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Precision Weak Gravitational Lensing Using Velocity Fields: Fisher Matrix Analysis

David Wittman1 and Matthew Self1

1Physics Department, University of California, Davis, CA 95616

ABSTRACT

Weak gravitational lensing measurements based on photometry are limited by shape noise, the

variance in the unknown unlensed orientations of the source galaxies. If the source is a disk galaxy

with a well-ordered velocity field, however, velocity field data can support simultaneous inference of the

shear, inclination, and position angle, virtually eliminating shape noise. We use the Fisher Information

Matrix formalism to forecast the precision of this method in the idealized case of a perfectly ordered

velocity field defined on an infinitesimally thin disk. For nearly face-on targets one shear component,

γ×, can be constrained to 0.003 90
I0

25
npix

where I0 is the S/N of the central intensity pixel and npix is the

number of pixels across a diameter enclosing 80% of the light. This precision degrades with inclination

angle, by a factor of three by i=50◦. Uncertainty on the other shear component, γ+, is about 1.5

(7) times larger than the γ× uncertainty for targets at i = 10◦ (50◦). For arbitrary galaxy position

angle on the sky, these forecasts apply not to γ+ and γ× as defined on the sky, but to two eigenvectors

in (γ+, γ×, µ) space where µ is the magnification. We also forecast the potential of less expensive

partial observations of the velocity field such as slit spectroscopy. We conclude by outlining some

ways in which real galaxies depart from our idealized model and thus create random or systematic

uncertainties not captured here. In particular, our forecast γ× precision is currently limited only by

the data quality rather than scatter in galaxy properties because the relevant type of scatter has yet

to be measured.

Keywords: gravitational lensing: weak

1. INTRODUCTION

Weak gravitational lensing is a key technique in mod-

ern cosmology, in which the gravitational field of a ce-

lestial object is reconstructed from the distortion it im-

prints on background sources of light; see Bartelmann &

Maturi (2017) for a recent review. The distortion is de-

scribed in terms of shear, defined as stretching the image

in one direction and compressing it in the perpendicu-

lar direction, and convergence, defined as an isotropic

stretching. Shear can be depicted as a headless vector

with a dimensionless magnitude and a position angle

(PA) on the sky modulo 180◦, or in terms of two com-

ponents separated by 45◦ in PA. Shear is inferred from

the observed shapes of source galaxies, under the as-

sumption that galaxies have no preferred orientation in

the absence of lensing. The fundamental source of noise

in this approach is the large intrinsic scatter in galaxy

orientations, called shape noise. This scatter is such that

the shear on a single galaxy is uncertain by at least 0.2

in each component, while the relevant signal is usually

much smaller. Averaging over many source galaxies in a

given patch of sky builds the signal-to-noise ratio (S/N),

but correspondingly decreases the angular resolution of

the reconstruction.

Techniques to measure convergence also face substan-

tial amounts of noise. Convergence leads to magnifica-

tion, which increases the flux of sources while decreas-

ing the effective area of sky probed. This can shift the

counts of sources as a function of apparent magnitude

(eg, Morrison et al. 2012; Garcia-Fernandez et al. 2016).

This is again a technique that relies on aggregation of

many sources due to the low information content of each

individual source.

To increase the information content of an individual

source, we must know more about its unlensed state. A

recent idea in this regard is that a source with a well-

ordered velocity field, such as a rotating disk galaxy,

can potentially provide that information. The velocity

in each pixel provides a tag that helps place that pixel

in the source plane—a more specific tag than is possi-

ble with the intensity field. Although velocity measure-

ments are more expensive than intensity measurements,

the gain in per-galaxy precision is potentially quite large.

This paper aims to quantify that gain with a Fisher in-

formation matrix analysis.

http://orcid.org/0000-0002-0813-5888
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First, we briefly outline the history of the velocity field

idea. Blain (2002) first recognized that shear perturbs

the symmetry of the velocity field. He used a rotat-

ing ring toy model to show how velocity measurements

could constrain the shear component at 45◦ to the source

galaxy’s unlensed photometric axes, which we call γ×.

Morales (2006) extended the velocity-field idea to full

disk galaxies, and provided a clear picture of how γ×
causes the major and minor velocity axes to deviate

from perpendicularity. A version of this method has

been implemented by de Burgh-Day et al. (2015), who

infer the shear by determining the transformation re-

quired to restore symmetry to the velocity map. They

find that shears as small as 0.01 are measurable in sim-

ulations, and they find shears consistent with zero, with

uncertainties ∼ 0.01, on unlensed nearby disk galaxies.

However, their approach is still insensitive to the com-

ponent of shear along the unlensed photometric axes be-

cause that component, which we call γ+, preserves the

symmetry of the velocity field.

γ+ does change the observed axis ratio, so Huff et al.

(2013) proposed constraining this component as follows.

They propose predicting the total rotation speed of the

galaxy using the Tully-Fisher relation (Tully & Fisher

1977), then comparing this prediction with the mea-

sured line-of-sight rotation speed to find the inclina-

tion of the disk. Assuming the disk to be circular when

viewed face-on, the inclination uniquely predicts the un-

lensed axis ratio, which effectively removes the problem

of shape noise. The Huff et al. (2013) goal of design-

ing an efficient large cosmic shear survey led them to

propose minimal velocity-field measurements per galaxy

(slit spectra along the apparent photometric axes) and

to assume approximations, such as the low-shear limit

and negligible magnification, that may fail in more gen-

eral lensing situations. Considering that de Burgh-Day

et al. (2015) needed the full velocity field of a very well-

resolved nearby galaxy to infer γ×, it is not clear that

shear could be measured precisely using only crossed

slits along the photometric axes. Nevertheless, the in-

sight of Huff et al. (2013)—that symmetry is not the

only source of information in the velocity field—is po-

tentially powerful and deserves further investigation.

This paper uses the Fisher Information Matrix for-

malism to forecast the best achievable performance in

the case of perfectly ordered rotation and an infinitesi-

mally thin disk. This is highly idealized, but the point is

to determine whether the method is promising enough

to justify further development. Therefore, we forecast

the best possible performance across a wide range of

scenarios: from zero-shear lines of sight on up to higher-

shear lines of sight, from nearly face-on targets to nearly

to
ob
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∆R

Figure 1. Effect of finite disk thickness. A line of sight
probes particles at a range of cylindrical galactocentric dis-
tances R depending on their height above or below the mid-
plane. Where the rotation curve is approximately linear in R
across the range ∆R, the above- and below-plane contribu-
tions are approximately equal and opposite, which preserves
the mean velocity but increases the linewidth. Hence to first
order the disk can be modeled as an infinitesimally thin disk
but with greater linewidth.

edge-on targets, from full velocity-field observations to

crossed slits and so on.

