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ABSTRACT OF THE DISSERTATION
Modeling the Field Population of Cold Dark Matter Halos for Lensing Studies

By

Alexander Andres Lazar

Doctor of Philosophy in Physics

University of California, Irvine, 2023

Professor James S. Bullock, Chair

The Universe’s mass is predominately comprised of dark matter, yet its exact particle nature remain

elusive. The dark energy (Λ) plus Cold Dark Matter (ΛCDM) model of cosmology reigns as the

prevalent model of our Universe, as it matches the observed large-scale structure. The formation

mechanism of these so-called dark matter halos introduces many possible particle candidates for

CDM models and further manifests attributes in the global abundance and the underlying mass

distribution. Precise detection of these objects in the low-mass regime could further pave way

to revealing the particle nature of dark matter. An exciting route to reveal the existence of dark

matter structures within our Universe that have mass scales smaller than the faintest galaxies (i.e.,

Ultra-faint Dwarfs) is based on their lingering presence on strong gravitational lensed systems.

The contents within this thesis provides, for the first time, in depth analysis of crucial lensing

quantities derived from numerical simulations of dark matter halos and galaxies within the ΛCDM

paradigm. Importantly, we explore models pertaining to the “line-of-sight” (LOS; i.e., field)

perturbers, as these are one of most contributing population of dark matter halos to significantly

impact the lensing signal, as compared to the subhalo population. We demonstrate that clustering

in the vicinity of the lens host halo is an important component in any lensing configuration, as

it produces a clear enhancement to the lensing signal relative to an assumption of unclustered

halos with substructure. We also introduce an analytical surface density profile for low-mass dark

xii



matter halos that are parameterized by the so-called “projected concentration”, making it useful

for modeling LOS perturbers in strong gravitational lensing models. Finally, we then extend this

surface density model using a statistical sample of simulated dark matter halos to infer the median

evolution of the projected concentration and the scatter as a function of mass.

The framework developed here inevitably broadens the scope of strong-lensing analyses for probing

dark matter in a ΛCDM universe, thus demonstrating the power of strong gravitational lensing as

a unique probe of dark matter physics.
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Chapter 1

Preliminaries

1.1 Historical context

The standard cosmological paradigm — ΛCDM (dark energy + cold dark matter) model — is the

apotheosis of physics characterizing the formation of structure within the framework of Einastien’s

Theory of General Relativity (Blumenthal et al. 1984). What is more is that this framework is

a culmination of a century of work that marriages the fields of particle physics and astrophysics

from the past several decades; analysis through microlensing has ruled out dark matter to not be

large compact objects, e.g. black holes, but instead some new particle that is yet to be detected

(e.g., Tisserand et al. 2007). In the current picture of the standard model of cosmology, cold

(non-relativist) dark matter particles, as the Universe evolves, lump together into gravitationally

bound halos, which then go on to host the galaxies that we know of today (White and Rees 1978,

Blumenthal et al. 1984). However, little evidence on the very nature of dark matter is known, only

that that it interacts gravitationally with the fundamental particles found in the Standard Model of

Particle Physics and is entirely decoupled to the electromagnetic spectrum (see Bertone and Tait

2018, for overview).
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The era of the Hubble Space Telescope (HST) has been revolutionary in our understanding of the

Universe we reside in and has provided beautiful, resolved images of astrophysical objects. One

such peculiar HST image showed multiple copies of one extremely luminous source at various

positions on the sky. It turned out that the gravitational field of a galaxy, mostly surround by dark

matter, was perfectly aligned between Earth and a extremely bright quasar named WFI 2033-4723

(Morgan et al. 2004, Eigenbrod et al. 2006, Vuissoz et al. 2008). The gravitational field generated

by the galaxy was so extreme, that it warped space-time surrounding it and bent the geodesic of

the photons emitted from the luminous quasar. This phenomenon is strictly referred to as strong

gravitational lensing.

If the prevalent ΛCDMmodel is in fact correct, then the Universe should be inhabited by countless

gravitationally-bound structures, i.e. dark matter halos, and should produce a significant gravita-

tional lensing effect to lens images via substructure lensing. If these objects are detected through

lensing, ΛCDM would undoubtedly reign as the standard model of cosmology. If not detected,

then alternative cosmological models would hold greater merit, e.g. WarmDarkMatter (WDM), as

halos do not exist below a certain mass scale, which in tandem is dependent on the attributes of the

dark matter particle. Any false or positive detection would ultimately improve our understanding of

the Universe and might solve a long-standing problem in modern astrophysics. Our current knowl-

edge regarding the nature of dark matter is that it only gravitationally interacts with the fundamental

particles found in the Standard Model. Efforts in detecting dark matter non-gravitationally, via

dark matter particle production from collisions, have not found success in producing results of how

dark matter behaves (Bertone and Tait 2018). While direct and indirect detection methods has held

some grounds of probing dark matter, gravitational studies could be the only proven method of

measuring the properties of dark matter.

The following sections within this introductory chapter provides the reader the necessary back-

ground context for the remaining contents of this dissertation, which discusses my developments,

implementations, and predictive aspects of substructure lensing using cosmological #-body simu-

2



lations with only dark matter and full galaxy formation physics. In the next sections, a primer on

structure formation within the Universe (particularly in ΛCDM) is discussed, as well as what as-

pects of structure formation strong gravitational lensing can constrain and the formalism connecting

lensing observables to dark matter halo populations.

1.2 Dark matter halos

Here we briefly discuss dark matter halos in the context of ΛCDM. A more thorough review is

provided in Bullock and Boylan-Kolchin (2017), but enough content is presented here to provide

further context to the main body of the dissertation. Herein and so forth, unless otherwise specified,

lower case A denotes the physical, (de-projected) three-dimensional radius. In two-dimensions, the

projected physical radius is denoted by an upper case '. The specific radii used to define a halo

mass will usually be denoted by capital ' with some over-density definition.

1.2.1 Structure formation

Amore detailed discussion of structure formation can be found in Mo et al. (2010), but this section

will provide a brief, yet necessary, context for dark matter halos, starting from the beginning.

Cosmic structure is initialized by the primordial (and adiabatic) quantum fluctuations in the infant

stages of the Universe and is encodedwithin the shape of the (scale-free) primordial power spectrum

as a function of wave number : . Thereafter, these fluctuations grow by gravitational instability in

an ever expanding background. The primordial power spectrum, as well as the growth of density

fluctuations that were seeded during the early Universe, are influenced by the particle nature of

dark matter and therefore, leave clues to be deduced by the resulting structure on both large-

and small-scales. Scales of : during the epoch of radiation domination in the ΛCDM model

grow relatively slowly until the epoch of matter domination, where the primordial power spectrum

3



becomes scale dependent. The transfer function encodes this suppression and is typically defined as

the ratio between the amplitude of density perturbations between the era of post-recombination and

the value of the primordial amplitude (e.g., Eisenstein and Hu 1998). Combining this machinery

gives the linear power spectrum, which for ΛCDM, spans to scales that predict the mass cutoff

at " ∼ 10−6 "� for typical 100 GeV WIMP candidates (Green et al. 2004).1 The Universe will

eventually evolve to a point where scales become non-linear, which provide the regions that enable

the collapse of virialized objects.

1.2.2 Global properties

By the time the over-dense regions of the Universe evolve to become non-linear, the regions stop

expanding, they turn around, and collapse under their own gravity, converting potential energy

into kinetic energy via the virial theorem. Dark matter halos are defined to be these spherical

over-densities with mass, "Δ , contained within a radius, 'Δ , that encloses some density contrast,

Δ , relative to a reference background density at a particular redshift, dref (I), such that the interior

density for the halo is dΔ := Δ dref (I) , i.e.,

"Δ =
4c
3
'3
Δ
dΔ (I) . (1.1)

dref (I) can be set as the critical density of the universe or the mean matter density of the universe.

Similarly, the virial velocity is

+Δ :=
√
�"Δ

'Δ
. (1.2)

The parameters "Δ , 'Δ , and +Δ are equivalent mass labels, such that any one of these values

determines the other two values, given a specified overdensity parameter Δ . Their are other more

1WIMPs stands for Weakly Interacting Massive Particles and are a CDM particle candidate, though not the only
candidate (see Bertone and Tait 2018)
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meaningful ways of modeling the mass of dark matter halos, such as the maximum circular velocity

definition,+max and equivalently Amax, or such as the “splashback-radius” introduced by (More et al.

2015). For this dissertation we will solely use the overdensity definition in parameterizing dark

matter halos in ΛCDM.2

The value for Δ is chosen to match the overdensity that predicts the virialized dark matter region

that has undergone an idealized spherical collapse (Bryan and Norman 1998). Throughout this

dissertation, we primarily define the dark matter halos by their virial mass,"vir, which are spherical

systems with virial radius, 'vir, inside of which the average density is equal to the virial density,

dvir(I), i.e.,

"vir =
4c
3
'3

vir dvir(I) . (1.3)

Here, the virial density is redshift evolving and is defined from Bryan and Norman (1998):

dvir(I) =
(
18c2 + 82b − 39b2

)
dc(I) , (1.4)

where

dc(I) =
3�2(I)

8c�
(1.5)

is the critical density of the universe at redshift I. The evolving Hubble factor at redshift I is

� (I) = 100 ℎ
√
Ωm(1 + I)3 +ΩΛ km s−1 Mpc−1 (1.6)

2Note that this overdensity mass are how dark matter halos in the field, i.e., isolated halos that are not located within
a much larger halo, are defined. Subhalos, on the other hand, cannot be defined this way, as they experience tidal forces
from orbiting the potential well of their host halo, which renders an a defined outer radius (dependent on a background
reference density) ill defined. Subhalos are not the focus of this dissertation and their precise mass definition is beyond
the scope.
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with ℎ being the cosmological Hubble factor, and b := Ω̃m(I) − 1, such that

Ω̃m(I) :=
Ωm(1 + I)3

Ωm(1 + I)3 +ΩΛ
. (1.7)

The Bryan and Norman (1998) definition is used for the most halo finding software and is one of

the most commonly adopted definition of the halo mass within the literature. Dark matter halos

can also be simply defined with a constant overdensity Δ = 200 with either critical or mean-matter

background densities. Other halo mass definitions can be explored with two other commonly

adopted overdensity definitions, first being the critical density of the universe as a background

reference, i.e.,

"200c =
4c
3
'3

200c d200c(I) , (1.8)

where d200c(I) := 200× dc(I), and a second based on the mean matter density of the universe, i.e.,

"200m =
4c
3
'3

200m d200m(I) , (1.9)

where d200m(I) := 200 × dm(I), such that the mean matter density field is defined to evolve as

dm(I) = Ωm × dc(I = 0) (1 + I)3 . (1.10)

A benefit of the halo mass defined by Equation 1.8 is that it less dependent on the underlying

cosmology, at least compared to the favored Bryan and Norman (1998) definition, whereas the halo

mass defined with an evolving mean matter density, i.e., Equation 1.9, corresponds more closely

to the so-called “splashback” boundary of the halo (e.g., Diemer and Kravtsov 2014, More et al.

2015). Note that the precise choice of the mass definition usually does not matter as long as one

definition is consistent with the definition of halo mass throughout an analysis; Counting statistics

is mainly preserved, as every halo has the same center, but the outer radius (i.e., the mass contained
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within that radius) changes depending on the definition chosen.

1.2.3 Abundance

How do these spherically-overdense objects populate the universe? Remarkably, the mass spectrum

of dark matter halos can be modeled with a few simple assumptions. It was first assumed that the

mass spectrum of collapsed objects could be calculated by extrapolating the overdensity field using

linear theory, even out into the highly non-linear regime, and utilizing a spherical collapse model.

First prostulated by Press and Schechter (1974), the abundance of dark matter halos per unit mass,

" , per unit volume, + , at redshift I, i.e., the dark matter halo mass function:

=(", I) ' d=
d log10 "

, (1.11)

depends only on the root-mean-square (rms) amplitude of the linear dark matter power spectrum,

smoothed using a filter function (e.g., spherical top-hat) in real space and then extrapolated to

redshift I using linear theory.

Furthermore, this model has been improved more rigorously in recent years within the literature

(e.g., Sheth and Tormen 2002, Tinker et al. 2008). This accuracy has been tested thoroughly

using numerical simulations with large-scale structure in ΛCDM. Figure 1.1 demonstrates this

by comparing simulated mass functions at different redshifts (colored curves) with comparable

analytical predictions via Sheth and Tormen (2002) (black-dashed curves). A key aspect on what

this dissertation tackles is how low-mass halos "halo < 108 "� are predicted to be highly abundant

within the ΛCDM paradigm for a lensing configuration.
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Figure 1.1: The abundance of cold dark matter halos within a confined (comoving) volume of the
Universe. The black dashed lines shows the dark matters halo mass function at different redshifts
for the full population of halos in the Universe as approximated by Sheth and Tormen (2002) while
the colored lines are generated from a cosmological simulation of only collisionless dark matter.
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1.2.4 Density structure

The spherically average three-dimensional density profiles of dark matter halos in the field, d, have

been historically described by a nearly universal form over all masses, with a mildly divergent cusp

(d ∝ A−1) towards the center of the halo transitions to a steep fall-off at large radii (d ∝ A−3). Dark

matter halos in ΛCDM are commonly modeled by the Navarro, Frank, and White (NFW) density

profile (Navarro et al. 1997).

dNFW(A) = dB
(
A

AB

)−1 (
1 + A

AB

)−2
, (1.12)

where AB is the scale radius and dB is the scale density. The structure of a NFW halo is primarily

parameterized by the concentration (2) of a dark matter halo, which is formally defined as the ratio

between the size of the halo, 'Δ , and the scale radius, AB:

2Δ := AΔ/AB . (1.13)

For dark matter only simulations pushed to much higher particle resolution than that studied in

Navarro et al. (1997), dark matter halos are demonstrated in the literature to be even better described

by the Einasto (1965) profile (Navarro et al. 2004, Gao et al. 2008, Navarro et al. 2010) for around

20 decades of halo masses (Wang et al. 2020):

dn (A) = d−2 exp

{
− 2
Un

[(
A

A−2

)Un

− 1

]}
. (1.14)

Here, A−2 is the scale radius at which the log-slope profile is equal to −2, the scale density is

d−2 := d(A−2), and Un is the shape parameter. Usually Un can be fixed to eliminate its dependencies

on values of A−2. The internal structure from the Einasto profile can be parameterized by the
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analogous dimensionless concentration parameter:

2Δ := AΔ/A−2 . (1.15)

Note that AB in the NFW profile is also the radius where the log slope of the NFW form is −2, so

typically the Einasto concentration and NFW concentration are similar for any individual halo, i.e.,

2Δ ' 2Δ .

For a given system that has a spherically-averaged local density profile in three-dimensions, d(A),

the local mean surface density profile, Σd (') is quantified by integrating along the line of sight, ℓ,

of a spherically symmetric lens:

Σd (') =
∫ ∞

−∞
3ℓ d(', ℓ) (1.16)

= 2
∫ ∞

'

3A
Ad(A)
√
A2 − '2

, (1.17)

where ' denotes the projected radius relative to the center of the halo and the last line is written as

an Abel transformation (Binney and Tremaine 2008). For the NFW profile, the radial dependence

of a NFW lens is inferred from integrating the above equation (Wright and Brainerd 2000):

ΣNFW(G) =



2 dBAB
(G2−1)

[
1 − 2√

G2−1
arctan

√
G−1
1+G

]
G > 1

2 dBAB
3 G = 1

2 dBAB
(G2−1)

[
1 − 2√

1−G2 arctanh
√

1−G
1+G

]
G < 1

, (1.18)

where G = '/AB. While the Einasto profile describes the spherically averaged distribution of high-

resolution dark matter halos to better accuracy (see comparison made in Chapter 3), the analytical

lens properties tend to be more complicated to work with (see Retana-Montenegro et al. 2012),
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e.g.,

Σn (H) = 2=
√
cd0 ℎ H �

2,0
1,2


(0, 1)

(0, 2=), (−1
2 , 1)

; H2

 , (1.19)

where H := '/ℎ, ℎ := A−2/(2/Un )1/Un , d0 := d−2 4
2/Un , and � is the Fox � function. While

the Einasto profile is accurate in modeling the three-dimensional distribution of dark matter,

determining key properties for lensing, such as the deflection potential, leads to more complex

forms of that quantity.

1.3 The importance of substructure lensing for constraining

dark matter physics

One of the several predictions for Einstein’s General Theory of Relativity associates the deflection

angle, ®U, of a light ray to the mass distribution of a (dark or luminous) massive structure. The effect

of a massive deflector, i.e., a perturber, can be approximated as a singularly sharp deflection in

the plane of the lens via the “thin lens” approximation: where the distances scales found between

the observer, lens, and source are exceedingly greater than the physical extent of the lensing mass

distribution in question. Let us define projection of a perturber’s local, three-dimensional density

profile as Σ( ®b), where ®b is the coordinate onto the plane of the lens, such that the deflection angle

is given by (Blandford and Narayan 1986):

®U( ®b) = 4�
2

∫
d2b

′

(
®b − ®b ′

)
Σ( ®b ′)

| ®b − ®b ′ |2
, (1.20)

where 2 is the speed of light constant and � is the gravitational constant. Note that the cumulative

effect for multiple perturbers in a lens system is a linear superposition of their individual deflection
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angles.

As better detailed in the next subsection (see Figure 1.2 for visual reference), the configuration

for a strong lens system includes both subhalos associated with the host dark matter halo of the

lensing galaxy, i.e., the main lens, and the contribution from the line-of-sight (LOS) population,

which is populated by the field halos. Field halos are incorporated by using the multi-plane ray

tracing equation, which determines where images appear to the observer. The ray tracing equation

maps an angular coordinate on the sky, ®\ to an angular coordinate on the source plane, ®\s, and is

dependent on the net deflection angle from all halos within the lens plane (Blandford and Narayan

1986), i.e.,

®\s( ®\) = ®\ −
1
�s

s−1∑
8=1

�8s ®U8
(
�8 ®\8

)
(1.21)

where �8 9 is the angular diameter distance from the 8th lens plane to the 9 th lens plane and �s

is the angular diameter distance to the source lens plane. The above equation couples deflections

produced by objects at different distances, as it is recursive for the position of deflected light rays

at each lens plane.

Lastly, themagnification of the lensed images are to be proportional to the ratio of areas in the source

and image planes due to the surface brightness of the source remaining conserved in gravitational

lensing phenomena. This magnification factor is quantified by the inverse determinant of the

Jacobian,(
det

����� m ®\s

m ®\o

�����
)−1

, (1.22)

which is notoriously complex in a multi-plane lens system in which the image magnification is

non-linearly dependent on derivatives of the lensing deflection angle (Blandford andNarayan 1986).

Dark matter halos frequently perturbing image magnifications of strong lensing phenomena was
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conjectured by Mao and Schneider (1998). Now, in the current literature, strong gravitational

lensing has been shown to be a promising technique for detecting and characterizing small dark

matter halos via lensing flux anomalies: smoothly-parameterized mass distributions fail to repro-

duce the magnifications ratios observed in quadruple lens systems (Dalal and Kochanek 2002,

Moustakas and Metcalf 2003, Vegetti et al. 2010, Hezaveh et al. 2016, Li et al. 2017). More

importantly, gravitational studies of low-mass dark matter substructures will deliver the necessary

information for both astrophysicists and particle physicists looking to understand dark matter. In

the standard ΛCDM model, the smallest halos (" ≤ 107"�) are predicted to contain no stars and

be virtually free of baryons. A dark matter halo as small as this near a lensed image (while also

dependent on the size of the background source, the image’s relative position to the critical curve,

and the mass of the main lens), could induce measurable perturbations on image magnifications

for background sources of orders around 10 pc. Gravitational detection of these structures, which

are purely composed of dark matter, would be revolutionary in the field of theoretical physics, as

it would confidently exclude all gravitational models that explain observed mass differences via

modifications of Newtonian (or Einsteinian) gravity.

In order to take advantage of the expected advances in instruments to be deployed for future lensing

surveys, there is a need for solid predictions of the abundance and and density structure of these

low-mass dark matter halos. However, predictions at this high caliber requires high resolution,

cosmological volumes, and inclusion of baryonic physics to properly account for the realistic

processes found in galaxy formation: subhalo disruption, baryonic mass loss at reionization, and

other dynamical feedback on the small halos of interest. The contents of this dissertation mostly

focuses on modeling the abundance and structure of the LOS population using dark matter only

(DMO) simulations, as the low-mass halos of interests are not likely to be affect by baryonic

feedback (e.g., Lazar et al. 2020). The next section brings together the information detailed in

the previous sections and provides a clear and concise presentation of the machinery that the

dissertation provides for the scientific community.
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Figure 1.2: Low-mass halos along the line of sight to a lens galaxy act to perturb the image.
They may be categorized in three regions: average line-of-sight (LOS) perturbers far from the lens
(black circles); halos outside the lens virial radius but within a correlation length (pink circles),
and subhalos within the virial radius (orange circles).

1.4 Substructure lensing configuration

Consider the illustration provided by Figure 1.2. Starting from the far right of the figure and

following the yellow arrows all the way to the left, a source (e.g., a quasar) emits photons from a

source redshift, IB. These photons propagate through space and, if aligned just right, pass through a

very large and very dense mass system dubbed the “main lens” at the lens redshift, I; . With perfect

alignment, the mass field at the center of the main lens is able to bend the geodesic paths of the

emitted photons, and create multiple images that someone on Earth can observe. Now populate

the entire path the photons takes between the source and observer with low-mass, dense halos.

