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SCIENTIF IC INVESTIGATIONS

Predicting Nondiagnostic Home Sleep Apnea Tests Using Machine Learning
Robert Stretch, MD1,2; Armand Ryden, MD1,2; Constance H. Fung, MD, MSHS1,2; Joanne Martires, MD2; Stephen Liu, MD2; Vidhya Balasubramanian, MD2;
Babak Saedi, MD2; Dennis Hwang, MD3; Jennifer L. Martin, PhD1,2; Nicolás Della Penna, BA4; Michelle R. Zeidler, MD, MS1,2

1David Geffen School of Medicine at University of California, Los Angeles, California; 2VA Greater Los Angeles Healthcare System, Los Angeles, California; 3Southern California
Permanente Medical Group, Los Angeles, California; 4Laboratory of Computational Physiology at Massachusetts Institute of Technology, Boston, Massachusetts

Study Objectives: Home sleep apnea testing (HSAT) is an efficient and cost-effective method of diagnosing obstructive sleep apnea (OSA). However,
nondiagnostic HSAT necessitates additional tests that erode these benefits, delaying diagnoses and increasing costs. Our objective was to optimize this diagnostic
pathway by using predictive modeling to identify patients who should be referred directly to polysomnography (PSG) due to their high probability of
nondiagnostic HSAT.
Methods: HSAT performed as the initial test for suspected OSA within the Veterans Administration Greater Los Angeles Healthcare System was analyzed
retrospectively. Data were extracted from pre-HSAT questionnaires and the medical record. Tests were diagnostic if there was a respiratory event index (REI) ≥ 5
events/h. Tests with REI < 5 events/h or technical inadequacy—two outcomes requiring additional testing with PSG—were considered nondiagnostic. Standard
logistic regression models were compared with models trained using machine learning techniques.
Results: Models were trained using 80% of available data and validated on the remaining 20%. Performance was evaluated using partial area under the
precision-recall curve (pAUPRC).Machine learning techniques consistently yielded higher pAUPRC than standard logistic regression, which had pAUPRCof 0.574.
The random forest model outperformed all other models (pAUPRC 0.862). Preferred calibration of this model yielded the following: sensitivity 0.46, specificity 0.95,
positive predictive value 0.81, negative predictive value 0.80.
Conclusions: Compared with standard logistic regression models, machine learning models improve prediction of patients requiring in-laboratory PSG. These
models could be implemented into a clinical decision support tool to help clinicians select the optimal test to diagnose OSA.
Keywords: home sleep apnea testing, machine learning, obstructive sleep apnea, predictive model
Citation: Stretch R, Ryden A, Fung CH, Martires J, Liu S, Balasubramanian V, Saedi B, Hwang D, Martin JL, Della Penna N, Zeidler MR. Predicting nondiagnostic
home sleep apnea tests using machine learning. J Clin Sleep Med. 2019;15(11):1599–1608.

BRIEF SUMMARY
Current Knowledge/Study Rationale: Patients in whom obstructive sleep apnea was diagnosed through a single home sleep apnea test represent
the best-case scenario in terms of balancing the health needs of the patient with the economic and financial impact of sleep testing. Unfortunately, home sleep
apnea testing alone is insufficient for a substantial proportion (9% to 35%) of patients. This adds largely underrecognized expense to the process including the
direct cost of a second sleep test, as well as the indirect costs of a delayed or missed diagnosis and testing burden on the patient.
Study Impact: This study demonstrates how machine learning can help clinicians to better leverage existing sleep diagnostic modalities to improve patient
and healthcare system outcomes without increasing costs.

INTRODUCTION

Obstructive sleep apnea (OSA) is a medical and economic
challenge, affecting 4% to 37% of the adult population
depending on the diagnostic criteria used and population
studied.1–3 Diagnostic testing for OSA most commonly takes
one of the following forms: “attended” in-laboratory poly-
somnography (PSG) or “unattended” home sleep apnea testing
(HSAT) using a portable device. Although HSAT is appealing
because of its lower cost and greater convenience for patients,
these benefits are only realized if the test is definitive for the
diagnosis of OSA. The optimal approach to triaging patients to
one of these two tests is not yet fully understood.

