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Abstract

In metagenomic studies, testing the association of microbiome composition and clinical outcomes 

translates to testing the nullity of variance components. Motivated by a lung HIV (human 

immunodeficiency virus) microbiome project, we study longitudinal microbiome data by variance 

component models with more than two variance components. Current testing strategies only apply 

to the models with exactly two variance components and when sample sizes are large. Therefore, 

they are not applicable to longitudinal microbiome studies. In this paper, we propose exact tests 

(score test, likelihood ratio test, and restricted likelihood ratio test) to (1) test the association of the 

overall microbiome composition in a longitudinal design and (2) detect the association of one 

specific microbiome cluster while adjusting for the effects from related clusters. Our approach 

combines the exact tests for null hypothesis with a single variance component with a strategy of 

reducing multiple variance components to a single one. Simulation studies demonstrate that our 

method has correct type I error rate and superior power compared to existing methods at small 

sample sizes and weak signals. Finally, we apply our method to a longitudinal pulmonary 

microbiome study of human immunodeficiency virus (HIV) infected patients and reveal two 

interesting genera Prevotella and Veillonella associated with forced vital capacity. Our findings 

shed lights on the impact of lung microbiome to HIV complexities. The method is implemented in 

the open source, high-performance computing language Julia and is freely available at https://

github.com/JingZhai63/VCmicrobiome.
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1 Introduction

Technology advances have led to a much deeper understanding of microbes and their link to 

human health (Eckburg et al., 2005; Haas et al., 2011; Hodkinson and Grice, 2015; Kuleshov 

et al., 2016; Wang and Jia, 2016). In particular, for the pulmonary microbiome, Rogers et al. 

(2010) hypothesized that microbial lung community might exist and can be considered as a 

unique, distinct pathogenic entity. The culture-independent microbial detection method, 16S 

ribosomal RNA (rRNA) gene sequencing, demonstrated the existence of pulmonary 

microbiome, both in healthy (Erb-Downward et al., 2011; Morris et al., 2013; Twigg et al., 

2013) and disease populations (Zemanick et al., 2011; Lozupone et al., 2013).

This paper is motivated by longitudinal microbiome studies. For instance, the lung HIV 

(human immunodeficiency virus) microbiome project studies the respiratory microbiome of 

HIV-infected patients and how the highly active antiretroviral therapy (HAART) may alter 

its construction (Twigg III et al., 2016). A longitudinal cohort of HIV-infected subjects were 

collected before and up to three years after starting HAART. For a quantitative phenotype in 

a longitudinal design, we propose the model

y = Xβ + Zb + h(G) + ε, (1)

b ∼ 𝒩(0, σd
2In), h(G) ∼ 𝒩(0, σg

2K), ε ∼ 𝒩(0, σe
2In),

where y, X, G and ε are the vertically stacked vectors/matrices of individual-level yi, Xi, Gi 

and εi. yi is a vector of ni repeated measures of a quantitative phenotype for individual i. Xi 

is the ni × p covariate matrix. Gi is an ni × u Operational Taxonomic Unit (OTU) abundance 

matrix for individual i where u is the total number of OTUs. These OTUs are related by a 

known phylogenetic tree. εi is an ni × 1 vector of the random error. Z is a block diagonal 

matrix with 1ni
 on its diagonal. β is a p × 1 vector of fixed effects and b = (bi) is the subject-

specific random effects. K is a kernel matrix capturing distances between individuals, e.g., 

the UniFrac distance (Lozupone and Knight, 2005) or the Bray-Curtis dissimilarity (Bray 

and Curtis, 1957) (Web Appendix A). b, h(G) and ε are jointly independent; therefore,

Var(y) = σd
2ZZ′ + σg

2K + σe
2In, (2)

where σd
2 is the phenotypic variance due to the correlation of repeated measurements, σg

2 is 

the phenotypic variance explained by microbiome, and σe
2 is the within-subject variance that 

cannot be explained by microbiome and repeated measurements. Detection of overall 

microbiome association is to test H0: σg
2 = 0 versus HA: σg

2 > 0. When σd
2 = 0, model (1) 

reduces to the microbiome regression-based kernel association test (MiRKAT) (Zhao et al., 
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2015; Chen et al., 2016; Zhan et al., 2017). In the longitudinal setting, the extra variance 

component σd
2 is necessary to capture the correlation between repeated measurements.

After the overall association is identified, localization of the signal to a specific component 

of the microbial community is essential for downstream mechanistic studies and drug 

discoveries. For instance, Jangi et al. (2016) found that multiple sclerosis patients had 

significantly increased abundance of the phylum Euryarchaeota. However, such fine cluster 

effects can be tagged by other correlated microbial in the community (Gilbert et al., 2016), 

leading to false positive discoveries. To detect association from specific taxonomic clusters, 

distances and kernel matrices can be formulated using abundances and tree information from 

specific clusters. Overall microbiome effects are then partitioned into different clusters at the 

same taxonomic level. That is

Var(y) = σd
2ZZ′ +

i
σgi

2 Ki + σe
2In, (3)

where 
i
σgi

2 Ki is the summation of all microbiome clusters. We are now interested in testing 

effects from a specific taxonomic cluster: H0: σgi
2 = 0 versus HA: σgi

2 > 0.

