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Abstract

Proteins circulating in the blood are critical for age-related disease processes; however, the serum 

proteome has remained largely unexplored. To this end, 4137 proteins covering most predicted 
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extracellular proteins were measured in the serum of 5457 Icelanders over 65 years of age. 

Pairwise correlation between proteins as they varied across individuals revealed 27 different 

network modules of serum proteins, many of which were associated with cardiovascular and 

metabolic disease states, as well as overall survival. The protein modules were controlled by cis- 

and trans-acting genetic variants, which in many cases were also associated with complex disease. 

This revealed co-regulated groups of circulating proteins that incorporated regulatory control 

between tissues and demonstrated close relationships to past, current, and future disease states.

Human serum contains a dynamic flux of proteins synthesized by tissues and cells of the 

body (1). The secretome is complex and likely involves 15% or more of all proteins (2). 

Secreted proteins and circulating blood cells mediate global homeostasis via intercellular 

communication, immune responses, vascular and endothelial cell function, tissue 

remodeling, fluid exchange, and nutrient assimilation (3). Defined functional roles for many 

individual proteins in circulation remains to be ascribed owing to our limited ability to 

monitor their production, accumulation, and distribution in both model systems and humans.

Heterochronic parabiosis experiments that surgically joined the circulation of young and old 

mice showed a system-wide effect on the re generative capacity of organs (4, 5). Thus, 

serum proteins and other circulating factors may directly regulate complex processes such as 

aging and the development of common chronic diseases. In contrast to monogenic diseases, 

complex diseases are caused not by proteins acting alone but instead by highly interacting 

protein networks that may result from genetic and environmental perturbations and 

ultimately drive physiological states toward disease (6–9). Because blood mediates 

coordination between nonadjacent tissues, it is of the highest interest to understand if and 

how this regulation occurs via serum proteins and their networks.

A custom-designed aptamer-based multiplex proteomic platform

To date, high-throughput detection and quantification of serum proteins in a large human 

population have been hampered by the limitations of proteomic profiling technologies. The 

Slow-Off rate Modified Aptamer (SOMAmer)–based technology has emerged as a 

proteomic profiling platform (SOMAscan) with high sample throughput and sensitivity of 

detection (10, 11). We designed an expanded custom version of this platform to include 

proteins known or predicted to be found in the extracellular milieu, including the predicted 

extracellular domains of single- and certain multipass transmembrane proteins. This resulted 

in an updated array of 5034 SOMAmers, 4783 of which recognize 4137 individual human 

proteins (table S1)—i.e., some proteins are targeted by more than one aptamer, whereas the 

rest recognize nonhuman targets. We applied the platform to a large population-based 

sampling of 5457 participants in the AGES Reykjavik study (12), a prospective study of 

deeply phenotyped and genotyped individuals older than 65 years of age. Table S2 reports 

baseline characteristics of the study population, while fig. S1 shows the workflow of the 

present study. For direct and inferential measures of aptamer specificity, see tables S3 to S6 

and figs. S2 and S3.
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Identification and characterization of serum protein networks

Biological networks are characterized by a non-random distribution of links between objects 

that are scale-free in nature (13). We reconstructed the protein co-regulation network using 

weighted gene-to-gene coexpression analysis (14). Co-regulation networks describe 

functional relationships that can reflect both physical and nonphysical interactions between 

objects, including proteins. The parameters used for constructing the serum protein network 

were chosen on the basis of the topological scale-free criterion (14) and tuned to enhance 

signal-to-noise ratio in the protein adjacency matrix (Fig. 1A and fig. S4, A and B). This 

analysis established that serum proteins cluster into 27 highly structured co-regulatory 

modules ranging in size between 20 and 921 proteins (table S7), whereas 15% fell outside of 

these modules. We examined the preservation of the network architecture by randomly 

splitting the AGES cohort into training and test sets, and applying a suite of statistics as 

previously described (15). We observed strong preservation of the overall structure of the 

network (Fig. 1B). Permutation testing of the data indicated that these modules were 

unlikely to have occurred by chance (fig. S4C). Pairwise correlation of proteins could be 

controlled at any of the many steps from transcription to secretion and clearance, and here 

we use the term “co-regulation” to encompass all such regulation between proteins.