The remainder of this paper is organized as follows.

In §2 we describe and illustrate the method; in §3 we

present the resulting forecasts; and in §4 we discuss the

implications.

2. METHOD

We assume an infinitesimally thin disk galaxy with a

polar (R,φ) coordinate system specifying particle loca-

tions. Viewed at inclination i (where i = 0 is face-on)

but before lensing, we define an (x, y) coordinate system,

in which

x=R cos(φ− φ0) cos i (1)

y=R sin(φ− φ0) (2)

where φ0 is the unlensed PA of the apparent major axis.
The velocity field is assumed to be a function only of R,

with measured line-of-sight velocity vlos = v(R) sin(φ−
φ0) sin i.

Note that, to first order, a finite-thickness disk can be

modeled as an infinitesimally thin disk but with greater

linewidth. Figure 1 illustrates the argument: stars along

the line of sight above and below the disk depart from

the midplane value of R in equal and opposite ways.

Therefore the mean velocity for this line of sight is un-

changed if the rotation curve is linear in R across the

range of R probed by the line of sight. The line of sight

does, however, encounter a wider range of velocities than

would be the case for an infinitesimally thin disk, lead-

ing to a greater linewidth unless the rotation curve is

approximately flat across the range of R probed by a

given line of sight. Real galaxies will present additional

complications, such as bulges and warps. We stress that
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Figure 2. Velocity fields before lensing (left), after applying
γ+ = 0.1 (middle), and after applying γ× = 0.1 (right).
The galaxy has maximum rotation speed of 220 km/s and is
inclined at 1 radian to the line of sight. The colorbar shows
units of km/s.

our approach here is to explore the optimal case of a bul-

geless, dynamically cold thin disk in order to establish

the limits of this method, reveal parameter degeneracies

and requirements for priors, and identify key assump-

tions that will need to be explored further.

Lensing transforms the coordinates described above to

observed coordinates, which we denote with primes:[
x′

y′

]
= A−1

[
x

y

]
(3)

where

A−1 = µ

(
1− κ+ γ+ −γ×
−γ× 1− κ− γ+

)
(4)

Here κ is the convergence, which is proportional to the

surface mass density; µ = 1
(1−κ)2−γ2 is the magnifica-

tion, and γ =
√
γ2+ + γ2× is the magnitude of the shear.

We choose to parametrize the shear in terms of γ+ and

γ×, which are dimensionless quantities with identical

ranges, rather than a magnitude and a PA. Then, the

lensing matrix can be completed by specifying either κ

or µ. We choose µ because prior information on µ is

more likely to be available through other methods.

With this in mind, the left panel of Figure 2 shows

an unlensed model velocity field for i = 60◦ and fortu-

itously aligned with the coordinate axes. The middle

and right panels show the same field after lensing by

γ+ and γ× respectively. (All fields in this figure are

cropped at a consistent physical radius; this guides the

eye but may overstate the power of the method, be-

cause such cuts and comparisons will not be available to

the data analyst.) The right panel displays the asym-

metry discussed in the introduction, which we will as-

sociate with γ× throughout the paper. Our formalism

defines the shear components with respect to sky coor-

dinate axes rather than the galaxy axes, so in practice

the asymmetry-causing component need not be γ× as

defined on the sky. Although the physical distinction is

between shear components aligned and not aligned with

the apparent unlensed galaxy axes, we choose not to de-

fine the components this way because in practice the

unlensed axes are unknown. By defining shear compo-

nents on the sky, we adopt the basis in which shear will

actually be used. That said, to highlight physical be-

haviors we will typically align the galaxy as in Figure 2

and refer to γ× as causing the asymmetry.

A key assumption is that the unlensed velocity field

has the symmetry shown. Under this assumption, the

data analyst can determine γ× because the relevant un-

lensed condition is known. The effect of γ+ is to change

the apparent axis ratio, so measuring γ+ requires knowl-

edge of the unlensed axis ratio. That axis ratio is set by

the inclination, an effect distinct from that of γ+ in that

inclination also changes the line-of-sight velocity. It is

conceptually useful to consider the extreme case of a uni-

form observed velocity field, from which we can deduce

that the galaxy must be viewed face-on. This implies a

unlensed axis ratio of unity, so we can deduce γ+ from

the observed axis ratio, with no shape noise.1 The key

is the ability to deduce a unlensed axis ratio from the

velocity field amplitude; this is a way of restating the

idea of Huff et al. (2013).

To go beyond this conceptual understanding we must

choose quantitative models for the intensity and veloc-

ity fields. First, we define the parameter r80, which

is the radius that encircles 80% of the galaxy light.

For an exponential disk, this is 2.99 times the expo-

nential scale length. The intensity field is specified by

I = I0 exp(− 2.99R
r80

), where the parameter I0 represents

the central intensity. We set the intensity uncertainty

in each pixel to unity, so I0 represents the S/N of the

intensity measurement in the central pixel. The inten-

sity uncertainty field is uniform because sky noise, rather

than photon noise from the galaxy itself, is the dominant

uncertainty in broadband imaging of most galaxies. We

set the fiducial value of I0 to 90, which is a high S/N

reflecting the fact that bright galaxies are the likeliest

targets for integral field spectroscopy. The velocity un-

certainty is set by σv,0, the uncertainty in the central

pixel (with a fiducial value of 10 km/s) and grows ex-

ponentially with R because source photon noise is likely

to be the limiting factor.

We adopt a simple arctan rotation curve: v =

vmax
2
π arctan R

r0
, where the factor 2

π ensures that

v → vmax as r → ∞ given an arctan function that

1 In practice, there will still be some uncertainty due to uncer-
tainty in the intrinsic circularity of face-on disks.
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Velocity Intensity
i
=

20
◦

i
=

60
◦

Figure 3. Partial derivatives of the velocity (left) and intensity (right) fields with respect to each of the parameters, for an
inclination of 20◦ (top row) and 60◦ (bottom row). The colorbar units are km/s on the left, and arbitrary intensity units on
the right. To keep the scales roughly the same across panels, we show the change in velocity per 0.01 change in shear and
convergence. The form of the velocity field itself can be seen in the ATF panels on the left because that field is linear in ATF .
Similarly, the form of the intensity field can be seen in the I0 panels on the right.

returns radians. We also investigated the more com-

plicated Universal Rotation Curve (URC; Persic et al.