Current methods for testing null variance component in models (2) and (3) are based on 

either asymptotics or parametric bootstrap. Under the assumption that the response variable 

vector can be partitioned into independent subvectors and the number of independent 

subvectors is sufficient, asymptotic null distribution of the likelihood ratio, Wald, and score 

tests are available (Self and Liang, 1987; Stram and Lee, 1994; Silvapulle and Sen, 2011). 

However, the asymptotic approximation deteriorates when the data are highly correlated 

without a sufficient number of independent blocks. Let m be the total number of phenotypic 

variance components except error variance component. When m = 1, Crainiceanu and 

Ruppert (2004) developed a computational procedure for obtaining the approximate finite-

sample distribution of the likelihood ratio and restricted likelihood ratio test statistics. 

Greven et al. (2008) provided a pseudolikelihood-heuristic extension of this method to the m 
> 1 situation. Later Drikvandi et al. (2013) proposed a permutation test that does not depend 

on the distribution of the random effects and errors except for their mean and variance and 

can be applied to the m > 1 situation. However, the permutation test is computationally 

prohibitive for high dimensional tests. Qu et al. (2013) proposed a test statistic that is the 

weighted sum of the scores from the profile likelihood. Their method considered testing a 

subset of the variance components to be zero. When m = 1, Qu et al. (2013)’s method is 

exact; when m > 1, their test relies on asymptotic theory. Score-based tests can be less 

powerful than the likelihood ratio tests, especially when sample sizes are limited as in most 

of the sequencing studies. Saville and Herring (2009) developed yet another type of test 

based on the Bayes factors using Laplace approximation. It cannot be easily extended to 

multiple random effects, and relies on the subjective choice of the prior distribution of 

parameters. Others have suggested procedures based on Markov chain Monte Carlo methods 
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(Chen and Dunson, 2003; Kinney and Dunson, 2007), but they can be time-consuming, 

especially when the number of random effects is large.

In this article, we propose methods of performing exact Likelihood Ratio Test (eLRT), exact 

Restricted Likelihood Ratio Test (eRLRT), and exact Score test (eScore) of a variance 

component being zero for the finite sample. Our approach combines the corresponding exact 

tests for the m = 1 case with a strategy of reducing the m > 1 case to the m = 1 case 

(Ofversten, 1993; Christensen, 1996). Our method is the first one that provides eLRT, 

eRLRT, and eScore for testing zero variance component when multiple variance 

components are present (m > 1).

2 Methods

2.1 Exact tests with one variance component under H0

We briefly review the three exact tests, eLRT, eRLRT, and eScore, for testing H0: σ1
2 = 0 in 

model

V = σe
2In + σ1

2V1 . (4)

Note the change of notation for general modeling. In the motivating microbiome example, 

σ1
2 = σg

2 and V1 = K, the kernel matrix calculated from microbiome abundances. A slight 

extension allows for testing the more general case V = σe
2V0 + σ1

2V1, where V0 ∈ ℝn × n is a 

known positive semidefinite matrix. Let t = rank(V0). Given the thin eigen-decomposition 

V0 = UDU′, define T = D−1/2U′ ∈ ℝt × n. (Only t column vectors of U will be computed in 

thin eigen-decomposition.) Then T y ∼ 𝒩(TXβ, σe
2It + σ1

2TV1T′) and the eLRT and eRLRT 

(Crainiceanu and Ruppert, 2004) or the eScore test (Zhou et al., 2016) can be applied to Ty.

Let λ = σ1
2/σe

2 be the signal-to-noise ratio, s = rank(X), and write the covariance as 

V = σe
2(In + λV1) = σe

2Vλ. The model parameters are (β, σe
2, λ). Testing H0: σ1

2 = 0 is 

equivalent to testing H0: λ = 0. The log-likelihood function is 

L(β, σe
2, λ) =     − n

2   lnσe
2 − 1

2 lndet(Vλ) − 1
2σe

2 (y − Xβ)′Vλ
−1(y − Xβ). The likelihood ratio test 

(LRT) statistic is

LRT = 2sup
HA

L(β, σe
2, λ) − 2sup

H0
L(β, σe

2, λ)

= sup
λ ≥ 0

{nlny′A0y − nlny′Aλy − lndet(Vλ)}
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where PX = X(X′X)−1X′ is the projection matrix onto the column space 𝒞(X), A0 = I − PX 

and Aλ = Vλ
−1 − Vλ

−1X(X′Vλ
−1X) − X′Vλ

−1. Let ξ1, …, ξℓ  be the positive eigenvalues of V1 

and μ1, …, μk  the positive eigenvalues of A0V1A0. Then

LRT =𝒟 sup
λ ≥ 0

nln i = 1
n − s

ωi
2

i = 1

k
ωi

2

1 + λμi
+

i = k + 1

n − s

ωi
2

− ∑
i = 1

l
ln(1 + λξi) ,

where, under the null, wi are (n−s) independent standard normals. Under the alternative, 