Use of HSAT as the first-line diagnostic modality in ap-
propriately selected patients with high pretest probability of
moderate to severe OSA has gained widespread acceptance

among sleep medicine physicians and accrediting bodies.4 This
has dramatically reduced the need for PSGs. Adoption has been
predominantly driven by third-party payor requirements and
the lower cost of HSAT. Although the widespread availability
of HSAT devices has resulted in greater diagnostic through-
put and lower overall costs, 15% to 30%5,6 of patients cannot be
definitively classified as having OSA or not following HSAT.
This suggests a suboptimal patient selection process.

Nondiagnostic HSAT occurs when the recording is techni-
cally inadequate (ie, due to signal loss) or appears normal with a
respiratory event index (REI) < 5 events/h in a patient with
suspected OSA. Because of a false-negative rate that may be as
high as 17%, the American Academy of Sleep Medi-
cine (AASM) recommends PSG after nondiagnostic HSAT
results.4,7 These guidelines recommend against repeat HSAT
due to the high likelihood that a second test will also be
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nondiagnostic, and increased risk of patients dropping out of the
diagnostic process prior to reaching a definitive conclusion.4,8

For these reasons, indiscriminate use of HSAT carries a risk
of harm in the form of delayed diagnoses, missed diagnoses,
additionalfinancial burden to the patient and health care system,
and misallocation of limited diagnostic resources.

Predictive models are needed to help clinicians determine
which patients are unlikely to benefit and could be harmed by
attempts to obtain a diagnosis of OSA using HSAT. Although
there are two different etiologies of nondiagnostic home sleep
apnea tests (HSATs), both necessitate the same management,
which is referral for PSG. Training a predictive model to dis-
tinguish between these two etiologies is therefore not necessary
for the purpose of optimizing the diagnostic pathway. Fur-
thermore, attempts to do so may detract from the predictive
accuracy of the model as a consequence of transitioning from
binary classification to multinomial classification, which
tends to increase model complexity and classification errors.
We therefore focused our efforts on developing a binary
classifier capable of predicting which patients are likely to
have nondiagnostic studies, irrespective of etiology.

Prior studies in a Veterans Administration (VA) population
have demonstrated that patients with nondiagnostic HSAT
are typically younger, have smaller collar size and body mass
index (BMI), are less likely to have hypertension and more
likely to carry a diagnosis of posttraumatic stress disorder.9

Relative to patients with nondiagnostic results due to low
REI, those with technically inadequate tests tend to be older
with larger collar size and BMI, as well as more likely to have
OSA on subsequent PSG (a risk that increases with age across
both subtypes of nondiagnostic HSATs).10 Higher Insomnia
Severity Index (ISI) scores correlate with increased risk of
a nondiagnostic result on repeat HSAT after an initial non-
diagnostic test.11

Machine learning offers a promising approach for prediction
of nondiagnostic HSATs. Compared to traditional statistical
models such as logistic regression, machine learning algo-
rithms offer greater predictive power—albeit often by incurring
a decrement in the ability todrawinferencesabout the relationships
between different variables. The aim of this retrospective analysis
was to comparemachine learning techniques to standard statistical
methods in development of a predictive model—based on pre-
HSAT questionnaires, patient demographics and comorbidities
extracted from the electronic health record—capable of de-
termining which patients will have nondiagnostic HSAT of
any type.