We applied various annotation tools and found that the modules were enriched for distinct 

functional and tissue-specific signatures (table S8). This suggests that, to some degree, 

peripheral proteins cluster according to their function and/ or tissue of origin. Individual 

modules frequently contained proteins from many distinct tissues, indicating that individual 

tissues were not the sole contributor to any module (tables S9 and S10). Indeed, comparison 

of the serum protein modules to 2672 coexpression mRNA modules constructed from solid 

tissues (16) revealed some, but largely an insignificant, agreement between the two (fig. S5), 

suggesting that serum protein co-regulation is distinct from that of most tissues. Thus, the 

human serum proteome appeared as functionally distinct modules of proteins produced by 

many tissues of the body.

We characterized each module’s eigenprotein [E(q), where q denotes a module] through a 

singular value decomposition and transformation of the variable protein levels for any given 

module. Each E(q) is a unique representation that most closely reflects the collective 

behavior of that module, explaining on average 40% of the protein covariance. Some 

modules’ E(q)s were more correlated to others and formed several superclusters of modules 

with shared functional categories (table S11 and fig. S6). We assessed if the modules were 

related to disease status of the AGES donors. Association of module E(q)s to various 

outcomes—including coronary heart disease (CHD), heart failure (HF), type 2 diabetes 

(T2D), visceral and subcutaneous adipose tissue (VAT and SAT, respectively), and metabolic 

syndrome (MetS)— were found (table S12). Whereas some modules showed no association 

to any disease measure, others were associated to some or all of them (table S12; Fig. 2, A to 

K; and fig. S7, A to I). Notably, superclusters, although internally consistent, often showed 

opposing relationships between superclusters to CHD-related outcomes (table S12; Fig. 2, E, 

H, and K; and fig. S7, B, E, and H), which may reflect differential roles of the protein 

modules in disease. The two modules PM1 and PM23 associated with T2D were also 

associated with MetS-, VAT-, SAT-, and CHD-related outcomes in a directionally consistent 
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manner (table S12 and Fig. 2, B and K). Finally, modules associated with incident disease 

and to all-cause or post-CHD mortality (table S12; Fig. 2, C, F, and I; and fig. S7, C, F, and 

I) indicate that the protein network predicted future events and disease outcome. Time 

between diagnosis and sample collection had no effect on the association of individual 

proteins to prevalent disease (fig. S8). Thus, individual disease associations of the protein 

modules link the shared functions of many proteins to common diseases.

The networks were scale-free in nature where a few protein nodes were highly connected. 

These are often referred to as network hubs, which organize network connectivity and 

information flow (17). Studies of gene networks from solid tissues suggest that hub nodes 

tend to be essential and evolutionarily conserved (18). The scaled intramodule connectivity 

Ki =
ki

kmax
 of proteins to various outcomes, where protein hubs showed stronger association 

to phenotypic measures than less well connected proteins (Fig. 3, A to L, and fig. S9, A to I). 

We observed strong reproducibility of the hub status of proteins through the network 

preservation analysis (fig. S10). In summary, the hub proteins consistently showed stronger 

association to various disease-related outcomes compared to proteins located in the 

periphery of the network. Thus, the structure of the protein network derived solely from 

measured protein variation was aligned with disease and phenotype variation across donors.

Genetic variants influence serum protein levels

Genome-wide association studies (GWAS) have identified thousands of common DNA 

sequence variants affecting human diseases (19). By integrating GWAS signals with genetic 

variants that affect intermediate traits like mRNA and/ or protein, the identification of the 

causal candidates and pathways can be enhanced (6–9). Protein single-nucleotide 

polymorphisms (pSNPs) are DNA sequence variants associated with allelic imbalance in 

protein levels. Using Bonferroni correction, we identified 1046 significant cis pSNP– protein 

associations within a 300-kb window across the corresponding protein-coding sequences 

(table S13 and fig. S11A). Cross-referencing cis pSNP-protein pairs to cis eSNPs 

(expression SNPs)– transcript data from more than 30 tissues and cells (20) revealed an 

overlap of 37.3% (table S14). This suggests that ~60% of the genetic effects on serum 

protein levels are mediated either by an as yet unknown transcriptional effect and/or by 

posttranscriptional mechanisms. The cis pSNP-proteins were underrepresented among 

highly connected protein nodes (fig. S11, B and C), consistent with the observation that 

there was reduced selective pressure on non–hub proteins (21). We observed examples of cis 

protein effects likely underlying reported GWAS risk loci for T2D, adiposity, and/or CHD 

(fig. S12A and tables S15 and S16).