ωi ∼ 𝒩(0, 1 + λμi) for i = 1, …, k, wi ∼ 𝒩 (0, 1) for i = k + 1,…, n − s, and they are jointly 

independent. The null distribution can be obtained from computer simulation. A 

computationally efficient χ2 approximation algorithm is given in the Supplementary 

Material (Web Appendix B). The same derivation can be carried out for the eRLRT, in which 

case

RLRT =D sup
λ ≥ 0

(n − s)ln i = 1
n − s

ωi
2

i = 1

k
ωi

2

1 + λμi
+

i = k + 1

n − s

ωi
2

− ∑
i = 1

k
ln(1 + λμi) .

The null distribution generation for eRLRT is shown in Web Appendix B. Algorithms 1 and 

2 in Web Appendix B contain a univariate optimization for each simulated point from the 

null distribution and can be computationally intensive for obtaining extremely small p-

values. To further reduce computational burden, we adopt the Satterthwaite method to 

approximate the null distributions (Zhou et al., 2016).

For eScore, it is easier to work with the original parameterization V = σe
2In + σ1

2V1. The 

(Rao) score statistic is based on I
σ1

2, σ1
2

−1 ∂
∂σ1

2 L
2
, where the information matrix 

I
σ1

2, σ1
2 = E − ∂2

∂σ1
2∂σ1

2 L  and score function ∂
∂σ1

2 L are evaluated at the maximum likelihood 

estimator (MLE) under the null. The resultant test rejects the null when

S = max
y′(I − PX)V1(I − PX)y

y′(I − PX)y , tr(K)
n

is large. Let {μ1, …, μk} be the positive eigenvalues of (I − Px)V1(I − Px). Then
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S =D max i = 1
k

μiωi
2

i = 1
n − s

ωi
2

, tr(K)
n ,

where wi are n − s independent standard normals. The null distribution can be obtained from 

computer simulation or inverting the characteristic function (Zhou et al., 2016). Both 

options, simulation and approximation of null distribution, are available in our program, 

https://github.com/JingZhai63/VCmicrobiome.

2.2 Exact tests with more than one variance components under H0

In this section we consider the situation when Y ~ N (Xβ, V ) with 

V = σ0
2I + σ1

2V1 + · · · + σm
2 Vm, m > 1. We are interested in testing H0: σm

2 = 0 vs HA: σm
2 > 0. 

We follow a strategy to reduce the problem to the m = 1 case 2 (Ofversten, 1993; 

Christensen, 1996).

We first obtain an orthonormal basis (Q0, Q1,…, Qm, Qm+1) of ℝn such that Q0 is an 

orthonormal basis of C(X), Q1 is an orthonormal basis of C(X, V1) − C(X), Qi is an 

orthonormal basis of C(X, V1,…, Vi) − C(X, V1,…, Vi−1) for i = 2,…, m, and Qm+1 is an 

orthonormal basis of ℝn − C(X, V1,…, Vm). Denote their corresponding ranks by r0,…, rm+1. 

If rm > 0, that is C(X, V1, …, Vm −1)   ⊈ C(X, V1, …, Vm −1, Vm), then 

Q′mY ∼ 𝒩(0, σe
2Irm

+ σm
2 Q′mVmQm) and eLRT, eRLRT and eScore can be applied to Q′mY. 

The order of V1,…, Vm does not matter. If rm = 0, that is C(X, V1,…, Vm−1) = C(X, V1,…, 
Vm), we construct a test based on the transformed data Q′m − 1Y + CQ′m + 1Y. Without loss of 

generality we assume Qm−1 is nontrivial. If rm−1 = 0, we use Qm−2 and so on. We consider 

the following cases:

1. If Q′m −1Vm = 0, e.g., when C(Vm) ⊂ C(X, V1, …, Vm −2), then this test cannot be 

performed. Shifting the order of X, V1,…,Vm−1 might solve the issue.

2. If Q′m −1Vm −1Qm −1 = γIrm − 1 and γ ≠       0, then

Q′m − 1Y ∼ 𝒩(0, σe
2Irm − 1 + σm − 1

2 Q′m − 1Vm − 1Qm − 1 + σm
2 Q′m − 1VmQm − 1)

= 𝒩(0, σe
2 + γσm − 1

2 )Irm − 1
+ σm

2 Q′m − 1VmQm − 1

which is the case (4). eLRT, eRLRT and eScore can be applied without using the CQ′m+1y 

piece.
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1. If Q′m −1Vm −1Qm −1 ≠ γIrm − 1, then the test requires the CQ′m+1y term. 