1996; Salucci et al. 2007) and found the results to be

nearly identical; a few minor differences will be dis-

cussed in §3.8. With either form, the rotation curve has

a scale length independent of the scale length describing

the intensity field. If these two scales were the same,

the model would be more constrained and yield higher

precision, but the scales do appear to differ in observed

galaxies.

vmax is related to the intensity field via the Tully-

Fisher relation (TFR) as follows. The TFR empirically

states that L ∝ vnmax where n ≈ 4, with a scatter in

luminosity or stellar mass of about 16% (Miller et al.

2011). This implies that at fixed L the scatter in vmax is

about 4%. For an exponential disk, the total luminosity

is L ∝ I0r
2
80, so the TFR predicts vmax ∝ (I0r

2
80)0.25.

With our fiducial values of I0 and r80 (12.5 pixels), we

need vmax = 20(I0r
2
80)0.25 to produce a typical rotation

speed around 200 km/s.2 Hence we define a Tully-Fisher

amplitude, ATF , with a fiducial value of unity, such that

vmax = 20ATF (I0r
2
80)0.25. We then place a prior of ±4%

on ATF .

Table 1 summarizes the parameters for this model, in-

cluding the nuisance parameters x0, y0, v0 describing the

galaxy position on the sky and systemic radial velocity.

2 More precisely, vmax = 218 in this case, but note that in the
arctan model vmax is reached only as R→∞.
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The units listed in this table are relevant to the fore-

cast precision plots presented below; units are omitted

for dimensionless quantities. The results can be quite

sensitive to the inclination angle i, so i will be varied

in many plots rather than remaining fixed at a fiducial

value.

We construct velocity and intensity fields extending to

a radius of r80, thus encompassing 25×25 pixels each.

We compute partial derivatives numerically to a rela-

tive precision of order 10−11 using the algorithm in Sec-

tion 5.7 of Press et al. (1992), which we re-implement

in Python. Figure 3 shows the partial derivatives of the

velocity and intensity fields with respect to each param-

eter at two different inclinations. These figures will help

readers understand which parameters are highly corre-

lated. Note that ATF , I0, i, and r80 have nearly identical

effects on the velocity field. For ATF this is broken by

its lack of effect on the intensity field, but I0 and r80 also

have nearly identical effects on that field—with opposite

sign, but the sign is not relevant for determining degen-

eracy and correlation. The effect of i on the intensity

field is not identical to that of I0, but there is a good

deal of overlap, indicating that the three parameters I0,

i, and r80 will be highly correlated. Magnification (µ)

joins this family because its effect on both velocity and

intensity fields is much like −I0, and its effect on the

intensity field is identical to changing the intensity scale

length r80. Finally, r0 is linked with all these parame-

ters because, as a rotation curve scale length, its effect

on the velocity field is identical to that of magnification

µ. The strength of these correlations will vary with the

specific values of inclination, shear, and so on: Figure 3,

for example, shows that by i = 60◦ perturbations in i

affect the velocity field differently than perturbations in

I0 and r80.

For any given value of i, we concatenate the velocity

and intensity fields into a Python data structure repre-

senting a generalized data field we denote ~D. Denoting

the set of parameters as P , the Fisher matrix elements

are then

Fij =
∑
pixels

~σ−2(
∂ ~D

∂Pi
)(
∂ ~D

∂Pj
) (5)

where i and j index the parameters, and ~σ is the un-

certainty field associated with the data field. We then

invert the Fisher matrix to obtain the covariance ma-

trix C. We also compute the correlation matrix ρ ≡
D−1CD−1 where D ≡

√
diag(C).

3. RESULTS

3.1. Degeneracies

We find that ∂ ~D
∂γ+

is a linear combination of the other

partial derivative fields. The coefficients depend on the

parameter values themselves, but for concreteness we

display the coefficients for our fiducial scenario at i =

30◦:

∂ ~D

∂γ+
+199

∂ ~D

∂i
−180

∂ ~D

∂I0
+4

∂ ~D

∂r0
+12.5

∂ ~D

∂r80
−6

∂ ~D

∂ATF
= 0

(6)

Hence, a model can be transformed into another model

with a different γ+ value that predicts the same data,

providing that we:

• increment i to preserve the apparent axis ratio de-

spite the change caused by γ+. (In our setup, the

unlensed apparent major axis is in the “y” direc-

tion while positive γ+ acts to stretch the “x” direc-

tion, hence one must make the galaxy more edge-

on to counteract positive γ+.)

• decrement I0 to preserve the apparent surface

brightness. (In our model the galaxy is transpar-

ent, so making it more edge-on had the side effect

of increasing the apparent surface brightness.)

• increment r80 to preserve the observed angular size

of the major axis of the intensity field. In concert

with the change in inclination angle, this also pre-

serves the apparent minor axis.

• increment r0 to preserve the observed angular

scale of the rotation curve’s rise. The coefficients

on r80 and r0 here are equal to their fiducial values,

confirming that dγ+ equals the fractional change

in each apparent size, as it should when κ = 0.

• finally, we have to preserve the Tully-Fisher rela-

tion. To preserve the amplitude of the observed

velocity-field pattern despite being more edge-on,

our model must suppose a lower rotation speed,

thus decreasing ATF. Alternately, the same effect

can be achieved by adjusting µ, which allows a

lower-luminosity model to fit the intensity field.

The specific linear combination depends on the scenario,

but always involves ATF, µ, I0, i, r0, and r80. It also in-

volves φsky if the γ× is nonzero, and γ× if φsky is nonzero.

We tested a parametrization in terms of reduced shear

(g+(×) ≡
γ+(×)

1−κ ) rather than shear. This did not change

the set of interdependencies. We find similar dependen-

cies parametrizing in terms of κ rather than µ. This

degeneracy prevents the Fisher matrix from being in-

verted.

The TFR should be effective at breaking this degener-

acy, in the sense that a fractional change in γ+ requires a

large fractional change in ATF, in tension with the TFR.

