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1Department of Biostatistics and Computational Biology, University of Rochester;
2Department of Sociology, University of Michigan
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March 2, 2018

Abstract

This article discusses an instrumental variable approach for analyzing censored data that
includes many instruments that are weakly associated with the endogenous variable. We study
the effect of imprisonment on time to employment using an administrative data on all individu-
als sentenced for felony in Michigan in the years 2003-2006. Despite the large body of research
on the effect of prison on employment, this is still a controversial topic, especially since some
of the studies could have been affected by unmeasured confounding. We take advantage of a
natural experiment based on the random assignment of judges to felony cases and construct a
vector of instruments based on judges’ ID that can avoid the confounding bias. However, some
of the constructed instruments are weakly associated with the sentence type, i.e., the endoge-
nous variable, which can potentially lead to misleading results. Using a dimension reduction
technique, we propose a novel semi-parametric estimation procedure in a survival context that
is robust to the presence of many weak instruments. Specifically, we construct a test statistic
based on the structural failure time model and provide inference by inverting the testing pro-
cedure. Under some assumptions, the optimal choice of the test statistic has also been derived.
Analyses show a significant negative impact of imprisonment on time to employment which is
consistent with some of the previous results. Our simulation studies highlight the importance
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of accounting for weak instruments in the analyses in terms of both bias and inflated type-I
error rates.

Keywords: Instrumental variables, Survival time, Test statistics, Two-stage least squares, Un-
measured confounders.
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1 Introduction

We consider instrumental variable (IV) analyses with censored data in settings that include many

weak instruments– weakly associated with the treatment variable. The key advantage of IV method

is that it allows relaxation of the ”no unmeasured confounders” assumption under some conditions

(Wright, 1934; Haavelmo, 1943; Angrist et al., 1996; Abadie, 2003; Inoue & Solon, 2010; Erte-

faie et al., 2017a). However, IV analyses may lead to misleading results in the presence of weak

instruments. In fact, Bound et al. (1995) showed that in such settings, IV estimates may approach

to ordinary least squares estimates which we know are subject to bias because of unmeasured con-

founding (Staiger & Stock, 1994; Imbens & Rosenbaum, 2005; Small & Rosenbaum, 2008).

In 2013, the incarceration rate in the US was the highest in the world (Mauer, 2001; Austin &

Irwin, 2012; Currie, 2013; Travis et al., 2014). The rise of mass incarceration over the last four

decades has prompted intense interest among social scientists in the consequences of incarceration

for the individuals and families who experience it (Kling, 2006; Alexander, 2012; Turney & Wilde-

man, 2015; Kilgore, 2015). A large body of research suggests that serving time in prison affects

one’s employment (Pager, 2008), relegates workers to the secondary labor market (Western, 2002;

Weiman et al., 2007), and affects attachment to the labor market (Apel & Sweeten, 2010). However,

there are several studies that find much smaller or nonexistent prison effects (Kling, 2006; Loeffler,

2013). Thus, the evidence on the effect of prison on employment remains inconclusive, especially

since some of these studies could have been affected by unmeasured confounding. For example, a

judge’s assessment of how likely an offender is to reoffend – and thus the sentencing decision – can

be influenced by information available to her that does not get recorded in administrative data (e.g.,

statements from witnesses) and may also be related to the time to employment, resulting in omitted

variable bias/unobserved confounding (Nagin et al., 2009).

Our data includes all individuals sentenced for a felony in Michigan in the years 2003-2006 –

over 100,000 individuals assigned to 151 judges. One important feature of this data that encourages

IV analysis is the fact that judges are randomly assigned in Michigan within counties. Specifically,

criminal cases are assigned to judges by the court clerk when cases are initially filed (at indictment).
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Therefore initial charges are filed before the prosecutor knows which judge will be assigned. In this

paper, we take advantage of a natural experiment based on the random assignment of judges to

felony cases and construct a vector of IVs based on judges’ ID. We are interested in the effect of

imprisonment on time to employment with quarterly earnings above poverty where the unit of time

is in calendar quarter format and the poverty line is defined for a single person of working age under

65. Moreover, the earnings come from jobs recorded by the unemployment insurance system.

The first step in IV analyses is to assess the association between the IV and the sentence type,

i.e., prison and non-prison sentences. We fit a random effect model that includes judges’ ID as

a random intercept, baseline covariates including the counties indicator as fixed effects and the

sentence type as a dependent variable (Chamberlain & Imbens, 2004). Our results show that the

random intercept component is significant which provides evidence that our instrument judges’

ID is associated with the sentence type. However, the estimated random intercepts are relatively

small for many judges (Figure 1). Moreover, after controlling for measured covariates, the F-

statistic is 27 which is relatively small given the large sample size and the dimension of the vector

of instruments (Stock & Yogo, 2005). In fact, Stock and Yogo showed that, with 150 IVs, F-statistic

of 84 corresponds to more than 20% error rate for a 0.05 level test where the test level is defined as

the maximal size of the Wald test of the estimated treatment effect. These observations suggest the

possibility of weak instruments which can lead to an invalid inference by inflating the type-I error

rate (Stock et al., 2012) and providing a biased estimate (Bound et al., 1995).

In econometrics, there is a vast literature on estimating the treatment effect in the presence of

many weak instruments. Staiger & Stock (1997a) developed asymptotic theory for IV analyses

when the number of instruments is assumed to be fixed and the coefficients of the instruments in the

treatment model are specified to be in an n−1/2 neighborhood of zero. Their results show that when

IVs are weak, the two-stage least squares (2SLS) and the limited information maximum likelihood

(LIML) estimates are not consistent and the standard errors are underestimated while the bias is

less of a problem for LIML than 2SLS (Magdalinos, 1990; Choi & Phillips, 1992; Buse, 1992;

Magdalinos, 1994; Bekker, 1994; Bound et al., 1995; Anderson et al., 2010). Another direction to
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Figure 1: Michigan Sentencing Data. Estimated random intercepts for judges’ ID in Michigan in
the years 2003-2006.

study the asymptotic behavior of IV estimates has taken by Chao & Swanson (2005) that accounts

for both many and weak instruments by allowing the number of instruments to go to infinity as

a function of sample size and shrinking the coefficients of the instruments in the treatment model

toward zero as the sample size grows (Hahn & Inoue, 2002; Chamberlain & Imbens, 2004; Newey

& Windmeijer, 2009; Belloni et al., 2012; Chao et al., 2014; Kaffo & Wang, 2017).

IV methods have been extended to analyses of survival data subject to censoring. Bosco et al.

(2010) generalized the 2SLS method to account for censoring by fitting a logistic regression that

includes the treatment as dependent variable and the provider-preference based IV as independent

variable in the first-stage and included the predicted values obtained by the first-stage in the Cox

proportional hazard regression in the second-stage (MacKenzie et al., 2014). In the context of addi-

tive hazard models, Li et al. (2015a) developed a closed-form, two-stage treatment effect estimator

that relies on assuming linear structural equation models for the hazard function (Tchetgen et al.,

2015; Chan, 2016). An alternative two-stage residual inclusion (2SRI) that includes the residual of
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the first-stage model in the second stage is proposed by Terza et al. (2008) that can be used in non-

linear regression models, e.g., Weibull models. The 2SRI does not account for censoring. However,

when instruments are weak none of the aforementioned methods that fit a logistic or a least squares

model at the first-stage of the analysis can be applied to settings with many weak IVs (Bound et al.,

1995).