CQ′m+1y as distribution CQ′m+1Y   ∼ 𝒩(0, σe
2CC′). Since Q′m−1Y ⊥ CQ′m + 1Y, 

we pick C such that

CC′ζ−1Qm − 1′ Vm − 1Qm − 1 − Irm − 1
,

where the scalar ζ is chosen such that ζ−1Q′m − 1Vm − 1Qm − 1 − Irm − 1
 positive semidefinite. 

Let Q′m −1Vm −1Qm − 1 = WΛW′ = Wdiag δi W′ be the eigen-decomposition, ζ be the smallest 

positive eigenvalue, and C = Wdiag( δi/ζ − 1. Then the transformed data 

Q′m − 1Y + CQ′m + 1Y ∼ 𝒩(0, (σm
2   − 1 + σe

2/ζ)Q′m − 1Vm − 1Qm − 1 + σm
2 Q′m − 1VmQm − 1)and 

the test for case (2.1) can be applied. A larger ζ leads to a higher signal-to-noise ratio 

σm
2

σm − 1
2 + σe

2/ζ
 and thus a more powerful test. Finally we test H0: σm

2 = 0 using eLRT, eRLRT or 

eScore test on the transformed data,

Λ−1/2W′(Q′m − 1 + CQ′m + 1)Y ∼ 𝒩(0, (σm − 1
2 + σe

2/ζ)Irm − 1
+ σm

2 Λ−1/2W′Q′m − 1VmQm − 1WΛ−1/2)

We note that if in some applications that matrices have high or full rank, consuming most or 

all available degrees of freedom after above reduction strategy. One could proceed with a 

low rank approximation. For example, if m = 2 and V1 has high or full rank, one could find 

rank rV1 approximation of V1 as follows: let rK = rank(V2), Q0 is an orthonormal basis of 

C(X), and r0 = rank(Q0). A rank rV1 ≤
n − r0 − rK

2  approximation of V1 is suffice to 

perform testing. Details can be found in the software’s documentation (http://

vcmicrobiomejl.readthedocs.io/en/latest/).

3 Simulation

We evaluate the performance of the exact tests for longitudinal microbiome study in three 

simulation scenarios (Table 1).

Longitudinal microbiome count data with 2 repeated measurements are simulated using the 

R package ZIBR (Zero-Inflated Beta Random Effect model) (Chen and Li, 2016). To mimic 

features of real microbiome datasets, the phylogenetic structure and average count 

information are extracted from the real HIV longitudinal pulmonary microbiome data. This 

microbiome dataset contains 30 samples, each with 2 to 4 repeated measurements: baseline, 

4 weeks, 1 year and 3 years (Twigg III et al., 2016). OTU alignment at species level was 

produced by software Mothur (https://www.mothur.org/) (Schloss et al., 2009) and Basic 

Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm/.nih.gov/Blast.cg) (Altschul 

et al., 1990) in the Ribosomal Database Project (RDP) 16S database release 11.4 (Maidak et 
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al., 1996). The phylogenetic tree at the OTU level is generated using the RDP classifier 

(Twigg III et al., 2016). We construct the higher taxon level, e.g., phylum, using the 

phylogenetic tree generator phyloT (http://phylot.biobyte.de/) (Letunic and Bork, 2007, 

2011) and NCBI database taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy) (Federhen, 

2012). There are 2964 operational taxonomic units (OTUs) in total, 292 genera, and 24 

phyla. Different distance measures are calculated using our Julia package 

PhylogeneticDistance (https://github.com/JingZhai63/PhylogeneticDistance.jl). The 

definition of different distance measures and the details of simulation of microbiome 

abundances are provided in Web Appendix A and C.

Phenotypes are generated under three different scenarios. For all three scenarios, two 

covariates are included in the model. One of them is correlated with microbiome 

abundances. For individual i, X1i ∼ 𝒩(0, 1) and X2i = h(Gi)baseline
+ N(0, 1). Their effects are 

β1 = β2 = 0.1. We set within-individual variance to σe
2 = 1. For longitudinal data simulation, 

between individual variance σd
2 is set to 0.6. This corresponds to 60% of overall baseline 

phenotypic variance (Twigg III et al., 2016).

Scenario 1: Testing overall microbiome effect.

Longitudinal responses are generated using model, y ∼ 𝒩(X1β1 + X2β2, σd
2ZZ′ + σg

2K + σe
2I), 

where σd
2 = 0, 0.2, 0.5, 1.0 and 1.5. We compare the performance of five different distance 

measures: unweighted UniFrac (Lozupone and Knight, 2005), weighted UniFrac distance 

(Lozupone et al., 2007), variance adjusted weighted (VAW) UniFrac distance (Chang et al., 

2011), and generalized UniFrac distance with parameter α = 0.0 and 0.5 (Chen et al., 2012).

Scenario 2: Localizing fine microbiome cluster effects.

