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Abstract

Background: Since bleb presence increases the rupture risk of intracranial aneurysms (IAs), this 

study aimed to evaluate whether cross-sectional bleb formation models can identify aneurysms 

with focalized enlargement in longitudinal series.

Methods: Hemodynamic, geometric, and anatomical variables derived from computational fluid 

dynamics models of 2265 IAs from a cross-sectional dataset were used to train machine learning 

(ML) models for bleb development. ML algorithms, including logistic regression, random forest, 

bagging method, support vector machine, and k-nearest neighbors, were validated using an 

independent cross-sectional dataset of 266 IAs. The models’ ability to identify aneurysms with 

focalized enlargement was evaluated using a separate longitudinal dataset of 174 IAs. Model 

performance was quantified by the area under the receiving operating characteristic curve (AUC), 

the sensitivity and specificity, positive predictive value, negative predictive value, F1 score, 

balanced accuracy, and misclassification error.

Results: The final model, with 3 hemodynamic and 4 geometrical variables, along with 

aneurysm location and morphology, identified strong inflow jets, nonuniform wall shear stress 

with high peaks, larger sizes, and elongated shapes as indicators of a higher risk of focal growth 

over time. The logistic regression model demonstrated the best performance on the longitudinal 
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series, achieving an AUC of 0.9, sensitivity of 85%, specificity of 75%, balanced accuracy of 80%, 

and a misclassification error of 21%.

Conclusions: Models trained with cross-sectional data can identify aneurysms prone to future 

focalized growth with good accuracy. These models could potentially be used as early indicators 

of future risk in clinical practice.

1. INTRODUCTION

Intracranial aneurysms (IAs) may have an additional bulge in the wall called a bleb (1), 

which constitutes a significant risk factor for rupture, as many ruptured aneurysms are 

found to have blebs (2–4). Previous studies have suggested that irregular aneurysm shape, 

characterized by a multilobulated shape and the presence of blebs, is considered the most 

clinically relevant risk factor in practice (3,5). In fact, it is considered even more important 

than size. For instance, the risk score reported by unruptured intracranial aneurysm treatment 

score (UIATS) (6) is 3 for aneurysms with blebs, while it is 2 for aneurysms with diameter 

of 7 to 12.9 mm, and 1 for aneurysms with size ratio larger than 3. Therefore, aneurysms 

that experience focalized enlargement and develop new blebs or local irregularities undergo 

a considerable increase in their rupture potential. Furthermore, it has been shown that 

growing aneurysms have a much higher rupture rate than stable aneurysms (3.1% for 

growing aneurysms compared to 0.1% for stable aneurysms (5), and growing aneurysms 

have risk score of 4 in UIATS scale (6)). As such, it is important to identify early on those 

aneurysms that are prone to focalized growth and/or bleb development to recommend careful 

monitoring or treatment.

In 2003, Steinman et al. first reported the use of patient-specific geometry models in 

computational fluid dynamics (CFD) to analyze intracranial aneurysms (7). Subsequent 

CFD-based studies have highlighted the pivotal role of hemodynamics in understanding 

aneurysm pathology, encompassing initiation, growth, and rupture. For instance, wall shear 

stress (WSS) emerged as a key factor influencing bleb development, aneurysm initiation, 

growth, and rupture (12–15). Cebral et al.’s research indicated that increased WSS in 

specific areas contributed to localized wall damage leading to bleb formation (15). More 

recently, Ashkezari et al. proposed that the formation of blebs in aneurysms is facilitated by 

strong inflow jets and heterogeneous WSS patterns (16). Sforza et al. showed that growing 

aneurysms exhibit complex intrasaccular flow patterns that result in non-uniform WSS 

distributions, characterized by regions of high WSS concentration and large areas of low 

WSS (17).