METHODS

Data Source and Analytical Packages
Data from patients undergoing HSAT with a Philips Respironics
Stardust II (Murrysville, Pennsylvania, United States) device for
initial evaluation of suspected OSA at the VA Greater Los
Angeles Healthcare System (VA-GLAHS) between October
29, 2013 and July 31, 2014 were analyzed. Pre-HSAT surveys
were administered including the following instruments: Berlin
questionnaire,12 STOP-BANG,13 ISI,14,15 Epworth Sleepiness

Scale,16 Brief Restless Legs Questionnaire17 and Patient Health
Questionnaire-9 (PHQ-9).18 Additional patient demographics
and health data were extracted from the VistA Computerized
Patient Record System (Table 1). Patientswere excluded if they
already carried a sleep disorder diagnosis or had previously
undergone any form of diagnostic sleep test. Patients referred
for a sleep study at VA-GLAHS are screened by sleep clini-
cians for contraindications to HSAT in accordance with AASM
guidelines, excluding patients with such contraindications
from analysis.

All data preprocessing, modeling, and analysis was
performed using RStudio (version 1.1.423, RStudio, Inc.,
Boston, Massachusetts, United States) and the caret, glmnet,
kernlab, randomForest, xgboost, nnet, RANN, diffuStats and
PRROC packages.19–28

Data Preparation
Each HSAT result was labeled as either diagnostic (obstructive
or central sleep apnea diagnosed with REI ≥ 5 events/h) or
nondiagnostic (normal or technically inadequate). Hypopneas
were defined as ≥ 30% decrease in airflow for ≥ 10 seconds with
an associated ≥ 3% oxygen desaturation or an arousal. Clini-
cians at VA-GLAHS generally adhere to the definition of
technical adequacy proposed by Kapur et al4: “a minimum of
4 hours of technically adequate oximetry and flow data, ob-
tained during a recording attempt that encompasses the habitual
sleep period.” If clinically appropriate, physicians could use
their professional judgement to deviate from these guidelines.
For example, if HSAT with only 3 hours of recording time
showed clear evidence of severe OSA, then the study would be
deemed diagnostic. This is in line with the aim of our study to
facilitate increased diagnostic throughput in clinical practice.
The dataset was split into training and testing sets using 4:1
random sampling within each outcome class such that the
overall class distribution was maintained. Bivariate analysis
of patient characteristics stratified by HSAT outcome was
conducted using χ2 tests (or Fisher exact where appropriate) and
Kruskal-Wallis rank-sum tests for categorical and continuous
variables, respectively.

Missing data were handled using mixed methods. Data
restoration was the preferred approach where possible. For
example, the Berlin questionnaire is a screening tool that uses
10 questions across 3 categories to classify patients in a bi-
nary manner as “high risk” or “low risk.” Depending on which
question responses aremissing and fromwhich categories those
questions came, absent responses are in many cases noncontrib-
utory insofar as they would not alter a patient’s risk classification
when using the questionnaire’s validated scoring method. In-
deed, some patients are classified as “high risk” by this tool on
the basis of as few as 2 of the 10 questions. Using a minimum
viable data approach, we were able to reconstruct the Berlin
classification formost patients and reduce the percent ofmissing
values for this field from 39.5 to 12.4%. Remaining missing
values were then handled through imputation using a k-nearest
neighbor (KNN) algorithm. This enabled the use ofmodel types
that lack integrated handling of missing data without necessi-
tating listwise deletion.
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Modeling Training and Validation
Candidate input variables were limited to those whose value
could be known prior to performing HSAT (Table 1). We
evaluated several different predictive model types: standard
logistic regression, regularized logistic regression, KNNs,
random forests, support vector machines, gradient boosted
decision trees (GBDTs) and artificial neural networks. For the
regularized logistic regression models, we employed two
common methods of penalizing large regression coefficients
to reduce overfitting: least absolute shrinkage and selection
operator (LASSO) and ridge regression, also known as L1 and
L2 regularization respectively.29,30 For models requiring
hyperparameter tuning, a grid search approach was employed.

For modeling purposes, a nondiagnostic test was considered
a positive outcome (ie, correctly predicting that a test would
be nondiagnostic was considered a true positive). Maximizing
both sensitivity (recall) and positive predictive value (PPV)
(precision) were the highest priority. We therefore configured
the model training algorithm to optimize the area under the
precision-recall curve, which is a metric that balances these two
characteristics. More specifically, models optimized the partial
AUPRC (pAUPRC) where 0 ≤ recall ≤ 0.5 to improve early
information retrieval.31,32

For model validation, we first performed k-fold repeated
cross-validation using 10 folds of the training data. Variables
were centered, scaled, and missing values imputed within each
fold of cross-validation to avoid contamination of training folds,
which could increase overfitting. An additional outer valida-
tion step was then performed on the 20% holdout testing set.
pAUPRCwas the primarymetric for evaluation and comparison
of models.

