the array is just the sum of products wji
(1)bi over all columns i, thus 

implementing the vector-by-matrix multiplication described by the first of Eqs. (7). 

Actually, in order to reduce the random drifts, and also to work with zero-centered 

signals hj, we are using a differential scheme, in which each synaptic weight is recorded in 

two adjacent cells of each column, and the output currents (in Fig. 30d, Ij
+ and Ij

-) of two 

adjacent cell rows are subtracted in an operational amplifier, with its output, hj  Ij
+ - Ij

-, 

passed to the activation function circuit performing the function f(h). The accepted sharing 

of the weight wji
(1) between the two cells of the differential pair is very simple: one of the 

cells (depending of the sign of the desirable weight) is completely turned off, giving 

virtually no contribution to the output current. This arrangement keeps half of the cells 

virtually idle, but simplifies the design and speeds up the weight tuning process.  

The analog vector-by-matrix calculation in the second array is performed using the gate-

coupled approach (Fig. 30e). In this approach [66], the synaptic gate array is complemented 
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by the additional row of “peripheral” cells, which are physically similar to the array cells, 

and hence sharing the same subthreshold slope . The gate electrode of the peripheral cell of 

each column is connected to those of all cells of this column, so that their voltages VGS are 

also equal. Applying Eq. (1) to the current of the cell located at the crosspoint of the kth row 

and the jth column of the array (Ikj), and that of the peripheral cell of this column (Ij), and 

dividing the results, we get 

 
   







 


T

2 exp
V

VV

I

I
w

kjtjt

j

kj

kj 
 

The resulting currents Ikj are summed up exactly as those in the first array (actually, with 

the similar differential scheme for drift reduction), so that if the array is fed by the output 

currents of the activation function circuits, Ij  f(hj), it performs the second vector-by-matrix 

multiplication described by Eq. (7), with the synaptic weights given by Eq. (8), which 

depend on the preset memory states of the corresponding cells, but are independent of the 

input currents. To minimize the error due to the dependence of  on the memory state (see 

the inset in Fig. 4), in the second array we used a higher gate voltage range (1.1 V to 2.7 V), 

with the upper bound due to the technology restrictions. 

Fig. 31a shows the circuit used to subtract the currents I+ and I- of the differential-scheme 

rows, based on two operational amplifiers (Fig. 31c). Assuming that the resistances RF are 

equal, that the outputs of both opamps do not saturate (which is ensured by the following 

relation between of the chosen value RF = 16 KΩ in the first layer and RF = 128 KΩ in the 

second one, and the maximum value of currents I: ImaxRF < 1 V) the output voltage of the 

scheme is 

(8) 
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  constIIRV  

F  

Fig. 31b shows the rectified-tanh activation function f(h) used in the hidden-layer 

neurons (see Eq. (5) of the main text), with h [V] = 10RF [] (I+ - I-) [A] and fmax = 300 nA, 

while Fig. 31d shows the circuit used for the implementation of this function. 
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Fig. 31. (a) Circuit-level diagram of a differential summing amplifier used in the hidden-

layer and output-layer neurons; RF1 = 16 KΩ for hidden neurons, and RF2 = 128 KΩ for 

output neurons. (b) Implemented activation function. (c, d) Transistor-level schematics 

of: (c) the operational amplifier and (d) the activation function; VSS = 0 V, VDD = 2.7 V. 

 

(9) 
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The desirable synaptic weights, calculated in an external computer implementing a 

similar “precursor” network, using the standard error backpropagation algorithm, were 

imported into the network by analog tuning of the memory state of each floating-gate cell 

using peripheral analog demultiplexer circuitry (Fig. 30c). In order to simplify this first, 

prototype design, the weights were tuned one-by-one, by applying proper bias voltage 

sequences to selected and half-selected lines [60]. (In principle, this process may be 

significantly parallelized.) The large voltages required for the weight import are decoupled 

from the basic, low-voltage circuitry, using high-voltage pass transistors.  The input pattern 

bits are shifted serially into a 785-bit register before each classification; to start it, the bits 

are read out into the network in parallel. 

The digital encoders and shift register circuits and their layouts were synthesized from 

Verilog in a standard 1.8 V digital CMOS process. All other circuits were designed 

manually for the embedded 180-nm process of SST Inc.. (Such a design was practicable due 

to the modular, repetitive design of the circuit.) All active components of the circuit have a 

total area of 0.78 mm2 (Fig. 32), with the two synaptic arrays occupying less than a quarter 

of this area, while the total chip area, including very sparse routing (which was not yet 

optimized for this design), is about 5×5 mm2.  