But the fact that a tweak in µ can substitute for a tweak

in ATF leaves the Fisher matrix still noninvertible.
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Table 1. Model parameters

Symbol Fiducial value Unit Description

ATF 1 - vmax as a fraction of the Tully-Fisher prediction

I0 90 - intensity S/N at center

i varies deg inclination angle

φsky 0 deg sky position angle of unlensed major axis

r0 4 pixel rotation curve scale length

r80 12.5 pixel radius of 80% encircled light

x0 0 pixel center of galaxy in x coordinate

y0 0 pixel center of galaxy in y coordinate

v0 0 km/s galaxy systemic radial velocity

γ+ 0 - shear parallel to sky coordinates

γ× 0 - shear at 45◦ to sky coordinates

µ 1 - magnification

Data parameters

npix 25 pixel field diameter

σv,0 10 km/s uncertainty in v, central pixel

However, when finite steps are taken along the de-

generacy direction, the data change quadratically with

the step size, suggesting that data can indeed constrain

the model. We have confirmed this with Markov Chain

Monte Carlo (MCMC) explorations of the likelihood sur-

face: our fiducial data constrain µ to slightly better than

±0.1 at all inclinations. Hence we support the Fisher

forecast by placing a prior of ±0.1 on µ. The fact that

data constrain µ as well as all the other parameters is

potentially important and will be further explored in a

subsequent paper using higher order expansions of the

likelihood surface (Heavens 2016) and/or MCMC tech-

niques.

The physical context is that µ = 1 in the absence of

lensing; only the densest lines of sight have µ approach-

ing 2 or more; and for those lines of sight the fact that µ

is high will generally be known in advance. We also note
that the weak lensing formalism used here breaks down

at high magnification. Specifically, we assume that the

matrix A (hence the parameters γ+, γ×, and µ) is con-

stant over the extent of the target galaxy, and this is not

generally the case along strongly lensed lines of sight. In

those cases, more traditional strong-lensing techniques

will be preferred, although it is possible that the ve-

locity field can complement the intensity field in con-

straining the strong-lensing reconstruction (Rizzo et al.

2018). For all these reasons, the µ uncertainty on a typ-

ical weak lensing line of sight would approach 0.1 in any

case, so our prior is a good match to the physical sit-

uation. Table 2 lists the priors applied as part of our

standard forecast.

With this prior in place, we invert the Fisher ma-

trix. Numerical instability in matrix inversion gener-

Table 2. Priors

Parameter Width (Gaussian σ)

ATF 0.04

µ 0.1

ally becomes important if the inverse of the condition

number, the ratio between largest and smallest mod-

ulus eigenvalue, is not much larger than the inaccura-

cies in our knowledge of the matrix elements (Vallisneri

2008). With the µ prior we find condition numbers rang-

ing from ≈ 106.5 at i = 10◦ to ≈ 1011.5 at i = 80◦. The

inverse of the latter overlaps the ∼ 10−11 uncertainty

in our numerical differentiation cited above.3 Hence,

we cannot make numerically stable forecasts for galax-

ies close to edge-on. We limit our forecasts to those with

condition number < 108 (i ≤ 50◦). Appendix A shows

that forecasts with these condition numbers match very

well with MCMC explorations of the likelihood surface.

In the verified results below, the shear constraints con-

sistently degrade as the inclination increases from 10◦

to 50◦, so there is little reason to push the forecast to

higher inclination.

Figure 4 shows the resulting correlation matrices for

low- and high-inclination cases. The parameters in the

family discussed above (ATF, I0, i, r0, r80, γ+, and µ)

are indeed correlated, with some increase in correlation

at higher inclination. Separately, there is an anticorrela-

tion between φsky and γx, which is moderately strong at

3 For standard double precision arithmetic, the relative round-
ing error is ≈ 10−16, so machine precision is a subdominant un-
certainty here.
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Figure 4. Correlation matrices for the i = 20◦ (left) and i = 50◦ (right) cases.
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Figure 5. Forecast constraints as a function of inclination
angle i.

i = 20◦ but quite strong at i = 50◦. This suggests that

higher inclinations will yield looser constraints for both

shear components. These correlations set the stage for

understanding our primary products, forecasts of preci-

sion on each parameter.

3.2. Fiducial forecast

We repeat the process of building and inverting the

Fisher matrix in order to present these forecasts as a

function of i, as shown in Figure 5. The main features

are:

• The i-dependence is dramatic: face-on targets

yield much more information. This is perhaps

counterintuitive because such a target will have

a featureless velocity field, but in our idealized

model such a featureless field carries the informa-

tion that the unlensed image is exactly circular,

which is most sensitive to shear.

• The γ× precision is tighter than than the γ+ pre-

cision by a factor of 1.5 (at i=10◦) to 7 (at i=50◦).

This is because γ+ inference depends crucially on

prior knowledge of vmax and µ while γ× infer-

ence depends on a more fundamental symmetry

argument. The precision of that symmetry argu-

ment depends, of course, on the assumption that

real galaxy velocity fields have negligible shearlike

modes, so this assumption is one that should be

tested in further work.

• In this high-S/N and well-resolved scenario, both

shear components can be inferred to a precision of
0.01 or better if the target is nearly face-on. At

50◦ (close to a typical value for randomly selected

targets) γ× can still be inferred to this precision

but the constraint on γ+ is less useful. (§3.4 will

show that a linear combination of γ+ and µ can

still be constrained at this inclination.)

3.3. Dependence on Tully-Fisher prior

Tightening the Tully-Fisher (TF) prior has no effect

on the γ+ forecast because the dominant source of un-

certainty for γ+ is uncertainty in µ, at least in our fidu-

cial setup. This raises the question of how loose a TF

prior is tolerable. We found a . 10% relative effect on

γ+ uncertainty when the prior is loosened from 0.04 to

0.08, and ≈ 30% relative effect when further loosened

to 0.16 (i.e., 16% scatter in rotation speed at fixed lu-

minosity, or almost a factor of two scatter in luminosity
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Figure 6. Constraints on γ+ and µ as a function of inclina-
tion angle.

at fixed speed). In summary, we see a substantial effect

on γ+ when the TF prior becomes looser than the prior

on µ. Conversely, the current level of TFR scatter is

low enough that uncertainty in µ will remain the factor

driving the γ+ uncertainty for the foreseeable future.

Note that neither µ nor TF priors affect the γ× fore-

cast. In our idealized model, the limiting factor on γ×
precision is merely the precision and resolution of the

velocity field measurements. This is unlikely to be the

case in nature, where velocity fields are not perfectly

orderly. An important task beyond the scope of this pa-

per is to quantify the leading sources of γ× uncertainty

and systematic error due to natural variations from this

idealized model.