We cluster OTUs into 6 phyla, Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, 

Firmicutes, and other. We assume that only cluster other, h(G1i), has effects. That is 

y ∼ 𝒩(X1β1 + X2β2, σd
2ZZ′ + Σl = 1

6 σgl
2 Kl + σe

2I), where σg1
2  = 0, 0.5, 1.5 and σg1

2 = 0 for l = 2,

…,6. Due to the correlation between phyla, marginal tests of 5 individual phylum may show 

false signal if we do not adjust for the effects of h(G1i). We present testing of variance 

components in a joint model has correct type I error.

Scenario 3: Comparing with existing methods.

We compare our method with MiRKAT (Zhao et al., 2015) and LinScore (Qu et al., 2013). 

As MiRKAT can only be used for testing overall microbiome effects for cross-sectional 

designs, we first compare three methods when σd
2 = 0. Responses are generated according to 

simulation scenario 1, where σg
2 = 0, …, 1.5.

In scenarios 1 and 2, the sample size is fixed at n = 100. In scenario 3, we compare the 

performance of three methods under sample sizes 20, 30, 50 and 100. The performance of 

five different kernels is compared in scenario 1. For scenarios 2 and 3, we focus on the 

Zhai et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://phylot.biobyte.de/
https://www.ncbi.nlm.nih.gov/taxonomy
https://github.com/JingZhai63/PhylogeneticDistance.jl


weighted UniFrac distance kernel only, which demonstrates higher power than other kernels 

in scenario 1. 1000 Monte Carlo replicates are generated for all simulations and we use the 

nominal significance level 0.05 to evaluate type I error and power.

4 Results

Simulation Results

Scenario 1: Testing overall microbiome effect.—The type I error rate of eRLRT, 

eLRT and eScore tests with various distance kernel matrices using real longitudinal OTU 

count data are shown in Table 2. Figure 1 shows the power comparison with different 

kernels. In Figures 1a and 1c, five different kernels are constructed using OTU count data 

directly. In Figures 1b and 1d, OTU counts are summarized at the phylum level for kernel 

calculations.

Figure 1 shows that kernel type greatly impacts the power. The weighted UniFrac kernel 

yields the highest power and the unweighted UniFrac kernel has the least power (Figures 1a 

and 1c). The pattern of the power increase with effect size differs according to which taxon 

level count data are used to calculate kernel. The power of five kernels became similar to 

each other in Figures 1b and 1d. Further, the power of unweighted UniFrac kernel KUW, 

which is the least powerful kernel in Figures 1a and 1c, greatly improves in Figures 1b and 

1d. The reason is when the reads are summarized at the higher phylum level, the difference 

of abundance between each phylum is less notable. The less variability of abundance 

between lineages, the more similar power of detecting microbiome association. As expected, 

reducing variance components leads to reduced degrees of freedom for association testing 

and the test is slightly less powerful in the longitudinal study compared to the cross-sectional 

study given the same effect size in this simulation.

Scenario 2. Localizing fine microbiome cluster effects.—Table 3 shows the type I 

error rates for testing microbiome effect at the phylum level, with and without adjusting for 

the effect contributed by cluster, other. Most type I error rates are inflated when not 

adjusting for cluster other effects. In cross-sectional design, the type I error rates of 

Bacteroidetes and Proteobacteria stay correct due to its weak correlation with cluster other 
(Pearson correlation = 0.04, 0.11 with p-value = 0.70, 0.24, respectively). After adjustment, 

type I error rates stay correct even when confounding effects are large (Table 3).

In practice, symbiosis of bacteria causes correlation between them (Xu et al., 2007; Dickson 

et al., 2013; Zeng et al., 2016). Precise medication that targets specific pathogens can 

minimize the damage to essential symbiotic microbial species, and preserve community 

structure and function in the healthy (and developing) microbiome (Hicks et al., 2013; 

Blaser, 2016). Simulation scenario 2 demonstrates that our method is capable of localizing 

fine microbiome cluster effects.

Scenario 3: Comparing to existing methods MiRKAT and LinScore.—Table 4 

presents type I error rate and power for eRLRT, eLRT, eScore, MiRKAT and LinScore tests 

in detecting overall microbiome effects. The power is shown for both cross-sectional and 

longitudinal studies with sample size from 20 to 100. eRLRT and eLRT outperform LinScore 
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and MiRKAT in baseline simulation studies. For repeated measurements, eRLRT 

outperforms LinScore under small sample sizes (e.g., n ≤ 50). Under sample size n = 100, 

eRLRT has similar or slightly higher power comparing to LinScore when association 

strength is weak. Microbiome studies usually have limited sample size due to the high cost. 

Higher power of the exact tests at small sample sizes will be particularly valuable for 

biologists and physicians to identify the associated microbiome clusters.