We also found that various lead GWAS SNPs mediate distal trans effects on serum proteins 

(figs. S12, B to D, and S13A to E, and table S16). Many of these risk loci influenced 

proteins in both cis and trans, including the risk locus rs579459 for CHD upstream of ABO 
(fig. S12D and table S16), of which many were overrepresented in the PM27 module (fig. 

S12E). Genetic pleiotropy is a well-established phenomenon at the ABO locus (fig. S13G) 

(22). Indeed, the ABO blood groups have been linked to many diseases, which is in part 

mediated through their effect on the prothrombotic risk factor vWF (von Wille-brand factor) 
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(23, 24), a protein also affected by rs579459 in trans (table S16). In light of these results, all 

cis-acting pSNPs were tested directly for trans effects on proteins, revealing that 16% of all 

cis pSNPs affected in total 911 proteins in trans (table S17). Notably, twice as many, or 

40.7% of cis pSNPs affecting proteins in trans, matched reported GWAS loci, compared to 

20.7% among all cis pSNPs (tables S15 and S17), suggesting a link between trans protein 

regulation and disease variation. Finally, we confirmed on average 80% of previously 

reported cis and 74% of trans effects on plasma proteins in our dataset (table S18 and fig. 

S14). The finding that GWAS risk loci tend to regulate many proteins in trans and that these 

proteins cluster in the same module raised the possibility that common DNA sequence 

variants determine the architecture of the serum protein network.

Linking genetic variants to serum protein networks

Concerns have been expressed regarding the adequacy of GWAS to identify useful disease 

links, resulting in a call for greater efforts in identifying the gene regulatory networks that 

integrate the numerous GWAS signals (25). Given the hierarchical organization of the serum 

protein network and our observation that trans co-regulated proteins cluster in modules, it is 

possible that common cis- and trans-acting pSNPs underlie the structure of the serum protein 

network. We adopted a standard single-point GWAS test of linear regression against all 

module E(q)s using a threshold of P ≤ 5 × 10−8 for detection of genome-wide significant 

effects. Even though the E(q) represented many proteins as a complex trait, we often 

observed strong single SNP associations to the modules E(q)s (table S19), which we have 

termed network-associated protein SNPs (npSNPs), of which many were associated with 

more than one module consistent with their relationship. Given that npSNPs were associated 

with E(q)s of distinct protein modules, npSNPs may act via individual proteins in circulation 

(tables S19 and S20). For instance, the npSNP rs704 (NP_000629.3: p.Thr400Met) in VTN 
affected VTN in cis (Fig. 4, A to C, and fig. S13H), and 698 proteins in trans that were 

significant components of the modules enriched for immune-related pathways (Fig. 4, D and 

E, and table S20). Furthermore, distinct loci at APOE or BCHE were associated with the 

lipoprotein-enriched module PM11 (Fig. 5A, fig. S12I, and tables S8, S19, and S20), 

exerting cis effects on APOE and BCHE (Fig. 5B) and affecting 64 proteins in trans or 89% 

of all proteins in PM11 (Fig. 5, C and D, and tables S19 and S20). These results highlight 

the genetic architecture of the serum protein network and show that the modules and disease 

variation are intimately connected.