3.4. Eigenvector decomposition

A striking feature of our results so far is the dramatic
growth of γ+ uncertainty with inclination, from about

1.5 times the γ× uncertainty at i = 10◦ to about 7 times

the γ× uncertainty at i = 50◦. In this subsection we

show that this is largely due to greater mixing of γ+
and µ as i increases. To better illustrate what happens

at high inclination, we go slightly beyond our standard

range of 10◦ − 50◦ and use a very loose µ prior of ±1.

Figure 6 illustrates the constraints in the (γ+, µ) plane

at three representative inclinations. At low inclination

the constraints on γ+ and µ are nearly orthogonal. This

makes sense because µ should be irrelevant in the face-

on case: given a uniform velocity field, the unlensed

galaxy is circular so both components of shear can be

determined precisely. At higher inclination, however,

the constraint ellipse rotates in the (γ+, µ) plane. With

the µ uncertainty remaining ±1, this rotation greatly

expands the uncertainty on γ+.

Some of the precision could be recaptured by

parametrizing the lensing in terms of eigenvectors of

the (γ+, µ) submatrix of the covariance matrix. These

are represented graphically by the major and minor

axes of the ellipses in Figure 6. Although the minor axis

does increase with i, it increases only about one-fifth as

much as the γ+ uncertainty; the increase in the latter is

mostly due to the eigenvector rotation.

The eigenvector decomposition could potentially be

used to improve precision even at low inclination. Even

the γ+ width of the i = 10◦ ellipse in Figure 6 is due

largely to its µ dependence. The eigenvector decompo-

sition defines a γ+-like component with an uncertainty

around 0.004, nearly as good as for γ×.

The practical impact of this reparametrization may

depend on the application. It may not be useful in

a cosmic shear survey. When fitting mass profiles to

lenses, however, each profile predicts both γ+ and µ

along a given line of sight. In other words, it will pre-

dict a point in the (γ+, µ) plane depicted in Figure 6.

Hence, the i = 60◦ ellipse may have substantial power

to discriminate between models despite the fact that it

is compatible with a range of γ+ as well as a range of µ.

Even so, it is evident that high inclinations are much

less constraining than low inclinations. Taking the in-

verse of the area of this ellipse as a figure of merit, we

find that the merit degrades by a factor of six from

i = 10◦ to i = 40◦, and by another factor of four from

there to i = 60◦.

We find similar behavior when parametrizing the lens-

ing matrix in terms of κ rather than µ.

3.5. Dependence on target position angle

In our fiducial setup the unlensed major axis position

angle is aligned with the sky coordinates (φsky = 0),

so there is no distinction between a coordinate system

fixed to the sky and one fixed to the source galaxy.

In principle, a coordinate system fixed to the galaxy

cleanly separates the shear components into a precisely

constrained one (related to the broken symmetry of the

velocity field) and a less well constrained one (correlated

with µ). In practice, sky-based shear components must

ultimately be used to interpret the shear—to relate it

to a lens, for example. Hence we have defined γ+ and

γ× based on sky coordinates. Our forecast uncertainties

have included marginalizing over the parameter φsky,

but our fiducial setup is still close enough to the “pure”

galaxy basis that γ+ and γ× are clearly distinct. In this

subsection we show that for general values of φsky, γ×
is no longer an eigenvector of the (γ+, γ×, µ) space.

Figure 7 shows, along with the fiducial results, a

Fisher matrix forecast for φsky = 22.5◦, where one might
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Figure 7. The effect of φsky on the uncertainty of shear
components defined on the sky. Unless φsky is near a multiple
of 45◦ or the target is nearly face-on, neither component of
shear can be measured precisely.

expect equal precision for γ+ and γ×. Indeed, the two

red curves representing γ+ and γ× are identical and a

factor of
√

2 below the fiducial γ+ forecast, indicating

that the uncertainty is maximally mixed between the

two components. If desired, an eigenvector decompo-

sition could be used to define two linear combinations

of γ+, γ×, and µ that are well measured and one that

is constrained only by the prior on µ. This is just one

snapshot of the φsky-dependent mixing: at φsky = 45◦

(not shown) γ+becomes a well-constrained eigenvector,

and there are intermediate degrees of mixing for inter-

mediate values of φsky.

A reasonable approach to forecasting precision for ran-

domly oriented sources would be to use the “both com-

ponents” forecast in Figure 7. If, for example, we are

concerned with the tangential shear of sources scattered

around an axisymmetric lens, the per-source precision

will vary between the γ+ and γ× curves in Figure 7,

with a mean given by the “both components” curves.

In this case, targets do need to be close to face-on to

reach 0.01 precision; this could be limiting, as only 13%

of randomly oriented disks will be within 30◦ of face-on.

In other applications it may be possible to extract more

information using the eigenvector decomposition.

We remind readers that the low uncertainty for two

eigenvectors stems from the idealized assumption that

disk galaxies intrinsically have no shearlike modes (their

intrinsic major and minor axes are equal, and their ve-

locity fields are symmetric and locked to their inten-

sity fields). To the extent that real galaxies depart

from these assumptions, the noise floor for the eigen-

vectors will be higher, rendering the eigenvector decom-
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Figure 8. The uncertainty on γ× increases when the true
γ× is substantial, due to increasing correlation with µ and
related parameters. In the presence of substantial γ× the γ×
uncertainty scales with both γ× and the size of the µ prior,
which is ±0.1 here. The γ+ uncertainty is, in contrast, nearly
unaffected by the true level of γ×. The true γ+ is fixed at
zero in this figure.

position (and the velocity-field method overall) less ad-

vantageous.

3.6. Dependence on shear

Because the observed velocity field is not a linear func-

tion of shear, we expect the forecast precision to depend

on the shear itself. Figure 8 presents the shear con-

straint forecast for increasing levels of γ×, with γ+ held

fixed at zero. As the true γ× increases, the γ× pre-

cision degrades while the γ+ precision is nearly unaf-

fected. The degradation occurs particularly at low in-

clination where the γ× precision had been excellent, so

the γ× forecast becomes more nearly independent of in-

clination. In fact, as the true γ× becomes substantial

the γ× parameter becomes correlated with µ and its

family of correlated parameters. As a result, the fore-

cast γ× uncertainty scales with the µ prior as well as

the true γ×. For low true γ×, though, the γ× uncer-

tainty hits an inclination-dependent floor. This is con-

sistent with the de Burgh-Day et al. (2015) result that

γ× ≈ 0.01 ± 0.01 for two nearby galaxies with presum-

ably negligible shear, while suggesting that such preci-

sion is unobtainable along lines of sight with γ× & 0.1.