2. Network Testing 

Because of the digital (fixed-voltage) input of the first synaptic array, the subthreshold 

conduction was not enforced there, so that the output currents of some cells exceeded 300 

nA (Figs. 33a, b). To reduce the computation error due to the potential slope mismatch 

between peripheral and array cells, all peripheral floating gate transistors in the second array 

were tuned to provide output currents of 300 nA at VG = 2.7 V, i.e. at the largest voltage that  
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Fig. 32. (a) A micrograph of the chip, and (b) an area breakdown of its active 

components (excluding wiring between the blocks, which was not optimized at this 

stage). 
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Fig. 33. Weight export statistics: (a) A histogram showing the imported cell current 

values (weights), measured at VD = 2.7 V, and VS = 1.65 V and VG = 4.2 V in the first 

synaptic array, and VS = 1.1 V and VG = 2.7 V for the second one, which were used in the 

experiment. (b) Comparison between the target synaptic cell currents (computed at the 

external network training) and the actual cell currents measured after their import, i.e. 

cell tuning. (c) The similar comparison for the positive fraction of hidden neuron output, 

computed for all test patterns. (The negative outputs are not shown, because they are 

discarded by the used activation function.) Red dashed lines are guides for the eye, 

corresponding to the perfect weight import. 
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can be supplied by the hidden layer neuron in our design. With such scheme, the error is 

conveniently smallest for the largest weight wki = 1, corresponding to the array cell tuned to 

run a current 300 nA at VGS = 1.6 V. The target current values for all cells in the second 

array (excluding bias ones) were ensured to be between 0 and 300 nA by clipping the 

weights during training of the precursor network. 

To decrease the weight import time, only one cell of each pair, corresponding to a 

particular sign of the weight value, was tuned, while its counterpart was kept at a very small, 

virtually zero, and initial conductance. Additionally, all non-bias cells in the first array, for 

which the target conductances were below 30 nA, were also not tuned, because of their 

negligible impact on the classification fidelity, confirmed by modeling. As a result, only 

about ~30% of the cells were actually fine-tuned. Because of the sequential character of the 

tuning process, it took several hours to complete it, with the chosen accuracy, for the whole 

chip. (In future, the tuning may be greatly sped up by adjusting multiple weights at a time 

via integrated on-chip tuning circuitry [58], and using better tuning algorithms we have 

developed [61].) 

Moreover, also to speed up the import process, the weigh import accuracy for a single 

cell tuning was set to relatively high value of 5%. As Fig. 33b indicates, some of the already 

tuned cells were disturbed beyond the target accuracy during the subsequent weight import. 

In this first experiment, these cells were not re-tuned, in part because even for such rather 

crude weight import the experimentally tested classification fidelity (94.65%) on MNIST 

benchmark test patterns (Fig. 34) is already remarkably close to the simulated value (96.2%) 

for the same network (Fig. 35). Both these numbers are also not too far from the maximum 

fidelity (97.7%) of the similar perceptron of this size, optimized without hardware 

constrains.  
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Fig. 34. Experimental results for the classification of all 10,000 MNIST test set patterns: 

(a) Histograms of voltages measured on each output neuron. Red bars correspond to the 

patterns whose class belongs to this particular output, while the blue ones are for all 

remaining patterns. (b) Histograms of the largest output voltages (among all output 

neurons) for all test patterns of each class, showing that the correct outputs (red bars) 

always dominate. Note the logarithmic vertical scales. 
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5.3%

3.8%

 
Fig. 35. The simulated classification fidelity as a function of weight precision import for 

the implemented network, with the particular set of weights used in the experiment. The 

weight error was modeled by adding, to its optimized value, a normally distributed noise 

with the shown standard deviation. The red, blue (rectangles), and black (segment) 

markers denote, respectively, the median, the 25%-75% percentile, and the minimum and 

maximum values for 30 simulation runs. The black and red horizontal dashed lines show, 

respectively, the calculated misclassification rate for perfect (no noise) weights, and the 

rate obtained in the experiment. 

 

Excitingly, such classification fidelity in network, with large optimization reserves (see 

below), is achieved at an ultralow (sub-20-nJ) energy consumption per average classified 

pattern (Fig. 36a), and the average classification time below 1 μs (Fig. 36b). The upper 

bound of the energy is calculated as a product of the measured average power, 5.6 mA  2.7 

V + 2.9 mA  1.05 V  20 mW, consumed by the network, by the upper bound, 1 μs, of the 

average signal propagation delay. A more accurate measurement of the time delay, and 

hence the energy, requires a redesign of the signal input circuitry, currently rather slow – see 

Fig. 36b.  
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Fig. 36. Physical performance: (a) Histogram of the total currents flowing into the 

circuit, characterizing the static power consumption of the both memory cell arrays, 

for all patterns of the MNIST test set. The inset lists the pattern-independent static 

current of the neurons. (b) The typical output signal dynamics after an abrupt turn-on 

of the voltage shifter power supply, measured simultaneously at the network input, at 

the output of a sample hidden-layer neuron, and at all network’s outputs. (The actual 

input voltage is 10× larger.) The oscillatory behavior of the outputs is a result of a 

suboptimal phase stability design of the operational amplifiers. Before it has been 

improved, and the input circuit is sped up, we can only claim a sub-1-s average time 

delay of the network, though it is probably closer to 0.5 s. 
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3. Network Evaluation 

The achieved speed and energy efficiency are much better than those demonstrated, for 

the same task, at any digital network we are aware of. For example, the best results for the 

same MNIST benchmark classification were reported for IBM’s TrueNorth chip [67]. For 

the comparable 95% fidelity, that chip can classify 1,000 images per second while 

consuming 4 μJ energy per image [74], i.e. is at least three orders of magnitude slower and 

less energy efficient than our, still unoptimized analog circuit. This difference is rather 

impressive, taking into account the advanced 28-nm CMOS process used for the TrueNorth 

chip implementation. 