RESULTS

A total of 613 patients underwent HSAT during the study pe-
riod. Patient characteristics stratified by HSAT outcome are
shown in Table 2. Bivariate analyses revealed that patients

with nondiagnostic results had significantly lower values for
age, weight, BMI, and neck circumference. This difference was
even more profound for the subgroup of patients with non-
diagnostic results due to normalREI comparedwith those due to
technical inadequacy (Table S1 in the supplemental material).
A greater proportion of patients with nondiagnostic results as
compared to those with diagnostic tests self-identified as His-
panic, had higher scores on the PHQ-9 and ISI questionnaires,
and lower scores on the STOP-BANG questionnaire. Presence of
hypertension, atrial fibrillation, coronary artery disease and con-
gestive heart failure were significantly more common. There was
no observed relationship betweenHSAToutcome and presence of
diabetes or total score on ESS.

Data from 491 patients (80.1%) were used for training. The
remaining data were set aside for evaluation of the predictive
models’ performance on data not previously seen. Pre-HSAT
sleep-related questionnaires (single item and composite scores)
combined with additional patient demographic and health data
yielded 62 discrete variables. Of these, 35were used as inputs in
the random forest model, which was the best-performing model
overall (Table 1). The most important predictors were as fol-
lows (in descending order): age, weight, BMI, Berlin ques-
tionnaire itemonapneas, collar size, height, score on ISI, PHQ-9
question on work impairment, STOP-BANG question on
snoring, and ISI question on difficulty falling asleep. Nonlinear
models produced using machine learning techniques are often
not as readily interpretable as traditional linear regression an-
alyses. Inmostmachine learningmodels, there are no regression
coefficients to indicate the magnitude and directionality of
change in the outcome for a given change in an input. We can,
however, gain a basic understanding of the relative importance
of these inputs to themodel in relation to one another (Figure 1).

Receiver operating characteristic (ROC) curves plot sensi-
tivity (proportion of disease-positive patients who test positive)
against false-positive rate (proportion of disease-negative pa-
tients who test positive). Both sensitivity and false-positive rate
are prevalence-independent measures. When prevalence
differs substantially from 50%, ROC curves can create dramatic
visual and quantitative distortion of the test’s actual performance.

Table 1—Candidate input variables for the predictive model.

Manually Sourced Automatically Sourced

Patient Responses Measurements Comorbidities Demographics Measurements

Abnormal movements during sleep Abdominal size Atrial fibrillation Age a Body mass index a

Berlin questionnaire a,b Collar size a CAD or CHF Ethnicity a Height a

Brief restless legs questionnaire Hip size COPD Sex a Weight a

Disturbing dreams or nightmares Diabetes mellitus Race a

Epworth Sleepiness Scale a,b Hypertension a

Insomnia Severity Index a CVA

PHQ-9 a,b STOP-BANG a,b PTSD

Candidate inputs evaluated during model training included manually and automatically sourced variables. The latter refers to those extractable from the
electronic health record prior to the patient undergoing their sleep test. a Variable included as input to the finalmodel. b Subset of questionnaire items included as
inputs to the final model. CAD = coronary artery disease, CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, PHQ-9 = Patient
Health Questionnaire-9, PTSD = posttraumatic stress disorder.
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Table 2—Patient characteristics stratified by outcome of home sleep apnea testing.