In this paper, we propose a pivotal method that adjusts for confounding using IVs to estimate

the treatment effect in survival contexts. Specifically, we use a dimension reduction approach to

reduce the dimension of the vector of instruments to the dimension of treatment variables and show

that our method is robust to the presence of many weak IVs. Similar to Staiger & Stock (1997a),

our asymptotic framework assumes a fix number of instruments and lets the coefficients of the

instruments in the treatment model go to zero as the sample size goes to infinity (Kleibergen, 2007).

This framework is appropriate for settings where the sample size is quite large relative to the number

of instruments which is indeed the case in our application (Stock & Yogo, 2005; Hausman & Newey,

2004; Hansen et al., 2008). Our work builds on Kleibergen (2007). In the context of standard linear

regression, Kleibergen proposed test statistic that is specifically designed to cases with many weak

IVs. He showed that his test statistic is more powerful than the AR statistic proposed by Anderson

& Rubin (1949). The IV analysis developed in this article generalizes Kleibergen (2007) to settings

with censored data.

2 Framework and Model

2.1 Notation

Suppose that the data is composed of n i.i.d triplet (T,D, Z̃∗) where D denotes the sentence type

andD ∈ {0, 1} for non-prison and prison sentences, respectively. Let Z̃∗ be a single (L+1)-valued

vector of judge’s IDs that is used to form a L mutually independent orthogonal binary instruments

Z∗. Also, let T be the time to employment with quarterly earnings above poverty. In the presence of

censoring, we only observe Y = min(T,C) whereC is the censoring time. We consider a particular
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type of censoring where censored subjects are those who stayed unemployed or are employed with

salary below poverty at the planned end of study, i.e., administrative censoring. Thus, the random

variable C records the difference between the end of follow-up date and the subject’s sentence date.

The administrative censoring time C may vary across subjects, but for each subject the value of C

is known at the start of the follow-up. For example, all offenders in our study whose sentence date

is on July 30, 2005 had the same potential follow-up time c0. We assume that C is independent

of potential outcomes and covariates. Let ∆ = I(T < C) be the censoring indicator and X be a

vector of baseline measured covariates.

We use potential outcome framework to present our causal model and the required assumptions

(Neyman, 1923; Rubin, 1978). Let Dz∗ denote the potential sentence type when assigned to a

particular judge, i.e., Z∗ = z∗, and T z
∗,d denote the counterfactual time to employment if Z∗ = z∗

and D = d. Also, define Y z∗,d = min(T z
∗,d, C) as the counterfactual length of follow-up time and

∆z∗,d = I(T z
∗,d < C) as the counterfactual censoring indicator.

2.2 Assumptions

Our proposed method requires that the following assumptions hold for every L:

Assumption 1. Stable Unit Treatment Value Assumption (Rubin, 1978): Let Z∗ andD denote

the n× L matrix of instruments and n-dimensional vector of sentence type, respectively.

a. If z∗i = z′∗i , then Dz∗
i = D

z′∗
i for all subjects.

b. If z∗i = z′∗i and di = d′i, then T z∗,d
i = T

z′∗,d′
i for all subjects.

The SUTVA implies that the sentence type status of any individual does not affect the

sentence type and the time to employment of other subjects. Under this assumption we

can write (T
z∗,d
i ,∆

z∗,d
i , Y

z∗,d
i , D

z∗
i ) as (T

z∗i ,di
i ,∆

z∗i ,di
i , Y

z∗i ,di
i , D

z∗i
i ), respectively for

subject i.

Assumption 2. Consistency: Individuals’ observed time to employment Ti is the counterfac-

tual time to employment under the sentence type D and instrument Z∗, i.e., Ti = TZ
∗,D

i .
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Assumption 3. Z∗ is associated with D conditional on the vector of measured covariate X.

Assumption 4. Z∗ is uncorrelated with unmeasured confounders conditional on X. More

specifically, Z∗ |= (T z
∗,d, Dz∗)|X.

Assumption 5. Z∗ affects the time to employment only through the sentence type, i.e.,

T z
∗,d

i = T z
′∗,d

i for all z∗, z′∗, d and all individuals. So we can write T z
∗,d

i = T di .

Assumptions 1 & 2 link the the potential outcome and the observed data. We believe that these

two assumptions are plausible. However, a case can be made for violations. For example, a reason

for violation of SUTVA is that felons who are sentenced to prison may dissuade their friends to

commit crimes. We refer to an instrument as a valid IV when assumptions 3, 4, and 5 are satisfied.

Using the random effect model discussed in the introduction, we have verified that assumption 3

holds despite the possibility of weak association. We discuss the plausibility of assumptions 4 & 5

in detail in Section 5.2.

2.3 Preliminaries

We first introduce the Anderson-Rubin (AR) statistic (Anderson & Rubin, 1949) and the KJ-

statistics (Kleibergen, 2007) in standard linear regression settings. Assuming that all the time to

employment were observed and followed an accelerated failure time (AFT) model, one could use

the existing AR or KJ- statistic to overcome the challenges arising in the presence of many weak

IVs. Under these assumptions, log(T ) = β0D + ε where ε has a mean zero normal distribution

with variance σ2. It is assumed that cov(ε, εd) 6= 0 where εd = D − (Z(Z′Z)−1Z′)D (Kleibergen,

2007). For simplicity of notation, baseline covariates X are excluded from both models. Then,

AR(β0) = (log(T )− β0D)Z[Z′σ2Z]−1Z′(log(T )− β0D)′,
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and

K(β0) = (log(T )− β0D)ZΠ(β0)[Π(β0)′Z′σ2ZΠ(β0)]−1Π(β0)′Z′(log(T )− β0D)′,

J(β0) = (log(T )− β0D)Zζ(β0)⊥[ζ(β0)′⊥Z
′σ2Zζ(β0)⊥]−1ζ(β0)′⊥Z

′(log(T )− β0D)′,

where Π(β0) = (Z′Z)−1Z′[D − (log(T ) − β0D) cov(ε,εd)
σ2 ], and ζ(β0)⊥ = (Z′Z)−1Π(β0)⊥ is the

orthonormal complement of ζ(β0), i.e., ζ(β0)′⊥ζ(β0)⊥ = Ik−1 and ζ(β0)⊥ζ(β0) = 0. Under the

null hypothesis H0 : β = β0, Anderson & Rubin (1949) showed that the AR converges in distri-

bution to χ2(L), and Kleibergen (2007) showed that K- and J- statistics converge in distribution to

χ2(1) and χ2(L− 1), respectively. Our contribution is to generalize these statistics to settings with

censored data.

2.4 Failure time model

Following Robins & Tsiatis (1991), consider the following structural failure time model

T 0 = T d exp[β0d], (1)

where T d is the counterfactual time to employment if D = d. Thus, exp[β0d] can be interpreted as

the factor by which sentence type d shortens or accelerates the time to employment (Joffe, 2001).