In a less direct comparison, in terms of energy per a MAC operation, our network also 

outperforms the best reported digital systems. Indeed, the measured upper bound of the 

energy efficiency of our circuit is 0.2 pJ per MAC. This is a factor of 60 smaller than the 12 

pJ per MAC reported for 65-nm Eyeriss chip [14], which is highly optimized for machine 

learning applications. (It performs 16-bit operations and, like the TrueNorth chip, was 

implemented using an advanced fabrication technology.) Note that both the TrueNorth and 

Eyeriss chip, in turn, far outperform the modern graphics processing units (GPUs) for 

neuromorphic-network applications.  Our result is also much better than the ~1 pJ per analog 

operation, recently reported for a small 130-nm mixed-signal neural networks based on 

synaptic transistors [15] and is comparable to the best results obtained with the switched-

capacitor approach [45], for example the recent ~0.1 pJ per operation achieved in a much 

smaller circuit, with only 8×8×3 discrete (3-bit) synaptic weights, using a 40-nm process 

[1]. (Note that this approach does not allow fine-tuning of the synapses, and its extension to 

larger circuits may be problematic because of the relatively large capacitor size.)  
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It should be also noted that the energy-per-MAC metric is generally less objective, 

because it does not account for the operation precision and the complexity and functionality 

of the implemented system (e.g., general-purpose systems like a typical GPU vs application-

specific ones like the Eyeriss chip).  

B. Exponential-Weight Multilayer Perceptron with NOR Flash Array 

The name "perceptron" today typically implies a well-known algorithm for supervised 

training of linear classifiers. Interestingly, a more general version of perceptron algorithm 

was proposed in early 1960s [75]. In such algorithm, all sensory (input), association (hidden) 

and response (output) neurons are of the form f(αi), where αi is the algebraic sum of all input 

signals while synaptic/transmission function is a function of input and current synaptic state 

of the synapse, i.e. g(xi, wi), so that the output of the neuron is written as: 

( , )i i

i

y f g x w
 

  
 


 

For linear synaptic transmission function, i.e. the most commonly used case today, this 

equation simplifies to a typical weighted-sum (dot-product) operation: 

i i

i

y f x w
 

  
 


 

with the corresponding well-known single-layer perceptron network. 

In the early years of artificial neural networks, the motivation for more general algorithm 

was rather obvious considering the inherent limitations of linear perceptron, which can 

perform classification for only linearly-separable patterns [75]. It seems though that this idea 

has not received much attention, which is likely due to subsequent invention of more 

powerful multilayer networks in which the needed nonlinearity is provided by neurons. 

(10) 

(11) 
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Additionally, simple product operation is certainly easier, as compared to nonlinear 

transmission function, to compute using digital circuits, which has been traditionally used to 

implement artificial neural network implementations. 

However, the recent advances in emerging nanoelectronic memory devices [76] and the 

opportunity to use such devices in low-energy analog circuit implementations of artificial 

neural networks make the idea of nonlinear synaptic transmission function very appealing 

again. In our architecture, we implement the exponential synaptic weights through floating-

gate transistors which are biased in sub-threshold voltage and show that the whole network 

maps very efficiently to the modified NOR flash memory originally designed for digital 

memory applications. The proposed algorithm and architecture are experimentally verified 

by implementing and training a small-scale classifier on a 10 × 10 flash memory array 

fabricated in 180-nm process. 

According to the exponential relationship of floating gate devices in subthreshold 

region—Eq. (1), we have g(∙,∙) as 
( )( , ) x wg x w e  . In order to have bipolar weights, we 

have to implement each weight as a difference of two non-negative weights. In that way, we 

have: 

( , ) ( , ) , , 0i i i i i i

i i

y f g x w g x w w w    
       

 
 

 

By defining f (A - B) = ln(A) - ln(B), we have our network with exponential weight as 

shown in Fig. 37. 

(12) 
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Fig. 37. The proposed perceptron implementation with nonlinear (exponential) 

synaptic weights. In this architecture, the natural logarithmic function represents 

activation function. 

 

Practicality and functionality of the proposed neural network was tested by fabricating a 

small scale (10 x10) flash memory array of Figs. 38(a and b) in 180-nm process using SST’s 

SuperFlash technology [60]. The fabricated array was then used to implement a single layer 

neural network with the top-level (functional) scheme shown in Fig. 38(a) while neuron 

circuits were emulated in software. The network had ten inputs and three outputs, fully 

connected with 10 x 3 x 2 = 60 differential weights each implemented with a single floating-

gate transistor. Such a network is sufficient for performing, for example, the classification of 

3 x 3-pixel images into three classes with nine network inputs corresponding to the pixel 

values. We tested the network on a set of 30 patterns, including three stylized letters (‘z’, ‘v’ 

and ‘n’) and three sets of nine noisy versions of each letter, formed by flipping one of the 

pixels of the original image (see the inset of Fig. 39). Physically, each input signal was 

represented by a voltage equal to either 0.5 V or 0 V, corresponding, respectively, to the 

black or white pixel, while bias input was equal to 0.5 V. 
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(a) (b)

 

Fig. 38. (a) Implementing Eq. (10) using an array of floating-gate transistors. (b) 

Layout of the fabricated 10 x 10 memory array (obtained by modifying the 

commercially available NOR flash memory). 

 

Fig. 39. Results of experimentally testing the proposed architecture with exponential 

weights. 
 