Analysis of Longitudinal Pulmonary Microbiome Data

It is well-known that HIV infection is associated with alterations in the respiratory 

microbiome (Twigg III et al., 2016). However due to the limited investigation, the clinical 

implications of lung microbial dysbiosis are currently unknown. As an initial step to reveal 

the connection of respiratory microbiome to pulmonary complications in HIV-infected 

individuals, we investigate the relationship between pulmonary function and the respiratory 

microbiota profiles in the bronchoalveolar lavage (BAL) fluid of 30 HIV-infected patients at 

the advanced stage (baseline mean CD4 count, 262 cells/mm3). Their acellular BAL fluid 

was sampled at baseline, 4 weeks, 1 year, and 3 years. 16S rRNA gene sequencing 

technology was used to quantify pulmonary microbiota. Details of microbiome composition 

have been discussed in Section 3. Pulmonary function is measured by spirometry and 

diffusion capacity tests. Spirometry tests measure how much and how quickly air can move 

out of lung. Typical spirometry tests include forced vital capacity (FVC), forced expiratory 

volume in 1 second (FEV1), and average forced expiratory flow (FEF). Diffusion capacity of 

the lungs for carbon monoxide (DLCO) measures how much oxygen travels from lung 

alveoli to blood stream. DLCO corrected for hemoglobin (DsbHb) and diffusion capacity 

corrected for alveolar volume and hemoglobin (DVAsbHb) are evaluated. Descriptive 

statistics of these measures are summarized in Web Appendix Table 1.

Exact tests and LinScore are used to study the association. Associations with p-values less 

than 0.05 are reported to be significant. Covariates include gender, race, smoking status, 

CD4 counts, and HIV virus load (Table 5). Missing covariate is imputed by its mean. For 

overall microbiome association test, no tests find significant associations. However at the 

phylum level, Bacteroidetes shows significant association with spirometry while Firmicutes 
shows significant association with diffusing capacity measures. Similar results have been 

reported by Molyneaux et al. (2012) and Tunney et al. (2013). We then focus on analyzing 

genera from both phyla Bacteroidetes and Firmicutes given their important status in normal 

lungs (Cui et al., 2014). Only by eRLRT and eScore, genus Prevotella, Porphyromonas, and 

Parvimonas show significant effects on FEF and FEV1 (Table 5). Genus Veillonella shows 

significant association with FEF. It appears that both Parvimonas and Veillonella in phylum 

Firmicutes are significantly associated with FEF and both genus Prevotella and 

Porphyromonas in phylum Bacteroidetes are significantly associated with FEF and FEV1. 

We therefore perform the test in a joint model to localize fine cluster effect. Interestingly, by 

eRLRT the significant association between genus Parvimonas and FEF still remains after 

adjusting for the effects from genus Veillonella. But the opposite is not true. This supports 

the previous studies that Parvimonas abundance changed in subjects with pulmonary disease 

(e.g., asthma or COPD) comparing to the control group. (Pragman et al., 2012; Kim et al., 

2018) However, either Prevotella or Porphyromonas lost its significance when adjusting for 
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the other. This likely suggests that Prevotella and Porphyromonas are correlated and both tag 

effects to lung function. In comparison, LinScore only detects the significant microbiome 

effect of Bacteroidetes with FEF. Our results further support the conclusions from previous 

studies and shed lights for future clinical causality research (Twigg III et al., 2016; Weiden 

et al., 2017; Segal et al., 2017). None of the tests (exact tests, LinScore, and MiRKAT) 

identify significant associations using only baseline data (results not shown). In conclusion, 

our exact tests provides innovative association evidence of pulmonary microbiome and lung 

function in HIV infected population, which have not been reported before. While the 

modeling is compelling, interpretation of the data and how correlations translate to 

meaningful clinical outcomes needs further study.

5 Discussion

In this report, motivated by a longitudinal pulmonary microbiome study, we develop and 

implement three computationally efficient exact variance component tests (eScore, eLRT, 

and eRLRT). Our method extend previous exact variance component tests to the case when 

the null hypothesis contains more than one variance component (Zhou et al., 2016). They 

can be applied to longitudinal studies testing the overall microbiome effects, as well as 

cross-sectional studies identifying microbiome associations at fine-grained level. The latter 

has been emerging as the focus of many current microbiome studies (Nayfach et al., 2016; 

Lloyd-Price et al., 2017; Truong et al., 2017). Unlike Qu et al. (2013) and Zhao et al. 

(2015)’s score test that uses moment-matching to approximate null distribution, our tests are 

exact in finite samples, therefore beneficial to the studies with limited sample size. 

Compared to score test, our eLRT and eRLRT tests can further boost power when 

microbiome effects are weak. Simulation studies verify that our exact tests have correct size 

and many innovative utilizations. In the application to the real longitudinal pulmonary 

microbiome study, only our exact tests detect multiple interesting genera associated with 

lung function. We then further demonstrate the ability of our exact tests to differentiate 

associated genus by two real data examples. Although the derivation of eLRT and eRLRT 

require normality assumption, a sensitivity simulation shows that even with a misspecified 

phenotypic distribution, like t-distribution, our tests still preserve correct type I error rate 

(Web Appendix E, Table 2). The software package is implemented in an open source, high-

performance computing language Julia and is freely available. We offer unweighted, 

weighted, variance adjusted weighted and generalized UniFrac distance calculation to 

further ease the computation and advance microbiome studies.