Figure 9 shows the effect of varying the true γ+: the

γ+ precision can change in either direction by factors of

a few to several depending on the inclination, but there

is no dramatic overall trend. There is no effect on the

γ× precision.

We also tested scenarios with mixed shear. The preci-

sion of each component appears to depend only on the
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Figure 9. The γ+ uncertainty depends on the true γ+,
but much less dramatically than the γ× uncertainty depends
on the true γ× (Figure 8). The γ× uncertainty is nearly
unaffected by by the true level of γ+. The true γ× is fixed
at zero in this figure.

true amount of that component, regardless of the true

amount of the other component.

These patterns can also be understood in terms of the

eigenvector decomposition. The presence of shear alters

the mixing between γ+, γ×, and µ, and µ contamination

is particularly noticeable in cases where the precision

had been excellent (for γ× generally, and for γ+ at low i).

The presence of γ+ actually reduces the correlation with

µ at higher inclinations and thus improves γ+ inference

there, but a factor of ≈ 2 reduction from a fairly high

baseline looks less dramatic on a logarithmic plot.

The eigenvector decomposition may enable useful

lensing constraints in high-shear regions. Not evident

in Figures 8 and 9 is the fact that the eigenvalues are

nearly identical regardless of shear. An eigenvector

composed mostly of γ× but with an admixture of γ+
and µ can still be constrained to high precision even at

γ× = 0.1. For fitting mass models, this could still be

highly constraining as explained in §3.4.

3.7. Crossed slits

Obtaining full velocity-field data can be expensive, so

we investigate the suggestion of Huff et al. (2013) that

slit spectra be taken across the apparent major and mi-

nor photometric axes. (In our fiducial case with zero

shear, these are the same as the velocity-field axes.)

We implement this by masking out most pixels in the

velocity-field partial derivative fields. In Figure 10 we

plot the crossed-slit forecast as dashed curves, along

with the standard full-field forecast as solid curves. The

crossed slits increase the uncertainty by a factor of 2–3,

depending only slightly on inclination.
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Figure 10. Shear constraints with full velocity-field obser-
vations (solid) versus crossed slits along the major and minor
axes (dashed).

Although crossed slits appear to perform well for

nearly face-on targets, further work is required to as-

sess their robustness. For example, consider a galaxy

whose velocity field departs from our idealized model in

a few places due to substructures, one of which falls in a

slit. To compare the robustness of the full velocity field

and the crossed slits across a variety of realistic galaxies,

simulations will be required.

3.8. Rotation Curve Model

We also made forecasts with the Universal Rotation

Curve (URC; Persic et al. 1996; Salucci et al. 2007)

model, which links r80 to the radius at which the ro-

tation curve becomes flat; in this case r0 is still an inde-

pendent parameter describing the steepness of the rise,

which can lead to an overshoot. We found that the

URC model leads to a small improvement when nearly

edge-on (ie when the rotation curve is most apparent

in observations) but otherwise yields remarkably simi-

lar shear constraints. We attribute this rotation-curve

insensitivity to the basic mechanisms underlying the in-

ference of each shear component. Inference of γ× relies

on a symmetry argument that should be insensitive to

the specific form of the rotation curve. Inference of γ+
is limited by lack of knowledge of µ, a factor which is in

no way ameliorated by adopting the URC model.

3.9. Dependence on resolution and signal-to-noise

Our fiducial setup uses velocity and intensity fields

with 625 independent pixels (25 square) which, along the

apparent major axis, just encloses r80 = 12.5 pixels. We

deliberately made our forecast agnostic as to the target

redshift and instrument details, but for context, a typi-

cal disk scale length is about 4 kpc (Fathi et al. 2010).
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This yields r80 ≈ 12 kpc, so one can think of each fidu-

cial pixel as representing about 1 kpc. Sources behind

lenses are likely to have redshifts ≈ 0.4 and up, hence

their angular diameter distances set a scale of about

5–8 kpc per arcsecond (this applies to arbitrarily high

redshift sources, due to the broad maximum in angular

diameter distances as a function of redshift). Therefore,

a 1 kpc pixel will subtend 0.1–0.2 arcsec.

Seeing. To this point we have assumed that each pixel

is completely independent, but most instruments are de-

signed with pixel sizes smaller than the point-spread

function (PSF). Therefore we tested the effect of blur-

ring the intensity and velocity fields with a Gaussian of

σ = 2 pixels. This degrades the Fisher matrix forecast

by only about 10% in relative terms. Hence, useful ob-

servations of the lowest-redshift targets may be possible

from the ground with excellent seeing or with low-order

adaptive optics, while high-redshift targets are better

pursued from space or from the ground with good adap-

tive optics systems.

Resolution. We tested the effect of halving or doubling

the angular resolution, with the field size still just en-

closing r80. For simplicity, we will describe results only

for the favorable inclination i = 10◦. Doubling (halving)

the resolution halved (doubled) the forecast uncertainty

on each shear component. Uncertainty decreases as pix-

els are added, roughly following the trend n−1pix where

npix is the number of pixels encompassing ±r80 across

the source major axis (and equaling the square root of

the total number of pixels).

Velocity precision. Figure 11 shows the effect of vary-

ing σv,0, the uncertainty in the velocity measurement

of the central pixel, at i = 10◦. Both curves can be

well fit by a simple model in which a term depending

linearly on σv,0 is added in quadrature to a constant

noise floor; however, the constants depend on the com-

ponent and the parametrization. The γ× component is

relatively insensitive to σv,0, while the γ+ component

degrades more quickly. Nevertheless, Figure 11 shows

that good constraints can still be obtained, at least at

favorable inclinations, with lower-precision velocity data

than assumed in our fiducial model. A reasonable target

is 10–20 km/s: efforts to go below that meet with dimin-

ishing returns. Sacrificing additional velocity precision

(i.e., exposure time) to allow targeting of more galaxies

may also be a reasonable strategy.

Intensity S/N. We reduced I0, the S/N of the central

intensity pixel, from its fiducial value of 90. We found

that the precision scales nearly inversely with this S/N.