 

The network was trained in situ, that is, without using its external computer model, using 

the Manhattan update rule, which is essentially a coarse-grain, hardware-friendly, batch-
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mode variation of the usual delta rule of supervised training. After initializing all flash 

transistors to near fully-erased state, at each iteration (‘epoch’) of this procedure, patterns 

from the training set were applied, one by one, to the network’s inputs while Vd = 0.6 V and 

Vs = 0V, and then its outputs were measured according to Eq. (12) (note that 

( ( ))i ix w

i
e
 

 corresponds to the flowing current on each source line and has been measured 

experimentally by virtually grounding source lines). Once all N patterns of the training set 

had been applied and all gradients are calculated, the synaptic weights were updated in 

parallel based the Manhattan update rule (sign of the gradients) using fixed-amplitude 

erasure and programming pulses. For updating flash transistors in parallel, in each epoch we 

used the modified version of the algorithm originally proposed for parallel updating of 

memristive devices in crossbar structure [46]. The weight stored in each flash transistor was 

decreased by applying a single programming pulse (6V, 5 us) to the source line while 

synapse potentiation is done by applying an erasure pulse (8 V, 2.5 ms) to the control gate 

(see Ref. [60] for more details). For this particular classification task, the perfect 

classification for five runs was reached, on average, after 13 training epochs (see Fig. 39). 

For the fully trained network, the averaged read current of each floating-gate transistor was 

0.34 nA at specific read condition of Vd = 0.6 V, Vg = 0:5 V and Vs = 0 V which corresponds 

to the power consumption of 200 pW/synaptic weight (when the input is at its maximum). 

Note that in this architecture power consumption of the whole network can be decreased 

even further by putting flash transistors in deeper subthreshold (by lowering Vg) with the 

cost of having smaller signal-to-noise ratio. 
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C. Hopfield Network with Hybrid CMOS/Memristor Circuits 

Recurrent artificial neural networks are an important computational paradigm capable of 

solving a number of optimization problems [77, 78]. One classic example of such networks 

is a Hopfield analog-to-digital converter [78 - 80]. Although such a circuit may be of little 

practical use, and inferior, for example, to similar-style feed forward-type ADC 

implementations [81], it belongs to a broader constrained optimization class of networks 

which minimize certain pre-programmed energy functions and have several applications in 

control and signal processing [78]. The Hopfield network ADC circuit also represents an 

important bridge between computational neuroscience and circuit design, and an 

understanding of the potential shortcomings of such a relatively simple circuit is therefore 

important for implementing more complex recurrent neural networks.  

An example of a 4-bit Hopfield network ADC is shown in Fig. 40 [78]. The originally 

proposed network consists of an array of linear resistors (also called weights or synapses) 

and four peripheral inverting amplifiers (neurons). Each neuron receives currents from the 

input and reference lines and from all other neurons via corresponding synapses. The analog 

input voltage VS is converted to the digital code V3V2V1V0, i.e. 

                                        

3

0

2i

s i

i

V V



 

by first forcing all neuron outputs to zero [79] and then letting the system evolve to the 

appropriate stationary state. 

To understand how the Hopfield network performs the ADC operation, let us first 

describe its electrical behavior.  Assuming leakage-free neurons with infinite input and zero 

output impedances, the dynamic equation governing the system evolution of the input 

(13) 
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Fig. 40. (a) Conventional Hopfield network implementation of a 4-bit ADC and (b) 

specific implementation of a neuron as considered in this thesis. 
 

voltage Uj of the j-th neuron is described as 

                         

j i j i j j j

i

CU T V T U I   
 

                     
( )i iV g U

    
 

(14a) 

(14b) 
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where g(·) is a neuron activation function, C is the neuron’s input capacitance, Tij is a 

conductance of the synapse connecting the output of the i-th neuron with the input of the j-th 

neuron, while  

                                    
j Sj S Rj RI T V T V 

 

                                  

j Sj Rj ij

j

T T T T  
 

are the corresponding effective offset input current and effective input conductance for the j-

th neuron. Here VR is a reference voltage, while TR and TS are conductances of reference and  

input weights, respectively (Fig. 40a). Note that neuron input Ui can be either positive or 

negative, but the output of the neuron is either zero or positive. The inverted outputs of the 

neurons, which are fed back to the network, are therefore either negative or zero. One 

activation function suitable for such mapping is the sigmoid function 1/(1+exp[-U]). Neuron 

output needs to be inverted to keep the feedback weights positive and thus to allow physical 

implementation with passive devices, such as resistors.1 

Alternatively, the Hopfield network operation can be described by an energy function. 

The evolution of the dynamic system described by Eq. (14) is equivalent to a minimization 

of the energy function: 

1

0

1
( )

2

jV

ij i j j j j

ij j j

E T VV V I T g V dV     
 

 

                                                 
1The sign of the first term on the left in Eq. 14a, and of all right hand terms in Eq. 17, is 

different from that of the original paper [73]. In this work we assume that all weights are 
strictly positive, making it necessary explicitly to flip the neuron feedback signal sign.  