Patient Characteristic Missing (%) Diagnostic (n = 427) Nondiagnostic (n = 186) P

Age, years 58.1 [44.2, 66.0] 48.6 [33.3, 63.1] < .001

Male, % 413 (96.7) 174 (93.5) .115

Height, inches 70.0 [67.0, 72.0] 70.0 [67.8, 71.5] .485

Weight, lb 222.0 [196.0, 250.0] 199.0 [180.0, 230.0] < .001

Body mass index > 35 kg/m2, % 135 (31.6) 30 (16.1) < .001

Neck circumference > 17” (male) or 16” (female), % 278 (65.1) 86 (46.2) < .001

Hispanic, % 12.6 146 (39.6) 94 (56.3) < .001

Race, % 18.1 < .001

American Indian or Alaska Native 5 (1.4) 5 (3.2)

Asian 38 (11.0) 35 (22.3)

Black or African American 68 (19.7) 23 (14.6)

Native Hawaiian or other Pacific Islander 74 (21.4) 45 (28.7)

White 160 (46.4) 49 (31.2)

Comorbidities, %

Atrial fibrillation 24 (5.6) 3 (1.6) .045

Cerebrovascular accident 8 (1.9) 2 (1.1) .731

Chronic obstructive pulmonary disease 20 (4.7) 6 (3.2) .545

Coronary artery disease or congestive
heart failure

49 (11.5) 11 (5.9) .047

Diabetes mellitus 108 (25.3) 33 (17.7) .053

Hypertension 0.8 272 (64.0) 83 (45.4) < .001

Posttraumatic stress disorder 150 (35.1) 74 (39.8) .313

Epworth Sleepiness Scale 2.8 11.0 [7.0, 16.0] 11.0 [7.0, 15.0] .996

Epworth Sleepiness Scale, Binned, % 2.8 .462

0–10: Normal daytime sleepiness 197 (47.5) 80 (44.2)

11–24: Excessive daytime sleepiness 218 (52.5) 101 (55.8)

Patient Health Questionnaire-9 (PHQ-9) score 10.3 11.0 [6.0, 17.0] 13.0 [7.0, 19.0] .003

Positive Brief Restless Legs Screen, % 14.4 144 (39.9) 59 (36.0) .449

STOP-BANG 3.6 5.0 [4.0, 6.0] 4.0 [3.0, 5.0] < .001

STOP-BANG, Binned, % 3.6 < .001

0–2: Low risk 8 (1.9) 24 (13.9)

3–4: Intermediate risk 129 (30.9) 78 (45.1)

5–8: High risk 281 (67.2) 71 (41.0)

Insomnia Severity Index 8.5 17.0 [12.0, 20.2] 19.0 [15.0, 23.0] < .001

Insomnia Severity Index, Binned, % 8.5 .003

0–7: No significant insomnia 39 (9.9) 14 (8.3)

8–14: Subthreshold insomnia 110 (28.1) 26 (15.4)

15–21: Moderate insomnia 160 (40.8) 76 (45.0)

22–28: Severe insomnia 83 (21.2) 53 (31.4)

Home sleep apnea test outcome, % –

Obstructive sleep apnea 416 (97.4) 0 (0.0)

Central sleep apnea 11 (2.6) 0 (0.0)

Normal 0 (0.0) 78 (41.9)

Technically inadequate 0 (0.0) 108 (58.1)

Continuous variables are presented as median and interquartile range and statistical testing performed using the Kruskal-Wallis rank-sum test. Categorical
variables are presented as n (%) and statistical testing performed using the χ2 test (or Fisher exact test if the expected cell count was ≤ 5). The percentage of
missing values is zero unless otherwise shown.
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In contrast, precision-recall curves plot the PPV (precision) of
the test against sensitivity (recall). Because PPV is dependent
on disease prevalence, these curves provide better visual and
quantitative representations of actual test performance in a
population for which disease prevalence is known. Both ROC
and precision-recall curves for the most pertinent models are
shown in Figure 2.