Low-mass halos along the line of sight to a lens galaxy act to perturb the source image and they

can be partitioned into three classifications:
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• Average, LOS perturbers: Far from the main lens and populate regions between the source

and the observer.

• Correlated structure: Halos outside the lens virial radius but within a correlation length,

which is expected to have a non-trivial effect.

• Substructure: Halos’ centers within the main len’s virial radius, impacted by tidal forces.

When considering lens perturbations, it is expected that low-mass halos in the field, i.e., along the

line-of-sight to a lensed galaxy, contribute more than the subhalos of the main lens. Again, this

dissertation explores more accurate ways in improving the way of modeling LOS halos, within

ΛCDM, for substructure lensing studies.

As a starting baseline, these are the two quantities that are tackled within the main body of this

document, as well as how they are currently implemented within substructure studies:

1. Abundance: It is essiential to accurately model how many of the LOS population of dark

matter halos, with a given mass, "halo, populate a given (comoving) volume, + , i.e.,

d#
d+ d"halo

����
LOS

. (1.23)

Note that the population of LOS halos within the volume of a lens configuration are inherently

a piece of the field population of dark matter halos, which the number of field halos within

a volumetric portion of the Universe has been sufficiently modeled in the literature as by

halo mass function (see discussion in Section 1.2.3). This will at times be referred to

as the averaged or smooth background population within the literature. We expected the

contribution to the LOS mass function to be proportional to the average background, i.e.,

d#
d+ d"halo

����
LOS
∝ d#smooth

d+ d"halo
. (1.24)
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Again, the mass function has been heavily modeled to numerical simulations within the

literature (e.g., Press and Schechter 1974, Sheth and Tormen 1999, Tinker et al. 2008) and

can be easily implemented within numerical software to sample LOS halos within a lens

configuration. Figure 1.1 again shows an example of such model (in this case, the Sheth and

Tormen 2002 mass function) compares to predicted simulation outputs.

The next order of contribution to Equation 1.23 is how correlated structure, i.e., the structure

congregating the vicinity of the main lens (see Figure 1.2 for visual), is modeled within a lens

configuration. Analysis performed by Gilman et al. (2018, 2019, 2020a,b) attempts to model

this component, which assumed that a factor of the two-halo term and is proportional to the

halo bias (quantifies the excess clustering of halos over the clustering of dark matter, e.g.,

Sheth and Tormen 1999), that amplifies the abundance at a given distance until averaging out

to the smooth background density, i.e.,

d#
d+ d"halo

����
LOS
∝

[
1 + b2halo (A, "lens)

] d#smooth
d+ d"halo

. (1.25)

where b2halo is the analytical two-halo term and is a function of the three-dimensional distance

and main lens mass, A and"lens, respectively. In Chapter 2, we fully explore this contribution

of local, correlated structure of lens mass halos of interest by using, for the first time, a suite

of cosmological simulations. There, we provide an analytical functions that considers not

just the two-halo term, but also the back-splash population of halos which have yet to be

taken into consideration.

2. Halo Density Structure: It is essential to accurately model the distribution of dark matter for

LOS halos, for a given halo mass. By far the most straightforward approach is to model dark

matter halos within the field as having aNFWprofile (Equation 1.12). Moreover, the structure

of a NFW halo is can parameterized by the concentration. Having the three-dimensional

structure, it is straightforward to integrate along the line-of-sight to acquire the surface density

profile (Equation 1.18). Historically, the concentration of dark matter halos have been related
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to the mass of the halo and can be modeled analytically as a function of mass, "halo, and

redshift, I, i.e., the halo concentration-mass relation: 2("halo, I). In addition, at fixed "halo,

the scatter in concentration is log-normal for mass scales of interest (e.g. Bullock et al. 2000,

Dutton and Macciò 2014). Combining these facts allows one to statistically sample from the

concentration-mass relation for a given mass and infer the perturbations induced by the LOS

population.

Their are possible shortcomings to this approach however, as the spherical-symmetric density

definition only computes the average density andmight bias the inferredmass upon projection,

i.e., dark matter halos are elongated and will have different surface density profiles based on

their orientation for a fixed halo mass. In Chapter 3, we explore these nuances and propose a

more accurate model by directly modeling the results of projected dark matter distributions

of simulated, high-resolution dark matter halos down to "halo ' 107 "�. In Chapter 4, we

further extend this new model and compile statistical functions using a DMO cosmological

box of sufficient resolution.

1.5 Other work

It has been said that a dissertation that goes exactly as planned is a boring dissertation. I’m happy

to say that this one was not exactly boring, as I have tackled, on several occasions, other subfields

across astrophysics and cosmology. Those that have come into fruition and later published ranged

from other creativeways ofmodeling the structure of dwarf galaxies and exploring the early universe

with the near-field and from transients of the first stars. A bibliography of papers I’ve been a part

of during my time as a Ph.D. student that are not included in this thesis are below:

1. Lazar, A. and Bromm, V., 2022, “Probing the initial mass function of the first stars with

transients”, arXiv:2110.11956 , MNRAS, 511, 2505.
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2. Moreno, J., Danieli, S., Bullock, James S., Feldmann, R., Hopkins, P., Çatmabacak, O.,

Gurvich, A., Lazar, A., Klein, C., Hummels, C., Hafen, Z., Mercado, F.. Yu, S., Jiang, F.,

Wheeler, C., Wetzel, A., Anglés-Alcázar, D., Boylan-Kolchin, M., Quataert, Eliot, Faucher-

Giguère, C.-A., Kereš, D., 2021, “Galaxies lacking dark matter produced by close encounters

in a cosmological simulation”, arXiv:2202.05836, Nature Astronomy, 6, 496.

3. Velàzquez, J. F., Gurvich, A. B., Faucher-Giguère, C.-A., Bullock, J. S., Starken-burg, T.

K., Moreno, J., Lazar, A., Mercado, F. J., Stern, J., Sparre, M., Hayward, C., Wetzel, A.,

El-Badry, K., 2020 “The time-scales probed by star formation rate indicators for realistic,

bursty star formation histories from the FIRE simulations”, arXiv:2008.08582, MNRAS,

501, 4812.

4. Lazar, A., Bullock, J. S., Boylan-Kolchin, M., Chan, T.-K., Hopkins, P. F., Graus, A., Wetzel,

A., El-Badry, K., Wheeler, C., Straight, M. C., Kereš, D., Fauche-Giguère, C.-A., Fitts, A.,

Garrison-Kimmel, S., 2020, “A dark matter profile to model diverse feedback-induced core

sizes of ΛCDM haloes”, arXiv:2004.10817, MNRAS, 497, 2393.

5. Lazar, A. and Bullock, S., 2020, “Accurate mass estimates from the proper motions of

dispersion-supported galaxies”, arXiv:1907.08841, MNRAS, 493, 5825.

6. Jahn, E. D., Sales, L. V., Wetzel, A., Boylan-Kolchin, M., Chan, T.K., El-Badry, K., Lazar,

A., Bullock, J. S., 2019, “Dark and luminous satellites of LMC-mass galaxies in the FIRE

simulations”, MNRAS, 489, 5348.
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Chapter 2

The impact of correlated clustering in

substructure lensing

A promising route for revealing the existence of dark matter structures on mass scales smaller than

the faintest galaxies is through their effect on strong gravitational lenses. This chapter examines the

role of local, lens-proximate clustering in boosting the lensing probability relative to contributions

from substructure and unclustered line-of-sight (LOS) halos. Using two cosmological simulations

that can resolve halo masses of "halo ' 109 "� (in a simulation box of length !box∼100 Mpc) and

107 "� (!box ∼ 20 Mpc), we demonstrate that clustering in the vicinity of the lens host produces

a clear enhancement relative to an assumption of unclustered halos that persists to > 20 'vir. This

enhancement exceeds estimates that use a two-halo term to account for clustering, particularly

within 2 − 5 'vir. We provide an analytic expression for this excess, clustered contribution. We

find that local clustering boosts the expected count of 109 "� perturbing halos by ∼35% compared

to substructure alone, a result that will significantly enhance expected signals for low-redshift

(I; ' 0.2) lenses, where substructure contributes substantially compared to LOS halos. We also

find that the orientation of the lens with respect to the line of sight (e.g., whether the line of

sight passes through the major axis of the lens) can also have a significant effect on the lensing
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signal, boosting counts by an additional ∼ 50% compared to a random orientations. This could be

important if discovered lenses are biased to be oriented along their principal axis.

2.1 Chapter context

The large-scale clustering of galaxies provides important constraints on the makeup and evolution

of the Universe (e.g. Geller and Huchra 1989, Bond et al. 1996, Tegmark et al. 2004, Sánchez

et al. 2006). The dark energy plus cold dark matter (CDM) paradigm, ΛCDM, is entrenched as

the benchmark model for the theory of galaxy formation based largely on its success in matching

observed large-scale structure. For years, cosmological #-body simulations that incorporate only

gravitational dynamics (dark matter only, DMO, simulations) have served as crucial tools for

understanding the ΛCDM model, and have been used to understand the detailed clustering of

galaxies. When introducing full galaxy formation physics, cosmological simulations are able to

match observed clustering statistics as a function of galaxy type as well (e.g. Vogelsberger et al.

2014a, Genel et al. 2014, Schaye et al. 2015, Khandai et al. 2015, Dubois et al. 2016, Dolag

et al. 2016, Springel et al. 2018, Vogelsberger et al. 2020) however some discrepancies on smaller

scales exist and motivate the exploration of alternative models (Bullock and Boylan-Kolchin 2017,

Meneghetti et al. 2020).

A feature of CDM that profoundly separates it from many other dark matter models is that CDM

predicts a rich abundance of low-mass darkmatter halos"halo < 106 "� (Press and Schechter 1974,

Bullock and Boylan-Kolchin 2017). In cosmologies that include warm dark matter (WDM), for

example, the power spectrum is suppressed on scales smaller than a value set by the WDM particle

mass (Bode et al. 2001, Bozek et al. 2016). For a thermal WDM particle of mass <thm . 5 kev,

the formation of halos < 107 "� (e.g. Schneider et al. 2013, Horiuchi et al. 2016) is suppressed.

Therefore, if halos below ' 107 "� are detected, this would impose significant constraints on both

the dark matter power spectrum and the particle nature of dark matter (see Bertone and Tait 2018).
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Dark matter halos of sufficiently low mass are expected to be unable to form stars or retain baryons

in the presence of a cosmological photoionizing background (e.g. Efstathiou 1992, Bullock et al.

2000). The detection of these starless halos, with the abundance and density structure predicted by

simulations, would be triumphant for the CDM model. One way of inferring the presence of these

low-mass objects is by their influence on cold, low-velocity stellar streams in the Milky Way (Ibata

et al. 2002, Carlberg 2009, Yoon et al. 2011). Recently Banik et al. (2019) argued that the observed

perturbations of the MW’s stellar streams can only be explained by a population of subhalos in

CDM. They set constraints to alternative dark matter models for halos down the mass function,

notably setting a lower limit on the mass of warm dark matter thermal relics<thm & [4.6−6.3] keV.

In order to provide tighter constraints for substructure down to "halo ' 105−6"� populating the

MW, a larger sample cold streams would be needed. Another proposed approach to detecting these

low-mass halos could be through the kinematics of stars in the Milky Way’s disk (Feldmann and

Spolyar 2015).

Currently, the field of strong gravitational lensing offers to be another tool for the indirect detection

of low-mass, starless halos of masses ' 106−8 "� (Dalal and Kochanek 2002, Koopmans 2005,

Vegetti et al. 2010, 2014, Li et al. 2016, Nierenberg et al. 2017). Lensing perturbations can arise

from both subhalos within the lens host and from small halos found outside of the virial radius

that perturb the light from source to the observer (dubbed “line-of-sight” (LOS) halos; Li et al.

2017, Despali et al. 2018). Notably, the field of substructure lensing offers tantalizing prospects,

as in the near future, we expect both a gross increase in the number of lenses as well as a boost in

resolution for instrument sensitivity. Forecasts suggest that the Dark Energy Survey (DES), The

Large Synoptic Space Telescope (LSST), and EUCLID should discover hundreds of thousands of

galaxy-galaxy lensing systems (Collett 2015). The Nancy Grace Roman Space Telescope (RST)

also has the potential of providing complementary catalogs of lens images (Weiner et al. 2020).

Additionally, the detection of halos with "halo ∼ 107−8 "� might be possible with JWST via quasar

flux ratio anomalies (MacLeod et al. 2013). As of now, reported detections using ALMA reach

the mass scale of classical Milky Way satellites ("halo ∼ 1010"�), with constraints on subhalos
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an order of magnitude smaller. In the future, further observations and improved constraints may

significantly improve these limits (Hezaveh et al. 2016) and offer tighter constraints on the warm

dark matter mass (He et al. 2020), especially when combined with Milky Way satellite constraints

(Nadler et al. 2021).

The expected count of subhalos that exist within the virial radius of the lens system has been

studied rigorously. Studies of subhalo populations and their effect on lensing have previously relied

on DMO simulations (e.g. Bradač et al. 2002, Xu et al. 2009, 2012, Metcalf and Amara 2012,

Vegetti et al. 2014). More recently, however, simulations that implement full galaxy formation

physics show that small subhalos are actually depleted with respect to DMO simulations, owing

to interactions with the central galaxy (Brooks and Zolotov 2014, Wetzel et al. 2016, Zhu et al.

2016, Graus et al. 2018, Kelley et al. 2019, Richings et al. 2021). Notably, Garrison-Kimmel et al.

(2017) showed that it is the central galaxy potential itself, not feedback, that drives most of the

factor of ∼ 2 difference in subhalo counts between DMO and full physics simulations for Milky

Way-mass halos ("vir ' 1012 "�). For lens-mass halos of interest ("vir ' 1013 "�), Despali and

Vegetti (2017) used both DMO and full physics from the EAGLE (Schaye et al. 2015) and Illustris

(Vogelsberger et al. 2014b) simulations to investigate predictions for subhalo lensing and found that

simulations with full galaxy formation physics reduces the average expected substructure counts.

The substructure analysis done in Graus et al. (2018) using Illustris found similar results.

Given the expected depletion in subhalo counts seen in full-physics simulations, the contribution of

lensing signals fromLOS halos has been recognized as ever more important. If LOS halos dominate

the signal from a given lens, then uncertainties are reduced substantially because the contribution

of the LOS halos can be accurately calculated, independent of the effect of baryonic physics, for a

variety of cosmologies. Efforts have been made to understand the contribution of the LOS structure

on the flux-ratio anomalies in lensed quasars (e.g. Metcalf 2005, Metcalf and Amara 2012, Xu et al.

2012, Inoue and Takahashi 2012, Inoue et al. 2015, Xu et al. 2015, Inoue 2016, Gilman et al. 2018,

2019). It has become increasingly apparent that LOS halos should dominate the signal for more
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distant lenses (I; ∼ 0.5) while the contribution from subhalos should be non-negligible for more

local lenses (I; ∼ 0.2; Despali and Vegetti 2017).

The objective in this chapter is to understand and quantify an effect not discussed in most previous

work: how does local, correlated structure, in the vicinity of the lens host halo, impact the expected

lensing signal? While such an effect has been discussed before in the context of weak lensing

(D’Aloisio et al. 2014), its impact in strong lensing remains elusive. This effect will be most

important for low-redshift lenses, where subhalos are known to contribute non-trivially compared

to the LOS count. We use a suite cosmological simulations, including those that include both DMO

and and full galaxy formation physics, to explore this question. Specifically, we quantify correlated

structure in lens-centered projections of targets lens halos of "vir ' 1013 "� at redshift I = 0.2,

corresponding with the benchmark sample discussed in Vegetti et al. (2014). This is done using two

simulation projects: The first, from the public IllustrisTNG project (Nelson et al. 2018), includes

both DMO and full-physics versions and resolves halos down to "halo = 109 "� in a fairly large

cosmological volume. The second is a DMO simulation evolved in much a smaller cosmological

volume that is able resolve dark matter halos down to "halo = 107 "�.

This chapter is structured as follows. Section 2.2 introduces our set of simulations, provides a

description of the selected sample of halos, and outlines our methodology for counting structures

along projected line-of-sights in the simulations. Section 2.4 provides results on structure and

explores how the lens-host orientation can boost the amount of structure expected along lens-

centered projections. Finally, we summarize our results in Section 2.7.
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2.2 Numerical methodology

Our ΛCDM predictions rely on two sets of simulations. The primary set comes from the public

catalogs of the IllustrisTNG project1 (Nelson et al. 2018, Marinacci et al. 2018, Springel et al.

2018, Naiman et al. 2018, Pillepich et al. 2018). As described in Section 2.2.1, these simulations

allow us to identify halo populations robustly to masses greater than 109 "� for a large-scale

environment both with gravitational physics alone and with full galaxy formation physics. The

second simulation, introduced in Section 2.2.2, is a DMO version of a new simulation suite called

FIREbox, which is part of the Feedback in Realistic Environments (FIRE) project.2 The mass

functions of these simulations are presented in Figure 2.1. Both simulations assume a Planck

2015 cosmology (Planck Collaboration et al. 2016a): Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486,

f8 = 0.8159, and ℎ = 0.6774.

Our analysis relies on halo catalogs at redshift I = 0.2, which coincides with a typical redshift

of the lens-host sample explored in Vegetti et al. (2014). Dark matter halos are defined to be

spherical systems with a virial radius, 'vir, inside which the density is equal to the average density

of dvir(I) = Δvir(I)dcrit(I), where Δvir(I) is the virial overdensity defined in Equation 1.4 and

dcrit(I) is the critical density of the Universe, i.e., Equation 1.5. The virial mass, "vir, is then the

total mass enclosed in a sphere of radius 'vir, Equation 1.3.

In what follows, we discuss two types of halos: First, we have massive target halos, chosen to

mimic lens-galaxy hosts: "vir ∈ [0.8 − 2] × 1013 "�. Second, we have low-mass perturber halos,

which can either be subhalos or small halos that exist somewhere outside of the host’s virial radius

and along the LOS from the observer. We quote their masses (taken from the halo catalogs) using

the symbol "halo, since for subhalos "vir is not physically relevant.

1The Illustris data is publicly available at https://www.tng-project.org/
2The FIRE project website: http://fire.northwestern.edu
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2.2.1 The IllustrisTNG simulations

The IllustrisTNG (TNG) suite of cosmological simulations was run using the moving-mesh code

Arepo (Springel 2010). The runs with full galaxy formation physics use an updated version of

the Illustris model (Weinberger et al. 2017, Pillepich et al. 2018). We use the high resolution set

of publicly-available simulations,3 TNG100-1, which has a comoving box of side length !TNG
box =

75 ℎ−1cMpc = 110.7 cMpc. The full physics run, TNG100, has a dark matter particle mass of

<dm = 7.5 × 106 "� and a gas particle mass of <gas = 1.4 × 106 "�. The high-resolution

simulation that uses dark matter only (DMO) physics, TNG100DM, has the same box size, but

treats baryonic matter as collisionless particles, in which gives the simulation a particles mass is

<dm = 8.9 × 106 "�. When comparing between TNG100 and TNG100DM, we account for the

excess baryonic mass in the DMO simulation by introducing a factor <dm → (1 − 5b)<dm, where

5b := Ωb/Ωm is the cosmic baryon fraction.

For both TNG100 and TNG100DM, the dark matter halo catalogs were constructed using a friends-

of-friends (FOF) algorithm (Davis et al. 1985) with a linking length 0.2 times the mean inter-

particle spacing. Gravitationally bound substructures are identified through the SUBFIND halo

finder (Springel et al. 2001). These subhalos have a dark matter mass that is gravitationally

bound to itself but not to any other subhalos found in the same FOF host or the host itself. As

shown in Figure 2.1, the I = 0.2 mass functions of the TNG100 (magenta) and TNG100DM (cyan)

SUBFIND subhalos match well with the analytical Sheth and Tormen (2002) mass function (dotted

dashed) at that redshift. Both simulations become incomplete just below "halo ' 108.6 "�. In

order to be conservative, we restrict our analysis to subhalos and field halos with resolved masses

"halo > 109 "�. These halos contain at least 134 dark matter particles. TNG100 and TNG100DM

have 166 and 168 lens-target halos, respectively, where in TNG100, these halos typically host

galaxies with "★ ' 1011 "�, which is consistent with the benchmark sample in Vegetti et al.

3The highest resolution box is actually TNG50-1, but was not publicly available by the time this chapter was
submitted previously for publication.
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(2014).

The public SUBFIND catalogs in TNG100 include several baryon-dominated “subhalos," many of

which contain no dark matter. Most of these baryon-dominated objects exist within ∼20 kpc of

host galaxies and appear to be baryonic fragments numerically identified by SUBFIND rather than

galaxies associated with dark matter subhalos. While baryonic clumps could induce perturbations

detectable in lens images (Gilman et al. 2017, Hsueh et al. 2017, 2018, He et al. 2018), this type

of object is not the focus of our analysis; we are interested in the search for low-mass dark matter

structures. For this reason, we exclude systems with a ratio of total baryonic mass to dark matter

mass that is more that twice the cosmic baryon fraction, ("bar/"halo > 2 × 5b) in the substructure

analysis that follows.

2.2.2 The FIREbox DMO simulation

FIREBox is a new effort within the FIRE collaboration to simulate cosmological volumes of

!FIRE
box = 15 ℎ−1cMpc = 22.14 cMpc at the resolution of FIRE zoom-in simulations (Feldmann et al.