(15) 

(16) 

(17) 
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where the last term can be neglected for very steep transfer functions [77].  In Ref. 78, 

Tank and Hopfield showed that a 4-bit ADC task (Eq. 13) can be described by the following 

energy function: 

3 3
2 2

0 0

1 1
( 2 ) 2 ( 1)

2 2

i i

S i i i

i i

E V V V V
 

    
 

 

Here the first term tends to satisfy Eq. (13), while the second tends to force each digital 

output Vi to be either “0 or “1”. After rearranging the terms in Eq. (18) and comparing the 

result with Eq. (17), the appropriate weights for performing the ADC task are  

( ) (2 1)2 ,       2 ,        2 .i j j j

ij Sj RjT T T   
    

In the Hopfield ADC network, the number of synapses grows quadratically with the 

number of neurons. Compact implementation of the synapses is therefore required if such 

circuits are to be practical. This is certainly challenging to achieve with conventional CMOS 

technology, because, according to Eq. 19, it requires analog weights with a relatively large 

dynamic range, i.e., in the order of 22N, where N is the bit precision. Weights can be stored 

digitally, but this approach comes with a large overhead [82]. On the other hand, analog 

CMOS implementations of the synapses have to cope with the mismatch issues often 

encountered in CMOS circuits [34]. Consequently, several attempts have been made to 

implement synapses with alternative, nonconventional technologies. In some of the early 

implementations of Hopfield networks, weights were realized as corresponding thin film [83] 

or metal line [84, 85] conductance values, patterned using e-beam lithography and reactive-

ion-etching. The main limitation of these approaches was that the weights were essentially 

one-time programmable, with rather crude accuracy. A much more attractive solution was 

very recently demonstrated in Ref. 86, which describes a Hopfield network implementation 

(18) 

(19) 
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with synapses based on phase change memory paired with conventional field-effect 

transistors. That work, together with other recent advances in device technologies [87, 88] 

revived interest in the theoretical modeling of recurrent neural networks based on hybrid 

circuits [36, 89 - 92]. 

This thesis explores the implementation of synapses with an emerging, very promising 

type of memory devices, namely metal-oxide resistive switching devices (“memristor”) [87, 

88]. In the next section we discuss the general implementation details of the Hopfield 

network ADC, including the memristor devices which were utilized in the experimental 

setup.  This is followed by a theoretical analysis of the considered hybrid circuits’ 

sensitivity to certain representative sources of non-ideal behavior and discussion of a 

possible solution to such problems. The theoretical results were validated with Spice 

simulations and experimental work. It should be noted that preliminary experimental results, 

without any theoretical analysis, were reported earlier in Ref. 93, where we first presented a 

Hopfield network implementation with metal-oxide memristors. The only other relevant 

experimental work on memristor-based Hopfield networks that we are aware of was 

published recently in Ref. 94. However, the network demonstrated in Ref. 94 was based on 

9 memristors whereas the circuit presented in this work involves 16. 

Following on from our earlier works [46, 95 - 96], we here consider the implementation 

of a hybrid CMOS/memristive circuit (Fig. 40). In this circuit, density-critical synapses are 

implemented with Pt/TiO2-x/Pt memristive devices, while neurons are implemented by 

CMOS circuits.  

In their simplest form, memristors are two-terminal passive elements, the conductance of 

which can be modulated reversibly by applying electrical stress.  Due to the simple structure 

and ionic nature of their memory mechanism, metal-oxide memristors have excellent scaling 
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prospects, often combined with fast, low energy switching and high retention [36]. Many 

metal oxide based memristors can also be switched continuously, i.e. in analog manner, by 

applying electrical bias (current or voltage pulses) with gradually increasing amplitude 

and/or duration.  

Fig. 16a shows typical continuous switching I-Vs for the considered Pt/TiO2-x/Pt devices 

[71]. After programming the memristors to the desired resistance, the voltage drop across 

them was always kept within the |V | ≤ 0.2V “disturb-free” range [71].  

The need to keep the voltage drop across memristive devices small also affects neuron 

design. A simple leaky operational amplifier (op-amp) integrator could be sufficient to 

implement neuron functionality, but ensuring disturb-free operation with such a design is 

not easy. This issue was resolved by implementing neurons with three op-amps connected in 

series (Fig. 40b). The first op-amp was an inverting amplifier which held virtual ground 

even if the neuron’s output was saturated.  The second op-amp was an open loop amplifier 

implementing a sign-like activation function. The field effect transistor in the negative 

feedback of this op-amp was initially turned on to force the neuron’s outputs to zero (i.e. to 

set into initial state before computing output) and then turned off during network 

convergence. The last op-amp inverted the signal and ensured that the neuron output was 

within the -0.2V ≤V ≤ 0 voltage range. Note that since the neuron bandwidth was mainly 

determined by the input capacitance of the second amplifier, and the other sources of 

parasitic capacitance could be neglected for simplicity, the capacitive load of the second 

amplifier (Fig. 40b) was effectively a neuron input capacitance (Fig. 40a).  

Assuming negligible op-amp input currents and output impedances, the Hopfield 

network is described by the following equations, which also account for limited gain and 

voltage offsets: 
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Solving these equations results in the following dynamic equation  

1' ' 'j j ij i j N j j oj

i
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where g(·) is a transfer function of the saturating amplifier implemented with the second op-

amp, and 
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Based on previous derivations, assuming ideal op-amps and no possibility of saturation 

by the first and last amplifiers, the dynamic equation for this neuron design can be written as  

                    

1j ij i N j j

i
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2

3

( )N
j j
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T
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 where g(·) is a transfer function of the second op-amp . 