Previous studies have identified associations between geometric, hemodynamic, and 

anatomical characteristics of IAs and the development of blebs (12,18). These characteristics 

have been proposed as potential inputs for statistical and machine learning (ML) models 

of bleb formation (19). However, the limited availability of large datasets of aneurysms 

followed longitudinally without treatment has made it challenging to develop such models, 

and previous studies have therefore relied on cross-sectional data of aneurysms imaged at a 

single point in time. Thus, the aim of this study was to evaluate the ability of bleb formation 

models constructed from cross-sectional data (including hemodynamic, geometrical, and 
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anatomical variables) to identify aneurysms that undergo focalized enlargement in a 

longitudinal dataset. This hypothesis is supported by the fact that similar associations 

between the geometric, hemodynamic, and anatomical characteristics of IAs have been 

observed in relation to both bleb development (12,20) and aneurysm growth (14,17,21–23).

2. METHODS

2.1. Datasets

From our database, cross-sectional data of 2265 aneurysms from several populations 

(USA, Europe other than Finland, and Japan) which were imaged with 3D rotational 

angiography (3DRA) and modeled with CFD were used to develop ML models of bleb 

development (training set). The ML models were validated with cross-sectional data of 266 

IAs also imaged with 3DRA (validation set) from an independent cohort. These datasets 

are described in detail in previous reports (19,24). Subsequently, a total of 174 aneurysms 

that were followed up over time without treatment using 3DRA, computed tomography 

angiography (CTA), or magnetic resonance angiography (MRA) were used to evaluate if 

these ML models were able to identify aneurysms that grew focally or developed blebs 

during the follow up observation (longitudinal test set). All data was anonymized before 

storage into our database and analysis, and the study was approved by our IRB.

The aneurysms in the cross-sectional datasets (training and validation sets) were divided into 

two subsets: aneurysms with blebs and aneurysms without blebs. As in previous studies, 

blebs were identified as secondary well-defined focal bulges by inspection of the 3D images 

(18). Similarly, aneurysms in the longitudinal test set were divided into two subsets: stable 

aneurysms (no appreciable change during follow up) and aneurysms with focal growth 

(local expansion of more than 0.5 mm during follow up – this threshold, which is larger 

than the typical imaging resolution, has routinely been used clinically to identify growing 

aneurysms). The number of aneurysms based on their location (ACA, ACOMA, BA, ICA, 

MCA, PCOMA, PICA), morphology (Lateral or Bifurcation), label (Bleb/focal growing or 

No-bleb/stable), and the mean aneurysms size for each group are given in Supplementary 

Table 1.

2.2. Aneurysm Modeling and Characterization

Using a previously described approach (25), patient-specific 3D models were constructed 

from the 3D images (3DRA, CTA, or MRA) using a combination of image filtering 

(e.g. median filter to eliminate noise), threshold segmentation, and iso-surface extraction 

followed by non-shrinking smoothing. Arteries were cut perpendicularly to their axes to 

define inlet and outlet boundaries. Unstructured grids of (linear) tetrahedral elements with 

a minimum resolution of 0.2 mm were generated with an advancing front method (26), 

which resulted in meshes ranging from 3.5 to 10.5 million elements. Computational fluid 

dynamics (CFD) simulations were performed by numerically solving the incompressible 

unsteady Navier-Stokes equations using a fully implicit finite elements scheme (27,28). A 

constant Newtonian viscosity of μ = 0.04 g/cm. s and a blood density of ρ = 1.0 g/cm3 were 

used. Since the maximum Reynolds numbers were below 800 a laminar flow assumption 

was deemed reasonable. All simulation software and quantification tools were developed 
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in-house and have been verified and validated over a wide range of applications over the 

years (29). Pulsatile inflow conditions at the inlets in the internal carotid or vertebral arteries 

were prescribed by scaling representative waveforms with an empirical power-law of the 

vessel diameter derived from flow measurements in a patient population (30), i.e. although 

not measured directly on each patient, flow conditions were individualized by scaling with 

the patient-specific inlet vessel diameter. Outflow conditions consistent with Murray’s law 

were applied, and vessel walls were approximated as non-compliant (31). Simulations were 

performed for 2 cardiac cycles with time steps of 0.01 sec and the flow fields of the second 

cycle were used to quantify the aneurysm hemodynamics. Each aneurysm was characterized 

by a number of hemodynamics and geometrical variables previously described (27,32), 

as well as anatomical characteristics (location, morphology, multiplicity). Previous work 

showed that the choice of simulation parameters (timestep, number of cardiac cycles, etc.) 

and approximations (Newtonian fluid, rigid walls, etc.) described above is appropriate to 

quantify these hemodynamic variables (33).