2022). Our analysis uses the results from a DMO version of the FIREbox initial conditions, ran with

20483 particles, which we dub FIREboxDM in this chapter. FIREboxDM has a dark matter particle

mass of <DM = 5.0× 104 "� and was run with a Plummer softening length of nDM = 40 pc. Since

we will work with a DMO simulation to complement the analysis done in the two TNG simulations,

we again account for baryonic mass by multiplying a by conversion factor of (1 − 5b), as we do for

TNG100DM.These simulations are complete, conservatively, to halo masses down to 107 "� (see

Figure 2.1).

The halo catalog for FIREboxDM was generated using ROCKSTAR (Behroozi et al. 2013). This

method finds dark matter halos using a hierarchically adaptive refinement of FOF in a 6-dimensional

phase-space and one time dimension. We set our ROCKSTAR halo finding parameters to be compa-

rable to those use in the TNG catalogs generated by SUBFIND. Specifically, we use a FOF linking
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Figure 2.1: Shown are the halo mass functions of the simulations at I = 0.2. Results from all
three simulation are in agreement with the analytical prediction of Sheth and Tormen (2002). The
arrows pointing to the G-axis designate the minimally resolved mass considered in each simulation,
indicated by the color coding.
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length of 1 = 0.20 and include only halos that have at least 100 dark matter particles. We also set

the criteria for unbound particle fraction rejection to 70% instead of the default 50%, as explored

in the Appendix of Graus et al. (2018). Doing so minimizes ambiguities associated with using

different halo finders for computing halo masses.4 With these choices, FIREbox contains three

target halos with mass "vir ∈ [0.8 − 2] × 1013 "�.

Returning to Figure 2.1, the mass function of FIREboxDM at I = 0.2 is shown as the solid gray

curve and agrees well with the analytical mass function down to halo masses with 107−8 "�. With

this in mind, the use of FIREboxDM in our analysis will be restricted to two sets of subhalo masses:

a sample of halo masses down to 107 "� (∼102 particles) and a sample of down to 108 "� (∼103

particles). For a more stringent check, Seciton 2.3 briefly compares the subhalo mass function and

the subhalo +max function of the three target-lens halos of FIREboxDM to the same mass target-lens

halos in TNG100DM. We find excellent agreement between substructure statistics between our halo

samples.

2.2.3 Counting within lens-centered cylinders

We quantify perturber counts by enumerating small halos that sit within randomly-oriented lens-

centered cylinders of length ℓ and radius R, where ℓ can extend over the length of the simulation

box and R will be set to a value close to an expected Einstein radius (∼ 10 kpc). As illustrated

in Figure 2.2, each cylinder is centered on a target halo in the simulation box. The volume of the

cylinder is increased by lengthening ℓ → ℓ + Δℓ with the radius R fixed. In practice, R � 'vir.

For a discrete increment variation of Δℓ, both ends of the cylinder are increased by (Δℓ)/2, which

captures both structures whose positions are found in the foreground and background of the target

halo. Doing so allows us to qualitatively compare counts as function of radius A from the halo

4We have also experimented with higher unbound fractions of 90% and 95% with a fixed value of 1 = 0.20. We
chose the unbound fraction of 70% and a FOF linking of 1 = 0.20 because they provide the best match with TNG100DM
catalogs for "halo > 109 "�.
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(Lens mass halo)

ℓ = 2Rvir

Figure 2.2: A cartoon depiction of the analysis performed for each lens-centered cylinder in a
simulation box. The lens-mass halo, centered at the origin of the box, is illustrated as the large
pink sphere, while subhalos are illustrated as smaller halos. With the cylinder held at a fixed R, the
cylinder is varied by increments of Δℓ (Δℓ/2 at each end of the cylinder) until reaching the edge of
the box. Note that the radius of the cylinder has been exaggerated for clarity. In practice, R � 'vir.

center, i.e., A ' ℓ/2. For example, a lens-centered cylinder length of ℓ = 2'vir spans the full

diameter of the dark matter halo.

In what follows we compare counts from lens-centered cylinders to those of average cylinders,

which are configured like a lens-centered cylinder, but now with their centers randomly placed

within the simulation box. Note for a large sample of average cylinders, the mean count per unit

volume at any ℓ will be equal to the average halo density (e.g. Sheth and Tormen 2002). For both

cylinder types, we take into account the periodicity of the cosmological box but never allow the
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full cylinder length to exceed the box length.

Figure 2.3 provides a simple illustration of our counting prescription applied to TNG100 for a

single lens-mass halo of "vir ' 1013"� (labeled as “lens-centered cylinder”) and for a randomly

placed cylinder of the same size inside the box (labeled as “average cylinder”). For illustrative

purposes, we have set the radius of the cylinder to a very large value R = 'vir ' 500 kpc, much

larger than what we will use in our main analysis. The cylinder length is set to ℓ = 10 Mpc. The

filled circles show all subhalos with "halo > 109 "�. Points and circles are colored based on their

relative distance from the host: within ℓ = 2'vir (A = 'vir) as cyan, ℓ = [2−4]'vir (A = [1−2]'vir)

as magenta, and black for everything else out to a length ℓ = 10 Mpc. The two top plots show the

edge-on projections while the bottom plots are the face-on projections. For the face-on projections,

the sizes of the circles are scaled proportionally to the mass of the halos in the cylinder (with the

host halo removed for clarity). In the bottom-left panel, we show only halos that are outside of 'vir

of the lens-host. Even excluding substructure, the overall count is much higher than the random

cylinder.

For this particular randomly-chosen "average" cylinder, we find 14 halos with "halo > 109 "�

within the 10 Mpc projection visualized. Note that the cosmological average expected for this

volume is ≈ 14.3 when using the Sheth and Torman mass function (Sheth and Tormen 2002).

Counts are significantly higher for the lens-centered cylinder. For comparison, the lens-centered

cylinder contains 108 halos of the same mass. Interestingly, correlated structure counts around the

lens-host that exist outside of A = 'vir but within A = 2'vir is 28, which exceeds all of the counts

within the 10 Mpc long average cylinder. This shows that clustering in the vicinity of the lens will

boost signals non-trivially compared to what we would have estimated by ignoring local clustering

outside of the halo virial radius.

While Figure 2.3 is useful to elucidate the point of a projected cylinder, the radius shown, R = 'vir,

is not relevant for lensing studies. The remainder of the analysis hereafter imposes a fixed projected

cylinder radius of R = 10 kpc, which is a value comparable to size of the lens-mass’ Einstein radius
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Figure 2.3: The importance of correlated structure in sub-galactic lensing. The upper and middle
panels depict the side-view of a cylinder length of ℓ = 10 Mpc and radius R = 500 kpc centered
on a lens-mass host halo with radius 'vir ' 500 kpc at I = 0.2 in the TNG100 simulation. The
points show locations of "halo > 109 "� halos within the cylinder, color coded by relative distance
from the host out to the size of the halo ℓ = 2'vir (or equivalently to A = 'vir; cyan points), within
ℓ = [2−4]'vir (A = [1−2]'vir; magenta points), and everything else outside ℓ = 4'vir out to ℓ = 10
Mpc (black points). The figure beneath it shows an identical cylinder that samples a representative
region of the simulation box using the same color scheme; the area of each point is proportional
to that halo’s mass. The square plots are the same cylinders shown face on, centered on the lens
(left) and centered randomly (right). The cylinder radius R = 500 kpc used for this figure is, for
illustrative purposes, much larger than the typical Einstein radius of the host (R ≈ 10 kpc; we use
the latter value for our actual analysis. Local, correlated perturbers around the lens are highly
significant (compare the magenta points in the left verses right panels on the bottom)
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(typically . 10 kpc). Note that in the SLACS sample used by Vegetti et al. (2014) at a redshift

〈Ilens〉 ∼ 0.2, the median Einstein radius is ∼ 4.2 kpc. We adopt a slightly larger 10 kpc radius in

what follows in order to improve counting statistics; see Section 2.5 for a discussion of counting

variance. Our primary results below are framed as relative counts per unit volume, such that the

precise radius of the cylinder factors out. We show in Section 2.5.1 that our results are insensitive

(to within counting noise) to choices of cylinder radii of 5 kpc and even 2 kpc.

2.3 Comparison between mass functions of lens-mass sample

As mentioned in Section 2.2, the SUBFIND halo finder was ran for the TNG suites while ROCKSTAR

was applied to FIREboxDM. Figure 2.1 provides confidence in the resulting halo catalogs used in

the main text, as both catalogs show robust agreement with the analytical prediction. However,

halo finders vary in routines for quantifying the masses for subhalos and can potentially produce

different mass functions when ran to the same simulations. It would be worth comparing our

resulting halo finders with one another based on the resolved substructure population found for our

lens-target halos at I = 0.2.

Figure 2.4 shows the subhalo mass functions for the 1013 "� target-lens systems in TNG100DM

(purple) while the three from FIREboxDM (black curves). The purple band for TNG100DM encloses

the 90% dispersion of all of the target-lens subhalo mass functions. Significant disagreement could

arise based on the assignment of particles to subhalos from halo finders (Graus et al. 2018). To

clarify this point, Figure 2.5 provides a different view of subhalo sample, where the subhalo +max

function for the same lens-target systems.
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2.4 Key results

2.4.1 Average halo counts in projection

Our main results are presented in Figure 2.6, where we plot the mean differential count of halos

per cylinder length, 〈3#/3ℓ〉 using 100 cylinders randomly oriented around each lens-mass halo

(solid lines). The cylinders mirror those shown in Fig 2.3, but now with a radius comparable to the

Einstein radius of the lens-mass halos, R = 10 kpc (and varying length ℓ). Integrating 3#/3ℓ over

ℓ gives the cumulative count # (< ℓ) within a cylinder of total length ℓ. We plot the differential

count as a function of cylinder length, ℓ. Shown is the mean differential count rather than the

median because this allows us to compare directly to analytic expectations for the average halo

abundance. Each solid curve shows the rate of counts for halo masses greater than a given value

(indicated in the legend), normalized by the rate of counts expected from the average background

from Sheth and Tormen (2002). Counts equal to the rate of counts from the average background

are shown as the horizontal dotted line with an amplitude of unity.5 The vertical grey-dashed line

separates between the two regimes of interest: the substructure contribution (ℓ < 2'vir and the

local structure (ℓ > 2'vir).

We see that for all simulations and mass cuts, the differential counts are above the average counts

out to A ∼ 20 Mpc (ℓ ∼ 40 'vir). This is attributed to excess clustering in the vicinity of the massive

host, an effect often ignored in lensing studies (see e.g. Despali et al. 2018, who assume average

counts outside the virial radius), though some groups (e.g. Gilman et al. 2018) have attempted to

account for the effect (see below). For perturbers more massive than 109 "�, the rate of counts

do not reach the average background until ℓ ∼ 75'vir ≈ 40 Mpc for both TNG100 (magenta),

TNG100DM (cyan), and FIREboxDM (red, which is limited by only having three hosts). It is

interesting also to compare TNG100 (magenta) to TNG100DM (cyan). We see that at small ℓ

5We have also tested with a large number average cylinders in the simulations (as the example shown in Figure 2.3)
and confirmed that the average background counts are consistent with analytical expectations of Sheth and Tormen
(2002).
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Figure 2.6: Structure excess along lens-centered projections: The mean differential count 〈3#/3ℓ〉
of small halos within cylinders of increasing length ℓ + Δℓ centered on the lens-mass host halos
("vir ' 1013"�, solid colored), normalized by the expected average background counts via from
analytical halo mass function (dotted black). The cylinders mirror those shown in Figure 2.3,
but now with a radius comparable to the Einstein radius of the lens-mass halos, R = 10 kpc
(and varying length ℓ). The gray vertical dashed line marks the typical outer region of the halo
(ℓ = 2'vir ↔ A = 'vir). Inside the lens-mass host halos (ℓ < 2'vir), the differential counts are
self-similar for the DMO simulations. For TNG100 (solid magenta), the counts decrease by almost
a factor of 10 because of the destructive effect of the central galaxy. Differences between the curves
become apparent outside the halo due to local halo clustering. This effect originates predominantly
from “backsplash" halos that have pericenters with A < 'vir but apocenters of A > 'vir, meaning they
lie within the splashback radius of the lens-mass host but spend most of their time at A > 'vir. For
comparison, we plot the analytical contribution of the two-halo term given by G18 (Equation 2.1;
dashed orange), where we set Xlos = 1. While G18 accurately reproduces the contribution at
ℓ > 5× 'vir for most of the curves, it significantly under-predicts the differential halo counts within
ℓ ∈ [2 − 5]'vir. Our proposed modification, Equation 2.3 (dashed black), captures the excess for
ℓ > 2 'vir to within 10%.
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(corresponding to the center of the host halo), the overall count is higher in the DMO run. This

comes about because of enhanced subhalo destruction from the central galaxy potential (e.g. Graus

et al. 2018). Differential counts in FIREboxDM are consistent with those in TNG100DM for a lower

mass threshold of "halo = 109 "�, though the FIREboxDM result is noisier owing to the fact that

there are only three target lens-mass halos in the volume. In Section 2.5, we further discuss the

effect of sample variance in our analysis.

Comparing the 109 "� (magenta/cyan), 108 "� (gray) and 107 "� (black) lines, there is an

indication that lower-mass halos contribute more near the center of the lens-host (ℓ ∼ 0.1'vir).

This would be expected if subhalo radial distributions within the host halo are more centrally

concentrated at lower subhalo masses. Beyond the virial radius (ℓ > 2 'vir) the lower-mass halos

found in FIREboxDM, 108 "� (gray) and 107 "� (black), track the enhanced counts seen at 109 "�.

For ℓ > 5'vir, the counts for lower mass halos in FIREboxDM fall slightly below those seen in

TNG. This difference could be physical. For example, lower mass halos may be less clustered

around the lens host. However, the offset we see from 109 "� to 108 "� is much larger than would

be expected naively from the clustering bias change over this mass range: 1(109"�) ' 0.64 vs.

1(108"�) ' 0.63 at I = 0.2 (Sheth and Tormen 1999). The difference could also arise from the

lack of large-scale power in the small volume of FIREboxDM or from simple sample variance from

having only three host halos.

2.4.2 Analytic model comparison

Correlated structure outside of the virial radius of a massive target halo is related to the "two-halo

term" of the halo-matter correlation function (e.g. Ma and Fry 2000, Seljak 2000, Smith et al.

2003). Gilman et al. (2018) (G18 hereafter) estimated this effect as

32#

3< 3+
= Xlos

[
1 + b2halo(A, "vir, I)

] 32#ST
3< 3+

, , (2.1)
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Figure 2.7: Solid lines show the integrated mean count of halos more massive than 109 "� within
cylinders of radius R = 10 kpc and of length ℓ centered on lens hosts from TNG100 (magenta)
and TNG100DM (cyan). The gray vertical line marks the cylinder length at the halo boundary
(ℓ = 2'vir). The cumulative count of halos that would result without any adjustment for correlated
structure beyond the virial radius is shown by the dotted lines. The predicted contribution of
correlated structure from G18 (Equation 2.3) is shown by the dashed lines. In implementing G18,
we set Xlos = 1 for TNG100DM, as the convergence to average is about one-to-one. However, for
TNG100, we set Xlos = 0.879 to remain consistent with the average-count differences in TNG100DM.
The G18 model captures much, but not all, of the correlated structure; the extra component beyond
the G18 prediction comes from virialized halos beyond 'vir but within the splashback radius.

where "vir is the mass of the host halo and Xlos is an overall scaling term that accounts for a

systematic shift of the mean number of halos predicted by the Sheth and Tormen (2002) mass

function (#ST), and

b2halo(A, "vir, I) = 1ST("vir, I)blin(A, I) (2.2)

is the two-halo term that depends on the bias, 1ST, around the lens halo computed as in Sheth

and Tormen (1999) and blin is the linear matter-matter correlation function at a three-dimensional

distance, A, computed from the linear power spectrum at redshift I.
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Equation 2.1 (labeled “G18”) is plotted as the orange dashed curve in Figure 2.4. There, we

designate Xlos = 1 since the structure found in the volumes of all three simulations tend to be well

represented by the halo mass function (refer to Figure 2.1). Notice that in the region ℓ = [2−5]'vir,

counts in the simulation are in excess of the G18 estimate. This excess likely originates from

subhalos with orbits that have apocenters beyond 'vir. This “backsplash" population can be

substantial just outside of 'vir, as 50-80% of halos at A ∈ [1 − 1.5] 'vir were once subhalos (e.g.

Gill et al. 2005, Garrison-Kimmel et al. 2014) and therefore represent a natural continuation of

the subhalo population within 'vir6. A physical boundary for this virialized population of halos is

the so-called “splashback" radius of the host (More et al. 2015), where recently-accreted material

reaches its second apocenter (or the first apocenter after turn-around, where the turn-around – or

infall – radius is 'infall ≈ 1.4 'sp). Our sample of lens-mass halos at I = 0.2 should have a median

splashback radius of 'sp ≈ 1.5'vir (More et al. 2015). Subhalos outside of 'vir but within 'sp

(ℓ ≈ 3'vir), and accompanying halos on first infall (A < 'infall ≈ 2.1 'vir ↔ ℓ4.2 'vir) therefore

provide a natural explanation of the excess relative to G18 at ℓ = [2 − 5]'vir. Notably, the G18

model matches our simulation results for ℓ > 5'vir, similar to the radius at which Garrison-Kimmel

et al. (2014) find the backsplash fraction is essentially zero.

To accommodate the excess clustering seen within 5'vir, we modify Equation 2.1 as

32#CDM
3< 3+

= Xlos
[
1 + b2halo(A, "vir, I) + 1sp(A)

] 32#ST
3< 3+

, (2.3)

where

1sp(A) := 14
(
A

5'vir

)−B4
. (2.4)

Here 14 and B4 are free parameters, and the term in parentheses accounts for the excess clustering

(compared to Equation 2.1). Equation 2.3 explicitly separates the contribution of the cosmologically

6A backsplash excess is also hinted at pictorially in Figure 2.3 (top panel) from the magenta dots in the (edge-on)
lens-centered projection
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average LOS halos, an enhancement from halo-halo clustering, and a further enhancement from

backsplash halos. The implied LOS count with this parametrization is shown as the black-dashed

curve in Figure 2.6 with 14 = 0.1 and B4 = 4. This choice of parameters captures our results to an

accuracy of 10% all the way out to the edge of the simulation box. In particular, our parametrization

is what we would expect for a population of virialized (sub)halos that populate between distances

of 'vir and 5'vir

2.4.3 Cumulative counts

In order to estimate sample size of suitable lenses needed for testing predictions, it is useful to

know how many low-mass halos, on average, we expect to see along the LOS to a host. The lower

the expected count per lens, the more lenses we will need to place meaningful constraints on the

halo mass function at low masses. The average count will depend, of course, on the redshift of the

target galaxy and lens relative to the observer (e.g. Despali and Vegetti 2017) but our results allow

us to determine the average count within the ∼ 100 Mpc vicinity of the lens. Broadly speaking,

the closer the lens to the observer, the more important correlated structure will be. The results that

follow will be important for any lens where the substructure contribution is significant compared to

the total expected count of perturbers. This is the case for roughly half of the lenses in the Despali

and Vegetti (2017) sample, for example.

Figure 2.7 shows the mean count of halos along the projected lens-centered cylinder as a function

of cylinder length ℓ, where the mean cumulative counts, 〈# (< ℓ)〉, is related to the average rate of

counts by

〈# (< ℓ)〉 =
∫ ℓ

0
3ℓ′

〈
3#

3ℓ′

〉
. (2.5)

Following the presentation of Figure 2.4, for increasing ℓ, the simulation results fully realize the

expected clustering contribution to the LOS halo count once integrating the solid lines out to the
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cosmological boxes.

Solid lines in Figure 2.7 show the integrated mean count of halos more massive than 109 "� within

cylinders of length ℓ centered on lens hosts from TNG100 (magenta) and TNG100DM (cyan). The

gray vertical line marks the cylinder length at the halo boundary (ℓ = 2'vir). As we can see by

comparing TNG100 and TNG100DM at ℓ < 2'vir, subhalo counts are reduced by ≈ 40 in the

full-physics run compared to the DMO run. This result is consistent with the findings of Despali

and Vegetti (2017) and Graus et al. (2018). A second takeaway from Figure 2.7 is that the average

count of halos is much less than unity out to the edge of the box. This means that most of the

lens-centered LOS cylinder do not contain halos larger than 109 "�within within 100 Mpc in

projections of radius R = 10kpc. We find that for TNG100DM, 87.5% of projections contain no

halos at this mass limit. For TNG100, the fraction of empty projections rises to ≈ 92.5%.

The dashed and dotted lines in Figure 2.7 compares our simulation results to alternative ways of

estimating cumulative counts beyond the host halo virial radius. The first assumes that halo counts

are equal to the universal average (estimated via Sheth and Tormen 2002) for all radii beyond the

virial radius of the lens (dotted lines) and the second uses the estimate from G18, which models

local clustering as in Equation 2.1. We see that if we assume the average background is achieved

for radii beyond the virial radius, the cumulative count at 100 Mpc is underpredicted by ∼ 20% in

TNG100 and ∼ 15% in TNG100DM. Differences between the simulations and the G18 estimate

are not as large, with ≈ 5% offsets in TNG100DM and TNG100 at 100 Mpc. Note that when using

the G18 formula, we set Xlos = 1 for TNG100DM and Xlos = 0.879 for TNG100. The latter value is

below unity because the average differential count is slightly below the Sheth and Tormen (2002)

estimate at large ℓ (see the magenta vs. dotted lines at > 40 Mpc in Figure 2.6). This factor is also

introduced for the average background interpolation. We provide a more thorough discussion on

how the contribution of the clustering component to quantifying the LOS structure of TNG100 in

later in this section, while TNG100DM results are discussed in Section 2.6.