For a very steep transfer function, the second term in the right hand part of Eq. 32a can 

be neglected [77]. The network is then described by the original energy function (Eq. 17) 

and the weights are proportional to those defined in Eq. (19), i.e.  

' 5 ,           ' ,            ' 5 .ij ij Sj Sj Rj RjT T T T T T  
 

(32a) 

(32b) 

(29) 

(30) 

(31) 

(33) 
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where the additional coefficient 5 is due to the reduced, i.e. 0.2 V, output voltage 

corresponding to digital “1” in the considered circuit (as opposed to output voltage 1 V 

assumed in the original ADC energy function in Eq. (18) for ADC and the weights in Eq. 

(19) derived from that energy function).  

The physical implementation of this Hopfield network ADC posed a number of 

additional challenges. However, it should first be mentioned that variations in neuron delay 

and input capacitances, which may result in oscillatory behavior and the settling in of false 

energy minima [79, 80], were not a problem in our case thanks to the slow operating speed, 

which was enforced to reduce capacitive coupling. The specific problems regarding the 

considered implementation were offsets in virtual ground, resulting from the voltage offsets 

(uo) and limited gain (A) of the op-amps (Fig. 40b). Another, somewhat less severe, problem 

was the nonlinear conductance of the memristive devices (defined via parameter β–, see Eq. 

2). In the Eq. (26), it is shown how limited gain and non-zero offset result in an additional 

constant term I0 in dynamical equation, which can be factored into the reference weights as 

follows  

    

0
'' '

j

Rj Rj

R

I
T T

V
 

       

The Hopfield network with practical, non-ideal neurons can still therefore be 

approximated by the original energy equation and it should be possible to circumvent the 

effects of limited gain and voltage offset by fine-tuning the reference weights. This idea was 

verified via SPICE modeling and experimental work, as described in the next section. 

Using Eq. (2) for the memristors and SPICE models for the IC components, in the next 

series of simulations we studied how particular non-ideal behavior affects differential (DNL) 

(34) 
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and integral (INL) nonlinearities in ADC circuits [97]. Fig. 41a shows INL and DNL as a 

function of the open loop DC gain, which was varied simultaneously for all three op-amps, 

assuming ideal memristors with β = 0 and no voltage offset. Note that in this simulation, the 

gain-bandwidth product (GBP) was increased proportionally to the open loop DC gain, and 

was equal to 3MHz at ADC = 2×105. Because the circuit operated at about 1.5 KHz, the 

effective gain A ≈ ADC/100 for all simulations (and also for the experimental work discussed 

below). Fig. 41b shows the impact of the voltage offset on DNL and INL (simulated as an 

offset on the ground nodes), which was varied simultaneously for all three op-amps. Finally, 

Fig. 41c shows the effect of I-V nonlinearity, which was varied by changing constant β in Eq. 

(2), assuming all other parameters of the network to be close to ideal, i.e. that the voltage 

offset uo= 0 and the open loop DC gain ADC= 106. Note that for β> 0, the memristor weights 

were chosen in such a way that the conductance of the device at -0.2V matched the 

corresponding values prescribed by Eq. (33). 

The results shown in Fig. 41 confirm the significant individual contribution of the 

considered sources of non-ideal behavior on the ADC’s performance. Fig. 42a shows the 

simulation results considering all these factors together for the specific values uo= 3mV, β = 

1, ADC= 2×105, and GBP = 3 MHz, which are representative of the experimental setup. The 

gain and voltage offset values were taken from the specifications of the discrete IC op-amps 

used in the experiment. Clearly, the ADC output is distorted and contains numerous errors, 

with the largest contribution to INL being due to finite gain (Fig. 41). Fig. 42b and 43 show 

the simulation results with new values for the reference weights calculated according to Eq. 

(34) for the 4-bit and 8-bit ADCs, respectively. The results shown in these figures confirm 

that non-ideal behavior op-amps, such as limited gain and voltage offsets, can be efficiently 

compensated by fine-tuning memristors. 
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Fig. 41. Theoretical analysis of the performance sensitivity of a 4-bit Hopfield network 

ADC with respect to (a) open-loop DC gain, (b) voltage offsets in the operational 

amplifiers, and (c) the nonlinearity of memristive devices. 
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Fig. 42. Simulation results for (a) the original and (b) the optimized 4-bit Hopfield 

network ADC with β = 1, ADC = 2×105, and uo = 3mV voltage offset, which are 

representative parameters for the experimental setup. For the optimized network, TR’’ = 

0.97 TR1, TR2’’ = 0.86 TR2, TR3’’ = 0.95 TR3, TR4’’ = 0.97 TR4. 
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Fig. 43. Simulation results for the optimized 8-bit Hopfield network ADC withTR1’’ = 

0.8 TR1, TR2’’ = 0.81 TR2, TR3’’ = 0.89 TR3, TR4’’ = 0.83 TR4, TR5’’ = 0.55 TR5, TR6’’ = 0.74 

TR6, TR7’’ = 0.71 TR7, TR8’’ = 0.75 TR8. All other parameters are equal to those used for 

Fig. 42. 
 