There are a few directions for future work. First, there are linear mixed effects models not of 

form (3), for example, those include both random intercepts and random slopes (Drikvandi 

et al., 2013). Our methods extend to these cases naturally and we defer them to future 

research. Second direction is to incorporate multiple types of kernels into exact tests. Last 

we consider extension to the generalized linear mixed effects models, although it can be 

challenging especially for LRT and RLRT. Score-based tests may be possible through 

penalized quasi-likelihood (PQL) (Lin, 1997; Chen et al., 2016).
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6 Software

A Julia package is freely available at https://github.com/JingZhai63/VCmicrobiome. In the 

real longitudinal data analysis with sample size 30 and 2964 OTUs, the elapsed CPU time 

are 0.1 seconds and 0.04 seconds for eRLRT and eScore, respectively. The analysis was 

performed by a MacBook Pro with 2.3GHz Intel Core i7 processor and 8GB 1600MHz 

DDR3 memory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: 
Scenario 1: Power of eRLRT, eLRT and eScore using different distance measures. Figure to 

the left shows results where the OTU counts are used to calculate distances, figures to the 

right shows that OTU counts are summarized at phylum level to construct the distances. K0, 

K0.5, KW, KU and KV AW represent generalized UniFrac distance with α = 0, 0.5, weighted 

UniFrac distance, unweighted UniFrac distance and variance adjusted weighted UniFrac 

distance, respectively.
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TABLE 1

Simulation configurations. For all simulations, σe
1 = 2 and σd

2 = 0 when number of repeats (# Repeat) = 1 or 

σe
2 = 1 and σd

2 = 0.6 when number of repeats >1. There are 2964 OTUs presented in simulated count data. A 

phylogenetic tree generated using the real pulmonary microbiome data is used for kernel calculation and 

phenotype simulations. KW: weighted UniFrac kernel; KU: unweighted UniFrac kernel; KV AW: variance 

adjusted weighted UniFrac kernel; Kα: generalized UniFrac kernels with = 0 and 0:5.

Scenario 1: Testing overall microbiome effect

Sample size Kernel type Clustering # Repeat σg
2 Method

100 KW, KU, KV AW,
Kα

None 2 0 – 1.5 eRLRT eScore

100 KW, KU, KV AW,
Kα

None 1 0 – 1.5 eRLRT eLRT eScore

Scenario 2: Localizing fine microbiome cluster effects

Sample size Kernel type Clustering # Repeat σg
2 Method

100 KW Yes 2 0 – 1.5 eRLRT eScore

100 KW Yes 1 0 – 1.5 eRLRT eScore

Scenario 3: Comparing to existing methods

Sample size Kernel type Clustering # Repeat σg
2 Method

20; 30; 50; 100 KW None 2 0 – 1.5 eRLRT eScore
LinScore

20; 30; 50; 100 KW None 1 0 – 1.5 eRLRT eLRT eScore
LinScore MiRKAT
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TABLE 2

Scenario 1: Type I error of eLRT, eRLRT and eScore for detecting overall microbiome effects. Five distance 

measures, weighted UniFrac kernel (KW ), unweighted UniFrac kernel (KU ), variance adjusted weighted 

UniFrac kernel (KV AW ), and generalized UniFrac kernels with = 0 (K0) and 0:5 (K0:5) are compared.

Kernel Type

Simulation Design Method KW KU KV AW K0 K0.5

Cross-sectional eRLRT 0.046 0.043 0.045 0.048 0.047

eLRT 0.046 0.043 0.051 0.052 0.046

eScore 0.039 0.031 0.047 0.045 0.042

Longitudinal eRLRT 0.041 0.053 0.045 0.041 0.042

eScore 0.034 0.048 0.048 0.050 0.045
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TABLE 3

Scenario 2: Type I error rate of localizing fine microbiome cluster effects. Only cluster “Other” contains 

effects, 0, 0:5 and 1:5. Type I error rates are evaluated with or without adjustment for effect from cluster Other. 

The weighted UniFrac kernel is used. Top panel shows results from simulation using longitudinal data while 

bottom panel shows results using cross-sectional data only.