This model assumes rank preservation of the subjects’s time to employment meaning that if it takes

longer time for subject i to find a job compared with subject j when both are sentenced to non-

prison sentences, it would also take longer time to find a job for subject i than subject j if both

sentenced to prison (Mark & Robins, 1993; Hernán et al., 2005; Solomon et al., 2014).

Under assumptions 1& 2 the structural model (1) can be linked to the observed data as

T (β0) ≡ T 0 = T exp[β0D].

We use the notation T (β0) to acknowledge the dependence on β0. The counterfactual time to
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employment T 0 is independent of the vector of instruments given that assumptions 4 and 5 hold.

However, we do not observe the time to employment T for all of the subjects because some cannot

find a job at the end of the follow-up. Intuitively, one may define Y 0 = min(T 0, C0) where C0 =

C exp[β0D] and follow a standard G-estimation method (Robins, 1993, 1997). Unfortunately, this

is not a proper way of handling censored data because even when β0 is the true causal effect, Y 0 is

no longer independent of D since C0 is a function of the sentence type (Hernán et al., 2005).

Artificial censoring is a method to handle censored data in causal inference. The idea is to

restrict the analysis to subjects whose employment time would have been observed regardless of

their sentence type. Let D be a bounded set that is the support of D. Define the minimum potential

censoring time as C†(β) = C min{exp(βd); d ∈ D} which reduces to C min{1, exp(β)} when D

is binary. Unlike C0, C†(β) is not a function of the sentence type. Define a new censoring indicator

∆†(β) = I(U(β) < C†(β)) where U(β) = min(Y (β), C†(β)) and Y (β) = Y exp[βD]. Notice

when β = 0, both censoring indicators are identical and when β 6= 0, ∆ = 0 implies ∆†(β) = 0

but not the other way around. Thus, we are artificially censoring some subjects whose time to

employment is observed to preserve the exchangeability result

{U(β),∆†(β)} ⊥ Z∗|X. (2)

The independence result holds because (U(β),∆†(β)) are functions of (U(β), C†(β)) that is inde-

pendent of Z∗ under assumptions 4 & 5. For the simplicity of notation, assuming an additive model

for the association between Z∗ and X, we rewrite (2) as

{U(β),∆†(β)} ⊥ Z. (3)

where Z = Z∗ − PXZ∗ with PX = X(X′X)−1X′. Thus, assuming that PX is well-defined, Z

is the orthogonal projection of Z∗ onto the space spanned by covariates X. In the following, we

refer to Z as our vector of instruments and assume that all the variables are centered including the

artificial censoring variable ∆†(β).
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3 Estimation in the presence of many weak IVs

3.1 Testing procedures

The independence result (3) plays a central role in our proposed inferential procedure. Based on the

AR statistic (Anderson & Rubin, 1949), a test statistic that explores the correlation between ∆†(β0)

and Z can be formed as

AR(β0) = ∆†(β0)Z[Z′s∆∆Z]−1Z′∆†(β0)′, (4)

where MZ = I − PZ and s∆∆ = ∆†(β0)′MZ∆†(β0)/(N − L). Under H0, the AR statistic

converges to χ2(L). In contrast with the t-test based on the 2SLS IV analyses, the Anderson-Rubin

test has correct size regardless of the strength of the IVs. This is mainly because the denominator

of the 2SLS estimators is a function of cov(Z, D), and thus, weak IVs result in unstable estimators.

This is not the case in (4) and the strength of IVs can only affect the power of AR test statistic

(Staiger & Stock, 1997b; Hahn et al., 2004; Jiang et al., 2014).

A deficiency of the AR statistic is that it has low power because the degrees of freedom param-

eter of its limiting distribution is equal to the number of instruments L. We propose the following

two chi-square test statistics to overcome this deficiency,

K(β0) = ∆†(β0)ZΠ(β0)[Π(β0)′Z′s∆∆ZΠ(β0)]−1Π(β0)′Z′∆†(β0)′, (5)

J(β0) = ∆†(β0)Zζ(β0)⊥[ζ(β0)′⊥Z
′s∆∆Zζ(β0)⊥]−1ζ(β0)′⊥Z

′∆†(β0)′,

where Π(β0) = (Z′Z)−1Z′[D − ∆†(β0) s∆d
s∆∆

], and ζ(β0)⊥ = (Z′Z)−1Π(β0)⊥ is the orthonor-

mal complement of ζ(β0), i.e., ζ(β0)′⊥ζ(β0)⊥ = Ik−1 and ζ(β0)⊥ζ(β0) = 0. Also, s∆d =

∆†(β0)′MZD/(N − L). Assuming that instruments are valid, under H0, the K- and J- statistics

converge to χ2(1) and χ2(L− 1), respectively. An interesting feature of these two statistics is that

they are independent because the projection operators ZΠ(β0)[Π(β0)′Z′s∆∆ZΠ(β0)]−1Π(β0)′Z′

and Zζ(β0)⊥[ζ(β0)′⊥Z
′s∆∆Zζ(β0)⊥]−1ζ(β0)′⊥Z

′ are orthogonal. This implies that the K- and J-
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statistics add-up to the AR statistic. The K- and J- statistics are the generalizations of the test statis-

tics in Kleibergen (2007) to survival outcome settings. Proposition 1 states the limiting behavior

of the K- and J- statistics for different limiting sequences of the association parameter between the

treatment and instruments.

Proposition 1 Let γ be the association parameter between the treatment indicator and instruments.

Assuming that Assumptions 4 & 5 hold, under the null hypothesis H0 : β = β0, and when

a. the instruments are strong such that γ = O(1),

b. the instruments are weak such that γ = n−1/2H where H is a vector of constants,

the K- and J- statistics converge in distribution to χ2(1) and χ2(L− 1), respectively.

The proof is presented in Section S3 of the supplementary material. Proposition 1 shows that

the limiting distribution of the K- and J- statistics are robust to the specification of the association

parameter between the treatment and instruments.

Assuming that the IV is valid, these statistics are testing whether, for a given β, the artificial

censoring indicator ∆†(β) is uncorrelated with the vector of instrument Z. Specifically, K(β0)

uses a dimension reduction tool and instead of directly looking at the correlation between ∆†(β)

and vector of instruments, it explores the correlation between ∆†(β) and a projection of a function

of the sentence type variable onto the space spanned by instruments. By construction when there is

no unmeasured confounding, ∆†(β) is independent of the sentence type. However, in the presence

of unmeasured confounding which is the main subject of this paper, this independence does not

hold anymore. In fact, the artificial censoring indicator may be a function of unmeasured con-

founders. For example, it is plausible that individuals with more serious crimes are more likely to

have ∆†(β) = 0 because it may be more difficult for them to find a job and if such characteristics

is not captured by measured covariates, then even under the null hypothesis, ∆†(β) will depend on

the sentence type through the unmeasured confounders.