 

        The simulation results were also validated experimentally by implementing a 4-bit 

Hopfield network ADC in a breadboard setup consisting of Pt/TiO2-x/Pt memristive devices 

and discrete IC CMOS components (Fig. 44a). The memristor chips were assembled in 

standard 40-pin DIP packages by wire-bonding 20 standalone memristive devices. Because 

input voltage range is 0 ≤ VS ≤ VS
max = 3.0 V, the weights TS were realized with regular 

resistors.2 The discrete memristors and other IC components were then connected as shown 

                                                 
2 In principal, input voltage range could be decreased by increasing input weights 

correspondingly. However, such rescaling would require larger a dynamic range of conductances to 

implement Equation 18, and this was not possible with the considered memristive devices. 
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Fig. 44. Experimental results for the optimized 4-bit Hopfield ADC: (a) experimental 

setup, (b) applied input voltages, and (c) measured transfer characteristics.  
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in Fig. 40 with external wires.  

 The memristors implementing feedback and reference weights were first tuned ex-situ 

using a previously developed algorithm [71] to the values defined by Eq. (33). The ex-situ 

tuning for each memristor was performed individually before the devices were connected in 

a circuit. This was done to simplify the experiment and it is worth mentioning that in general, 

it should be possible to tune memristors after they are connected in the crossbar circuit, as it 

was experimentally demonstrated by our group for standalone devices connected in crossbar 

circuits [71, 98] and integrated passive crossbar circuits [47, 99].  

As was discussed, limited gain and voltage offsets of operational amplifiers can be 

compensated by adjusting reference weights according to Eq. (31) and (34). To demonstrate 

in-field configurability of memristors, the reference weights were fine-tuned in-situ. In 

particular, reference weights were adjusted to ensure correct outputs at four particular input 

voltages, when VS is equal to 1/16, 1/8, 1/4, and 1/2 of its maximum value. The tuning is 

performed first for VS = 1/16 VS
max, for which the correct operation of ADC assumes that the 

least significant output bit V0 flips from 0 to 1 (corresponding to voltage 0.2 V in our case), 

which is ensured by fine-tuning reference weight TR0. Similarly, the output bit V1 should flip 

from 0 to 1 when VS = 1/8 VS
max, which is ensured by fine-tuning reference weight TR1 and 

so on. Because we started fine-tuning from the least significant output, it is sufficient to 

fine-tune only one corresponding reference weight at a time for a particular input voltage, 

which greatly simplified in-situ tuning procedure. Also, the direction of adjustment was 

always straightforward to determine due to monotonic dependence of the input voltage at 

which a particular output bit flips from 0 to 1, on the corresponding reference weight (Eq. 

34).   
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The network parameters for the experimental work are summarized in Table I. Although 

there were a few A/D conversion errors in the experimental work (Fig. 44), the results are 

comparable with the simulations of the optimized network, and much better than those 

obtained for the unoptimized network. The experimental results for the unoptimized network 

were significantly worse in comparison with the simulation, and are not shown in this thesis. 

It is worth mentioning that for the considered memristors drift of conductive state over 

time was negligible due to highly nonlinear switching kinetics specific to these devices [46, 

47, 71]. In principle, for other types of memristors with inferior retention properties it 

should be possible to occasionally fine-tune memristor state to cope with conductance drift. 

A related issue might be measurement noise upon reading the state of the memristor, e.g. 

due to the fluctuations in the device conductance over time, which is sometimes observed as 

random telegraph noise [98 - 100]. Such noise can be tolerated by performing quasi DC read 

measurements, however, the downside would be potentially much slower tuning process.  
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Table I. Parameters for the experimentally demonstrated Hopfield network ADC. 

 

 

 

 

 

 

 

 

 

 

Feed-
back 

Conductance 
(S@0.2V) 

Refer-
ence 

Conductance 
(S@0.2V) 

T2,1
 2e-5 T1R 4.75e-6 

T3,1 4e-5 T2R 2.19e-5 

T4,1 7.9e-5 T3R 9.33e-5 

T1,2 2e-5 T4R 41.85e-5 

T3,2 7.9e-5 Input Conductance (S) 

T4,2 15e-5 T1S 8.33e-6 

T1,3 4e-5 T2S 1.67e-5 

T2,3 7.9e-5 T3S 3.33e-5 

T4,3 30.9e-5 T4S 6.67e-5 

T1,4 7.9e-5 Neuron Conductance (S) 

T2,4 15e-5 TN1 1e-3 

T3,4 30.9e-5 TN2 1e-5 

 TN3 5e-4 
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VI. Discussion 

There are still several unused reserves in our pattern classifier chip design. The first is 

the most straightforward improvement that uses the current-mirror design for neurons 

(similar to the gate-coupled circuits shown in Fig. 30e, but implemented with the floating-

gate-free transistors, and hence with the signal transfer weight w = 1), which currently give 

dominant contributions to the network latency and energy dissipation (Fig. 36a). The second 

direct path forward is to use the more advanced 55-nm memory technology ESF3 of the 

same company [59]. (Our preliminary testing [62] has not found any evident showstoppers 

on that path.) The time delay and energy dissipation of the network with current-mirror 

neurons will be dominated by the synaptic arrays, and may be readily estimated for different 

memory technologies using the experimental values of parameter  for 180-nm ESF1 cells 

and more advanced 55-nm ESF3 cells. For example, our modeling of a large-scale network 

deep-learning convolutional networks, suitable for classification of large, complex patterns 

[74] (i.e. the same network which was implemented by Eyeriss chip [14]). These two 

improvements are shown at least a ~100X advantage in the operation speed, and an 

enormous, >10000X advantage in the energy efficiency, over the state-of-the-art purely 

digital (GPU and custom) circuits – see Table Ⅱ. Moreover, the energy efficiency of these 

circuits would closely approach that of the human visual cortex, at much higher speed – see 

the last two columns of the table. 