Figure 2.8 displays the mean cumulative counts for FIREboxDM subhalos of "halo > 108 "� and
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Figure 2.8: Similar to Figure 2.5, but now for FIREboxDM halos with "halo > 108 "� (top) and
"halo > 107 "� (bottom). Both curves (top and bottom panels) incorporating the G18 model use
Xlos = 1. The typical LOS passing through a lensing host encounters significantly more perturbers
above a given mass as the perturber mass threshold is lowered.
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"halo > 107 "� in the top and bottom panel, respectively. The likelihood of finding a halo in a

single projected cylinder increases substantially at these lower masses compared to the 109 "�.

Specifically, we expect to see, on average, more than one small halo per LOS for 108 "� and more

than 15 for 107 "�.One caveat here is that these simulations do not include the destructive effects of

a central galaxy. We would expect substructure to be depleted within ℓ ≈ 1 Mpc by approximately

40% if the destruction mirrors that seen in Figure 2.5 for "halo > 109 "� halos.7

The line styles in Figure 2.8 mimic those in Figure 2.7, with solid lines representing the full

simulation results. The line is extrapolated beyond the edge of FIREboxDM (gray solid line) by

assuming it follows the G18 estimate starting at !FIRE
box with Xlos = 1 for both mass cuts. We have

also modeled the entire solid line using Equation 2.3 instead of the simulation results to test whether

the relatively small box of FIREboxDM suppresses large-scale modes, thereby affecting the number

of halos found from ℓ = 5'vir out to !FIRE
box . Doing so, we find very little difference in the final

results. The assumption of average background to the simulation results out to !TNG
box results differ

to about 15% for 108 "� while 10% for 107 "�.

It is important to quantify the contribution of correlated clustering to counts for ℓ > 2 'vir, i.e.,

when subtracting off the contribution of subhalos to # (< ℓ), what is the fractional contribution

of the population of clustered halos compared to the average halo population at ℓ > 2 'vir? This

is explicitly address in Figure 2.9, which shows the total average cumulative count of 109 "�

halos in TNG100 for cylinder lengths ranging from the edge of the virial radius to the edge of the

box. We plot the average count 〈# (< ℓ)〉 in units of the average cumulative count from subhalos

〈#sub〉 ≡ 〈# (ℓ < 2'vir)〉, where 〈#sub〉 = 0.072. The full count from the simulation (labeled

as “total”) is shown by the magenta curve while cylinders that are assumed to have the average

background outside of the virial radius (labeled “average”) are plotted as the light gray curve.

To quantify the excess clustering associated beyond substructure, we take the difference between

7Recently, Kelley et al. (2019) presented high-resolution zoom simulations for MW-mass DMO halos while
accounting for the central galaxy and found that the depletion of substructure is about roughly the same factor for
halos down to 107 "� at I = 0. While we are drawing possible conclusions from MW-mass halos, this scaling could
translate to our lens-mass halos.

43



1 10 100

Cylinder Length ` [Mpc]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
〈N

(<
`)
〉/
〈N

su
b
〉

〈Nsub〉 = 0.072

total

clustering

average

Mhalo > 109 M�
TNG100

Mhalo > 109 M�
TNG100

2Rvir 5Rvir 10Rvir LFIRE
box 75Rvir LTNG

box

Figure 2.9: Boost in counts from local clustering: The mean count of LOS halos more massive than
109 "� within lens-centered cylinders from TNG100 relative to the mean count within the virial
radius 〈#sub〉 ≡ 〈# (ℓ < 2 'vir)〉 is presented here. The magenta line shows the mean total count
from the simulation (labeled “total”), while the gray line shows counts in cylinders that assume
the density of halos matches the mean background (dubbed “average”) for ℓ > 2 'vir. The black
line shows the difference between the “total" and “average" contributions; this is the component
that is attributable to local halo clustering (dubbed “clustering”). We see that the local clustering
effect provides a boost of ∼ 35% compared to the subhalo count alone and that this contribution
dominates the “average" contribution out to ∼65 Mpc ≈ 130 'vir.

the magenta and gray curves. This results in the black curve (“clustering”). The excess clustered

contribution asymptotes to∼ 1.35〈#sub〉 at ℓ ≈ 70 Mpc (∼75 'vir). This means that local clustering

boosts the expected signal by ∼ 35% compared to what we would expect from subhalos alone. We

show similar results for lower mass halos in other simulations in Section 2.6. Broadly speaking,

the boost from local clustering is smaller relatively in DMO simulations that do not have enhanced

subhalo destruction from the central galaxy. Note that the clustering contribution is larger than the

average contribution out to ℓ ≈ 65 Mpc, or equivalently, ∼130 'vir.
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2.4.4 Structure along principal axes

CDM halos have significant triaxiality (e.g. Frenk et al. 1988, Dubinski and Carlberg 1991, Warren

et al. 1992, Cole and Lacey 1996, Jing and Suto 2002, Bailin and Steinmetz 2005, Kasun and Evrard

2005, Paz et al. 2006, Allgood et al. 2006, Bett et al. 2007, Muñoz-Cuartas et al. 2011, Despali

et al. 2014, Vega-Ferrero et al. 2017, Lau et al. 2020), which could also mean that subhalos are

found preferentially along the host’s major (densest) axis (e.g. Zentner et al. 2005). This effect can

qualitatively impact our analysis of lens-centered projections, especially for substructure lensing.

Furthermore, it is likely that galaxy lenses are biased to be oriented with the LOS coinciding

with the host halo’s major axis (Mandelbaum et al. 2009, Osato et al. 2018), as this configuration

produces a larger surface mass density for a fixed overall mass distribution. In order to explore the

potential magnitude of this effect, we calculate dark matter halo shapes from the lens targets using

the shape inertia tensor as discussed in Allgood et al. (2006). We include all dark matter particles

within a shell between 10 − 20% of 'vir as a conservative approach for our sample of halos. Using

a shell rather than the enclosed mass minimizes the influence of particles with radii smaller than

the numerical convergence scale. The resulting eigenvalues of the shape tensor are proportional to

the square root of the principal axes of the dark matter distribution. We then re-do the analysis of

Section 2.4, now aligning the lens-centered projections along each principal axis of the lens-mass

halo.

Figure 2.10 plots the results for the average (mean) counts along each principal axis for halos more

massive than 109 "� in TNG100 (for comparison with TNG100DM, see Figure 2.14). The top,

middle, and bottom panels depict the average counts along the major axis, intermediate axis, and

minor axis, respectively, with cylinders of radius R = 10 kpc. For comparison, the faded solid line

in each panel shows the mean counts presented previously in Figure 2.7. We see that the major axis

sight-line results in measurably more halos, on average, than do other orientations. The boost along

the major axis is ∼ 30% compared to the random LOS, with essentially the entire contribution

coming from subhalos (and backsplash halos). Along the minor axis, on the other hand, average
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Figure 2.10: Projections along the principal axes: Similar presentation as Figure 2.6, but now
filled solid lines show the counts for TNG100 halos "halo > 109 "� along the major, intermediate,
and minor axis in the top, center, and bottom panels, respectively. The transparent lines give the
mean counts of the substructure with local clustering counts of TNG100 presented previously in
Figure 2.7. Sight-lines oriented along the major (minor) axis of the halo result in a non-trivial
increase (decrease) in the number of perturbers encountered along the sight line.
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counts are significantly reduced. Projections along the intermediate-axis are comparable to the

average counts shown in Figure 2.6. It is clear that lens-centered projections along the major or

minor axis can non-trivially boost or decrease the lensing signals by a factor of ∼ 2. This factor is

also acquired for analog simulation neglecting the presence of the central galaxy and baryons (see

Figure 2.14).

2.5 Nuances from counting statistics

In Section 2.4.1, we discussed the possibility that the differences in local clustering signal between

TNG100DM and FIREboxDM could arise from sampling variance – there are only three lens-mass

hosts in FIREboxDM – rather than differences in large-scale structure (compare the red and cyan

curve in Figure 2.6). In order to explore this more fully, Figure 2.11 shows 〈3#/3ℓ〉 for TNG100DM

(cyan) and FIREboxDM (red). This figure mirrors Figure 2.6 except now we are using a cylinder

radius with the size of the lens-mass virial radius (R = 'vir ' 500 kpc) as opposed to the typical

Einstein radius (R = 10 kpc) in order to improve counting statistics. The solid lines depict the mean

of all projections while the dashed (shown only for TNG100DM) is the median of all projections.

The cyan band encloses the ±1f of all of the individual curves around median.

For ℓ < 1 Mpc, the median and mean curve for TNG100DM are consistent with one another, but

for ℓ > 1 Mpc we see that the average count (which is what we plot in Figure 2.6) sits well above

the median. This is indicative of a highly non-Gaussian distribution, with a tail skewed towards

large fluctuations, as expected for non-linear dark matter structure. Specifically, rare (high-count)

events drive the average higher than the median. If this is the case, we require a large number of

realizations in order to sample enough of the distribution to capture the true average. As further

evidence that sample variance is the cause of the differences in local clustering signal between

TNG100DM and FIREboxDM, the median line in Figure 2.11 falls below the average background

(black dashed) at ℓ ≈ 10 Mpc. This is due to a large number of null counts.
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Figure 2.11: Analogous to Figure 2.4, nowwith results of TNG100DM (cyan) and FIREboxDM (red)
for "halo > 109 "� for cylinders with a radius size comparable to the lens mass halo (R = 'vir)
as opposed to the lens halo’s Einstein radius (R = 10 kpc). The solid curves depict the mean
differential count while the dashed cyan is the median differential count for TNG100DM. The
cyan band encloses the ±1f region of the curves. The median counts fall below the mean counts,
indicating that the mean counts are strongly affected by rare, high-count orientations.
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Though the average count from FIREboxDM falls below the average line from TNG100DM, we see

that it falls within the 1f band about the median. Given that we only have three host halos in our

sample, this would not be unexpected even if the halos were sampling the same large-scale structure

field. Naively, there is a ∼ 30% chance that three randomly drawn distributions will lie within 1f

of the median. Given that we only have three host halos, we conclude that the observed result is

consistent with small-number statistics.

2.5.1 Choice of cylinder radius

The conclusions made in the results protion of this chapter are based on the average number density

of subhalos within a project cylinder radius of 10 kpc, which is comparable to the typical Einstein

ring of our 1013 "� lens-mass halos. The choice of R = 10 kpc could bias our results towards

higher substructure, and potentially, LOS halo counts, as massive galaxy lenses typically have

Einstein ring radii of ∼ 5 kpc (Bolton et al. 2008).

In Figure 2.12, we demonstrate how the selection of smaller lens radii does not impact the trends

discussed in our main analysis. Both the top and bottom plot mirrors exactly Figure 2.6, now with

the top and bottom plot showing results for a projected radius of 5 and 2 kpc, respectively. We

find that we are able to mostly recover the same trend seen for the 10 kpc projected radius from

Figure 2.6 for both R = 5 and 2 kpc. In the 5 kpc radius projection, the curves are more noisier than

the 10 kpc owing to the increasing fraction of projections with zero halos. We would argue that

the R = 5 kpc size projections have comparable trends to the R = 10 kpc case. Out to ℓ = 5'vir,

most of the mean differentials drives faster down to the average compared to the 10 kpc case, but

we suspect this is owed to low number statistics along with the sampling variance for TNG100DM

(see discussion in Section 2.5). This becomes more apparent for the smaller projected radius of 2

kpc, as the fraction of projections of zero halos increases appreciably. Note that the "halo >109 "�

result is impacted greatly by sampling variance the low number of halos along the LOS.
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Figure 2.12: Analogous to Figure 2.6, now for cylinders with a radius size R = 5 kpc and a much
smaller annulus R = 2 kpc. While the curves are much noisier as the radius size becomes smaller
(owing to the increased fraction of null sight lines), the we are able to recover the same trend for
the differential counts seen for a projected radius of R = 10 kpc.
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2.6 Supplementary discussion with dark matter only physics

This section presents the DMO results fromTNG100DM and for FIREboxDMand provides additional

elaboration of the results presented in Section 2.4. Section 2.6.1 picks up from later discussion of

Section 2.4.3 and Section 2.6.2 picks up from Section 2.4.4.

2.6.1 Clustering contribution to the line-of-sight population

Figure 2.13 presents the contribution of the simulated clustering to the LOS halo population

in TNG100DM and FIREboxDM. Namely, the top, middle, and bottom panels plots the subhalo

populations based on the lower-mass cuts of 109 "�, 108 "�, and 107 "�, respectively. The colored

curves, labeled “total”, are the actual results of the simulation out to the box using our method

discussed in the main text. The average background expectation for halos above the low-mass cuts

in each panel is depicted by the grey curves. The clustering contribution from the simulations,

labeled “clustering”, are plotted as the black curves, which is the difference between the “total”

curve and “average” curves. Like before, all results are normalized by the 〈#sub〉 quantified from

out lens-mass sample. Since the actual FIREboxDM results extend out to !FIRE
box , we extrapolate the

curves out to !TNG
box using Equation 2.1 (using Equation 2.3 is also equally adequate).

Starting with the counts 109 "� (top panel), clustering acts as the most contributing component to

the LOS halo population until the average background takes over at ℓ ≈ 75'vir (or A ≈ 37.5 Mpc)

for TNG100DM (cyan curve). As a comparison check, we plotted the FIREboxDM results of

109 "� (thin blue curve) and find minimal difference in results. Note the clustering component

is determined from TNG100DM and not FIREboxDM. The clustering component in TNG100DM

boosts about 1.5〈#sub〉 out until the average background takes over at ℓ ≈ 70 Mpc (or A ≈ 35 Mpc).

This is less significant than the TNG100 in the main text, the clustering component strongly boosts

the number of LOS halos to about 1.7〈#sub〉 until the average background takes over.
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Figure 2.13: Like Figure 2.9, now showing only the results for TNG100DM and FIREboxDM. In
the top panel, the black and gray curve are computed based off of the total counts from TNG100DM
(cyan curve). As a comparison, the blue curve shows the total counts from FIREboxDM out to
!FIRE

box . The middle and bottom panel are presented similarly with their curves extrapolated out to
the !TNG

box using Equation 2.3.
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As we go further down to the low-mass cuts of the subhalo populations, the contribution from

correlated clustering becomes much weaker for decrease mass. For "halo > 108 M� (middle

panel), the clustering component boosts the number of LOS halos to only about ∼ 1.2〈#sub〉

until the average background takes over at about ℓ ≈ 60 Mpc (or A ≈ 30 Mpc). The clustering

component for "halo > 107 M� (bottom panel) becomes weaker by only boosting the number of

LOS halos to only about ∼ 1.1〈#sub〉 until the average background takes over at A ≈ 30 Mpc). In

order to conclude with more robust predictions, a larger sample lens-mass halos in comparable

cosmological environments is needed to reduced the uncertainty possibly found in 〈#sub〉 for these

low-mass halos.

2.6.2 Structure along principal axes

Figure 2.14 plots themean subhalo counts as seen from lens-centered projections along the principal

axis of the TNG100DM lens-mass halos. The axes were computed using the method detailed in

Section 2.4.4. Shown are only the results from TNG100DM since these cosmological volumes

have enough lens-centered mass halos to provide enough statistics since each halo has only three

principal axis to orientate on. Moreover, FIREboxDM, while useful for simulating 107−8 "� halos

in cosmological environment, has only three lens-centered hosts, which will not provide adequate

statistics to present. Though, we find similar trends. The top, middle, and bottom panels depict the

average counts along the major-, intermediate-, and minor-axis, respectively. For comparison, the

faded solid line in each panel plots the mean counts presented previously in Figure 2.7. We again

see that projections along the major-axis of DMO lens-mass halos, subhalos tend to populate on the

densest principal axis. This effect is more dramatic for the substructure compared to the TNG100

shown previously, owing to the lack of a central galaxy.

Projections the size of the Einstein radius along the major-axis find around 75% of the projections

to contain no substructure out to the size of the halo. Along the minor-axis, this is around ∼ 90%.
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Figure 2.14: Like Figure 2.10, but now showing the TNG100DM counts for halos "halo > 109 "�
along the major, intermediate, and minor axis in the top, center, and bottom panels, respectively.
Plotted for comparison, the transparent lines are the mean counts of the substructure with local
clustering counts for TNG100DM presented previously in Figure 2.7.
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Additionally, the substructure counts appear to be almost comparable to the mean from Figure 2.6,

though slightly less. Done on the intermediate-axis, this results in counts somewhat comparable to

the mean counts, though we see ∼5% boost in the LOS component.

2.7 Summary and concluding remarks

Using the set of TNG100 and DMO FIREboxDM cosmological simulations, we quantify the effect

of local clustering on gravitational lensing searches for low-mass dark matter halos. We specifically

focus on lens-mass halos of mass "vir ' 1013 "� at I = 0.2 as prime targets for future lensing

surveys and explore counts of halos down to "halo = 107−9 "�.

Our primary result is that local clustering can boost the expected LOS perturber halo counts

significantly compared subhalos alone. The signal exceeds that expected for an average background

projection to distances in excess of ±10 Mpc from the lens host (Figure 2.6), with a significant

excess within 2 − 5 'vir. We provide an analytic expression for this contribution (Equation 2.3),

which we hope will be useful in full lensing interpretation studies.

Using full-physics TNG100 simulations (which resolve halos down to 109 "�), we find that

the central galaxy in lens-mass hosts depletes subhalos by ∼ 70% compared to dark-matter-only

simulations (see Figure 2.7). This result agrees with previous studies (Despali and Vegetti 2017,

Graus et al. 2018). From TNG100, the excess local clustering outside of the virial radius gives an

expected count that is ∼ 35% higher than would be expected from subhalos alone (Figure 2.9).

Local contributions to perturber counts are also affected by halo orientation. The above results

assume a random lens-orientation with respect to the observer, but if there is a bias for lenses to

be oriented along the principal axis (e.g. Dietrich et al. 2014, Groener and Goldberg 2014), then

the expected local count may be enhanced. Our initial exploration of this issue indicates that local

projected counts are ∼ 50% higher when the target halo is oriented along the major axis compared
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to a random orientation (Figure 2.8). This result, in turn, has implications for derived constraints on

the mass spectrum of perturbers and accompanying constraints on dark matter particle properties.

The above results will be particularly important for low-redshift lenses (I; ∼ 0.2), such as those in

the SLACS sample (Vegetti et al. 2014). For such lenses, (Despali et al. 2018) found that subhalos

should contribute ∼ 30 − 50% of the total perturber signal relative to LOS halos that neglect local

clustering. With clustering included, the local (subhalo + clustering) contribution may well be

comparable to ∼ 67.5% of the total LOS contribution that neglect clustering (or ∼ 40% of the

total contribution) for some lenses, especially those with lower-redshift sources (IB ∼ 0.6). Taking

into account any biases in lens-halo orientation is also important for these lenses, as an additional

∼ 50% boost in counts from local clustering could significantly affect interpretations.
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Chapter 3

An analytic surface density profile for CDM

halos and gravitational lensing studies

This chapter introduces an analytic surface density profile for dark matter halos that accurately

reproduces the structure of simulated halos ofmass"vir = 107−11 "�, making it useful formodeling

line-of-sight perturbers in strong gravitational lensing models. The two-parameter function has

an analytic deflection potential and is more accurate than the projected Navarro, Frenk & White

(NFW) profile commonly adopted at this mass scale for perturbers, especially at the small radii of

most relevant for lensing perturbations. Using a characteristic radius, '−1, where the log slope of

surface density is equal to −1, and an associated surface density, Σ−1, we can represent the expected

lensing signal from line-of-sight halos statistically, for an ensemble of halo orientations, using a

distribution of projected concentration parameters, Cvir := Avir/'−1. Though an individual halo can

have a projected concentration that varies with orientation with respect to the observer, the range of

projected concentrations correlates with the usual three-dimensional halo concentration in a way

that enables ease of use.
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3.1 Chapter context

TheΛCDM (the cosmological constant + cold darkmatter) cosmogony has served as the benchmark

model for decades. A major component of its success is in matching the large-scale structure of

the Universe, which also places principal constraints on the Universe’s composition (e.g. Davis

et al. 1985, Geller and Huchra 1989, Bond et al. 1996, Tegmark et al. 2004, Sánchez et al. 2006,

Weinberg et al. 2013). A key prediction of ΛCDM is that the Universe is lavished with a high

number density of very low-mass ("halo . 109 "�) dark matter halos that can act as perturbers in

lensing studies (Press and Schechter 1974, Green et al. 2005, Diemand et al. 2007, Springel et al.

2008, Frenk and White 2012). The existence of very low mass, nearly starless, dark halos of the

kind and character predicted have yet to be confirmed by observations and may only be detectable

via their gravitational effects, e.g., on strong gravitational lenses.