Performance metrics for all models are shown in Table 3.
Standard logistic regression did not perform as well as other
models (pAUPRC 0.574; PPV 0.56 when calibrated to identify
50% of nondiagnostic tests). The penalized regression and
artificial neural network models had marginally better perfor-
mance, as did the support vectormachine andKNNmodels. The
GBDT and random forest models both demonstrated sub-
stantially better discrimination. The random forest performed
best (pAUPRC 0.908; PPV 0.76 when calibrated to identify
50% of nondiagnostic tests). Our preferred calibration for this
model yielded sensitivity 0.46, specificity 0.95, PPV 0.81 and
negative predictive value 0.80. We can evaluate the effect of
implementing thismodel to guide testing of every 1,000 patients
currently being referred for HSAT at the VA-GLAHS (as-
suming all patients with nondiagnostic HSAT subsequently
undergo PSG per AASM guidelines). Without the use of our
model, 1,000 patients undergoHSAT; 303 of these patients also
undergo PSG due to nondiagnostic HSAT; no patients are re-
ferred directly to PSG; total tests performed are HSAT in 1,000
and 303 PSGs. In contrast, when using our model: 828 patients
undergo HSAT; 164 of these patients also undergo PSG due to

nondiagnostic HSAT; 172 patients are referred directly to PSG;
total tests performed areHSAT in 828 and 336PSGs. In summary,
the effects of the model are as follows:

· 139 fewer patients (45.9% decrease) must undergo both
HSATand PSGbefore obtaining a diagnosis. These patients
would instead be diagnosed on the first test.

· 172 fewer home sleep apnea tests (17.2% decrease) at
the expense of 33 additional PSGs (10.9% increase).
This represents a net cost savings based on published
literature demonstrating a twofold to fourfold greater cost
of PSG relative to HSAT.6,33,34

· 10.5% absolute increase (80.2% up from 69.7%) in the
diagnostic yield of HSATs.

· 13.9% absolute increase (83.6% up from 69.7%) in the
diagnostic yield of first-time sleep tests (irrespective of
whether the first test is by HSAT or a PSG).

DISCUSSION

These findings demonstrate the viability of using machine
learning models to predict which patients are likely to require
PSG after initial HSAT due to a nondiagnostic result, irre-
spective of etiology. In existing referral pathways for the di-
agnosis of OSA, assessment of patient suitability for HSAT
depends primarily on the physician’s clinical impression of
the pretest probability for OSA because no validated clini-
cal decision rules currently exist to serve this purpose.

Figure 1—Relative importance of inputs to the random forest model.

Many machine learning models have their own idiosyncratic method of determining the relative importance of each input. Random forests use permutation
importance. The 10 most important inputs to the random forest model are shown. Importance values are relative to the most important predictor, in this case
patient age, which is assigned a value of 1.0. PHQ-9 = patient health questionnaire.
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Limited evidence suggests patients referred for HSAT by sleep
specialists are somewhat less likely to have a nondiagnostic test
than those referred by providers without specialty training
(18.7% versus 25.6%, P < .001)5; however, the nondiagnostic
rate remains high even in this subgroup. It is noteworthy that the
substantial reduction in nondiagnostic tests seenwith ourmodel

was achieved in a population that has already been screened by
sleep clinicians for any contraindications to HSAT. This sug-
gests there would be an even more dramatic benefit to using
similarmodels in unscreened populations, such as at institutions
where clinicians without training in sleep medicine routinely
order HSATs (often due to a shortage of sleep clinicians).

Figure 2—Receiver operating characteristic (top) and precision-recall (bottom) curves.

Curves for the standard logistic regression, gradient boosted decision tree (GBDT), and random forestmodels based on holdout test set predictions. A “positive”
case or prediction refers to a nondiagnostic home sleep apnea test outcome. Regions with a red border represent the portion of each curve targeted for
optimization using the partial area under the precision-recall curve metric. The blue diamond indicates the preferred cutoff point for the random forest model.
The green and purple diamonds indicate points with identical sensitivity on the curves representing the other models.
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The probability of HSAT alone being adequate to diagnose
OSA is a function of both the pretest probability of OSA and the
pretest probability of a nondiagnostic result from any cause.
Overreliance on the pretest probability of OSA in the setting of a
substantial rate of nondiagnostic tests leads to an erosion of the
benefits of HSAT. Instead, we advocate for the use of predic-
tive modeling to facilitate a referral framework that decreases
wastage of diagnostic resources without limiting access
to testing.