2.3. Aneurysm Labeling

Aneurysms in the cross-sectional datasets that harbored blebs were identified visually 

guided by the aneurysm Gaussian curvature as described in detail by Salimi Ashkezari et al. 

(18). To approximate the hemodynamics and geometrical characteristics of these aneurysms 

prior to bleb development, the blebs were virtually deleted from the reconstructed vascular 

models and CFD simulations were performed for the 3D models with their blebs removed as 

described in the previous study (12).

Aneurysms in the longitudinal dataset that exhibited focalized growth or bleb development 

during follow up were identified by measuring the local aneurysm enlargement (17). To 

measure this enlargement, a previously developed tool (cheAlignSurf) (34) was used to 

interactively align the 3D vascular model of the last follow-up to the 3D model of the 

initial examination (baseline) making sure the parent arteries coincided as much as possible 

(Fig1.E), i.e. minimizing the distance between the parent arteries in the vicinity of the 

aneurysm. Then, the region of the aneurysm where the distance between the two aligned 

vascular models was larger than 0.5 mm was determined from the distance map between 

the two aligned vascular surfaces (34) and was labeled (painted) as the growing region 

on the baseline model (Fig.1 F). Aneurysms that did not enlarge more than 0.5 mm were 

labeled as stable (17), and aneurysms that exhibited uniform or global growth (enlargement 

of the entire sac) were excluded. Fig.1 shows an example of a focal growing aneurysm and 

illustrates the methodology to identify aneurysms with focal growth. Fig1.B and D show 

the 3D models of the baseline and the last follow-up of the aneurysm, respectively. All 

aneurysm features used in this study (cross-sectional and longitudinal datasets) were based 

on the CFD simulations of the baseline geometry since the purpose of this study was to 

develop predictive models for future aneurysm growth or bleb development.

2.4. Development of Predictive Models of Bleb Formation

Several supervised machine learning binary classifier models, including logistic regression 

(LR), random forest (RF), bagging or bootstrap aggregating method (BG), support vector 

machine (SVM), and K-nearest neighbors (KNN), were used to build predictive models 
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of bleb development/focal growth. The models were based on 22 hemodynamic features 

(including the average number of critical points in the WSS field described by Salimi 

Ashkezari et al. (12)) and 25 geometrical features described in Detmer et al. (35), and 

3 anatomical characteristics of the aneurysms and patient population. These predictor 

characteristics included continuous and categorical variables. The categorical variables 

(aneurysm location, morphology, multiplicity, and population) were encoded as dummy 

variables. The continuous variables were standardized so that their means and standard 

deviation equal zero and one respectively. For all the aneurysms, all the predictor variables 

were available (i.e., no missing data). A complete list of variables used in this study is 

provided in Supplementary Table 2. As explained earlier, cross-sectional data was used to 

train ML models of bleb development. To estimate the associated tuning parameters and 

train the models, tenfold cross-validation with 100 repetitions was used. In this step, the 

training set was randomly split into two subsets, a training subset and a testing subset, for 

each of the ten folds. The average area under the curve (AUC) of the receiver operating 

characteristics (ROC) in the test subsets was obtained through a grid search and was used to 

determine the optimal values of the tuning parameters during model training.

Since only 32% of aneurysms in the training set and 35% of them in the validation set 

were identified as harboring blebs, these datasets were inherently unbalanced. To minimize 

the negative effect of imbalanced data, during the internal cross-validation a down-sampling 

approach was used in which data with the majority class were randomly removed to balance 

the class distribution.

2.5. Feature Selection

To select parsimonious sets of predictors, first variables that were highly correlated to other 

variables (absolute correlation of 0.75 or higher) were removed. Moreover, variables were 

ranked based on their variables inflation factor (VIF), from highest to lowest magnitude, 

and multicollinear variables with a VIF of 10 or larger were removed one at a time (the 

one with highest VIF first) in a recursive manner until all multicollinear variables were 

eliminated. The importance of the remaining variables was computed by measuring the 

increase in prediction error after permuting the variables. The less change in the model error, 

the lower the importance of the variable. The least important variables were removed one 

at a time while maintaining the model accuracy measured by the balanced accuracy. The 

iterative process continued until the balanced accuracy began to decrease, and subsequently 

a “brute force” approach was used to select the optimal subset of features by investigating 

all possible subsets that could be constructed with the retained variables. The optimal set of 

features was selected based on the model with the highest AUC in the validation set.