The key idea in K(β) is to asymptotically retrieve the independence condition under H0 by

projecting a new variable D − ∆†(β0) s∆d
s∆∆

onto the space spanned by instruments where D −
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∆†(β0) s∆d
s∆∆

can be viewed as the residual of the least squares regression of D on ∆†(β0). Thus,

the K-statistic tests if under the null hypothesis, there is any path from instruments that goes through

the sentence type to the artificial censoring indicator. The J-statistic serves a different purpose. The

test statistic J(β) is constructed using the orthogonal complement Π(β0)⊥ and tests given that

the null hypothesis holds, if there are any other paths that goes from instruments to the artificial

censoring indicator. For example, when there is a direct path from Z to the time to employment,

i.e., Assumption 5 is violated, J(β0) may reject the null hypothesis H0 : β = β0 even when H0 is

true (Kleibergen, 2007, Sec. 3).

The proposed K- and J- statistics have more power than AR because their limiting chi-square

distributions have degrees of freedom of less than L. Particularly, the K-statistic is using only one

degrees of freedom which is due to the dimension reduction process that replaces Z with ZΠ(β0)

that is a n×1 vector. One may think that estimation based on the K-statistic alone would outperform

other estimation procedures based on any combinations of the K- and J- statistics due to the small

degrees of freedom. However, Kleibergen (2007) showed that although the K-statistic is a powerful

test, in some cases, the power drops significantly around the inflexion points and local maxima of

the statistic. He overcame this deficiency by using the J-statistic as a pretest for the K-statistic. Thus,

a testing procedure of size α, first tests the null hypothesis using the J-statistic with level αJ and if

rejected, performs the test using the K-statistic with level αK such that (1−α) = (1−αJ)(1−αK),

i.e., α ≈ αJ + αK . From now on, we refer to this testing procedure as KJa,b statistic where

a = αJ × 100 and b = αK × 100. Note that the KJ0,5 is equivalent to the K-statistic.

We generalized the dimension reduction technique proposed by Kleibergen (2007) to settings

with censored data. Another potential method to reduce the dimension of the vector of instruments

is to utilize the idea in the provider preference based IVs and construct a “harshness” score for each

judge which leads to a one-dimensional instrument (Brookhart & Schneeweiss, 2007; Brookhart

et al., 2006). However, the harshness score is not known and must be estimated using the available

data by, for example, estimating the proportion of felons sentenced to prison by each judge. To

provide valid inferences, this method requires data splitting so that the harshness is estimated using
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the first portion of the data and the prison effect is estimated using the second portion of the data

(Bound et al., 1995; Ertefaie et al., 2017b). One drawback of the sample splitting is the reduction

in the sample size and thus, reducing the statistical power. Our dimension reduction method does

not suffer from this drawback and utilizes the entire data. Hernán & Robins (2006) discussed the

other issues related to the provider preference based IVs in detail (Li et al., 2015b).

Confidence intervals for β can be constructed by inverting the testing procedures. Accordingly,

when the AR or KJ statistic with αJ = 0 is used, point estimates β̂ are obtained as a parameter

value β for which the test results in the highest p-value. The point estimate of the KJ statistic

with αJ > 0 is the one with highest K-statistic p-value among those that are not rejected by the

J-statistic. However, when the treatment effect is heterogeneous, AR and KJ statistic with αJ > 0

may result in an empty confidence intervals that is discussed in Section S1 of the Supplementary

Material (Kadane & Anderson, 1977; Small, 2007; Davidson & MacKinnon, 2014).

3.2 More powerful testing procedures

The testing procedures proposed in the previous section are functions of the observed time to em-

ployments only through the artificial censoring indicator. Intuitively, the power of the tests can

be potentially improved by incorporating more information of the observed time to employments

than just a binary artificial censoring indicator. However, it may require imposing some parametric

models on the time to employments.

In the following proposition, we consider a more general form of the test statisticsK(β0), J(β0)

and AR(β0) where the censoring indicator is replace by a function g(∆†, β). We then derive the

optimal choice of this function.

Proposition 2 Suppose T has a density function fT (t). Then the density function of the treatment-

free survival time T0 is fT0(t) = exp(βD)fT (t exp{βD}). Assuming that the score function corre-

sponding to the survival likelihood can be decomposed as Sβ(ξ) = Dgopt(∆†(β), U(β), ξ) where

ξ is the set of nuisance parameters, then the function gopt(∆†(β), U(β), ξ̂) is the optimal choice of

g(∆†, β) where ξ̂ is the estimated nuisance parameters.
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Proof Because the map from T to T 0 = T exp[βD] is one to one with strictly positive Jacobian

determinant ∂T 0/∂β = exp(βD), we have fT (t) = exp(βD)fT 0(t exp{βD}). Define a score

function Sβ(ξ) = ∂L/∂β = Dg(∆†(β), U(β), ξ) where L is the corresponding log-likelihood.

Then following Tsiatis (2007), the efficient score function can be constructed as Seffβ (ξ) = Sβ(ξ)−

E[Sβ(ξ)|X] =
(
D − E[D|X]

)
g(∆†(β), U(β), ξ). The unknown vector of nuisance parameters ξ

can be replaced by a consistent estimator ξ̂. Now, because we are interested in the null hypothesis

of no association between D and T0, assuming that IVs are valid, i.e., the IVs are associated with

the outcome only through their association with the treatment, we can replace D with a function

of instruments q(Z) and define Seff
†

β (ξ̂) =
(
q(Z)− E[q(Z)|X]

)
g(∆†(β), U(β), ξ̂). However, by

definition, our instruments Z = Z∗ − PXZ∗, where PX = X′(X′X)−1X, are orthogonal to the

space spanned by X. Thus E[q(Z)|X] = 0. In AR statistic, q(Z) = Z and in the K- and J- statistics,

q(Z) = ZΠ(β). Thus, for example, the optimal version of the AR statistic is given by

AReff (β0) = gopt(∆†(β), U(β), ξ̂)Z[Z′s∆∆Z]−1Z′gopt(∆†(β), U(β), ξ̂)′,

where s∆∆ = 1
N−Lg

opt(∆†(β), U(β), ξ̂)′MZg
opt(∆†(β), U(β), ξ̂) andMZ = I−PZ. The optimal

version of the K and J statistics can be derived similarly.

To clarify the proposition, for example, assume that T is exponentially distributed with mean

1/λ. Then the density function of the treatment-free survival time T 0 is fT 0(t) = λ exp(βD) exp(−tλ exp{βD})

and the log-likelihood function for U(β) is

L = βD∆†(β) + ∆†(β) log(λ0)− λ0Y exp(βD).

Taking derivatives of L with respect to β gives the score function

Sβ(λ) =
∂L
∂β

= D∆†(β)− λDU(β).

After replacing λwith its maximum likelihood estimator λ̂, we have Sβ(λ̂) = ∂L
∂β = D

(
∆†(β)− U(β)

∑
∆†(β)∑
U(β)

)
.
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Thus, gopt(∆†(β), U(β), λ̂) =
(

∆†(β)− U(β)
∑

∆†(β)∑
U(β)

)
.

The asymptotic distributions of our test statistics are agnostic to the number of covariates. This

is because we are not projecting out the effect of covariates from the outcome model. However, one

can gain efficiency by including the covariates into the analysis and estimate λ̂ using the covariates,

i.e., λ̂(x), and plugging it in gopt(∆†(β), U(β), λ̂(x)). In this situation, the denominator of the

variance estimator must be modified, and

s∆∆ =
1

N − L− p
gopt(∆†(β), U(β), λ̂(x))′MZg

opt(∆†(β), U(β), λ̂(x)),

where p is the dimension of the vector of covariates. See Section S4 of the supplementary material.