We opted not to delineate between two types of non-
diagnostic HSAT (ie, technically inadequate or normal with
REI < 5 events/h) because multinomial classification would
increase model complexity and the quantity of training data
required to achieve the same accuracy. This performance decre-
ment to the model could not be justified because—from the
standpoint of clinicians and patients—the relevant endpoint is
whether or not HSAT prevents the need for PSG.

Although there is debate regarding the significance of un-
treated mild OSA, we used a cutoff REI ≥ 5 events/h to classify
HSAT as diagnostic because this is both the AASM recom-
mendation and our institutional practice. Alternative REI cut-
offs could certainly be usedwith our model after performing the
requisite validation.

We found that machine learning approaches had superior
performance comparedwith standard statistical techniques.Our
results illustrate some of the important limitations of using
standard, nonpenalized logistic regression for the type of
classification task in this paper. First, the large number of
variables in the dataset increases the risk of overfitting, which
can lead to a higher level of predictive error when applying the
model to a new population. Second, logistic regression is a gen-
eralized linear model with only limited flexibility to account

for more complex data patterns (eg, through interaction terms
and polynomials).

KNN is a versatile nonparametric classification technique. Any
given patient’s HSAT outcome can be predicted based on the
observed outcome for most of the kmost similar patients in the
training set, where k is a tuned hyperparameter.We found k = 75
achieved modest improvements over standard logistic re-
gression.Drawbacks to aKNNapproach include computational
expense at time of deployment because generating a prediction
requires calculating the distances from each new input to every
training example in the dataset. This approach also necessitates
the training dataset being available on the deployment system.

Decision trees (eg, GBDTs and random forests) are ensemble
methods capable of learning nonlinear relationships. Gradient
boosting involves training sequential classifiers wherein each
classifier corrects for the errors of those before them, mini-
mizing bias and improving predictive accuracy.35 In contrast,
random forests maximize predictive accuracy through re-
ductions in variance rather than bias. Bothmethods demonstrate
robustness against outliers, handlemixed feature typeswell, and
are more appealing thanKNNmodels because they incur minimal
system overhead at runtime and do not require the training dataset
to remain available during deployment. Furthermore, both have
consistently been shown to produce high levels of predictive
accuracy across a broad range of problems. It is unsurprising these
were the two best performing models in our analysis. Similarly,
given the relatively small size of the dataset it could be reasonably
anticipated that a neural network architecture would not be able to
exceed the predictive accuracy of these tree-based methods.

The results of this study suggest that implementation of a
predictivemodel into an electronic clinical decision support tool
(CDST) to help providers choose between ordering HSAT or

Table 3—Model performance on the validation dataset withheld during training.