2.6. Validation of Bleb Formation Models

The different ML models of bleb development were validated with the cross-sectional data 

of the validation set (266 aneurysms). To quantify their performance, the AUC of the ROC, 

the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 

F1 score, balanced accuracy, and the misclassification error were calculated and the model 

with the best overall performance was selected. The 95% confidence intervals of AUC were 

calculated using 2000 bootstrap iterations.
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2.7. Evaluation of Models’ Ability to Identify Aneurysms with Focal Growth

To evaluate the ability of the ML models trained with cross-sectional data to discriminate 

between aneurysms that exhibited focalized growth or bleb development and those that 

remained stable during follow up, the AUC of the ROC, the sensitivity (true positive rate), 

the specificity (true negative rate), positive predictive value (PPV), negative predictive value 

(NPV), F1 score, balanced accuracy, and the misclassification error were calculated for the 

ML models using the longitudinal test set.

3. RESULTS

3.1. Variables Retained in the Model

Supplementary Table 2 lists the 51 variables considered in this study, along with their 

mathematical definitions and references. After removing correlated variables, 25 variables 

remained. The initial importance of these 25 variables, assessed on the validation set, is 

presented in Supplementary Fig. 1. Supplementary Fig. 2 demonstrates a gradual decline 

in accuracy after eliminating the 6 least important variables. Subsequently, a “brute force” 

method was employed to investigate all possible models using the 19 remaining features (the 

most important variables) in order to identify the optimal subset for developing predictive 

models. The final model, with the highest AUC, included 9 variables: mean aneurysm 

inflow rate (Q), maximum normalized wall shear stress (MWSSnorm), size ratio (SizR), 

volume to ostium ratio (VOR), non-sphericity index (NSI), convexity ratio (CR), location, 

morphology, and proper orthogonal decomposition entropy (podent). These variables were 

used consistently across all ML models. Supplementary Fig. 3 displays the importance of the 

retained variables in the final model, listed in descending order of importance.

3.2. Model Validation

The logistic regression model had the best performance in validation (using the cross-

sectional validation set) with AUC of 0.77, sensitivity of 0.85, specificity of 0.61, balanced 

accuracy of 0.74, and misclassification error of 0.30. Table 1. presents the performance 

results for the logistic regression as well as the other ML models. The corresponding ROC 

curves are shown in Supplementary Fig. 4.

3.3. Performance of Predictive Models on Longitudinal Data

The logistic regression model demonstrated the best performance among the ML models 

when evaluated on both the cross-sectional validation set and the longitudinal test set. Table 

2. presents the model’s results on the longitudinal dataset, with an AUC of 0.90, sensitivity 

of 0.85, specificity of 0.75, balanced accuracy of 0.80, and a misclassification error of 0.21. 

Supplementary Fig. 5 displays the ROC curve depicting the performance of different models 

on the longitudinal data.

Fig. 2 showcases examples of aneurysms from the longitudinal dataset correctly classified 

by the LR model. The top panel presents three examples of focal growth aneurysms at 

baseline, ranging from large to small sizes, while the bottom panel displays three stable 

aneurysms with similar sizes. The top row visualizes the inflow jet, and the bottom row 

shows the WSS distribution at peak systole. Supplementary Table 3. provides further details 

Hadad et al. Page 6

J Neurointerv Surg. Author manuscript; available in PMC 2024 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on these example aneurysms. Focally growing aneurysms exhibit strong inflow jets and 

elevated WSS, with the LR model assigning them growth probabilities of 95%, 94%, and 

84%. Stable aneurysms display more diffuse inflow jets, lower WSS distributions, and were 

assigned stability probabilities of 78%, 86%, and 90% by the LR model. These examples 

demonstrate how the ML model, combining hemodynamic, geometric, and anatomical 

information, aids in identifying aneurysms prone to focal growth and bleb development, 

thus increasing their rupture risk.