4 Simulation studies

We further evaluate in simulation studies the performance of the proposed method under different

survival time distributions. Within each scenario, we also vary the strength and number of instru-

ments. The treatment variable is generated from

D ∼ Binomial
(

exp{γZ + ηX + U}
1 + exp{γZ + ηX + U}

)
, (6)

where η = (0.5, 0.5), X = (X1, X2) andU generated from a standard normal distribution with with

a diagonal covariance matrix, and Z is a k ∈ {5, 50} dimensional vector of IVs that are generated

independently from a standard normal distribution. We assume that X are U are measured and

unmeasured confounders, respectively. The parameter γ = (γ1, 0, 0, ..., 0) reflects the strength of

IVs with γ1 = 2.0, and 1.0. Thus, in our simulation, only the first IV is valid. We have tuned the

censoring mechanism such that we get about 30% censoring in all the scenarios. We implemented

five methods:

• KJ represents the estimator obtained by inverting the test statistic in (5). The KJeff corre-

sponds to the more powerful version of the KJ statistic discussed in Proposition 2.
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• AR represents the estimator obtained by inverting the test statistic in (4). The AReff corre-

sponds to the more powerful version of the AR statistic discussed in Proposition 2.

• 2SLS correspond to a two-stage IV method in which the second stage fits a parametric AFT

model that includes predicted treatment values obtained in the first stage model that regresses

the treatment on Z.

• LIML is the limited information maximum likelihood estimator that is obtained using the

ivmodel R package where we replace the outcome with the artificial censoring indicator.

• Fuller represents an estimator proposed by Fuller (1977) that is obtained using the ivmodel

R package where we replace the outcome with the artificial censoring indicator.

• 2SLSarti is a G-estimation based estimator that involves artificial censoring and assumes a

parametric AFT model for the survival times.

• Regression ignores the presence of unmeasured confounding and fits an AFT model using

treatment D as an independent variable.

4.1 Simulation study: Exponential

Consider exponential distribution for the survival time,

Y ∼ exponential (5 exp{2D + 0.5X1 + 0.5X2 + U}) .

We also assume that the first IV, i.e., the only valid IV, is associated with X such that Z1 = X1 +

X2 + ε where ε is a standard normal random variable. We generate 500 datasets of size 1000

according to this model.

In the KJeff and AReff , we consider gopt(∆†(β), U(β), λ̂) =
(

∆†(β)− U(β)λ̂(x)
)

where

for any given β, λ̂(x) = exp{η̂X}with η̂ = arg minη
{
βD∆†(β) + ∆†(β)ηX− Y exp(βD + ηX)

}
.

In the 2SLS and 2SLSarti, we assume exponential model for the outcome, i.e., no model misspeci-

fication. Both the KJ and AR statistics lead to an unbiased estimators and KJeff outperforms all the
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other methods. When the strength of IV is moderate, i.e., γ1 = 2.0, the LIML and Fuller estimators

perform well but their confidence intervals are slightly undercovered when L=50. Moreover, when

the dimension of the vector of instruments is small, i.e., L=5, the latter methods lead to confidence

intervals that are 10%-20% wider than the one obtained by the KJeff . Although the estimator

2SLSarti with L=5 and γ1 = 1.0 is unbiased, the coverage rate of the confidence interval is slightly

below the nominal rate and as the number of instruments increases to L=50, the coverage rate de-

creases drastically and the estimator reveals significant bias. The LIML and Fuller estimators also

suffer from low coverage rates when the strength of the IV is reduced and L=50.

When there are L=50 instruments and the only valid IV is weak, i.e., γ1 = 1.0, KJeff is the

only unbiased approach that provides two sided confidence intervals with a valid coverage rate. The

other test based procedures KJ, AReff and AR fail to provide an upper bound for the confidence

intervals and the LIML and the Fuller lead to undercovered confidence intervals. Figure 3 provides

more detail about the power of KJeff (solid line), KJ (dashed line), AReff (dotted line) and AR

(dashed-dotted line) statistics. The plot with L=50 and γ1 = 1.0 shows low power on the right side

of the true parameter value. Figure S2 in the supplementary material compares the power plot of

the LIML with KJeff and AReff . The LIML reveals some type-I error rate inflation when L = 50

and γ1 = 1. The Fuller estimators have similar behavior to LIML, and thus, omitted from Figure

S2.

We also studies the effect of the sample size to the instrument dimension ratio on the estimates

by fixing the L = 50 and increasing the sample size from 500 to 10,000. Figure 2 shows that

for smaller sample sizes the 2SLS estimator (solid line) has a notable bias and as the sample size

increases the bias reduces. Moreover, the KJ statistic (dotted line) has the smallest absolute bias

and the bias is slightly larger for the AR estimate (dashed line).When the instruments are stronger

with γ1 = 2, the 2SLS estimator is less bias but the KJ and the AR methods outperform the

2SLS uniformly for all the sample sizes considered. The LIML and Fuller estimators reveal similar

behavior as the KJ method and are omitted.
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Table 1: Simulation study: The survival outcome is generated using a Exponential distribution with
30% censoring rate. L: number of instruments; γ = (γ1, 0, 0, ..., 0): strength of the instruments;
CI: confidence interval; Covg: coverage of confidence intervals. True β0 = 2.

Methods L=5 L=50
Estimate 95% CI Length of Covg. Estimate 95% CI Length of Covg.

95% CI 95% CI
γ1 = 2.0

KJeff1,4 1.99 (0.90,3.10) 2.20 0.94 2.03 (0.77,3.25) 2.48 0.95
KJ1,4 2.01 (0.88,3.28) 2.40 0.94 1.96 (0.73,3.45) 2.72 0.95
KJeff0,5 1.97 (0.95,3.04) 2.09 0.95 1.95 (0.85,3.20) 2.35 0.95
KJ0,5 1.95 (0.87,3.22) 2.35 0.95 1.96 (0.77,3.41) 2.64 0.94
AReff 1.95 (0.69,3.36) 2.67 0.93 2.00 (-0.15,4.25) 4.40 0.96
AR 1.94 (0.65,3.64) 2.99 0.94 2.05 (-0.26,5.42) 5.68 0.95
2SLSarti 1.92 (1.01,3.02) 2.01 0.94 1.45 (0.67,2.46) 1.79 0.69
LIML 1.95 (0.87,3.22) 2.35 0.96 2.08 (0.86,3.21) 2.35 0.92
Fuller 1.97 (0.85,3.17) 2.32 0.95 1.90 (0.85,3.20) 2.35 0.92
2SLS 3.31 (2.51,4.11) 1.60 0.00 3.60 (2.72,4.48) 1.76 0.00
Regression 5.52 (5.08,5.96) 0.88 0.00 5.50 (5.06,5.94) 0.88 0.00
γ1 = 1.0