Model pAUPRC Sensitivity Specificity PPV NPV F1-Score

Standard logistic regression 0.574 0.30 0.93 0.65 0.75 0.41

“ ” 0.51 0.82 0.56 0.80 0.54

Artificial neural network 0.671 0.30 0.94 0.69 0.75 0.42

“ ” 0.49 0.86 0.60 0.79 0.54

Ridge regression 0.673 0.30 0.93 0.65 0.75 0.41

“ ” 0.51 0.88 0.66 0.81 0.58

LASSO regression 0.674 0.30 0.92 0.61 0.75 0.40

“ ” 0.51 0.86 0.61 0.80 0.56

Support vector machine 0.732 0.30 0.94 0.69 0.75 0.42

“ ” 0.51 0.87 0.63 0.80 0.57

k-nearest neighbor 0.766 0.27 0.95 0.71 0.75 0.39

“ ” 0.51 0.85 0.59 0.80 0.55

Gradient boosted decision tree 0.801 0.30 0.95 0.73 0.76 0.42

“ ” 0.51 0.92 0.73 0.81 0.60

Random forest 0.862 0.30 0.96 0.79 0.76 0.43

“ ” 0.51 0.93 0.76 0.81 0.61

Two illustrative cutpoints are shown for each model that approximate sensitivities of 0.30 and 0.50. A “positive” case or prediction refers to a nondiagnostic
outcome on home sleep apnea testing. pAUPRCwas calculated for the region where 0≤ recall≤ 0.5. LASSO= least absolute shrinkage and selection operator,
NPV = negative predictive value, pAUPRC = partial area under the precision-recall curve, PPV = positive predictive value.
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PSG is capable of delivering meaningful improvements in
clinical and economic endpoints. On the basis of all HSAT
referrals in this study having been reviewed for appropriateness
by sleep physicians, we believe this holds true for providers
with or without formal sleep medicine training. Although we
reported the effects of our final model using a fixed classifi-
cation probability threshold (with corresponding sensitivity and
specificity), this model could also be implemented using a
dynamic threshold (Figure 3) wherein the cutoff is automati-
cally adjusted in response to fluctuations in supply and demand
for HSATs relative to PSGs within the health care system in
which the CDST is deployed. For example, if PSG wait time is
substantially lower than usual the threshold could be altered
such that the CDST refers a smaller fraction of patients toHSAT
than it otherwise would (ie, more patients undergo PSG).
Sensitivity (the fraction of patients who would have had non-
diagnostic HSAT results that are instead referred for PSG by the
CDST) and the number of patients in whom a diagnosis was
made on their initial test would both increase, albeit at the
expense of a small decrement to the PPV.

One limitation of this study is the relatively small and pre-
dominantly male sample sourced from a single health care
system. This is of particular importance because women of-
ten have milder presentations of OSA than men that may in-
crease the likelihood of a nondiagnostic study. Our follow-up
study will include a non-VA health care system among the
participating centers and thereby enable a more equal repre-
sentation of women in the sample. A second limitation is the use
of a relatively older HSAT device. Although it was initially

thought this older device might have contributed to the higher
rate of nondiagnostic studies in our sample (30.3%), our group
has since collected unpublisheddata on404 consecutiveHSATs
performed using Vyaire Medical NOX-T3 (Mettawa, Illinois,
United States) devices that show a similar nondiagnostic rate
(31.9%). We suspect this somewhat higher rate relates to the
VA-GLAHS serving a predominantly urban population of
Veterans, many of whom have comorbid psychiatric disease, and
many with physical disabilities and poor social support. Consis-
tent with this, Tovar Torres et al published nondiagnostic rates as
high as 35.1% using the NOX-T3 in their similarly urban Veteran
population at the John D. Dingell VA Medical Center in Detroit,
Michigan.36 A final additional limitation is that our model’s
performance relies on test referral patterns remaining approx-
imately unchanged comparedwith priormodel implementation;
otherwise, revalidationmay be required; however, this is true of
most if not all predictive models and clinical decision rules.

A larger multicenter retrospective analysis utilizing newer
HSATdevices is underway to confirm thesefindings and further
refine the predictive model. Our future research plans include
the development of a CDST incorporating this refined model,
followed by a prospective randomized trial across multiple
health care systems to validate the CDST.

ABBREVIATIONS

AASM, American Academy of Sleep Medicine
BMI, body mass index

Figure 3—Alteration of model characteristics by variation of the cutoff threshold.

The effect on recall and precision of varying the threshold at which the random forest model will predict a given patient’s home sleep apnea test will
be nondiagnostic.
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CDST, clinical decision support tool
ESS, Epworth Sleepiness Scale
GBDT, gradient boosted decision tree
HSAT, home sleep apnea testing
HSATs, home sleep apnea tests
ISI, Insomnia Severity Index
KNN, k-nearest neighbor
LASSO, least absolute shrinkage and selection operator
OSA, obstructive sleep apnea
pAUPRC, partial area under the precision-recall curve
PHQ-9, Patient Health Questionnaire
PPV, positive predictive value
PSG, polysomnography
REI, respiratory event index
VA-GLAHS, Veterans Administration-Greater Los Angeles

Healthcare System
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