While the cosmological model ofΛCDM has been successful at matching large-scale observations,

ΛCDM still suffers from discrepancies found at small scales (see Bullock and Boylan-Kolchin 2017

for a comprehensive overview) and this has motivated alternative dark matter models. One such

model is warm dark matter (WDM), which suppresses the matter power spectrum of initial density

perturbations at scales smaller than the free-streaming length (Colín et al. 2000, Bode et al. 2001,

Lovell et al. 2012, Schneider et al. 2012). As an example, a 7 keV sterile neutrino of the type that

could be responsible for the observed 3.5 keV line in galaxy cluster X-ray spectra (e.g. Boyarsky

et al. 2014, Bulbul et al. 2014), would produce a sharp cutoff off in the abundance of halos smaller

than "halo . 108 "�. Demonstrating the existence of halos below this mass could rule out this

class of WDM; conversely, the ability to rule out such a population would eliminate ΛCDM as a

complete model of cosmology. One other prediction for galaxies in a WDM cosmology is that

they form with lower central densities compared to ΛCDM (Lovell et al. 2014). It is also possible

that dark matter particles interact among themselves within a hidden sector (Feng et al. 2009).

If self-interaction cross-sections are high enough, low-mass dark matter halos have lower central

densities compared to that ofΛCDM (Rocha et al. 2013, Elbert et al. 2015, Tulin and Yu 2018). For
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dark matter halos of a given mass, all of these alternative cosmological paradigms make distinct

predictions for both the abundance and central densities compared to expectations of ΛCDM.

Regardless of the cosmological model, a common characteristic of low-mass dark matter halos is

that they are extremely inefficient at forming stars and are nearly devoid of baryons (e.g. Sawala et al.

2016, Benitez-Llambay and Frenk 2020). This results in these objects being too difficult to detect

electromagnetically. A more promising route for their detection is via gravitational perturbations

of strongly lensed images (Dalal and Kochanek 2002, Moustakas and Metcalf 2003, Koopmans

2005, Vegetti and Koopmans 2009a,b, Vegetti et al. 2010, 2012, Hezaveh et al. 2016, Nierenberg

et al. 2020, Gilman et al. 2020a, Hsueh et al. 2020). To fully constrain the nature of the dark matter

using strong lensing, it is necessary to know the expected number of halos in ΛCDM and other

cosmology models. It is convenient to characterize low-mass halo perturbers as either subhalos

embedded within the main lens halo or field halos that are not part of the main lens but rather lie

in projection near the lens’ Einstein radius. In the strong lensing literature, this population of field

halos are typically called “line-of-sight” (LOS) halos (or LOS perturbers). Recent work has shown

that the LOS component contributes significantly more to strongly lensed signals. Within ΛCDM,

Li et al. (2017) found that that LOS halos dominated the subhalo signal by a factor of 3-4. A similar

result was found in Despali et al. (2018), where the number of LOS perturbers compared to subhalo

perturbers ranges from three to ten times depending on the lens configuration. Similar results are

found in Gilman et al. (2019), He et al. (2022), and in the contents within Chapter 2 (Lazar et al.

2021).

The internal structure of dark matter halo perturbers can greatly impact their lensing effect. Specif-

ically, in order to properly constrain the mass function predicted by ΛCDM, the surface density

profiles of the dark matter halos of interest must be precisely known (e.g., Minor et al. 2017,

2021b). A common way to characterize low-mass dark matter halo structure for perturbing, field

(LOS) halos is to assume that they follow spherically-symmetric NFW profiles (Navarro et al. 1997,

Nierenberg et al. 2017, Gilman et al. 2018, He et al. 2022). The implied surface-density profile
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(and associated lensing properties) is more straightforward to work with (Wright and Brainerd

2000) and enables fast and theoretically-motivated analysis. With this assumption, the expected

distribution of NFW concentration parameters at fixed mass becomes an important input for models

(e.g. Gilman et al. 2022).

The spherical NFW profile is seen to be simpler analytically, which has an advantage that enables

direct connection with theoretical predictions, especially for low-mass halos where feedback is be-

lieved to be less important in altering the density structure compared to dark-matter-only predictions

(e.g. Lazar et al. 2020). Additionally, the NFW form also has a fairly easy-to-use surface-density

profile for lensing-based analysis (Wright and Brainerd 2000). However, there are some potential

shortcomings in this approach. One is that dark matter halos are not perfectly spherical and tend

to be more triaxial (e.g. Frenk et al. 1988, Cole and Lacey 1996, Allgood et al. 2006). This

means that, even for a halo with a spherically-averaged profile that is well described by an NFW

fit, its surface density could well be different from the two-dimensional projection inferred by the

spherical-average fit depending on its orientation. Second, it is well known that dark-matter-only

simulations produce halos that are better modeled using the Einasto (1965) profile than NFWwhen

the particle resolution is increased (Wang et al. 2020), however, transforming that equation into

the projected two-dimensional density and the lensing signal results in a relatively complicated

expression (Retana-Montenegro et al. 2012) and can be better approximated (Dhar and Williams

2010, Dhar 2021).

The aim of thework in this chapter is to provide an easy-to-use surface-density profile that accurately

reproduces the structure of simulated dark matter halos in any projection. Below we show with

regression analysis that the projected density profiles of simulated darkmatter halos deviate from the

projected NFW profile inferred from their three-dimensional, spherical NFW fits (i.e., their best-fit

fit concentrations and normalization) in ways that do not average out over all orientations. This is

particularly true at projected radii smaller than the scale radius. Since the NFW form is commonly

used for substructure lensing analysis, this motivates the exploration of an alternative approach that
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is just as easy to use and more accurate. The projected profile presented below has a scale radius

and a corresponding “projected concentration”. This projected concentration can account both for

the fact that individual halos have different projected density profiles depending on their orientation

with respect to the observer and that, at fixed halo mass, there is an intrinsic halo-to-halo (spherical)

concentration scatter. While this chapter focuses on circularly-averaged projected densities on the

sky, but the functional form can be easily generalized to elliptically-averaged profiles with one

additional parameter, which would be a natural extension of this work.

This chapter is structured as follows. Section 3.2 introduces the suite of high-resolution simulations

of dark matter halos used, provides a description of the selected sample of halos, and details the

methods of constructing the radial dark matter profiles of each sampled halo. Section 3.3 provides

the main results of this paper and introduces our simple fitting formula for LOS perturbers for

lensing analysis. We discuss the implications for our fitting formula in Section 3.6 and demonstrate

its impact to the commonly used LOS perturber formula, the NFW profile. Finally, we summarize

out results in Section 3.7.

3.2 Methodology

This chapter acts as the first iteration of work focused on robustly characterizingΛCDMpredictions

for substructure lensing studies. We use “zoom-in” dark matter only (DMO) simulations to study

halo surface density structure at high resolution, focusing on isolated dark matter halos within the

mass range that is applicable to substructure lensing, "halo ∈ 107−11 "�, at a characteristic redshift

of I = 0.2. We use these simulations to discover an accurate surface density profile shape and to

compare the shape parameters to the three-dimensional profile parameters of the same halos. We

plan to follow-up with an analysis that utilizes a high-resolution cosmological environment (i.e.,

a cosmological box) to put the results presented here in a proper statistical setting and to explore

redshift dependence.
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3.2.1 Numerical zoom-in simulations

All of our simulations use the multi-method code GIZMO (Hopkins 2015). The initial conditions

were calculated usingMUSIC (Hahn andAbel 2011) at a redshift I ≈ 100 following themethodology

outlined in Oñorbe et al. (2014). This approach identifies a region spanning several virial radii

around a main halo to resolve and produces a volume of uncontaminated halos around the main

halo, which we use to study lower mass systems.

The first set of volumes we study come from the DMO versions of the following main halos from

Fitts et al. (2017), which assume a WMAP year 7 cosmology: m10f, m10g, m10h, m10i, m10j,

m10k, m10l, and m10m; these will be collectively referred to as the “m10” suite of simulations. These

simulations have a dark matter particle mass of <dm = 3000 "� with a physical force resolution of

ndm = 35 pc. At this resolution, we are able to also explore dark matter halos surrounding the main

halo down to masses of 107 "�, which contains ∼104 particles within the virial radius. In addition,

we use several of the DMO volumes surrounding main halos mass of ∼ 1011 "�, which were first

presented in Lazar et al. (2020): m11d, m11e, m11h, and m11i; these will be collectively referred

to as the “m11” suite of simulations. The m11 simulations have a mass resolution ∼ 14 times worse

than the m10 suite. We use the m11 volumes to explore halo masses down to 108 "�, corresponding

to ∼104 particles within the virial radius. These simulations use a Planck 2015 cosmology (Planck

Collaboration et al. 2016b).

Dark matter halos in all the simulations considered here are identified using the Amiga halo finder

(AHF; Knollmann and Knebe 2009). The halo finder uses a recursively refined grid that determines

the local overdensities found within the density field and identifies the density peaks of this field

as the center of these halos. The AHF algorithm is known to be fully recursive in identifying host

halos and there substructure (Gill et al. 2004, Onions et al. 2012).
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3.2.2 Chapter nomenclature

Halo mass and radius

Isolated dark matter halos that inhabit the LOS population are defined as a spherical overdensity

of mass, "Δ , contained within a radius, AΔ , that encloses some density contrast, Δ , relative to a

reference background density at a particular redshift, dref (I). Throughout this paper, we primarily

define the dark matter halos by their virial mass, "vir, which are spherical systems with virial

radius, Avir, inside of which the average density is equal to the critical density is a multiplicative

factor of the virial overdensity, Δvir(I) via (Bryan and Norman 1998), i.e., Equation 1.4. The

Bryan and Norman (1998) definition is the primary spherical overdensity definition used for the

AHF halo finding, but is computed based off of the gravitationally bound particles of the system.

For the purposes of this analysis, we recompute "vir and Avir using all dark matter particles (bound

and unbound) of the spherical overdensity peak identified by AHF. It should be noted that isolated

dark matter halos are also commonly defined with overdensity Δ = 200 with either a critical or

mean-matter background densities. We do not explore such definitions other than "vir in this

analysis, but save such parametrization for the next chapter.

Three-dimensional structure of dark matter halos

The three-dimensional density profiles of dark matter halos in ΛCDM are commonly modeled with

the Navarro et al. (1997) (NFW) profile (dNFW; Equation 1.12), where AB is the scale radius and

dB is the scale density at AB. The structure of a NFW halo is parameterized by the concentration

(2NFW; Equation 1.13) of a dark matter halo, which is formally defined as the ratio between the

size of the halo, Avir, and the scale radius, AB. In DMO simulations, dark matter halos are better

described by the Einasto profile (dn ; Equation 1.14), which provides a good description over 20

decades of halo masses (Wang et al. 2020). Here, A−2 is the scale radius where the log-slope is
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equal to −2, the scale density is d−2 := d(A−2), and Un is the shape parameter. Usually Un is fixed

to make this a two-parameter function, but it can be expressed in terms of peak height (e.g. Gao

et al. 2008, Prada et al. 2012, Klypin et al. 2016, Child et al. 2018). The shape parameter is fixed

to Un = 0.17 for this analysis, which fits well for the range of halo masses we explore here and is

close to commonly-adopted values (e.g. Wang et al. 2020). The internal structure from the Einasto

profile is parameterized by the dimensionless concentration parameter (2vir; Equation 1.15). Note

that AB in the NFW profile is also the radius where the log slope of the NFW form is −2, so typically

2vir ' 2NFW for any individual halo.

Two-dimensional structure of dark matter halos

For a given system that has a (intrinsic) spherically-averaged local density profile in three-

dimensions, d(A), the cylindricaly-averaged, local surface density profile, Σd ('), is quantified

by integrating the along the line of sight, ℓ, for a path of some depth L

Σd (') =
∫ L/2

−L/2
3ℓ d(', ℓ) (3.1)

= 2
∫ L/2

'

3A
Ad(A)
√
A2 − '2

, (3.2)

where ' denotes the projected radius relative to the center of the halo and ℓ =
√
A2 − '2 is a

coordinate along the line of sight to the observe. In lensing studies, it is common to use an NFW

profile in the limit where L = ∞ via a forward Abel transformation, which recovers Equation 1.18.

In what follows we explore choices for the path length of integration in constructing numerical

surface density profiles of the form L = 2 b Avir. As described below, we settle on b = 1.5 as an

optimal choice.
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Non-spherical dark matter halos

Another important aspect of dark matter halos is their non-spherical shape. ΛCDM halos are

triaxial and tend to be more elongated higher halo masses. Dark matter halos viewed along their

major axis (i.e., the densest axis) could be misidentified as a higher mass halo or a halo of higher

concentration. To explore the magnitude of this effect, we calculate dark matter halo shapes for

our halos by computing the shape inertia tensor outlined in Allgood et al. (2006). This is done by

solving the eigenvalues from all of the dark matter particles within a shell between 10 - 20% of Avir.

The resulting eigenvalues of the shape tensor are proportional to the square root of the principal

axes of the dark matter distribution, which we will refer to as the “major”, “intermediate”, and

“minor” axes throughout this paper.

Note that the triaxial shape of DMO halos can be taken into account in lensing studies by projecting

a triaxial NFW profile directly (e.g., Feroz and Hobson 2012). Doing so requires six parameters

rather than two for each halo. In what follows, we present a direct fit to the projected, cylindricaly-

averaged, profiles that provide improved accuracy over the projected NFW with the same number

of free parameters.

3.2.3 Radial profiling

Region of numerical convergence

One of the key components of our analysis focuses on the spherically (and circularly) averaged mass

profiles. Before radial bins are constructed, dark matter particles are first shifted relative to the

halo center determined by AHF. The innermost regions of #-body simulated dark matter halos, to

some extent, are impacted by numerical relaxation. The region of convergence, Aconv, is quantified

using the method specified in Power et al. (2003), where the effective resolution of the simulations

dictates the location of the radius where the two-body relaxation timescale, Crelax, becomes shorter
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than the age of the universe, C0, set by the criterion:

Crelax(A)
C0

=

√
200
8

# (< A)
ln # (< A)

[
d̄(< A)
dc(I)

]−1/2
. (3.3)

Here, # (< A) is the cumulative number of particles within radius A and the cumulative density

profile, d̄(< A) = 3" (< A)/4cA3, with" (< A) being the cumulativemass. For #-body simulations

of our resolution, convergence is shown to be well resolved to the radius at which the criterion

satisfies Crelax > 0.6 C0 with <1% resolution level deviations for isolated zoom runs (see Hopkins

et al. 2018). The typical convergence radii within our sample at redshift I = 0.2 are resolved to

regions relevant for lensing based analysis; in what follows, we present results grouped in five mass

bins, set by five decades in halo virial mass: "vir ' 107−11 "�. The halo masses with bins of"vir =

{107, 108, 109, 1010, 1011} "� have convergence radii of Aconv ' {300, 270, 240, 200, 500} pc,

in order from lowest to highest mass decade.

Constructing spherical density profiles

The local density profile, d(A), is defined as the total (bound and unbound) dark matter mass found

in each bin divided by the spherical shell. From halo-to-halo, we fit the NFW and Einasto profiles

to their local density profiles, which is constructed using 35 logarithmic spaced radial bins from

Aconv to Avir for all of the dark matter particles within Avir. The best-fit parameters are determined

by the following minimization of the figure-of-merit in a least-squares optimization:1

&2
d =

1
#bins

#bins∑
8

[
log

(
A2
8 d8

)
− log

(
A2
8 d

model
8

)]2
. (3.4)

Instead of d beingminimized, which has the numerical value decrease bymany orders of magnitude

between the inner and outer region of the profile, the A2d merit provides a more balanced indicator

of goodness-of-fit across the entire radial range. From each individual fit, we record best-fit

1The convention used here in this chapter is log ≡ log4 ≡ ln.
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parameters for the NFW density profile and Einasto profile with fixed Un = 0.17.

Constructing cylindrical surface-density profiles

Halo surface density profiles are constructed in a similar manner to the three-dimensional profile:

we measure the local surface density profile in two-dimensions, Σ('), by counting all (bound

and unbound) dark matter particle mass that exists along a line-of-sight of total depth L in a thin

circular ring of average radius ' divided by the area of that ring. We use 35 logarithmic spaced

bins of projected radius ' that span an inner radius ' = Aconv to an outer cylindrical radius ' = Avir.

In order to define the surface density of a three-dimensional object, we must define a depth of

interest, L (see Equation 3.1). In analytic investigations, it is common to chose L = ∞, however

this is neither possible numerically nor physically meaningful since we would like to characterize

the degree of perturbation caused by the halo over the background. At minimum, one should

span the full diameter of the halo and use L = 2 Avir. However, we expect that there is additional

clustered matter outside Avir. We have explored this question using a depth parameter b defined via

L = 2 b Avir. As discussed later in Section 3.5, we find that b = 1.5 provides stable results that

appear to capture the relevant over-density adequately. We use b = 1.5 for the rest of this work.

In the following subsections we discuss fits to projected profiles. We do so by minimizing the

figure-of-merit in a least squares optimization for surface density structures in a given projection:

&2
Σ =

1
#bins

#bins∑
8

[
log ('8Σ8) − log

(
'8Σ

model
8

)]2
. (3.5)

As with the figure of merit used for the three-dimensional density profile, the 'Σ merit enables a

more balancedweighing across the radial range being fitted. We exclude the outer radii (' > 0.5Avir)

when fitting since we aim to model the inner, higher-density regions that are most relevant for

strong-gravitational lensing studies.
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3.3 The projected structure of CDM halos

This section present the main results of this paper. We first start by contextualizing our work

by comparing the accuracy of NFW and Einasto fits to the spherically-averaged density profiles

for our sample of halos (Section 3.3.1). Sections 3.3.2 and 3.3.3 presents the circularly-averaged

surface density profiles of the same dark matter halos and introduce an easy-to-use analytic profile

that improves upon the projected NFW case, with an accuracy similar to that of an Einasto in

three dimensions (Section 3.3.3). Finally, we introduce a convenient parameterization of a surface

density structure along a specific orientation in Section 3.3.4.

3.3.1 Projected surface density profiles

The top panels of Figure 3.1 plot the local, spherically-averaged density profiles, d(A), for several

simulated halos (colored dash curves) grouped by decades of mass at I = 0.2. We chose this

redshift since it is typical of lens systems. The density is additionally scaled by A2 to constrain

the dynamic range of the horizontal axis. The halos with masses ranging from 107 − 1010 "� are

collected from the m10 suite of simulations while the m11 simulations only presents their 1011 "�

main halos. Each profile is plotted from the virial radius, Avir, down to the innermost converged

radius, Aconv.2 The thin solid lines show the best-fit NFW profiles (left plot) and Einasto profiles

(right plot). The radii along the horizontal axis are all scaled by their best-fit scale radius, AB for the

NFW profile fits and A−2 for the Einasto profile fits. Residuals of the fits are shown in the bottom

panels. We see that best-fit NFW profiles capture the normalization of the simulated profiles to

within ∼ 40%, though the residuals do show a systematic U-shape. The best-fit Einasto profiles

show no systematic difference with radius, and are accurate to within ∼ 20% except at large radius.

It is this level of improvement that has motivated the community to utilize the Einasto profile in

favor of the NFW profile when precise predictions are required. We present this comparison here

2We adopt this convention for most of the figures in this paper, unless otherwise specified.
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Figure 3.1: The spherically averaged density profiles, d(A), of the simulated dark matter halos at
I = 0.2. The top panels present several density profiles of the isolated dark matter halos (dashed
curves) in mass groups spanning "vir = 107−11 "�. The density profiles are scaled by A2 to set
apart the dynamic range and the G-axis is scaled by AB of the best-fit NFW profile (left panels)
and A−2 of the best-fit Einasto profile (right panels). The simulated profiles are plotted from the
convergence radius, Aconv out to Avir. The thin solid lines illustrates the best-fit halo density profile
of each halo for the NFW profile (left panel) and the Einasto profile (right panel). The bottom
panels depicts the quality of fit based on the best-fit parameters for each individual halo using the
NFW and Einasto density profiles. The gray dashed lines encapsulates fits within 20% accuracy.
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to provide context for the new surface-density fit we propose. We note that the projected version of

the Einasto profile is analytically cumbersome, and this is why most lensing searches for low-mass

perturbers assume projected NFW forms.

The left panels of Figure 3.2 presents the same simulated halos shown in Figure 3.1, but now as

circularly-averaged surface-density profiles, Σ('), along with the projected version of the best-fit

NFW profile for each halo (Equation 1.12, thin solid lines). For each halo, we show the surface

density profile along the three main halo density axes (as described in Section 3.2.2): the major axis

(thick-dashed curves), intermediate axis (thin-dashed curves), and the minor axis (dotted curves).

On the vertical axis we plot the surface density profile multiplied by the projected radius, ', to limit

the dynamic range. The horizontal axis shows the projected radius, ', divided by the best-fit NFW

scale radius determine from the spherically average density fits (left plot), AB. The fit residuals are

shown along the bottom. We see that, especially at small radii, the fits are systematically biased

(either low or high depending on the halo orientation).