KJeff1,4 2.00 (0.32,3.76) 3.44 0.95 2.03 (-0.44,5.12) 5.56 0.95
KJ1,4 2.01 (0.26,4.88) 4.62 0.96 1.96 (-0.46,+∞) +∞ 0.98
KJeff0,5 2.04 (0.34,3.74) 3.40 0.96 2.11 (-0.42,5.10) 5.52 0.96
KJ0,5 2.03 (0.28,4.82) 4.54 0.95 2.12 (-0.44,+∞) +∞ 0.97
AReff 2.02 (-0.14,4.36) 4.50 0.96 2.10 (-1.90,+∞) +∞ 0.97
AR 2.04 (-0.22,5.32) 5.54 0.95 2.18 (-2.00,+∞) +∞ 0.97
2SLSarti 1.90 (0.40,3.26) 2.82 0.87 1.16 (-0.24,2.24) 2.44 0.36
LIML 2.05 (0.25,4.41) 4.16 0.95 1.98 (0.06,7.90) 7.84 0.89
Fuller 2.04 (0.24,4.30) 4.06 0.94 1.91 (0.05,7.85) 7.80 0.90
2SLS 2.64 (1.76,3.52) 1.76 0.41 3.14 (2.30,3.98) 1.68 0.21
Regression 5.88 (5.48,6.28) 0.80 0.00 5.88 (5.48,6.28) 0.80 0.00

4.2 Simulation study: Weibull

Similar to to Section 4.1, we assume that η = (0.5, 0.5) but consider a Weibull distribution for the

survival time,

Y ∼Weibull (shape = 0.5, scale = 5 exp{βD +X1 +X2 + 2U}) .

Our goal is to study how model misspecification affects the results. Specifically, in the 2SLS and

2SLSarti, we postulate exponential model for the outcome and in the KJeff and AReff , and con-
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Figure 2: Simulation study: The survival outcome is generated using a Exponential distribution
with 30% censoring rate and L = 50 instruments. γ = (γ1, 0, 0, ..., 0): strength of the instruments.
Plots show the absolute bias of the KJ (dotted line), the AR (dashed line) and the 2SLS (solid line).
Sample sizes are from 500 to 10,000.

sider gopt(∆†(β), U(β), λ̂) =
(

∆†(β)− U(β)
∑

∆†(β)∑
U(β)

)
which was derived in Section 3.2. In

Table 2, we have also reported the coverage of the corresponding confidence intervals to reflect the

effect of model misspecification. Our previous results in Table 1 suggest that the 2SLSarti provides

unbiased effect estimates when there are small number of instruments, i.e., L=5. However, in Table

2, the coverage rate corresponding to the constructed confidence interval for the 2SLSarti shows

that type-I error rate is significantly inflated due to the model misspecification and/or the presence

of weak IVs. The LIML and the Fuller estimators are substantially less efficient and when L = 5,

the corresponding confidence intervals are up to 35% wider than the one obtained by the KJeff .

Moreover, The LIML and the Fuller fail to provide finite confidence intervals. Figure 4 displays

the power of KJeff (solid line), KJ (dashed line), AReff (dotted line) and AR (dashed-dotted line)

statistics. See also Figure S3 in the supplementary material.
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Figure 3: Simulation study: The survival outcome is generated using a Exponential distribution
with 30% censoring rate. Power plots of efficient KJ (solid line), KJ (dashed line), efficient AR
(dotted line) and AR (dotted-dashed line). L: number of instruments; γ = (γ1, 0, 0, ..., 0): strength
of the instruments.

4.3 Simulation results summary

We studied the effect of number of instruments and the strength of instruments on different estima-

tors. Our results showed that the g-estimation based the 2SLS estimator, i.e., 2SLSarti, is unbiased

only when there is a small number of instruments and as the number of instruments increases this

estimator shows significant bias. However, the proposed test based estimators KJeff , KJ, AReff ,

AR, LIML, and Fuller remain unbiased regardless of the number of IVs. Estimators that are ob-

tained by the KJ methods are more efficient and the corresponding confidence intervals are shorter

than the ones obtained by AR, LIML, and Fuller statistics. For example, in Table 1 for L=50 and

γ1 = 2, the confidence interval obtained by the AReff is 1.87 wider than the one obtained by the

KJeff . The importance of the KJ statistic and particularly the KJeff becomes more evident when
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Table 2: Simulation study: Weibull. The survival outcome is generated using a Weibull distri-
bution with 30% censoring rate. L:number of instruments; γ = (γ1, 0, 0, ..., 0): strength of the
instruments; CI: confidence interval; Covg: coverage of confidence intervals. True β0 = 2.

Methods L=5 L=50
Estimate 95% CI Length of Covg. Estimate 95% CI Length of Covg.

95% CI 95% CI
γ1 = 2.0

KJeff1,4 1.99 (0.60,3.50) 2.90 0.96 2.00 (0.40,3.78) 3.38 0.95
KJ1,4 2.01 (0.44,3.80) 3.36 0.96 2.00 (0.32,4.06) 3.74 0.95
KJeff0,5 2.00 (0.66,3.42) 2.67 0.96 2.00 (0.42,3.64) 3.22 0.96
KJ0,5 2.02 (0.52,3.72) 3.20 0.96 2.00 (0.34,3.92) 3.58 0.95
AReff 2.12 (0.24,3.98) 3.74 0.96 2.10 (-0.78,5.72) 6.50 0.95
AR 2.08 (0.12,4.32) 4.20 0.97 2.09 (-0.84,6.32) 5.68 0.94
2SLSarti 2.14 (0.84,3.02) 2.18 0.80 1.68 (0.58,2.64) 2.06 0.64
LIML 1.95 (0.45,3.65) 3.20 0.96 1.99 (0.38,3.76) 3.38 0.94
Fuller 1.94 (0.44,3.59) 3.15 0.95 2.00 (0.39,3.75) 3.36 0.95
2SLS 3.34 (2.54,4.14) 1.60 0.01 3.61 (2.81,4.41) 1.60 0.01
Regression 5.48 (5.32,5.64) 0.32 0.00 5.51 (5.35,5.67) 0.32 0.00
γ1 = 1.0

KJeff1,4 2.00 (-0.36,4.98) 5.34 0.97 1.98 (-1.22,7.91) 9.13 0.94
KJ1,4 1.94 (-0.48,6.51) 6.99 0.96 1.96 (-1.49,+∞) +∞ 0.97
KJeff0,5 2.01 (-0.34,4.72) 5.06 0.97 1.98 (-1.20,7.73) 8.93 0.95
KJ0,5 1.93 (-0.40,6.37) 6.77 0.96 1.96 (-1.44,+∞) +∞ 0.98
AReff 1.80 (-0.90,6.70) 7.60 0.96 2.00 (-2.81,+∞) +∞ 0.96
AR 2.20 (-1.18,+∞) +∞ 0.97 2.00 (-3.23,+∞) +∞ 0.97
2SLSarti 2.04 (0.02,3.68) 3.62 0.81 1.04 (-0.48,2.50) 2.94 0.47
LIML 1.94 (-0.55,6.95) 7.50 0.95 1.95 (-0.80,+∞) +∞ 0.96
Fuller 1.96 (-0.55,6.89) 7.44 0.95 1.95 (-0.84,+∞) +∞ 0.97
2SLS 2.47 (1.25,3.69) 2.44 0.36 3.61 (2.81,4.41) 1.60 0.01
Regression 5.99 (5.37,6.61) 1.24 0.00 5.51 (5.35,5.67) 0.32 0.00

there are many weak IVs, e.g., L=50 and γ1 = 1, where AR, LIML, and Fuller based estimators

often fail to provide an upper bound for their corresponding confidence intervals (see for example

Table 2). We have also studied the effect of model misspecification on different estimators where

the true survival times were generated from a Weibull distribution and the postulated model was

exponential. This model misspecification results in invalid confidence intervals for the 2SLS based

estimator 2SLSarti (Table 2). However, the proposed estimators are robust to model misspecifica-

tion and the inference remains valid. We have also implemented the bias-corrected 2SLS estimator

(Hausman & Newey, 2004) and the results showed that its performance was inferior to all the other
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estimators considered except the 2SLS and the Regression estimators (results are omitted).