Summary. The forecast precision at i = 10◦ scales

roughly as 90
I0

25
npix

where I0 is the S/N of the central in-

tensity pixel and npix is the number of pixels encompass-
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Figure 11. Shear constraints as a function of the velocity
measurement uncertainty in the central pixel, at i = 10◦.

ing ±r80 across the source major axis. The dependence

on velocity measurement uncertainty is not so simply

captured, but 10–20 km/s is a reasonable goal for obser-

vations, with little motivation to push below that. As

a caveat, we have not investigated the extent, if any, to

which constraints on µ degrade with data sets less pre-

cise than our fiducial one, hence we have not quantified

the effect this may in turn have on shear constraints.

Simulations will be required to address this issue.

4. SUMMARY AND DISCUSSION

Our approach has been to assume idealized and well-

measured (σv,0 = 10 km/s) velocity fields in order to

explore the potential of velocity field lensing. Our fidu-

cial result is that at the favorable inclination i = 10◦ the

γ× constraint can reach 0.003 90
I0

25
npix

where I0 is the S/N

of the central intensity pixel and npix is the number of

pixels encompassing ±r80 across the source major axis.

The γ+ constraint is 1.5–7 times looser, depending on

inclination. Both constraints degrade substantially at

higher inclinations.

In more detail, we find:

• The model is degenerate under infinitesimal dis-

placements in specific directions in parameter

space. However, the data change quadratically

with step size along these directions, so the data

can constrain all parameters. The quadratic effect

can be emulated in the Fisher matrix formalism

by putting a ±0.1 prior on µ.

• For our fiducial zero-shear scenario, constraints on

γ× are precise to better than 0.01 for targets in-

clined by less than ≈ 55◦—nearly half of all ran-

domly inclined disks. This precision is a useful

benchmark because it is roughly 20 times better
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than the per-galaxy precision for standard weak

lensing, and also matches that found by de Burgh-

Day et al. (2015). This precision, if true for both

shear components, would make one velocity-field

target worth roughly 202 = 400 galaxy images,

thus providing strong motivation to obtain the

more expensive velocity-field observation.

• This precision is more difficult to reach for γ+, the

shear component parallel/perpendicular to the un-

lensed apparent major axis. With our default prior

on µ (±0.1) only targets with i < 25◦ reach 0.01

precision on γ+. This is a small minority of ran-

domly inclined disks. Furthermore, for this select

group of targets the assumption of face-on circu-

larity is likely to be crucial, and bears further in-

vestigation.

• For either component, constraints degrade with in-

creasing i. For γ+ the trend is somewhat steeper

so targets with substantial inclination become un-

interesting. The precision can be improved some-

what if a tighter prior on µ can be justified.

• the Tully-Fisher relation is not a limiting factor.

A fractional velocity scatter smaller than the prior

on µ is sufficient.

• The notion of a well-measured γ× and a less well-

measured γ+ is useful for conceptual understand-

ing, but for general source PA the result is more

complicated. Of the three parameters (γ+, γ×, µ)

two eigenvectors can be well measured and the

third is constrained only by the prior on µ. In the

fiducial case, γ× is an eigenvector but the γ+-like

eigenvector includes a µ component, hence con-

straints on γ+ look worse. As i increases that

eigenvector rotates to include more µ, so the pure

γ+ constraints degrade more rapidly than the γ×
constraints. If one chooses to measure the γ+-

like eigenvector rather than γ+, the constraints

degrade somewhat less rapidly with i.

• In the presence of shear, the nominal γ+ and γ×
constraints degrade, but this is due to eigenvector

rotation in the (γ+, γ×, µ) space. The eigenval-

ues are equally well constrained in the presence or

absence of shear.

• A per-pixel velocity uncertainty of 10–20 km/s is

adequate, with smaller uncertainties yielding only

marginal improvements.

• Observing a subset of the velocity field via crossed

slits may be a viable strategy for reducing observ-

ing expense. In the fiducial case (φsky = 0) this

causes a factor of 2–3 degradation in the precision

of each component. A more realistic assessment of

crossed slits versus full velocity fields will require

exploration of how real disk galaxies depart from

our idealized assumptions as well as slit placement

uncertainty.

Our model is highly idealized. It assumes:

• The galaxy is circular when viewed face-on.

• The velocity field is well ordered and completely

described by a simple analytical function. The

choice of rotation curve does not appear to matter,

but the azimuthal symmetry surely matters.

• The velocity and intensity fields share a single in-

clination angle and PA. With the arctan rotation

curve, there is no other link between the two fields

(apart from the Tully-Fisher relation). With the

URC, there is a link via r80 but this does not lead

to tigher constraints because the limiting factors

lie elsewhere.

• The disk is infinitesimally thin. The finite thick-

ness of real disks will likely loosen the constraints

at higher inclinations, because our forecast does

not account for the increased velocity width in

each pixel nor for extinction.

• No additional structure such as bulges, bars, or

warps. Bulges may add noise, but bars and warps

seem more concerning in terms of biases. Never-

theless, de Burgh-Day et al. (2015) did succeed in

inferring a plausible γ× (≈ 0.01 ± 0.01) for radio

observations of an unlensed nearby galaxy with a

prominent gas warp, so it is possible that warps

do not disturb the velocity-field symmetry in the

same way that shear does. On the other hand, if

the precision cited by de Burgh-Day et al. (2015)

is due to typical galaxy features, future forecasts

will need to account for this, with ∼0.01 becoming

the γ× noise floor. More work is needed to address

this question.

The salience of warps may hinge on the velocity-field

tracer: gas or stars. Gas is a convenient tracer for both

radio and optical spectroscopy, but is also susceptible

to inflows and outflows as well as warps. If this leads

to the velocity equivalent of shape noise, the velocity-

field method could become much less attractive. Stel-

lar velocity fields are more orderly, but obtaining veloc-

ity fields from stellar absorption lines will require much

more observational effort.

These observational choices are also tied to the ques-

tion of whether the velocity and intensity fields must
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come from the same tracer. In our model the two fields

are linked by a common center, inclination, and PA. The

fact that our forecast is sensitive to the intensity field

S/N suggests that reaching the 0.01 level does require

constraints on the disk center, inclination, and PA be-

yond those derivable from the velocity field itself. There-

fore, misalignments between intensity and velocity fields

are a potential source of concern.