The discoveries of npSNPs and cis-trans protein pairs allowed us to assess whether the 

serum protein networks resulted from cross-tissue regulatory control by comparing them to 

gene expression data from 53 different human tissues and involving only the top tissue-

specific proteins (table S21 and S22). Many cis-acting pSNPs affected serum levels of 

tissue-specific proteins and subsequently affected variable serum levels of other proteins 

synthesized in distinct tissues (table S21 and S22). These data suggest that the serum protein 

network arose at least in part via systemic cross-tissue regulation.
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Discussion

Deep protein profiling in a large well-characterized population of the elderly revealed the 

higher-order topology and modularity of the human serum proteome. The study cohort used 

was population-based and thus contained nondiseased donors and donors suffering from 

various diseases and complications (12). As such, the relationship between proteins is the 

consensus of the whole population. Recent studies have revealed a pronounced effect of 

aging on transcriptional changes that are both tissue and organismal specific (26–28). It is 

possible that the observed network structure of the serum proteins reflects to some extent 

those changes associated with the old age of the population and may indeed reflect a certain 

set-point of homeostasis or even a decline in adaptive homeostasis in comparison to younger 

populations. Note that, for all the analyses of the present study, we adjusted for the 

confounder age.

Structural features of the serum protein network resembled those of regulatory networks 

constructed in solid tissues (7, 8), including association of hub proteins to diseases. 

However, comparison of cis-trans protein pairs and cognate protein modules to gene 

expression data and coexpression networks derived from solid tissues suggests that the 

serum protein network arose in part via systemic cross-tissue regulation. A follow-up 

replication testing of the many findings from these primary data, including the strong 

connection of protein hubs to disease traits, is warranted.

We anticipate that additional npSNPs can be identified with this technique, comparable to 

those found with conventional GWAS analyses of common diseases (25). Given that the 

effect of established GWAS loci is more complex than previously anticipated, this 

underscores the role of protein networks as the sensors and integrators of complex disease. 

The strong association of individual proteins and networks to disease states observed in this 

study indicates that the serum proteome may be a rich and accessible setting to mine for 

biomarkers of disease and disease responses to integrate information from tissues in a global 

regulatory network. As such, coordinated variance of serum proteins may offer unrecognized 

opportunities for target and biomarker identification in human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The serum protein network structure.
(A) Hierarchical clustering dendrogram using dynamic tree cut (29), revealing 27 serum 

protein modules. Each branch of the dendrogram represents a single protein, and the colored 

bar below denotes its corresponding protein module, as annotated in the legend to the right. 

The dendrogram height is the distance between proteins (14). (B) The cohort was randomly 

split into two equal parts, one for a training set and another for the test set, and a summary Z 

score statistics (15), plotted for each module presented as colored data points. The summary 

Z score <2 (blue dotted line) indicates no preservation; 2< summary Z score <10 (between 

the blue and green dotted lines) indicates moderate evidence of preservation; and a summary 

Z score >10 (green dotted line) indicates strong evidence of preservation. See fig. S10 for 

the ⅔ versus ⅓ split of the cohort.
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Fig. 2. The relationship between module’s E(q) to disease-related measures.
(A) The module PM1 is a single cluster of 31 proteins. (B) Positive associations of E(PM1) 

quintiles to variation (cm2) in visceral adipose tissue (VAT), incident coronary heart disease 

(inc CHD), type 2 diabetes (T2D), and the metabolic syndrome (MetS), ***P < 1 × 10−10. 

(C) Overall survival, i.e., with respect to all-cause mortality, was reduced for high E(PM1) 

levels (red curve) compared to low E(PM1) levels (cyan curve). (D) The modules PM6, PM9, 

and PM10 are members of supercluster II. (E) Inverse association of the E(PM6) and E(PM9) 

to prevalent CHD (prev CHD) and prevalent heart failure (prev HF), ***P ≤ 1 × 10−9. (F) 

Reduced overall survival for low E(PM10) levels (cyan curve) compared to high E(PM10) 
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levels (red curve). (G) The PM17 is in supercluster IV. (H) Positive association of module’s 

E(PM17) to incident CHD and HF as well as prevalent CHD and HF, ***P < 1 × 10−17. (I) 

Reduced postincident CHD survival as well as overall survival for high E(PM17) levels (red 

curve) compared to low E(PM17) levels (cyan curve). (J) The module PM23 is a member of 

supercluster V. (K) Positive associations of the module E(PM23) quintiles to VAT and 

subcutaneous adipose tissue (SAT), and prevalent CHD, T2D, and MetS, ***P < 1 × 10−13. 