3.3.2 Radial dependence on logarithmic slopes

As interesting observation from Figure 3.2 is that their is a hint, though, a non-trivial one, of

a “universal” scale along the projected radius that the projected structure becomes more or less

dense based on a specific orientation. Importantly, this seems to happen at a radial scale that

is mass independent. It is instructive then to see how the logarithmic slope of the projected

density, d logΣ/d log ', behaves a function of projected radius, '. We find that the behavior of

the logarithmic slope for the surface-density profile is captured by a radially-dependent power law

profile that is simple in form:

d logΣV
d log '

= −
(
'

'−1

) V
. (3.6)
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Figure 3.2: The resultingmean surface density profiles of the simulated darkmatter halos at I = 0.2.
Similar in presentation as the previous figure, the top panel presents the same isolated dark matter
halos, but now for their projected density profiles, Σ('), along the major (thick-dashed curve),
intermediate (thin-dashed curve), and minor axis (dotted curve). The bottom panels depict the fit
quality made to each density axis. Here, we scale the Σ(') with ' to emphasize the dynamic range
and we also scale the projected radius (') by the respective, best-fit scale radii, where the simulated
profiles in ' are plotted from the convergence radius, Aconv out to Avir. Left: The thin solid line
shows the expected surface-density profile of each halo from the previous figure according to the
NFW model, which are based on their best-fit parameters for each individual three-dimensional
density profile. The radii is also scaled by the corresponding scale radius, AB). Right: The same
simulated curves presented in the left panel, but instead, the best-fit curves from fitting the Σ0.3
profile (Equation 3.7 with V = 0.3) we introduced in themain text applied to each density projection.
The projected radii for these panels are normalized by the radius at which the logarithmic slope is
equal to −1, '−1, which is acquired by the curve fitting procedure. The Σ0.3 profile is able to model
each orientation to ∼ 20 % and better based off of the fit quality presented in the bottom panel; an
improvement from the NFW model shown in the left panel.
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Figure 3.3: The logarithmic slope of the surface-mass density profiles, Σ('), along three density
axis. Presented are several example halos for mass bins of "vir ' 1011 (right-most panel), 1010

(center panel), and 109 "� (left-most panel) for demonstration purposes. The three density axes
for a single halo are is plotted within a single panel. A power-law radial dependence of the slope
seems to fit the different density axes of our simulations very well. Our predictive model, ΣV,
introduced in Equations 3.6 and 3.7, are shown as thin-solid lines for the best-fit parameters to ΣV
with fixed V = 0.3.

Here, '−1 is the radius where the logarithmic slope of the surface density is equal to −1 and V is the

shape parameters of that effectively tailors itself to any dark matter halo. Note that by eliminating

the dependence of the shape parameter, V, for a given halo, a given orientation is parametrized

by the projected scale radius, '−1, which in-turn captures the variation and scatter expected from

halo-to-halo.

This is shown in Figure 3.3, where we selected three representative halos within three of the higher-

mass bins: 109, 1010, and 1011 "� in the left-most, center, and right-most panel, respectively.

The logarithmic slopes in each mass bin follows a similar shape out to Avir along each density-

axes projection, minus the sporadic-like behavior seen in the outer region. It is until the profiles

approaches the inner-region where we begin to see differences between all three profiles. A clear
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deviation, found for all of these masses, between each density axes is seen around the region at

which the log-slope is equal to −1, which is marked by the dotted-gray horizontal line. Another

important feature here is how each profile does not converge to some finite value. This would imply

that the actual two-dimensional profile does not centrally converge to some power law.

The thinner solid lines in each panel of Figure 3.3 depicts Equation 3.6. The lines are determined

from fitting the integrated profile of ΣV to the local surface density profiles with a fixed shape

V = 0.3. The power-law profile is shown to reproduce the radial dependence fairly well within the

three different density axes. Not that by eliminating the dependence of the shape parameter, V, for

a given halo, a given orientation is parametrized by the projected scale radius, '−1, which in-turn

captures the variation and scatter expected from halo-to-halo.

3.3.3 An improved surface density profile for dark matter halos

Our improved model is demonstrated in Figure 3.3 where it satisfies several requirements seen for

our simulated halos: the analytical profile captures the different, radial-dependent structure towards

the center, the scatter in the dynamical shape from halo-to-halo, and the lack of convergence to

a central power-law. Equation 3.6 was shown to satisfy these requirements. Integrating out

Equation 3.6 introduces a generalized form that captures the dynamical shapes of the surface

density profile for a given projection:

ΣV (') = Σ−1 exp

{
− 1
V

[(
'

'−1

) V
− 1

]}
, (3.7)

where the normalization is defined by Σ−1 := Σ('−1). Notice that Equation 3.7 is the same

analytical form as the Sersic (1968) and Einasto (1965) profile.

Note as a consequence of defining functional form of Equation 3.6, the logarithmic slope is null at

the ' = 0, which will then imply a constant surface-mass density at the center for the integrated
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profile: Σ(0) = Σ−1 exp(1/V). The form of ΣV has three free parameters: Σ−1, '−1, and V. Leaving

all three parameters free allows ΣV to be well fitted to any shape in projection. Based on the mass

ranges for the ΛCDM halos explored here, we find that V = 0.3 is well fitted for our entire sample

halos. As a result, we will refer to these fits as the Σ0.3 model.

Usefully, for the mass ranges of ΛCDM halos explored here, we find that V = 0.3 allows us to

characterize our entire sample of halos with two free parameters quite well, as shown below. With

V fixed to 0.3, we have a two-parameter function, Σ0.3('), that can be fully specified by Σ−1 and

'−1. As demonstrated in Section 3.3.4, we can also characterize the profile with a concentration

parameter, in analogy with what is traditionally done with NFW profiles or Einasto profiles in

three-dimensions.

The quality of the Σ0.3 fits can be seen in the right-hand panels of Figure 3.2. Here we use the same

simulated halos presented earlier in the left-most panel, but instead of using NFW fits for each halo,

we now use the best-fit Σ0.3 fit for the individual density-axis projections (the solid-thin lines). The

projected radius along the horizontal axis is normalized by the best-fit projected scale radius, '−1.

The residuals of the Σ0.3 fits are shown in the lower-right panel, where the inner-most region is

captured to better than ∼ 20% in all cases. This a clear improvement to the NFW model shown

on the left, and similar in quality to the Einasto profile fits of halos within three dimensions shown

in Figure 3.1. The improvement with respect to NFW is most significant at small radii ' . '−1,

where the surface densities are the highest.

To further emphasize the improvement of the Σ0.3 fits compared to NFW, we present quality-of-fit

parameters in Figure 3.4. The top panel shows residuals for the eight 1010 "� halos in our sample

for the NFW model (dashed magenta curves) and our Σ0.3 model (solid cyan curves). We use the

projected profiles for each halo projected along its major, minor, intermediate density axes. We see

that the NFW model can be off by as much as ∼ 50% at small radius, and that the sign of the offset

is systematic, depending on orientation. The new model captures the profiles to within 20% in all

cases. At small radii, ' . 2 kpc, which corresponds to ' . '−1 in this mass range, we again see
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that the Σ0.3 profile is able to capture the true projected density structure more accurately than the

inferred NFW shape.

Figure 3.5 shows the relationship between best-fit '−1 values and halo "vir for our full sample. We

have fit Σ0.3 profiles to ten random projections of each halo. The thick magenta line and associated

band show the median and 90 percentile range as a function of virial mass. The dotted cyan line

shows a power-law fit, which has a best-fit slope '−1 ∝ "W

vir, where W = 0.35, from only the sample

up to "vir = 1010 "�. The vertical pink band shows the region ("vir < 108 "�) where typical

values of '−1 are smaller than the typical convergence radii for the simulated halos. Fits in this

region rely on extrapolation to infer the value of '−1 and this likely gives rise to some non-physical

dispersion in characteristic radius.

Another way to understand the utility of Σ0.3 parameterization is compare its accuracy to the typical

NFW approach at a fixed radius. Figure 3.6 shows the relative error (simulated vs. fit) of the two

approaches at a projected radius ' = 600 pc, which corresponds to ∼ 0.2 arcsec at I = 0.2 as a

function of halo virial mass. In this exercise, we have viewed each simulated halo along 10 random

orientations and used Σ0.3 fits associated with each orientation compared with the implied spherical

NFW fit in each case. Relative errors for the best-fit dNFW and Σ0.3 fits are shown in magenta

and cyan, respectively. The solid curve shows the median as a function of "vir, while the bands

encapsulates the 2f range. We see that the relative error in NFW fits is larger at larger masses.

This reflects the fact that the Σ0.3 fits show the most improvement for ' < '−1. At higher masses,

600 pc is “deeper" within the core, so that the relative error coming from the NFW assumption

increases.

3.3.4 Parameterizing the orientation of projection

The spherically-averaged, three-dimensional density profile of a dark matter halo is often quantified

by an NFW profile using two parameters: a halo mass and a concentration parameter (e.g. Bullock
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et al. 2001). Similarly, we can quantify the circularly-averaged, projected density profile of a dark

matter halo along any orientation with a projected concentration, defined as

Cvir := Avir/'−1 . (3.8)

Figure 3.7 provides some physical insight on themeaning of these parameters. We plot the projected

mass within 1 kpc,M(< ' = 1 kpc), as a function of halo mass. For reference, 1 kpc has an angular

size of ∼ 0.3 arcsec at I = 0.2. Each halo in our sample is viewed along 10 random orientations,

which can be seen as vertical stacking at fixed virial mass at high masses. The color bar maps

to the best-fit projected concentration Cvir for each halo/orientation. Lower-density projections

for the same halo have lower projected concentrations, and this provides a way to quantify the

scatter associated with halo shape. As one might expect, there is a correlation betweenM(1 kpc)

and "vir. For virial masses below 1010"�, where '−1 . 1 kpc, the median relation scales as

M(< 1kpc) ∼ "1/2
vir . At higher masses, '−1 & 1kpc, and the relationship becomes even flatter

M(< 1kpc) ∼ "
1/3
vir . The weak power-law dependence makes inferring the halo mass from a

projected mas somewhat challenging; a 20% error in surface density would map to a ∼ 40 − 60%

error in interpreted virial mass on average. The factor of ∼ 2 scatter in projected mass at fixed virial

mass is roughly captured by the scatter in projected concentration. Note that this level of variation

at fixed virial mass is considerable; in the median, a factor of 2 increase in projected mass at 1 kpc

is equivalent to a factor of ∼ 4 (8) increase in "vir at low (high) virial mass.

The light gray points in Figure 3.8 show the relationship between the projected concentration, Cvir,

and the standard three-dimensional halo concentration, 2vir, for individual halos. Each halo has a

fixed 2vir, but has 10 values of Cvir derived from Σ0.3 fits from 10 random orientations. We only

include halos more massive than "vir = 109 "� in this analysis in order to ensure accurate fits. The

thick, solid black line shows a power-law fit to all the points, which provides a good representation

of the average relation: Cvir ∝ 2Xvir. The best-fit function is found to be Cvir = 2.3 20.87
vir . The dashed
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Figure 3.9: The probability distribution of the ratio between the projected concentration and the
halo concentration Cvir/2vir (black line), along with the best fit Gaussian fit (dashed magenta line).

lines show the 2f distribution at fixed three-dimensional halo concentration, 2vir. For reference,

we also plot power-law fits for the same relation using only their major-, intermediate-, and minor-

axis projections as pink, orange, and cyan lines, respectively. The intermediate-axis is roughly

consistent with the average over all orientations, while the averages of the two other orientations

track the ∼ 1.5f range, suggesting that much of the variation at fixed 2vir comes from orientation

effects.

Figure 3.9 plots the probability distribution (black curve) of Cvir/2vir of all halos. The curve is

nicely described by a Gaussian (dashed magenta) with mean ` = 1.45 and standard deviation
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f = 0.22. From this, we can infer that the parameters have a mean relation of �vir ' 1.5 2vir at this

fixed redshift; a larger sample of halos, sampled in cosmological volumes, and studied at a wider

range of redshifts, will be needed to explore these relationships more completely.

3.4 Lensing profile properties

3.4.1 Projected mass distribution

The projected cumulative mass of the dark matter, M, at the projected radius, ', found along a

given orientation is structured as a face-on cylinder, where the variable cylinder radius is simply '

with a hyper-parameter depth, !depth. In analytical form, this is

M(') =
∫ 2c

0
dq

∫ '

0
d'′ '′ ΣV ('′) (3.9)

= 2c
∫ '

0
d'′ '′ ΣV ('′) , (3.10)

where the last line assumes spherical symmetry. The projected mass profile for the enclosed mass

is

M (') =
2cΣ−1'

2
−1

V
exp

(
1 + 2 ln V

V

)
W

[
2
V
,

1
V

(
'

'−1

) V]
, (3.11)

where W(0, G) is the lower incomplete gamma function.
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3.4.2 Projected mass normalization

To determine the normalization relation of the new lens mass model (Equation 3.7), assuming

circular symmetry, we integrate ' out to the virial radius AΔ along a given orientation:

Meff = 2c
∫ AΔ

0
d'′ '′ ΣV ('′) (3.12)

Meff = 2c Σ−1

∫ AΔ

0
d'′ '′ exp

{
−1
V

[(
'′

'−1

) V
− 1

]}
. (3.13)

Note that we have definedM(AΔ) ≡ Meff , since integrating out to the virial radius does not always

ensure we recover the virial mass of the halo, i.e.,M(AΔ) ≠ "vir, as the depth of the projection

is set by a cylinder depth defined in the main text, !depth = b AΔ , where b is some predetermined

factor. Moving forward, we can make the substitution G = '/'−1, which leads us to the relation:

Meff = 2cΣ−1A
2
Δ I(CΔ |V) , (3.14)

where

I(CΔ |V) =
1
C2
Δ

∫ CΔ

0
dG G exp

{
−1
V

[
GV − 1

]}
, (3.15)

and the projected concentration is CΔ .

The integral I cannot be solved analytically, but can be numerically integrated for a given value of

CΔ and V. We provide a generalized fitting fitting function:

I = 20 exp

[
−=

(
CΔ + 21
22

) 1
=

]
. (3.16)

Once fitted with V = 0.3, the best-fit parameters 20 = 5756, 21 = 0.628, 22 = 0.438, = = 7.41.

The results are presented in Figure 3.10, where the black line is the above integral with a fixed

V = 0.3 as a function of the projected concentration, while the red-dashed line is the resulting
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fit. The bottom panel plots the residuals between the integral and the analytical fit. The best fit

parameters is accurate to ∼ 2% and better for ranges of CΔ ∈ [1, 100]. While not shown here,

Equation 3.16 also fits accurately for shapes with V ∈ [0.01, 0.40], which can be applicable for

halos with differing shapes. With the above results, we arrive with the final form of the profile

normalization as a function of mass and projected concentration:

Σ−1 =
Meff

2c A2
Δ
I(CΔ ; V)

. (3.17)

Note that this normalization can be connected to the virial definition of the halo by imposing an

establishedMeff–"vir relation (see next section for analysis).

3.4.3 Unit-convergence radius

The surface mass-density of a dark matter halo with a spherical ΣV profile (Equation 3.7) expressed

in units of the critical surface density yields the dimensionless convergence profile:

^V (') = ΣV (')/Σc = ^−1 exp

{
−1
V

[(
'

'−1

) V
− 1

]}
(3.18)

with ^−1 := Σ−1/Σc such that Σ−1 := Σ('−1) and Σc is the critical surface density for lensing,

Σc :=
22�B

4c�ℓ�ℓB

, (3.19)

such that �B, �ℓ and �ℓB are the angular diameter distances between the observer from the source,

the observer from the lens, and the lens from the source. The unit-convergence radius, '^, at which

the convergence ^V ('^) = 1, is simply

'^ = '−1 [V log (^−1) + 1]1/V . (3.20)
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3.4.4 Deflection potential

A crucial component of modern lensing software is to analytically implement the lensing potential

(and deflection angle) for structure in projection. Our projected mass profile is conveniently in a

form similar to that of a two-dimensional Sersic (1968) light profile. Moreover, the lens properties

for a Sersic (1968) profile are already derived in Cardone (2004), making it a straightforward

procedure to map our parameters to those results. For completeness, we re-derive the lensing

properties in a similar manner to Cardone (2004).

With the ΣV profile (Equation 3.7), it is convenient to introduce a dimensionless variable H :=

('/'−1)V. The two-dimensional lens potential, k('), can be determined by solving the two-

dimensional Poisson equation (e.g. Schneider et al. 1992):

∇2k(') = 2 ^V (') , (3.21)

where ^V (') is the convergence profile for our model defined previously in Equation 3.18. Ex-

panding out the two-dimensional Laplacian on the left-hand side to polar coordinates, the following

change of variables transforms the differential equation as

H
2
(
1− 1

V

)
d2k

dH2 + H
(
1− 2

V

)
dk
dH

=
2 '2
−1 ^−1

V2 exp
[
−1
V
(H − 1)

]
. (3.22)

The above equation has the solution

k(H) = k−1H
2
V 2�2

(
2
V
,

2
V

; 1 + 2
V
, 1 + 2

V
;
H

V

)
, (3.23)

where we have used the conditions that k → 0 as H → 0 or ∞, ?�@
(
01, . . . , 0?; 11, . . . , 1?; I

)
is

the generalized hyper-geometric function (Gradshteyn and Ryzhik 1980), and

k−1 :=
'2
−1^−1

2 41/V (3.24)
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is the value of the potential for H = 1.

3.4.5 Scaled deflection angle

Our lens profile model imposes circular symmetry. Therefore, the deflection angle is purely radial

and will have a magnitude U given by dk/d'. The complete differentiation of the potential with

respect to H gives

U(H) = 2U−1 H
− 1

V

[
Γ

(
1 + 2

V

)
− 2
V
Γ

[
2
V
,− H
V

] ]
, (3.25)

where Γ(G, 0) is the incomplete Gamma function, Γ(0) is the standard Gamma function, and

U−1 :=

(
− 1
V

)− 2
V

41/V V
'−1 ^−1 . (3.26)

3.4.6 Lensing shear

The radial dependence of a spherically symmetric system can be written as

Wℓ (H) =
Σ(H) − Σ(H)

Σc
, (3.27)

where

Σ(H) = 2
H2

∫ H

0
dH′ H′ Σ(H′) (3.28)
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is the mean surface mass density inside the dimensionless radius H. For our lensing model, if we

define H̃ := HV/V, the mean surface mass density is then

ΣV ( H̃) = 2Σ−1 exp
(
1 − V ln V

V

)
1
H̃2/V W

[
2
V
, H̃

]
, (3.29)

which gives us the shearing quantity in its compact form:

Wℓ (H) = ^−1

{
exp

(
1 − V ln V

V

)
2
H̃2/V W

[
2
V
, H̃

]
− exp (−H̃ + 1)

}
. (3.30)

3.5 The impact of projection depth

A major component within the analysis done in this paper is how the mass is collected within

a given a dark matter halo along the projection. Here, we treat the line-of-sight projection as a

face-on-viewed cylinder, with a radius and length, R and L. The total mass within this volume is

denoted at the effective mass,Meff , which is assumed to relate to "vir in some way. In the main

text, we chose the radius to be the size of the halo, R = Avir, while we chose the cylinder length

to be proportional to the halo virial radius L = 2b Avir . The chosen value b plays a small part in

inferring the effective mass. Indeed, as Figure 3.11 shows that the effective mass, based on our

chosen cylinder volume, and the halo virial mass are roughly one-to-one, i.e.,Meff ' "vir for most

chosen values of b. Notably, as b increases, the scatter (which has reduced Poisson noise) for the

lower-mass halos increases.

While the effective mass is consistent for different values of b, that is only one part of the complete

story, where fortunately, the the inferred projected concentration is not impacted either. Figure 3.12

shows very little variance in the normalization of the mass function for the corresponding values

of b previously shown in Figure 3.11. These projected concentration functions are compiled using

our sample of zoom simulations, which has varying initial conditions, under-dense regions, as
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Figure 3.11: The virial mass plotted against the effective (projected) mass in multiple depths of
projections for our chosen cylinder geometry: L = 2b Avir. The color codes map to the value of b
as shown. Note that the cylinder radius is fixed to be the virial radius. From the top plot, we see
that the two masses are roughly be same. The cyan curve is a one-to-one relationship. The bottom
plot shows residuals. The shaded pink band indicates the region where the convergence radius of
each halo is larger than '−1.
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Figure 3.12: Same b values from the previous figure, now plotting the implied projected
concentration-mass relations. No changes of the normalization are present.

compared to fully realized cosmological boxes, and a relation riddled Poisson noise; these results

are to not to be taken as legitimate statistical relations and are plotted for demonstration purposes.

The faded-solid lines depict the bin values of Cvir while the solid lines are power-law fits to these

curves, as we want to emphasize the normalization values. As we increase to larger values of b, we

see the normalizations remains relatively the same with slight adjustments of the slopes.

Fromboth figures, it was decided to use a value of b = 1.5 as this iswhere the projected concentration

and mass relation converges while also minimizing the scatter down at the low-mass range for the

effective mass and halo mass relation (which otherwise large for b = 2).
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3.6 Implications for gravitational lensing

Our primary motivation for characterizing the surface density profiles of dark matter halos is to

provide a useful and accurate tool for gravitational lensing applications. As shown in section

3.4, the ΣV profile given by Equation 3.7 has an analytic deflection potential, deflection angle,

and lensing shear. One example use case is in the search for substructure within multiply-imaged

quasar strong-lens systems. For example, the magnification ratios of images compared to those of

a smoothly-parameterized mass distributions from a macro model provides a way to discover and

characterize invisible dark matter halo perturbers (Mao and Schneider 1998, Metcalf and Madau

2001, Dalal and Kochanek 2002, Nierenberg et al. 2014, 2017, Gilman et al. 2020a,b, Hsueh et al.

2020).

Figure 3.13 shows an example of how the use of the Σ0.3 profile gives different magnification

predictions than an NFW profile fit for the same halo. For this calculation we use the open-source

gravitational lensing software LENSTRONOMY3, which performs the main lensing computations

such as ray-tracing and magnifications (Birrer and Amara 2018, Birrer et al. 2021), combined with

the open-source pyHalo4, which generates realizations for subhalos and LOS halos within a lens

system (Gilman et al. 2021). The left side of Figure 3.13 shows the projected surface density profile

for an example " ' 109 "� halo at I = 0.2 along the three primary projections (colored lines).