On the other hand, we also paid attention to a more general case of perceptron 

architecture, in particular focusing on exponential-weight networks. Although the idea of 

having nonlinear weights in neural networks is not new, most previous attempts has failed to 

gain attention either due to the lack of having specific nonlinear element to effectively  
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implement synaptic weights or because of the inconsistency between the algorithm and 

underlying hardware [101, 102]. In this thesis, not only we investigate the performance of 

neural networks with nonlinear weights at software level but also we show that the proposed 

architecture has a very compact, efficient and trainable hardware implementation (from the 

area and power consumption points of view) that can dramatically speeds up the deep neural 

networks during operation. 

Moreover, we investigated hybrid CMOS/metal-oxide-memristor circuit implementation 

of a Hopfield recurrent neural network performing analog-to-digital conversion tasks. We 

showed that straight forward implementation of such networks, with weights prescribed by 

the original theory, produces many conversion errors, mainly due to the non-ideal behavior 

of the CMOS components in the integrated circuit. We then proposed a method of adjusting 

weights in the Hopfield network to overcome the non-ideal behavior of the network 

components and successfully validated this technique experimentally on a 4-bit ADC circuit. 

The ability to fine-tune the conductance of memristor in a circuit is essential for 

TABLE Ⅱ 
SPEED AND ENERGY CONSUMPTION OF THE SIGNAL PROPAGATION THROUGH THE 

CONVOLUTIONAL (DOMINATING) PART OF A LARGE DEEP NETWORK [1] 

AlexNet[30] 
 

single pattern 
classification: 

Digital circuits 
[TNNLS27] 

Mixed-signal floating-
gate circuits 
(estimates) 

Visual    
cortex 
(crude 

  estimates) 
GPU   28 

nm 
ASIC     
65 nm 

ESF1   
180 nm 

ESF3   55 
nm 

time (s) 1.510-2 2.910-2 ~110-4 ~610-5 ~310-2 

energy (J) 1.510-1 0.810-2 ~310-7 ~210-7 ~510-8 

The estimates for floating-gate networks take into account the 55×55 = 3,025-step time-
division multiplexing (natural for this particular network), and the experimental values of 
the subthreshold current slope of the cells - see, e.g., the inset in Fig. 2d. The (very crude) 
estimate of the human visual cortex operation is based on the ~25 W power consumption of 
~1011 neurons of the whole brain, and a 30-ms delay of the visual cortex, and assumes the 
uniform distribution of the power over the neurons, and the same number of neurons 
participating in a single-pattern classification process.  
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implementing the proposed technique. In our opinion, the work is proved to be an important 

milestone and its results will be valuable for implementing more practical large-scale 

recurrent neural networks with CMOS/memristor circuits.  From a broader perspective, this 

thesis demonstrates one of the main advantages of utilizing memristors in analog circuits, 

namely the feasibility of fine-tuning memristors after fabrication to overcome variations in 

analog circuits. With the emerging and development of memristive corssbars [50, 104], 

consistent research into CMOS/nanodevice neural networks is still a very attractive future 

field.   

Recent progress [20, 21, 23, 26, 103] in the development of machine learning algorithms 

using binary weights imply that our approach may be also extended to novel 3D NAND 

flash technologies [105] or other 3D memories [106]. Such memories may ensure much 

higher areal densities of the floating-gate cells, but their redesign to analog weights may be 

rather problematic. Note, however, the results of the most recent work [23] show a 

significant drop in classification performance that results from using binary weights in 

convolutional layers of large-scale neuromorphic networks. The performance of such 

networks may be improved by increasing the network size; however, its speed and energy 

efficiency may suffer. So, the tradeoff between the density and weight precision effects in 

3D memories is far from certain yet, and requires further study. 

Except for previous mentioned potential future direction, spiking neural networks are 

very promising candidates from energy point of view. Tremendous work [107 - 112] has 

already well established the foundations for large scale spiking neural networks. 

To summarize, we believe that the reported results in this thesis give an important proof-

of-concept demonstration of the exciting possibilities opened for neuromorphic networks by 

mixed-signal circuits based on industrial-grade floating-gate memories. 
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Appendix 

LIST OF CHIPS FABRICATED 

Chip Description Applications 

180-nm ESF1 Modified Array 
Exponential-Weight Multilayer Perceptron 

(MLP) 

180-nm CMOS Circuits Neuron and Digital Periphery Designs 

180-nm Mixed Signal Test Small MLP; Vector-by-matrix Multiplier 

180-nm Mixed Signal MLP MNIST Hand Digits Recognition  

180-nm Mixed Signal Convolution Neuron 
Network (CNN)  

MNIST Hand Digits Recognition  

55-nm ESF3 Modified Array Vector-by-matrix Multiplier 

 