4. DISCUSSION

Previous studies have shown that aneurysm hemodynamic, geometric, and anatomical 

characteristics are associated with bleb presence (15,17,36). In particular, aneurysms that are 

prone to bleb development tend to have larger inflow rates, higher WSS, wider necks, and 

more elongated shapes than those that are less likely to develop blebs (15,17,36). However, 

these studies were conducted with cross-sectional data. Similar associations have also been 

found between these aneurysm characteristics (along with location) and aneurysm growth 

(17,22,23,37). Therefore, the goal of this study was to test if predictive models of bleb 

formation constructed from cross-sectional data could be used to identify aneurysms that are 

prone to future focalized growth or bleb development.

It was found that the predictive models of bleb formation developed in this study, using 

cross-sectional data, were indeed able to identify aneurysms that grew focally in a 

longitudinal dataset with 85% sensitivity However, there was a 25% misclassification of 

stable aneurysms as being at risk of future focal growth.

While these models accurately detect problematic aneurysms likely to experience focalized 

growth, they may also misclassify stable aneurysms due to various reasons. One possibility 

is that aneurysms classified as having a high probability of focal growth but considered 

stable could grow if observed for a longer follow-up period. For instance, in Supplementary 

Fig. 6, an aneurysm remained stable for three years but grew after five years from the initial 

examination. Initially, according to our stability definition (no increase > 0.5mm in any 

direction), the aneurysm showed stability (Supplementary Fig. 6.A). However, subsequent 

follow-up studies conducted five and ten years later revealed growth (Supplementary Fig. 

6.B and C). Our dataset labeled this aneurysm as having focal growth since we considered 

the baseline (the initial examination) and the last follow-up (ten years after the initial 

examination), correctly classified by the LR model. Nonetheless, had the follow-up ended 

three years after the initial examination, the aneurysm would have been misclassified as 

stable by the LR model. This underscores the need for longitudinal datasets with extended 

follow-up periods to consistently label stable aneurysms.

Interestingly, in our study, the logistic regression model outperformed the other more 

sophisticated ML models when evaluated on the longitudinal dataset. While the exact 

reasons for this are not clear, it seems that the LR model was able to better capture the key 

relationships between the variables in the longitudinal set, which may be have been simpler 

than in the cross-sectional sets, thus making the LR model better suited for generalizing its 

application to different datasets.
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The LR model identifies key predictors indicating a higher likelihood of focal growth 

in aneurysms compared to stable ones. These predictors include larger inflow rates (Q), 

unstable flows (podent), heterogeneous wall shear stress distributions with more critical 

points and higher peaks (MWSSnorm), larger size (SR), and greater elongation (NSI, 

VOR). Aneurysm location and morphology also contribute to the potential for focalized 

growth. While it is challenging to pinpoint a single factor responsible for growth and bleb 

development, the adverse biomechanical environment encompassing these features likely 

adversely affects the aneurysm wall, predisposing it to future focal growth. Investigating 

cellular responses in relation to local biomechanical conditions in future studies may reveal 

the exact mechanisms driving local wall degeneration and bleb formation.

Naturally, predictive models of focalized growth could be trained directly with longitudinal 

data, which are expected to yield a better overall accuracy. However, collecting large 

longitudinal datasets is more challenging as many aneurysms are treated instead of 

conservatively observed. Nevertheless, our study demonstrated that models trained on cross-

sectional data can identify the aneurysms most likely to develop focal growth (and possibly 

blebs), thus becoming more irregular in shape and consequently increasing their rupture risk. 

Moreover, the risk associated with treating incidentally discovered aneurysms to prevent 

subarachnoid hemorrhage often outweighs their natural rupture risk, which is approximately 

1% per year (38–40). With the increased use of medical imaging, the number of detected 

unruptured aneurysms has gone up, leading to more frequent treatment decisions. Therefore, 

it is essential to identify aneurysms that are likely to grow in the future and limit initial 

treatment recommendations to only those cases (38–41). Thus, our study’s approach serves 

as an early indicator of future risk, aiding in treatment selection or more frequent and 

attentive observation of such aneurysms.