In Sections S4 of the supplementary materials, we have investigated the performance of our

methods in the presence of many covariates in the model p = 20, 100. The results show that the

type-I error rates are slightly inflated for the LIML and the Fuller estimators but the KJeff performs

well. Moreover, when there are many covariates, the LIML and the Fuller have higher and lower

statistical power in the left and right sides of the true value, respectively, compared with the KJeff

(Table S2). The KJ statistic also performs well regarding the type-I error rate but as expected has

slightly lower power than the LIML and the Fuller statistics. In Sections S5 of the supplementary

materials, we have studied the impact of increasing the number of instruments to L = 100, 250 on

our estimators. Figure S1 shows that while the KJ outperforms all the other methods when L=100

and γ1 = 1, 2, it reveals some type-I error rate inflation when L=250 and this is exacerbated when

the instrument is weak, i.e., γ1 = 1. The LIML performs poorly in all the scenarios and seems to

be unreliable due to the dramatic type-I error rate inflation. The Fuller estimator reveals similar

behavior as the LIML and is omitted. Our results suggest that, in such extreme cases, i.e., L=250,

the AR statistic is more robust compared with the KJ and LIML estimators.

In general, when IVs are not strong, the coverage rate of the 2SLSarti estimator is below the

nominal rate and increasing the number of IVs decreases the coverage rate drastically (Stock et al.,

2012). Although the LIML and Fuller also suffer when there are many IVs, they seem to be more

robust than the 2SLS. Overall, the KJeff outperforms all the other estimators in all the different sce-

narios considered in this section. It is robust to model misspecification and provides valid inference

in the presence of many weak IVs.

5 Application

5.1 Overview

Our dataset includes 111,000 sentenced for a felony in Michigan between 2003-2006. We are

interested in the total effect of incarceration on time to employment with quarterly earnings above
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Figure 4: Simulation study with covariates: The survival outcome is generated using a Weibull
distribution with 30% censoring rate. Power plots of efficient KJ (solid line), KJ (dashed line), effi-
cient AR (dotted line) and AR (dotted-dashed line). L:number of instruments; γ = (γ1, 0, 0, ..., 0):
strength of the instruments.

poverty, and thus, the time is measured from the sentence date. At the end of the study follow-

up, 45% of felons were unemployed and considered as censored observations. We define a binary

treatment variable which is one if sentenced to prison and zero otherwise. Using judges’ ID, we

create a 150 dimensional vector of mutually orthogonal binary instruments (Z∗).

5.2 Validity of IV assumptions

The validity of a candidate instrument relies the core assumptions A.3-5. We assessed the associ-

ation between the IV and the sentence type by fitting a random effect model discussed in Section

1. Our results showed that the random intercept component is significant which provides evidence

that A.3 is satisfied. However, as shown in Figure 1, the estimated random intercepts are relatively
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Figure 5: Michigan Sentencing data. Covariate imbalance across the sentence types, i.e., treatment,
and the judges’ type, i.e., function of candidate IVs. Standardized difference defined as the absolute
value of the difference in means divided by the pooled standard deviation.

small for many judges which suggests the presence of weak IVs.

While we cannot empirically verify that judge assignment is random with respect to unobserved

variables, we can check that the covariates we observe are uncorrelated with judge assignment. In

order to assess the degree of covariate balance across judge types, we created two categories of

judge “harshness” based on whether the estimated random effect was above or below the median.

The dichotomization helps us to assess whether the covariate imbalances are reduced across the dif-

ferent judges types compared to the sentence types, i.e., treatment groups. This procedure provides

insight about the validity of A.4. Specifically, imbalance in measured confounders across categories

of the IV makes assumption A.4 less plausible because, for example, if the measured covariates are

a proxy of the unmeasured confounders, an association between the measured confounders and the
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IV suggests that there will be an association between the IV and unmeasured confounders. Figure 5

shows the standardized differences in means, that are, the values of the differences in means divided

by the pooled standard deviation. This standardized differences suggest that there is a significant

improvement in terms of the covariate imbalance across the judges types compared to sentence

type.

The exclusion restriction, i.e., A.5, is another core assumption in IV analyses that is not com-

pletely testable. In our example, A.5 could be violated if offenders that are assigned to a harsh

judge, i.e., judges that have more tendency of sentencing offenders to prison, were more likely to

take plea bargain which may eventually plea down to a misdemeanor. Thus it may be easier for

the offender to find a job. However, It is conceivable to assume that after controlling for all the

measured covariates, the judges’ ID affects the time to employment, i.e., outcome, only indirectly

through the sentence type which suggests that A.5 is plausible.

5.3 The effect of imprisonment on time to employment with quarterly earnings

above poverty

We include all the covariates listed in Figure 5 in our analysis by redefining our IV as the orthogonal

projection of Z∗ onto the space spanned by the covariates. Table 3 shows the effect estimates and

95% confidence intervals (CI) obtained by different methods. Overall, our analysis shows that

imprisonment has a significant negative effect on time to employment with quarterly earnings above

poverty. The point estimates obtained by the KJ and the AR methods are fairly close with the AR

estimate being slightly lower. However, there is a drastic difference in terms of the length of the

corresponding confidence intervals. Specifically, the KJ1,4 gives the point estimate of -1.81 with

95% CI (-2.08,-1.26) while the point estimate using the AR is -1.70 with 95% CI (-2.58,-0.12).

Thus, the length of the confidence interval if the former estimator is 65% shorter than the latter one.