The lines are truncated at the convergence radius for this simulation. Also shown is the implied

surface-density profile for the best-fit (spherical) NFW profile for the same halo (solid black). The

three solid colored lines show the best-fit Σ0.3 profile fits for each projection. Note that he horizontal

axis on the bottom shows projected radius in physical units (kpc) and on the top we show the same

quantity in angular size for a I = 0.2 lens in seconds of arc.

The right panel depicts the relative magnification cross-sections compared to a smooth model for

the three-dimensional NFW fit (thick, solid black line) and the three best-fit Σ0.3 models for each

3https://github.com/sibirrer/lenstronomy
4https://github.com/dangilman/pyHalo
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Figure 3.13: A demonstration of how inaccurate descriptions of the projected surface density for
a ' 108 "� dark matter halo can potentially impact strong lensing results. Left: the fitted dark
matter surface profiles for this particular halo, where the solid black curve is the resulting best-fit
dNFW taken into projection, while the dashed color curves plot the simulated profiles along the three
density axes, which includes their respective Σ0.3 fits as the same-colored solid curves. Right: the
magnification perturbation cross-section of the same halo using the left plot’s analytical profiles.
The Σ0.3 profiles (colored curves) as LOS perturbers along the different density axis for this halo
mass can greatly impact the lens image magnification. To match colored curves, one would need
to select particular values of the NFW concentration or the halo mass.
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orientation. The colored lines on the right panel were calculated using the analytic fits shown in the

same color on the left. We assume a Gaussian source light distribution with a FWHM of 35 parsecs

(comparable to the size of the nuclear narrow-line region of a quasar; e.g., Nierenberg et al. 2014,

Müller-Sánchez et al. 2011) for a source redshift Is = 1.3 and lens redshift Iℓ = 0.2. This figure is

analogous to Figure 2 in Gilman et al. (2020a). The horizontal axis shows the perturber position

relative to the image’s position in arcseconds. The resulting change in magnification compared to

a smooth-lens model is shown on the vertical axis.

We see that when a halo is projected along the densest and least-densest axis, relative magnification

changes by a factor of ∼ 2. The best-fit NFW density profile (black solid curve) fails to match these

two extremes. This level of difference could bias the inferred parameters of the perturbing halo

systematically at the ∼ 50% level. For example, if we tried to interpret the major or minor axis

orientations’ magnification signals with NFW profiles of the same concentration, we would infer

halos that are more or less massive than they actually are by factors of order unity.

3.7 Summary and concluding remarks

We have studied the surface density structure dark matter halos using a suite of dark matter only

zoom simulations that contain halos of mass "vir = 107−11 "�. We find that their cylindrically-

averaged surface density profiles along any projection can be modeled as a function of projected

radius ' using an easy-to-use, analytic profile, Σ0.3, defined in Equation 3.7 with V = 0.3. The

function has two free parameters: a scale radius '−1 and a normalizationΣ−1. A primarymotivation

is to provide a profile that is more accurate than a projected spherical NFW profile and that has

analytic lensing properties that can be used in strong lensing studies for line-of-sight perturbing

halos.

The common approach to modeling small-halo perturbers is to assume spherical NFW profiles
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with properties drawn from mass-concentration relation predictions (e.g. Gilman et al. 2020b). As

shown in Figures 3.2 and 3.4, the Σ0.3 approach allows for significant improvement, with the same

number of free parameters, especially at small projected radii, where the densities are highest and of

most relevance for lensing perturbations. An important by-product introduced here is the projected

concentration, defined by the size of the halo and the projected scale radius, Cvir := Avir/'−1. For

any individual halo, the projected concentration can be higher or lower depending on the projected

orientation. By fitting halos along an ensemble of orientations, the projected concentration provides

a way to statistically account for asphericity while still utilizing a two-parameter foundation. The

the projected concentration correlates with the standard three-dimensional concentration in a way

that allows ease of use (Figures 3.8 and 3.9).

In order to illustrate implications for gravitational lensing, we set up a mock-lensing analysis to

explore the implied perturber magnification with the Σ0.3 model compared to the standard NFW

approach (Figure 3.13). In this exercise, we examined the projected density structure of an example

halo along three primary density axes and showed that the implied magnification perturbation as

captured by Σ0.3 fits for different orientations give as much as ∼ 50% relative differences compared

to the same halo’s NFW fit at fixed mass. Flux ratio studies of lensing by halos draw populations

of halos with halo to halo scatter in the mass-concentration relation. To studying the impact of the

orientation observed in this work on a full dark matter inference would require full simulations of

gravitational lenses. However we can see that the effect should in principle be similar to increasing

the “effective scatter” in the lensing mass-concentration relation (Gilman et al. 2020a,b). We leave

a detailed analysis of this to a future work.

Oneweakness of this analysis is that we have relied on zoom simulations, and not a fair cosmological

sample. A next step in this analysis will be to use cosmological samples of simulated halos to

provide statistically meaningful predictions for effective concentration distributions as a function of

halo mass. We expect that the relative relationships we have found between the three-dimensional

concentration and effective (projected) concentrations for our halos will be robust. From the
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analysis done here, the average mapping obeys Cvir = 2.3 20.87
vir (Figure 3.8) with a Gaussian scatter

of f ' 0.2 at fixed 2vir for any individual halo. The work done the next chapter tests these

expectations in a fair cosmological context.
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Chapter 4

The scatter and evolution of the projected

concentration for line-of-sight halos

The line-of-sight (LOS) population of dark matter halo perturbers are an important contribution

to lensing signals diagnosed in gravitational lensing studies. The density profiles of the LOS

population are commonly described by fitting functions such as the NFW or Einasto models, but

these approximations tend to break down when modeling the projected surface density from halo-

to-halo. Chapter 3 proposed a simple, accurate fitting function designed to robustly model the

surface mass-density of LOS halos expected in ΛCDM, which are parameterized by the so-called

projected concentration (see previous chapter in its significance). Here we extend this surface

density model for the LOS population by studying dark matter halos in a high-resolution #-body

simulation of a ΛCDM cosmology, which contains a statistical sample of ∼ 250,000 halos in the

mass range of 108−11 ℎ−1"� at I = 0. This sample allows us to present several statistical functions

applicable for describing a population LOS halos for lensing studies, mainly the evolution of the

projected concentration and the scatter, from redshift ranges of I = 0 − 3.
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4.1 Chapter context

Structure formation within the ΛCDM (dark energy + cold dark matter) cosmological paradigm

arises hierarchically, wherein small peaks within the density field collapse first and, in due course,

overdensities on larger scales collapse and generate mergers (e.g., Zavala and Frenk 2019, Angulo

and Hahn 2022). Owing to the scale-free nature of structure formation, cosmological #-body

simulations have revealed that the local, spherically-averaged density profiles of dark matter halos

exhibit self-similarity across a wide range of halo masses, cosmologies, and redshifts (Navarro

et al. 1996, Moore et al. 1999, Huss et al. 1999, Bullock et al. 2001, Wechsler et al. 2002, Neto

et al. 2007, Knollmann et al. 2008, Wang and White 2009, Ludlow and Angulo 2017, Bullock and

Boylan-Kolchin 2017, Brown et al. 2022). As first pointed out by Navarro et al. (1996) (hereafter,

NFW), darkmatter only (DMO) halos withinΛCDMmanifest as a simple double power-law profile.

The NFW profile has been widely popular over the decades in cosmological studies of dark matter

halos, as it depends on two parameters, a characteristic radius and density, to fully generate the

density structure.

As a result of large-scale cosmology simulations, the NFW profile is self-similar for all halo mass

ranges, and the density structure can be more sufficiently obtained by recasting these parameters in

terms of the halo mass and the halo concentration, which is a ratio between the size of the halo and

its scale radius. The halo mass and concentration are anti-correlated within #-body simulations,

which reflects the epoch of collapse for the halo, where low-mass halos with higher concentrations

are a product of the higher background density during the early times of the Universe when most of

these small overdensities have collapsed (Navarro et al. 1997). This complex relationship has led

to a plethora of studies of the so-called concentration-mass relation by analyzing the relationship

between halo mass and concentration, and how it evolves as a function of redshift and cosmology

(e.g., Bullock et al. 2001, Dolag et al. 2004, Duffy et al. 2008, Klypin et al. 2011, Prada et al. 2012,

Bhattacharya et al. 2013, Dutton and Macciò 2014, Ludlow et al. 2014, Diemer and Kravtsov 2015,

Klypin et al. 2016, Child et al. 2018, Diemer and Joyce 2019, Ishiyama et al. 2021).
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The potential to accurately infer the halo concentrations of a given halo mass has countless ap-

plications to astrophysics. These examples include inferring the gamma-ray signals potentially

generated by dark matter annihilation events (e.g., Sánchez-Conde and Prada 2014, Okoli et al.

2018), approximating the merger rates of primordial black holes (e.g., Mandic et al. 2016), and

enhance the execution of cosmological rescaling algorithms (e.g., Angulo and White 2010, Con-

treras et al. 2020, López-Cano et al. 2022). One other astrophysical application, that this paper is

also motivated by, is how well halo concentrations predict the galaxy-galaxy strong lensing signal

associated with subhalos and, which this analysis focuses on, “line-of-sight” (LOS) halos in the

field (e.g., Fedeli et al. 2007, Despali et al. 2018, Gilman et al. 2019, 2020a, Amorisco et al. 2022).

A key predictor of the Universe being ΛCDM is that is richly populated with very low-mass dark

matter halos (. 109 "�) (Press and Schechter 1974, Green et al. 2005, Diemand et al. 2007,

Springel et al. 2008, Frenk and White 2012). If halos with these low masses exists, they can act as

significant perturbers for lensing studies, but given that stellar feedback is expected to be inefficient

inmodifying the inner-density structure compared toDMOpredictions (e.g. Lazar et al. 2020), these

nearly starless dark halos have yet to be observationally confirmed. We can instead expect to infer

the existence of starless dark matter halos through their gravitational signatures in a strong lensing

setting (Dalal and Kochanek 2002). Indeed, as the concentrations of low-mass substructure, and

potentially line-of-sight halos, strongly impacts signals within lens systems. Minor et al. (2021a)

demonstrated that the perturbations of strongly lensed images by low-mass dark matter subhalos

are significantly impacted by the concentration of the perturbing subhalo in a ΛCDM cosmology.

It is encouraging that many concentration-mass relation models within the literature exist, yet

successfully describes the median behavior and scatter seen in various cosmological simulations.

Several ideas pertaining to the assembly history of NFW halos to construct age based models (e.g.,

Navarro et al. 1996, 1997, Bullock et al. 2001, Eke et al. 2001, Wechsler et al. 2002, Zhao et al.

2003, 2009, Lu et al. 2006, Dalal et al. 2010, van den Bosch et al. 2014, Correa et al. 2015), several

methods by modeling the relation via power-law fits or simpler functions (e.g., Avila-Reese et al.
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1999, Dolag et al. 2004, Neto et al. 2007, Duffy et al. 2008, Gao et al. 2008, Klypin et al. 2011,

Bhattacharya et al. 2013, Dutton and Macciò 2014, Klypin et al. 2016, Child et al. 2018), and

recently more physical motivating models (Diemer and Joyce 2019). In the context of substructure

lensing, the numerous amount of concentration-mass models leaves very little room for accurate

analysis when determining a ensemble of realized halos within lens systems, as most models are

only fitted down to masses of "halo ' 109 "�, while halos of "halo . 108 "� are objects of

interest. Power-law fits have demonstrated to predict wrong concentrations when extrapolated to

low halo masses (Ludlow et al. 2014). Moreover, such fitting functions are only correct for the

cosmology and redshift at which they were constrained. The Diemer and Joyce (2019) model is

motivated by physical characteristics that alleviates these shortcomings, such as accommodating

the redshift, cosmology, and low-mass extrapolations. However it should be questioned whether

NFW halos are the most practical way to model LOS perturbers.

The previous chapter proposes an alternative way to model LOS perturbers for strongly lensed

lensing studies. We introduced an analytical surface density profile for dark matter halos that

more accurately reproduces the structure of simulated halos of mass ranges within 107−11 "�.

This surface-density profile is a two-parameter function was found to be more accurate than the

projected NFW profile used at the mass scale for lensing perturbers. Importantly, it was found to

more accurate at modeling the inner-most regions for different projection orientations in a hale-

to-halo case. A convenient way this could be characterized was through the so-called projected

concentration, which was the ration between the halo size and projected scale radius. In this chapter,

we extend the utility of this formalism by applying the ΣV function to a cosmological simulation in

order to determine and provide functional, and statistical, relations applicable for lensing studies,

i.e., the scatter and the project concentration-mass relation.

This work makes use of a simulated cosmological box of unprecedented resolution to gather the

required statistics for halo masses down to ∼ 107 "�. Unlike previous work in the literature of

concentration relations, this analysis is done under the context of substructure lensing. Therefore,
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we restrict our analysis of halos within themass range"halo ∈ 108−11 "� from redshifts I = 0−3, as

most of these masses are the most abundant and internally resolved at these redshifts. Additionally,

we implement a physically-motivating model that allows to confidently extrapolate our results down

to masses of ∼ 106 "�. We only consider halos in the field, i.e., no subhalos; While subhalos

are an important component in modeling for lensing, the LOS contribution, are arguably more

important in contributing to lensing signals (Metcalf 2005, Inoue and Takahashi 2012, Inoue et al.

2015, Inoue 2016, Lazar et al. 2021).

This chapter is structured as follows: Section 4.2 introduces our cosmological simulation, defines

our halo and structural properties, and outlines our methodology for measuring the concentration

and projected concentrations of our sample. Section 4.3 briefly explores the mass-concentration

of our halo sample. Section 4.4 presents our projected concentration-mass relations for our dark

matter halo sample and provides a well-motivating fitting function for the relation over the redshifts

explored. Finally, we summarize our results in Section 4.5.

Note that in strong lensing literature, terms such as “field halo” and “line-of-sight” (LOS) halo’

typically refer to the same objects. These terms will be used interchangeably throughout this work

to refer to halos having a volume density equal to the cosmological mean density of halos at that

mass. For historical purposes, we will usually express halo masses with the factor of ℎ, but will

occasionally quote values that include these factors.
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4.2 Methodology

4.2.1 Cosmological T-body simulation: FIREbox

The FIREbox suite of simulations are ran with cosmological volumes of box length !box =

15 ℎ−1cMpc = 22.14 cMpc at the resolutions comparable to the FIRE ‘zoom-in’ simulations

(Feldmann et al. 2022). These simulations are ran using the multi-method code GIZMO (Hopkins

2015), which uses a second-order mesh-free Lagrangian-Godunov finite mass (MFM) method for

hydrodynamics. An updated version of the PM+Tree algorithm from GADGET-3 (Springel 2005) is

used to calculate gravity. We use the results from the high-resolution dark matter only (DMO) ver-

sion of FIREbox for a standard ΛCDM cosmology. We do not consider the affects of baryons here

and withhold their impact for future analysis. The initial conditions for the high-resolution DMO

version were generated with 20483 particles usingMUSIC (Hahn and Abel 2011) at starting redshift

of I ≈ 100 assuming a Planck 2015 cosmology (Planck Collaboration et al. 2016b): Ωm = 0.3089,

ΩΛ = 0.6911, Ωb = 0.0486, f8 = 0.8159, =B = 0.9667, and ℎ = 0.6774. FIREbox has a particle

mass <dm = 5 × 104 "� with a Plummer softening length of ndm = 40 pc.

The cosmological box is able to resolve down to halo mass of ≈ 108 "� that contain ∼ 1000 dark

matter particles, which allows us to resolve the internal structure. In post-processing, dark matter

halos are identified using the Amiga halo finder (AHF; Knollmann and Knebe 2009). The halo

finder uses a recursively refined grid that determines the local overdensities found within the density

field and identifies the density peaks of this field as the center of these halos. The AHF algorithm is

known to be fully recursive in identifying host halos and there substructure (Gill et al. 2004, Onions

et al. 2012). Halos are primarily identified as spherical overdensities using the Bryan and Norman

(1998) definition, which is specified more in the next in Section 1.2.2. Figure 4.1 presents the halo

mass function for all of the virial masses (in units of ℎ) ranging from redshifts I = 0 to 3. The post-

processing results are compared to the analytical predictions (dashed curves) of Sheth and Tormen

(2002). The simulations are in good agreement with predictions, though the I = 3 FIREbox curve
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Figure 4.1: The abundance of resolved low-mass, dark matter halos. Shown are the halo mass
functions FIREbox for the redshifts explored in this paper. Results at these snapshots are in
agreements analytical predictions of Sheth and Tormen (2002), shown as the dashed curves. The
gray band encapsulates the structurally resolved masses we model here.

has a lower amplitude than what is theoretically predicted. The gray band encapsulates the range

of halos we are model here: "vir ' 108−11 "�, or equivalently, "vir ' 0.6774 × 108−11 ℎ−1"�.

The colored curves compared to the dashed curves within the gray band indicates that most of halo

masses of interest are well resolved. Though at I = 3, halos with "vir & 1010 ℎ−1"� are rare. At

this redshift, we restrict the analysis of these halos to "vir = 1010 ℎ−1"�.
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4.2.2 Chapter nomenclature

This section provides definitions of the global and physical quantities of dark matter halos that are

relevant for this work. Herein and so forth, lower case A is denoted as the physical, (de-projected)

three-dimensional radius. In two-dimensions, the projected physical radius is denoted by an upper

case '.

Isolated halo definition

Dark matter halos are defined to be a spherical overdensities with mass, "Δ , contained within

a radius, AΔ , that encloses some density contrast, Δ , relative to a reference background density

at a particular redshift, dref (I), such that the interior density for the halo is, dΔ = Δ dref (I)

(Equation 1.1). Throughout this chapter, we primarily define the dark matter halos by their virial

mass, "vir, which are spherical systems with virial radius, Avir, inside of which the average density

is equal to the virial density, dvir(I) (Equation 1.3). Here, the virial density is redshift evolving

and is defined from Bryan and Norman (1998), where dc is the critical density of the universe

at redshift I. The Bryan and Norman (1998) definition is used for the AHF halo finding, but as

noted within Section 1.2.2, dark matter halos are also commonly defined with overdensity Δ = 200

with either a critical or mean-matter background densities. We also explore halo masses with the

commonly adopted spherical overdensity Δ = 200 (Equation 1.8). A benefit of this halo definition,

compared to virial overdensity definition, is that it is less dependent on the underlying cosmology.

Note that while post-processing identifies dark matter halos using the Bryan and Norman (1998)

definition with AHF, we do not use these results. With the centers of the spherical overdensities

determined, the masses "vir and "200c, along with their radii, are recomputed using all of the dark

matter particles, i.e., bound and unbound particles. This is detailed more in Section 4.2.3.
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Three-dimensional structure of dark matter halos

The three-dimensional density profiles of dark matter halos in ΛCDM historically are modeled by

the Navarro et al. (1996) (NFW) profile (Equation 1.12. For higher-resolution, dark matter only

simulations, dark matter halos have been demonstrated to be well described by the Einasto profile

(Navarro et al. 2004, 2010) for 20 decades of halo masses (Equation 1.14). The scale radius is

denoted as A−2, which is the radius where the log-slope profile is equal to −2, the scale density is

d−2 := d(A−2), and the shape parameter is Un . Usually Un is fixed to eliminate its dependencies

on values of A−2, but could be expressed in terms of peak height (e.g. Prada et al. 2012, Dutton

and Macciò 2014, Child et al. 2018). We fix Un = 0.17 for this analysis, which is close to fitting

well for the range of halo masses we explore here (Wang et al. 2020). The internal structure is

parameterized by the dimensionless concentration parameter for the two mass definitions explored:

2vir :=
Avir
A−2

; 2200c :=
A200c
A−2

. (4.1)

Two-dimensional structure of dark matter halos

It was established in Chapter 3 that high-resolution darkmatter halos in projection are more robustly

modeled by the generalized profile:

ΣV (') = Σ−1 exp

{
− 1
V

[(
'

'−1

) V
− 1

]}
, (4.2)

where Σ−1 := Σ('−1) and '−1 are the scale surface-mass density and scale radius where the log-

slope is equal to −1. Here, we once again fix V = 0.3 and refer to this specific profile shape as Σ0.3.

Once the dependence of the shape parameters is resolved, the projective concentration seen from
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the dark matter halo in projection is:

Cvir := Avir/'−1; C200c := A200c/'−1 . (4.3)

Note that CΔ also depends on the orientation of the dark matter halo in projection, due to the

dependence of '−1 (see main results presented in Chapter 3).