There are several limitations to consider in this study. Firstly, our CFD models rely on 

assumptions such as Newtonian flow, non-patient-specific laminar viscosity, rigid walls, 

estimated inflow rates, and limited cardiac cycle simulations. While previous studies suggest 

these approximations have minimal impact on computed hemodynamic variables used 

as predictors for focalized growth (33,42), their influence should still be acknowledged. 

Secondly, limitations are associated with the study itself. In the training and validation 

sets, we estimated the hemodynamics and geometric features of aneurysms by virtually 

removing blebs. This assumes rapid bleb development while parent aneurysms remain 

relatively unchanged, supported by longitudinal observations. The imbalanced datasets 

(few aneurysms with blebs or focal growth) require careful consideration. We used a 

downsampling approach, which reduces sample sizes and imposes accuracy limits on the 

models. The small sample size of the longitudinal dataset, short follow-up times for labeling 

stable aneurysms, and differing selection biases between the cross-sectional training set 

and longitudinal test sets may result in decreased accuracy when transferring statistical 

models across domains. The alignment of baseline and follow-up vascular models was done 

interactively, and the threshold for identifying aneurysm enlargement was set to 0.5 mm. 

Altering these parameters or the manual process could impact results and are considered 

limitations. Nonetheless, despite these limitations, the model demonstrated reasonably good 

performance, indicating potential for clinical application after further evaluation with larger 

longitudinal datasets.
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5. CONCLUSIONS

Predictive models of bleb formation based on cross-sectional data can identify aneurysms 

prone to focalized growth in longitudinal datasets. These models could potentially be used as 

early indicators of future risk in intracranial aneurysms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known on this topic?

The presence of blebs significantly increases the risk of rupture for intracranial 

aneurysms, and there is a limited availability of large datasets that track aneurysms 

longitudinally without treatment.

What this study adds?

Models trained on cross-sectional data can identify aneurysms that are likely to exhibit 

future focal growth with good accuracy.

How this study might affect research, practice or policy?

These models have the potential to be utilized as early warning signs of future risk in 

clinical settings.
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Figure 1: 
Illustration of the methodology used to identify aneurysms with focal growth. Construction 

of a vascular model of basilar tip aneurysm from CTA images for the baseline image (A, 

B) and the last follow-up image (C, D). Model alignment (E) where the green transparent 

model represents the last follow-up model aligned with the baseline model (red model) and 

red arrows point to the growing region. The growing region painted on the baseline model 

(F) and CFD simulation (WSS distribution) of the baseline model (G).
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Figure 2. 
Examples of aneurysms with focal growth (A-F) and stable aneurysms (G-L) that were 

classified correctly by the LR model. The first row of each panel shows the aneurysm inflow 

jet, and the second row shows the WSS, both at peak systole. In general, focally growing 

aneurysms had stronger inflow jets (A, C, E) and were exposed to high WSS (B, D) while 

stable aneurysms had weaker inflow jets (K) and lower WSS (H, L).
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Table 1.

Performance of different ML models applied to the cross-sectional validation set

Model AUC Sensitivity Specificity PPV NPV F1
Score

Balanced
accuracy

Misclassification

LR 0.77 0.85 0.61 0.55 0.88 0.67 0.74 0.30

RF 0.75 0.88 0.54 0.51 0.89 0.65 0.71 0.34

BG 0.74 0.75 0.60 0.51 0.81 0.61 0.67 0.35

SVM 0.77 0.86 0.53 0.51 0.87 0.64 0.70 0.35

KNN 0.70 0.85 0.51 0.49 0.86 0.63 0.68 0.36
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Table 2.

Performance of different ML models applied to the longitudinal test set

Model AUC Sensitivity Specificity PPV NPV F1 Score Balanced
accuracy

Misclassification

LR 0.9 0.85 0.75 0.65 0.90 0.73 0.80 0.21

RF 0.68 0.58 0.68 0.49 0.76 0.53 0.63 0.35

BG 0.65 0.50 0.72 0.48 0.73 0.49 0.61 0.36

SVM 0.73 0.37 0.75 0.44 0.69 0.34 0.56 0.38

KNN 0.60 0.25 0.67 0.28 0.63 0.27 0.46 0.48
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