Recent observations indicate the potential for such

misalignments. Figure 9 of Contini et al. (2016) com-

pares the difference between the kinematic PA, as ex-

tracted from observations with the MUSE integral field

spectrograph at the VLT, with the morphological PA as

extracted from HST/F814W broadband images. They

find one galaxy (of 27) with a large PA difference that

cannot be related to poor resolution or by being nearly

face-on (where PA is less well defined): the source of

this difference is a bar. Even among the nearly face-

on cases, they attribute some of the PA differences to

structures such as spiral arms, bars, or clumps. Simi-

larly, Wisnioski et al. (2015) find some significant offsets

between the PA of broadband light and of the velocity

field as traced by Hα emission with the KMOS integral

field spectrograph at the VLT. It is possible that such

offsets would be reduced (albeit at additional observa-

tional expense) if stars were used to trace both velocity

and intensity fields. Other potential steps to mitigate

this source of error could be to model bars and spiral

arms out of the intensity field, and/or to introduce a

nuisance parameter representing the intensity-velocity

PA offset and marginalize over it.

This concludes a long list of sources of uncertainty,

yet to be quantified, that could prevent this method

from being of practical use. Yet there are substantial

strengths to this method as well:

• At favorable inclinations, tight constraints are

achievable even with uninformative priors on µ.

• The method may work well with fitting mass mod-

els to lenses. Each background source will yield a

constraint that may span a range of γ+, γ×, and µ

but is a long, narrow ellipsoid in (γ+, γ×, µ) space.

Because a mass model predicts, for a given line of

sight, a unique point in that space, the ellipsoid is

likely to be highly constraining regardless of how

it is oriented in that space. That said, the most

highly constrained principal axis of this ellipsoid

corresponds to our fiducial γ× forecast, so this ar-

gument does not allow parameter inference better

than our fiducial forecast. Rather, inferences that

cannot take advantage of the eigenvectors may be

limited to the precisions presented in Figures 8 and

9.

• This is a method of obtaining a high-precision

shear measurement along a single line of sight,

whereas traditional weak lensing enables this pre-

cision only after averaging over a large area of sky.

These are different and potentially complementary

types of information. The velocity field method,

for example, may yield more information about

localized substructures, which are effective probes

of certain aspects of dark matter (see, e.g., Drlica-

Wagner et al. 2019 for an overview).

Morales (2006) also argued that this method avoids

some of the major systematic errors of traditional weak

lensing. For example, he argues that the PSF is no

longer a first-order contributor to systematics. How-

ever, our assumption that the source is well-resolved im-

plies that the PSF would be largely irrelevant for these

sources regardless of the method. He also argues that

this method is less susceptible to contamination by in-

trinsic alignments. It is indeed robust against scenarios

in which source galaxies are aligned in the absence of

lensing, because the shear is measured independently on

each target. But there are more subtle intrinsic align-

ment scenarios (Hirata & Seljak 2004). Imagine that

Galaxy A sits in a gravitational tidal field that directly

affects its velocity field by perturbing the orbits of its

stars, while Galaxy B is a background source lensed by

that gravitational tidal field. To the extent that the

velocity field perturbation in Galaxy A mimics lensing

modes, it will have an “intrinsic shear” that is corre-

lated with the lensing shear on Galaxy B. In fact, this

is perhaps the most important open question here: can

an external tidal field, perhaps due to a neighbor or

satellite, induce shearlike perturbations in a disk’s ve-

locity field? If so, marginalizing over a range of such

velocity field models could introduce significant uncer-

tainty. Whatever their origin, natural sources of uncer-

tainty will degrade γ× more than γ+ because the γ×
forecast currently is limited only by the precision of the

velocity measurements.

A possible extension to this method is to analyze the

velocity dispersion field as well (which requires no addi-

tional observations). The dispersion field is nonuniform

because the disk’s radial, tangential, and vertical dis-

persions contribute differently to the line-of-sight dis-

persion, depending on azimuth. This yields unlensed

symmetry that differs from that of the velocity field: it

is symmetric about both major and minor axes. How-

ever, it is unlikely that this would contribute substan-
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tially to the Fisher information, because the azimuthal

variations are small.
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APPENDIX

A. VERIFYING THE FISHER FORECAST WITH AN EXPLORATION OF THE LIKELIHOOD SURFACE

We employ the Markov Chain Monte Carlo (MCMC) code emcee (Foreman-Mackey et al. 2013) to sample the

likelihood surface. emcee implements an affine-invariant sampling algorithm, and hence performs well even on highly

degenerate systems, provided they are not strongly multimodal (Goodman & Weare 2010).

For each case we generate mock data and add the fiducial amount of noise to the velocity and intensity fields. In

addition to the Tully-Fisher prior used in the main text (±0.04 on ATF) we place flat step function priors on other

parameters to keep the model physically well defined: ATF, I0, r0, r80 ≥ 0; i in [0, 90◦); φsky in [0, 45◦); and µ > 0.

Note that we do not apply the ±0.1 prior on µ used for the Fisher forecasts; the data already constrain µ to this level

due to their quadratic dependence on steps in the degeneracy direction. We initialize one thousand walkers in a small

ball around the correct values. We run the Markov chain for ≈ 1000 autocorrelation times as a burn in, followed by

an additional ≈ 1000 autocorrelation times to record the positions of the walkers.

We first examine our fiducial case at the extremes of i = 10◦ (Figure 12 and i = 50◦ (Figure 13. In each figure,

the colorscale represents the density of MCMC samples, the cyan contour represents the MCMC 68% confidence

region, and the black ellipse represents the Fisher forecast for the 68% confidence region. The three least interesting

parameters (x0, y0, and v0) are omitted for clarity. A good match is evident throughout all panels at i = 10◦. At

i = 50◦ there is a hint that the forecast is becoming more pessimistic than the MCMC samples. This effect is more

noticeable at higher inclinations. We attribute this to increasing numerical errors as one goes to higher inclinations:

the condition number at i = 50◦ (60◦) is 7× 107 (3× 108). Hence, for the fiducial setup we provide forecasts only for

i ≤ 50◦, and more generally we provide forecasts only where the condition number is <108.

Finally, we present a case far from our fiducial scenario: with φsky = 10◦ and γ+ = γ× = 0.07, these three parameters

are highly mixed. We have also changed r0 (r80) to 6 (10) kpc, I0 to 75, and µ to 1.2, with an inclination angle of 35◦.

Figure 14 shows that the forecast still accurately predicts the MCMC precision.
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Figure 13. As for Figure 12, but at i = 50◦.
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