This highlights the importance of the dimension reduction technique used in the KJ statistics that

leads to a substantial power gain. The point estimates imply that being sentenced to prison multiples

the number of quarters to employment by factor of 6 compared with non-prison sentences.
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Table 3: Michigan Data. L:number of instruments, i.e., judges, CI: confidence interval

Methods L=150
Estimate 95% CI Length of

95% CI
KJeff1,4 -1.80 (-2.07,-1.32) 0.75
KJ1,4 -1.81 (-2.08,-1.26) 0.82
KJeff0,5 -1.80 (-2.05,-1.34) 0.71
KJ0,5 -1.81 (-2.05,-1.28) 0.77
AReff -1.70 (-2.54,-0.39) 2.17
AR -1.70 (-2.58,-0.12) 2.46
LIML -1.80 (-2.06,-1.30) 0.76
Fuller -1.80 (-2.06,-1.31) 0.75
2SLSarti -1.97 (-2.15,-1.74) 0.41
Regression -0.83 (-0.86,-0.80) 0.06

To derive the more powerful test statistics KJeff and AReff , we assume exponential model for

the outcome and consider gopt(∆†(β), U(β), λ̂) =
(

∆†(β)− U(β)
∑

∆†(β)∑
U(β)

)
which was derived

in Section 3.2. The 2SLSarti is a G-estimation based estimator that involves artificial censoring

and assumes exponential model for the survival times. Also, the Regression approach ignores

the presence of unmeasured confounding and, assuming an exponential model, fits an AFT model

using treatment D and measured covariates as independent variables. As expected, the KJeff and

AReff have shorter confidence intervals compared with the KJ and AR. The Regression estimator

is bias and seems to underestimate the effect of imprisonment due to both possible unmeasured

confounding. The LIML and Fuller estimators are similar to the KJ estimators with confidence

intervals that are slightly wider than the KJeff and shorter than the KJ.

The point estimates obtained by the 2SLSarti and the KJ statistic are fairly close with the

2SLSarti being slightly higher. This might be due to the large ratio of the sample size to instru-

ment dimension, which implies that, in terms of bias, the 2SLS does not suffer by much from the

overfitting issue discussed in Bound et al. (1995) (see Figure 2 in the simulation studies section).

However, the confidence interval of the 2SLSarti estimator is 50% shorter than the one obtained

by the KJ statistic which may be caused by either presence of weak IVs or misspecification of the
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postulated survival model. In our analyses, we have 151 judges and after controlling for measured

covariates, the F-statistic is only 27 which suggests the possibility of weak instruments (see also

Figure 1). Following Stock & Yogo (2005) and our simulation results in Table 2, it is likely that the

confidence interval of the 2SLSarti estimator is undercovered, and thus it is not a valid confidence

interval.

5.4 Subgroup Analyses

The effect of imprisonment on employment varies across gender and race (Steffensmeier et al.,

1998; Pager, 2003, 2008; Decker et al., 2014). Table 4 summarizes the results of our subgroup

analysis. Imprisonment have the largest negative effect among White Female offenders. Specif-

ically, the estimated effect using KJeff0,5 among White Male and Female offenders are -1.92 with

95% CI (-2.15,-1.45) and -2.05 with 95% CI (-3.46,0.01), respectively.

The magnitude of the 2SLSarti bias increases as the sample size decreases. For the subgroup

of Black Females (n = 7, 867) which is the smallest in sample size, the KJeff0,5 results in a point

estimate of -0.87 with 95% CI (-3.43,2.20) while the 2SLSarti estimate is -1.15 with 95% CI (-

2.87,1.10). The performances of the LIML and Fuller estimators are also affected by the smaller

sample size in the subgroup of Black Females. Specifically, in this subgroup, the LIML and Fuller

estimates are roughly 50% smaller than the KJ estimates while for all the other subgroups the

estimates are fairly close to the KJ estimates. The AR and AReff are only able to provide inference

for the largest subgroup with n = 50, 516 and for the other subgroups, these two test statistic fail

because of low power. The KJeff0,5 , LIML and Fuller are the only procedures that have enough

power to provide valid confidence intervals for all the subgroups regardless of their sample sizes.

However, the latter two methods seem to lead to biased estimates for smaller sample sizes. We have

investigated this point through our extensive simulation studies in Section 4 and Section S5 of the

supplementary material.

Our analyses show that imprisonment has negative effect on time to employment with quarterly

earnings above poverty. The effect is significant among Male offenders such that a prison sentence
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Table 4: Michigan Data. Subgroup analysis. CI: confidence interval; n: sample size;

Estimate 95% CI Length of Estimate 95% CI Length of
95% CI 95% CI

Subgroup: White, Male Subgroup: Black, Male
n=50,516 n=39,724

KJeff1,4 -1.92 (-2.16,-1.40) 0.76 -1.38 (-1.88,-0.48) 1.40
KJ1,4 -1.96 (-2.17,-1.32) 0.84 -1.38 (-1.84,-0.28) 1.56
KJeff0,5 -1.92 (-2.15,-1.45) 0.70 -1.38 (-1.84,-0.51) 1.33
KJ0,5 -1.96 (-2.15,-1.34) 0.81 -1.38 (-1.79,-0.40) 1.39
AReff -1.66 (-2,68,-0.11) 2.57 – – –
AR -1.66 (-2.77,0.10) 2.87 – – –
LIML -1.96 (-2,15,-1.36) 0.79 -1.30 (-1.78,-0.46) 1.32
Full -1.97 (-2.15,-1.37) 0.78 -1.30 (-1.77,-0.46) 1.31
2SLSarti -1.99 (-2.16,-1.73) 0.43 -1.60 (-1.92,-1.15) 0.77

Subgroup: White, Female Subgroup: Black, Female
n=11,322 n=7,867

KJeff1,4 -2.05 (-3.47,0.10) 3.57 -0.87 (-3.44,+∞) –
KJ1,4 -2.05 (-3.48,0.42) 3.90 -0.80 (-3.44,+∞) –
KJeff0,5 -2.05 (-3.46,0.01) 3.40 -0.87 (-3.43,2.20) 5.63
KJ0,5 -2.05 (-3.46,0.38) 3.84 -0.80 (-3.45,+∞) –
AReff – – – – – –
AR – – – – – –
LIML -1.99 (-2,91,-0.32) 2.59 -0.40 (-3.30,2.07) 3.37
Full -1.99 (-2.89,-0.32) 2.57 -0.40 (-3.30,2.08) 3.38
2SLSarti -1.88 (-2.62,-0.56) 2.06 -0.70 (-3.25,1.05) 4.30

multiples number of quarters to the employment by roughly 7 and 4 among White and Black Male

offenders, respectively.

6 Discussion

In this paper, we proposed a G-estimation based treatment effect inferential procedure in a sur-

vival context that is robust to the presence of many weak instruments. Our method adjusts for

confounding using IVs and thus provides an unbiased estimate even when some of the confounders
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are unmeasured. In general, one of the limitations of the G-estimation methods is that estimation

becomes infeasible when there are several parameters of interest because such methods require a

multi-dimensional grid search. Thus, generalization of the proposed method to settings with mul-

tiple treatments would be an interesting future work. Notice that selecting subjects based on their

received treatment can result in a biased estimate (Swanson et al., 2015; Ertefaie et al., 2016b,a).

Hence, performing multiple IV analyses to estimate treatment effects in multi-treatment settings is

not possible.

IV analyses rely on some assumptions that cannot be completely tested using observed data.

The validity of these assumptions become increasingly important when IVs are weak because es-

timators in such settings are invariably sensitive even to small departure from the assumptions

(Imbens & Rosenbaum, 2005; Small & Rosenbaum, 2008; Baiocchi et al., 2010; Ertefaie et al.,

2017b). Thus, developing sensitivity analyses for the proposed procedures is important and can

provide support for the validity of the results (Small, 2007; Conley et al., 2012; Kolesár et al., 2015;

Kang et al., 2015).
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