Longitudinal Design

No Adjustment for Other Adjustment for Other

Phylum Effect Size σg
2

Effect Size σg
2

0 0.5 1.5 0 0.5 1.5

eRLRT, eScore eRLRT, eScore eRLRT, eScore eRLRT,eScore eRLRT,eScore eRLRT,eScore

Actinobacteria 0.050, 0.038 0.108, 0.075 0.151, 0.100 0.049, 0.038 0.051, 0.048 0.033, 0.040

Bacteroidetes 0.045, 0.040 0.060, 0.055 0.061, 0.055 0.041, 0.040 0.047, 0.042 0.042, 0.037

Firmicutes 0.043, 0.043 0.049, 0.044 0.063, 0.067 0.042, 0.043 0.041, 0.043 0.052, 0.051

Fusobacteria 0.052, 0.048 0.038, 0.041 0.060, 0.048 0.052, 0.048 0.045, 0.044 0.048, 0.037

Proteobacteria 0.051, 0.046 0.041, 0.048 0.056, 0.050 0.049, 0.042 0.040, 0.035 0.053, 0.036

Cross-sectional Design

No Adjustment for Other Adjustment for Other

Phylum Effect Size σg
2

Effect Size σg
2

0 0.5 1.5 0 0.5 1.5

eRLRT, eScore eRLRT, eScore eRLRT, eScore eRLRT,eScore eRLRT,eScore eRLRT,eScore

Actinobacteria 0.041, 0.036 0.117, 0.065 0.111, 0.083 0.050, 0.040 0.052, 0.043 0.048, 0.035

Bacteroidetes 0.051, 0.047 0.048, 0.049 0.051, 0.041 0.051, 0.041 0.048, 0.043 0.048, 0.037

Firmicutes 0.037, 0.038 0.059, 0.052 0.068, 0.062 0.044, 0.038 0.051, 0.045 0.052, 0.048

Fusobacteria 0.053, 0.050 0.070, 0.060 0.078, 0.065 0.052, 0.033 0.051, 0.041 0.048, 0.040

Proteobacteria 0.042, 0.035 0.038, 0.042 0.053, 0.047 0.048, 0.047 0.049, 0.050 0.041, 0.033
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TABLE 4

Scenario 3: Comparing to existing methods. Type I error rate and power from eLRT, eRLRT, eScore, 

LinScore, and MiRKAT at baseline when #Repeat = 1. When #Repeat = 2, only LinScore is compared with 

eRLRT and eScore. Sample sizes (n) range from 20 to 100 and effect sizes (σg
2) range from 0 to 1:5.

Effect Size σg
2

n #Repeat Method 0 0.10 0.2 0.5 0.8 1.0 1.5

20

1

eScore 0.045 0.059 0.050 0.074 0.078 0.079 0.104

eLRT 0.051 0.089 0.095 0.111 0.118 0.141 0.152

eRLRT 0.050 0.097 0.088 0.108 0.122 0.142 0.160

MiRKAT 0.048 0.056 0.046 0.071 0.069 0.077 0.104

LinScore 0.050 0.060 0.046 0.075 0.072 0.078 0.106

2

eScore 0.050 0.055 0.040 0.057 0.068 0.077 0.088

eRLRT 0.051 0.055 0.074 0.081 0.092 0.085 0.118

LinScore 0.049 0.057 0.063 0.055 0.072 0.078 0.090

30

1

eScore 0.043 0.059 0.050 0.074 0.078 0.079 0.104

eLRT 0.046 0.089 0.095 0.111 0.118 0.141 0.152

eRLRT 0.052 0.097 0.088 0.108 0.122 0.142 0.160

MiRKAT 0.055 0.056 0.046 0.071 0.069 0.077 0.104

LinScore 0.054 0.060 0.046 0.075 0.072 0.078 0.106

2

eScore 0.045 0.058 0.067 0.093 0.114 0.127 0.151

eRLRT 0.052 0.063 0.081 0.105 0.127 0.145 0.178

LinScore 0.046 0.054 0.061 0.076 0.088 0.132 0.134

50

1

eScore 0.036 0.070 0.071 0.118 0.151 0.164 0.240

eLRT 0.048 0.084 0.094 0.135 0.188 0.214 0.306

eRLRT 0.049 0.086 0.088 0.127 0.192 0.201 0.307

MiRKAT 0.047 0.065 0.069 0.114 0.156 0.183 0.257

LinScore 0.045 0.070 0.077 0.124 0.176 0.189 0.267

2

eScore 0.047 0.069 0.084 0.110 0.148 0.177 0.257

eRLRT 0.041 0.074 0.097 0.134 0.188 0.217 0.315

LinScore 0.051 0.063 0.096 0.156 0.205 0.261 0.333

100

1

eScore 0.050 0.096 0.165 0.304 0.383 0.390 0.532

eLRT 0.052 0.114 0.191 0.377 0.472 0.516 0.664

eRLRT 0.049 0.105 0.195 0.375 0.460 0.510 0.661

MiRKAT 0.051 0.093 0.181 0.329 0.427 0.483 0.622

LinScore 0.048 0.106 0.194 0.347 0.439 0.507 0.630
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Effect Size σg
2

n #Repeat Method 0 0.10 0.2 0.5 0.8 1.0 1.5

2

eScore 0.037 0.140 0.205 0.277 0.378 0.411 0.525

eRLRT 0.041 0.161 0.244 0.327 0.447 0.498 0.626

LinScore 0.046 0.121 0.214 0.347 0.451 0.545 0.652
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