Data were analyzed using forward linear or logistic regression or Cox proportional hazards 

regression, depending on the outcome being continuous, binary, or a time to an event. 

Kaplan-Meier plots were used to display survival probabilities. The number of proteins per 

module is denoted at the branches of the dendrogram. Controls are individuals free of the 

disease in question.

Emilsson et al. Page 10

Science. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. The relationship between connectivity of proteins and disease-related measures.
(A) Circle graph of PM1 highlighting the hub protein CMPK1. (B) Positive correlation 

between within module connectivity (Ki) (x axis) and the absolute value of the effect size of 

the association of proteins to type 2 diabetes (T2D) (y axis). (C) Positive association of 

CMPK1 to T2D, and reduced overall survival associated with high serum CMPK1 levels 

(red curve). (D) Spring graph of PM9, highlighting the hub SYTL4. (E) Positive correlation 

between Ki and the association of proteins to prevalent heart failure (prev HF). (F) Inverse 

association of SYTL4 to HF, P < 1 × 10−30, and reduced overall survival associated with low 

serum SYTL4 levels (cyan curve). (G) A circle graph of PM17 highlighting the hub protein 

SUMO3. (H) Positive correlation between the Ki of proteins and their association to 
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prevalent HF. (I) SUMO3 is positively associated with prevalent HF, and high levels of 

SUMO3 (red curve) predict reduced survival postincident CHD. (J) A circle graph of the 

PM23 highlighting the hub ACY1. (K) Positive correlation between the Ki of proteins and 

their association to both MetS and T2D. (L) Strong positive association of ACY1 to MetS. 

Network visualization was performed with the igraph package in R (30). Pearson’s r was 

estimated for correlation between Ki of proteins and their strength of association to disease 

measures. See Fig. 2 for other relevant statistics.
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Fig. 4. The network-associated pSNP rs704 regulates modules related to immune functions.
(A) A circular Manhattan plot highlights the GWAS results for E(PM7), revealing a single 

highly significant association at rs704, a missense variant (NP_000629.3: p.Thr400Met) in 

VTN. Four other modules within supercluster II were affected by rs704 (table S20). (B) The 

rs704 variant, and many other linked SNPs in the region, exert a strong cis-acting effect on 

VTN within the 300-kb genomic region across the VTN gene. The black triangle 

demonstrates linkage disequilibrium (r2) patterns in the region derived from the AGES 

cohort data. (C) The bimodal population distribution of the VTN protein is explained by the 

drastic reduction in VTN levels in individuals homozygous for the rs704 C minor allele. (D) 

A schematic presentation of the single cis and many trans effects mediated by the rs704 in 

VTN on serum proteins. (E) Proteins affected by rs704 in trans (and VTN in cis) cluster in 

modules of immune-related functions (table S20). The percentage denotes the fraction of 

proteins within a given module regulated by the rs704 locus.
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Fig. 5. Network-associated pSNPs at the APOE and BCHE loci regulate proteins of module 
PM11.
(A) A circular Manhattan plot for the E(PM11), revealing two distinct genomic loci at 

chromosomes 3 (BCHE) and 19 (APOE / TOMM40). The three npSNPs at the APOE/ 

TOMM40 locus are not correlated (r2 = 0). (B) The npSNPs at the two genomic regions 

exert a strong cis-acting effect on the serum levels of APOE (left) and BCHE (right). (C) 

The npSNPs at the APOE locus affected APOE in cis and mediated trans effects on 38 

proteins, whereas the npSNP rs1803274, a missense variant (NP_000046.1: pAla567Thr) in 

BCHE, affected BCHE in cis and 20 other proteins in trans (table S20). (D) The distinct 

npSNPs at the APOE and BCHE loci regulate 88.9% of all proteins that constitute PM11, 

Fisher’s exact test P = 3 × 10−34, as demonstrated in the Venn diagram to the right.The 

number 3 refers to proteins in PM11 that are not regulated by the npSNPs.

Emilsson et al. Page 14

Science. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	A custom-designed aptamer-based multiplex proteomic platform
	Identification and characterization of serum protein networks
	Genetic variants influence serum protein levels
	Linking genetic variants to serum protein networks
	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.