4.2.3 Radial profiling and halo concentrations

Construction of the dark matter halo density profiles in three dimensions and two dimensions is

done the same way as described previously in Section 3.2.3. One of the key components of our

analysis focuses on the spherically averaged mass profiles. As an initial procedure for each halo,

radial bins are constructed and the dark matter particles are first shifted relative to the halo center

determined by AHF. The innermost regions of cosmological #-body simulated dark matter halos, to

some extent, are impacted by numerical relaxation. The region of convergence Aconv, is quantified

using the method specified in Power et al. (2003), where the effective resolution of the simulations

dictates the location of the radius where the two-body relaxation timescale, Crelax, becomes shorter

than the age of the universe, C0, set by the criterion:

Crelax(A)
C0

=

√
200
8

# (< A)
ln # (< A)

[
d̄(< A)
dc(I)

]−1/2
, (4.4)

where # (< A) is the cumulative number of particles within radius A and the cumulative density

profile, d̄(< A) = 3" (< A)/4cA3, with" (< A) being the cumulativemass. For #-body simulations

of our resolution, convergence is shown to be well resolved to the radius at which the criterion

satisfies Crelax > 0.6 C0 with <1% resolution level deviations for isolated zoom runs (see Hopkins

et al. 2018). This convergence criterion should also be consistent with the resolution of the FIREbox

simulation.
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Three-dimensional profiles

With the centers of each spherical overdensity identified with AHF, all particles are counted in radial

shells construct 35 radial bins logarithmic spaced by A from Aconv to Avir of each halo. The mass and

radius "vir and Avir are calculated using the Bryan and Norman (1998) overdensity define previosly.

Additionally, "200c and A200c are also calculated. No unbound particles are removed because we

are interested in underlying the density profile as measured. We are fully aware that our sample

contains relaxed and unrelaxed halos, where the concentration for some halos are ill-defined.

For each halo, we fit the Einasto profile to their local density profile using all of the dark matter

particles found within Avir. The local density profile, d(A),is defined as the total dark matter mass

found in each bin divided by the spherical shell. The best-fit parameters are determined by the

following minimizing the figure-of-merit in a non-linear least-squares optimization:1

&2
d =

1
#bins

#bins∑
8

[
log

(
A2
8 d8

)
− log

(
A2
8 d

model
8

)]2
. (4.5)

Like we have done in Chapter 3, the A2d(A) merit provides a more balanced indicator of goodness-

of-fit throughout the entire radial range. Each individual fit records the best-fit parameters for the

Einasto profile with fixed Un = 0.17. From each fit, we obtain A−2 and then quantify 2vir and 2200c.

Two-dimensional profiles

Detailed previously in Chapter 3, we consider the projection of a dark matter halo to a be a cylinder

looked face-on, in which it has a radius R and length (or depth in this orientation), L = !depth. For

a given orientation of projection, we have the cylinder radius to be the size of the halo R = AΔ while

the cylinder depth is a factor (b) of the halo radius, !depth = 2 b AΔ . Within this volume contains

all of the bound and unbound dark matter particles of the halo. We construct the projected local

1The convention used here in this chapter is log ≡ log4 ≡ ln.
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surface-density profile using circular bins from Aconv to Avir using 35 radial bins that logarithmicly

spaced by '. The convergence radius Aconv is chosen as a minimum radius to remain conservative.

This is done in ten random orientations from halo-to-halo to capture the statistics based on the

shape. In Chapter 3, we considered a one-to-one relation to the halo’s virial radius; since we

are interested in the underlying projected surface density profile as a product of a cosmological

environment, we set b = 1.5, as this nicely captures the shapes of the accretion and splashback

particles otherwise not incorporated to a depth out to "halo boundary" AΔ while also minimizing

the Poisson noise within circular shells for the lower-mass halos. For context, this analysis is done

in the setting of substructure lensing, where the total matter content in a line-of-sight projection

greatly influences the lensing signal. This entire procedure is repeated for both definitions we

explore for out halo sample: Avir and A200c.

Each constructed surface-density profile is fitted to Equation 4.2 within ' < AΔ/2, as we interested

in the shapes in the inner-most regions. The best-fit parameters are determined by the following

minimizing the figure-of-merit in a non-linear least-squares optimization:

&2
Σ =

1
#bins

#bins∑
8

[
log ('8Σ8) − log

(
'8Σ

model
8

)]2
. (4.6)

From each fit in given a orientation, we obtain '−1, which we use to recover the respective projected

concentrations.

4.3 The concentration-mass relation of low-mass halos

This section presents a brief analysis of the halo concentrations inferred from best-fit Einasto

profiles of the FIREbox sample.
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4.3.1 A physically mass-motivating concentration model

The Diemer and Joyce (2019) the halo concentration model is of the analytical form:

2 = � (Ueff) × �̃
(
�(=eff)
a

[
1 + a2

�(=eff)

] )
. (4.7)

Here, the peak height, a, is quantified from the halo mass and associated redshift, and is a universal

variable characterized by the cosmology:

a :=
Xc

f(", I) =
Xc

f(", 0) × �+(I)
, (4.8)

where Xc = 1.686 is the critical overdensity for top-hat collapse in an Einstein-de Sitter universe,

the normalized linear growth factor is expressed as

�+(I) =
5
2
Ωm� (I)

∫ ∞

I

3I′
1 + I′
� (I′)3

(4.9)

for a ΛCDM cosmology (Heath 1977, Peebles 1980), such that � (I) encodes the evolution of the

cosmological parameters. The rms variance of the density field, f, is quantified in a sphere of the

Lagrangian radius of a given mass, '("), i.e.,

f2(', I) = 1
2c2

∫ ∞

0
3: :2%(:, I) |,̃ (:') |2 , (4.10)

where the linear power spectrum, %(:), that assumes a transfer function that follows Eisenstein and

Hu (1998) and ,̃ is a window filter function in the form of a top-hat in real space.

The function �̃ is the inverse function of

� (G) = G

[6(G)] (5+=eff)/6
, (4.11)
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which is dependent on, 6(G), the characteristic density function derived by the enclosed mass of

the density profile, i.e.,

" (< A) = 4cdBA3
B6(G) . (4.12)

Diemer and Joyce (2019) and Ishiyama et al. (2021) explored this functional model by halos

described by as a NFW, which has the characteristic density structure of

6(G) = log(1 + G) − G

1 + G , (4.13)

with G = A/AB. Analogous to the NFW, the characteristic density for the Einasto profile is (Klypin

et al. 2016):

6(G) = 4
2
Un

∫ G

0
dG′G′24−

2
Un
G ′U
, (4.14)

now with G = A/A−2. Again we impose that fact that AB ' A−2.

The other variables in Equation 4.7, Ueff and =eff , encode the cosmology for this relation, and are

defined as follows:

Ueff (I) = −
d ln�+(I)
d ln(1 + I) , (4.15)

which is the effective slope of linear growth factor, �+(I), and

=eff (") = −2
d lnf(A)

d ln A

����
A=^ 'L

− 3 , (4.16)

which is the effective slope of the power spectrum via f(A) with spheres the size of the Lagrangian
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radius,

" =
4c
3
dm(I = 0) '3

L , (4.17)

that is calibrated to A using the free parameter, ^. The other expressions are assumed to have the

following form

�(=eff) = 00 [1 + 01(=eff + 3)] ,

�(=eff) = 10 [1 + 11(=eff + 3)] , (4.18)

� (Ueff) = 1 − 2U (1 − Ueff) .

where 00, 01, 10, 11, and 2U are free parameters. In total, Equation 4.7 has six free parameters in

the fit.

4.3.2 The concentration-mass relation of low-mass halos

The relationship between the halo mass and concentration parameter for isolated field halos have

been exhaustively studied throughout the literature. We do not providemore of an extensive analysis

on it other than what has already been done, but unlike most works, we have uniquely modeled

our high-resolution dark matter halos using the Einasto profile, which has not been modeled as

extensively in a cosmological simulation compared to the typical NFW halos.

Figure 4.2 presents the low-mass halo concentrations for the Einasto profile (with fixed Un = 0.17)

for redshifts up to I = 3. The left panel shows the median 2vir compared to "vir given by the data

points while the right panel shows the median 2200c compared to"200c extrapolated from the profile

fits. The error bars encapsulates 68% of the concentration distribution found in each mass bin. The

values of 2vir, compared to values of 2200c, evolves strongly with redshift. While not shown here, the

analytical concentration relation matches well with the median 2vir, though their 2200c predictions
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Figure 4.2: The concentration-mass relations for low-mass, line-of-sight dark matter halos from
I = 0 − 3. Top panels: The points give the median concentration found within the binned values
of mass for both mass definitions (“virial” and “200c” in left and right panels, respectively). The
error bars encompass 68% of the concentrations as measured in the simulation. The dashed curves
model the median values using Equation 4.7 for each mass definition. Bottom panels: The quality
of the analytical fit over our redshift sample. The analytical functions are accurate to ∼5% and
better over our explored mass ranges.
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Figure 4.3: The scatter in the halo concentrations as a function of redshift for halos within the
mass range " ∈ 109−11 "�. We detail the reason for this limited mass range in the next section.
The scatter (solid curves) at each redshift are well described by a log-normal distribution (dashed
curves).

Table 4.1: Best-fitting parameters of the concentration-mass relation for the Diemer and Joyce
(2019) model (Equation 4.7) using the Einasto density profile with the shape parameter fixed to
Un = 0.17.

2 ^ 00 01 10 11 2U

2vir 0.059 0.611 9.754 14.848 −0.627 −0.245
2200c 0.061 0.711 7.687 20.573 −1.041 0.237

are different. Differences could arise from based on profile fitting of all of the dark matter particles

within Avir to extrapolate the 200c parameters. We do not go into more detail in this analysis since

these are beyond the scope of this chapter, though we wish to capture the concentration relations

for our Einasto parameterization. Our complete implementation of Equation 4.7 using the density

form of the Einasto profile is shown here.

The results of the best-fit parameters of Equation 4.7 are presented as the dashed curves in Figure 4.2

and are listed in Table 4.1. The best-fit parameters for the FIREbox halos are determined by fitting

Equation 4.7 with the Einasto density structure to all of the median data points using a non-linear
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least squares minimization. The analytical curves on the low-mass end matches well with the data

to at least ∼ 5%, as indicated by the lower panels, though the behaviour from " > 1011 ℎ−1"� is

questionable given the lack of more massive objects in our sample to calibrate the equation fit to

properly accommodate the upturn.

Extending the results of Figure 4.2, the implied scatter is presented in Figure 4.3, were the solid

lines is the simulated scatter based on median fit in Figure 4.2. The solid curves are well described

by a log-normal distribution, and the best-fit distributions are presented as the dashed curves of

corresponding color. Note that excess in the left tail is due to included dynamically "unrelaxed"

halos in our sample, which would have comparably worse fits to begin with, but do not make up

a significant portion of our halo sample in impact the underlying distribution. The curves here

are limited to the mass bin of 109−11 "�, as it will be comparable to the next section of best-fit

projected concentrations of our sample.

It should be noted that our results are intended to be in the context of substructure lensing, where

we wish to model low-mass dark matter halos below ∼ 1010 ℎ−1"�. We do not investigate further

the behavior of concentrations higher than ∼ 1010 ℎ−1"� and will move on to characterizing the

projected concentration of the FIREbox halos.

4.4 The projected concentration-mass relation of low-mass ha-

los

4.4.1 Mass convergence for two-dimensional projections

Although our high-resolution sample of halos contains halo masses to as low as 108 "�, it is not

obvious if we can trust the physical results for the best-fit values of '−1 at this low mass scale (see

Chapter 3 for first disucssion). Figure 4.4 alleviates this issue by comparing the best-fit '−1 to the
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Figure 4.4: The mass resolution cutoff used for the entire analysis in two-projections. This is
determine between the ratio between the convergence radius Aconv and the best-fit '−1 in the entire
simulation box at all redshift ranges. The selected convergence mass is indicated by the intersecting
dashed lines at " ∼ 109 ℎ−1"�.

convergence radius, Aconv, of each halo. At one-to-one on the H-axis (the horizontal dashed line),

the mass resolution converges nicely at ∼ 2 × 109 ℎ−1"�, for both mass definitions at all of the

redshifts considered here, but we push it down to ∼ 109 ℎ−1"� for a more quotable mass range.

4.4.2 Key results

The three-dimensional halo concentration was previously demonstrated to having unique relation-

ship with the halo mass. We follow this tradition by plotting the projected concentration as a

function of halo mass in Figure 4.5 using our two halo definitions from redshifts I = 0 − 3. The

solid median lines depicts the trusted median within each mass bin, while the bands encapsulates

68% of the distribution found within each mass bin. The solid line cuts off at 109 ℎ−1"� and

becomes a dashed line down to 108 ℎ−1"� to highlight the mass region at as which the best-fit '−1

becomes "unphysical", i.e., '−1 < Aconv (see Figure 4.4).

Like the the standard concentration-mass relation in CDM, the projected concentration also evolves

strongly as a function of halo mass and has a anti-correlated relation. Additionally, the projected

concentration evolves strongly with redshift. The Cvir relation evolves greatly with redshift given

its stronger dependence on the cosmological parameters within the background density and over-
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Figure 4.5: The evolution of the median projected concentration parameters, CΔ := 'Δ/'−1 as a
function of the halo mass, based on our lens-mass model fit for both halo mass definitions. The
solid lines depict the median while the bands encapsulate the 1f distribution within each mass bin.
The dashed portions depict the region at which the physical value of �Δ becomes elusive. The
projected concentration shows a strong dependence in halo mass as it evolves through time, though
the effects of the redshift evolution is more suppressed for ‘200c‘ halo definition (bottom panel)
compared to the virial definition (top panel).
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density, while C200c evolves more weakly in comparison with just a constant overdenisty. The

forthcoming section provides analytical fits a more physically motivating model that would allow

one to confidently extrapolate to lower halo masses beyond without the restriction of numerical

resolution here.

Similar to the previous figure, Figure 4.6 shows the redshift evolution of the projected concentration

as a function of peak height, a (Equation 4.8), within this redshift range. The standard halo

concentration tends to evolve weakly in comparison as a function of peak height based on previous

work (e.g., Prada et al. 2012, Ludlow et al. 2014, Dutton andMacciò 2014, Child et al. 2018, Diemer

and Kravtsov 2015). While not necessarily redshift independent, the projected concentration as a

function of peak height in Figure 4.6 appears to evolve with redshift much more weakly compared

as a function of halo mass, "vir. Additionally, like the case seen for the halo mass, "200c, the

“200c” halo definition evolves little to no evolution than the virial definition (compare the bottom

panel to the top panel).

4.4.3 Modeling the redshift evolution

An important quantity to model within a statistical population of dark matter halos is to accurately

describe the the evolution of the projected concentration as a function of LOS halo mass, especially

in way that allows us to extrapolate to lower halo masses crucial to detect in substructure lensing

studies ("halo ∼ 106 "�). Indeed, since our mass range is limit to " = 109−11 "� due to the

particle resolution of cosmological box. It would be straightforward implement tool set to use is to

model the projected concentration-mass relation as a power-law relation that evolves with redshift.

However, these models tend to be valid within the range they are fitted in; their extrapolations to

lower halo masses would give varying results in projected concentration.
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Figure 4.6: Similar in presentation to Figure 4.5, the evolution of the median projected concen-
tration parameters, CΔ := AΔ/'−1 as a function of the dimensionless peak height parameter, aΔ
(Equation 4.8), based on our lens-mass model fit for both halo mass definitions. The peak height
relation weakly evolves with redshift in contrast to the mass relation, though it is not entirely
removed. Similarly to the halo mass relation, the projected concentration of the “200c” definition
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Physical motivation for of the projected structure?

The halo concentration equation from Section 4.3.1 is motivated by the form of the spherically

averaged density. Could this formalism hold for surface densities? To resolve this conjecture, we

repeat the derivation done by Diemer and Joyce (2019) for our lens-mass profile, ΣV. To begin, the

more generalized form of the spherical overdensity definition is

"Δ =
4c
3
A3
Δ
dΔ (I) . (4.19)

Our surface-density model for ΣV has an analogous form of the enclosed mass (see derivation in

Section 3.4) and follows

M(') = 2cΣ−1'
2
−1ℊ(G) , (4.20)

where Σ−1 is the scale surface density, G := '/'−1, and

ℊ(G) = 4
1
V

∫ G

0
dG′G′ exp

(
−G
′V

V

)
. (4.21)

From Chapter 3, we retrieve the projected effective mass, Meff , when ' = AΔ , since its likely

Meff ≠ "Δ , as the depth of the projection plays a role. For our prescription with the cylinder depth

set to !depth = 3 AΔ , we do find thatMeff ' "Δ for mass ranging by the decades. Combining the

above equations at ' = AΔ gives us the following relation:

CΔ
[ℊ (CΔ)]1/3

=

(
3Σ−1

2dΔ (I)'−1
(1 + I)3

)1/3 1
1 + I , (4.22)

where dΔ (I), '−1, and Σ−1 have been converted to physical coordinates with factors of (1 + I).

Similar to the three-dimensional description, low-mass halos are expected to change as a result of

"pseudo-evolution" since projected halos are defined by a background evolving radius. In other
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words, we adopt the same definition of pseudo-evolution, where, similar to the halo profile in three

dimensions, the scale projected radius and scale surface density, '−1 and Σ−1, respectively, are

assumed to be constant in physical coordinates and the halo evolves through the growth of the outer

boundary, AΔ . Assume now that at any redshift I, halos less than some enclosed mass, "pe(I),

are pseudo-evolving (denoted by subscript “pe”), such that each halo enters this phase at a redshift

Ipe ≥ I. It follows that at Ipe, we arrive at a similar form to the above:

Cpe[
ℊ

(
Cpe

) ]1/3 =

(
3Σ−1

2dΔ (Ipe)'−1
(1 + Ipe)3

)1/3 1
1 + Ipe

, (4.23)

where we again converted all values on the right-hand side into physical coordinates. It follows

that Σ−1 and '−1 are constant in physical coordinates, leaving us with the following relation:

CΔ
[ℊ (CΔ)]1/3

=

(
dΔ (Ipe)
dΔ (I)

(1 + I)3
(1 + Ipe)3

)1/3 1 + Ipe

1 + I
Cpe[

ℊ
(
Cpe

) ]1/3 , (4.24)

where, as a consequence,

"Δ

ℊ (CΔ)
=

"pe

ℊ
(
Cpe

) . (4.25)

Finally, if we define

�(G) :=
G

[ℊ(G)]1/3
, (4.26)

and

-ref (I) :=
(
dΔ (Ipe)
dΔ (I)

(1 + I)3
(1 + Ipe)3

)1/3
, (4.27)
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we write Equation 4.24 into the compacting form:s

CΔ = �̃
[
-ref (I)

1 + Ipe

1 + I �(2pe)
]

(4.28)

where now �̃ is the inverse function of �. We recover the exact form of Equation 10 in Diemer

and Joyce (2019), where the only difference is how the underlying density structure, ℊ, is defined.

An accurate model for the projected structure of low-mass halos

Although the projected density profile, ΣV, can be generalized without any assumption of the

evolution of halos, we assume that by following the arguments made in Diemer and Joyce (2019),

we should arrive at the analogues form for the projected concentration:

CΔ
[ℊ(CΔ)] (5+=)/6

=
�

a("Δ , I)
%′

[
C, a("Δ , I)

ape

]
, (4.29)

where the function %′(C, H) describes the evolution of the surface-density and projected mass of

the halo core from I to Ipe for a halo mass "pe. %′ is also expected to approach unity for H � 1

and is expected to monotonically increase. For the three dimensional concentrations of dark matter

halos, Diemer and Joyce (2019) used a quadratic peak height,

%′ =

[
1 + a

2

�

]
, (4.30)

which models the upturn seen for higher halo-masses seen from mass-concentration relations. This

worked extremely well for our sample of Einasto based halos previoulsy in Section 4.3.1. For our

analysis of low-mass halos, we find a peak height increasing linearly better models our population

of low-mass dark matter halos without having to bother modeling the upturn at higher masses:

%′ =
[
1 + a

�

]
. (4.31)
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Table 4.2: Best-fitting parameters of the effective concentration-mass relation using our modified
Diemer and Joyce (2019) model with our projected-mass profile (Equation 4.34 with shape fixed
to V = 0.3).

C ^ 00 01 10 11 2U

Cvir 0.34 1.15 4.79 0.46 19.0 −0.12
C200c 0.35 1.57 2.99 1.61 4.79 0.30

The concentration model we propose in the scale-free cosmology follows

CΔ
[ℊ(CΔ)] (5+=)/6

=
�(=)
a

[
1 + a

�(=)

]
, (4.32)

where functions �(=) and �(=) are functions of = (slope of the intial power spectrum) and param-

eterized as � = 00 + 01(= + 3) and � = 10 + 11(= + 3). In a ΛCDM cosmology, we borrow the

machinery used previously in Section 4.3.1 and the the above equation is rewritten in terms of the

inverse function G̃, the inverse of

G(G) = G

[ℊ(G)] (5+=eff)/6
, (4.33)

and multiply it by the Ueff-dependent term, � (Ueff), to obtain the projected concentration model for

low-mass halos:

C = � (Ueff) × �̃
(
�(=eff)
a

[
1 + a

�(=eff)

] )
, (4.34)

where we also use the other fitting functions from Equation 4.19. Including the factor of the RMS

fluctuations (^), Equation 4.34 ultimatly has the same number of free parameters as the Diemer and

Joyce (2019) model.

The results of this modified model are presented in Figure 4.7. The simulated data is presented are

the solid dots and error bars, which are the median and 68% encapsulation of the concentration

found within each mass bin. The best-fit parameters are determined by non-linear least-squares
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Figure 4.7: The projected concentration-mass relations for low-mass , line-of-sight dark matter
halos within FIREbox from I = 0 − 3. Top panel: The solid points give the median projected
concentration found within the binned values of mass for both mass definitions (“virial” and
“200c” in left and right panels, respectively). The error bars encompass 68% of the concentrations
as measured in the simulation. The open dots depict the bins of the mass resolution cutoff. The
dashed curves model the median values using Equation 4.34 for each mass definition. Bottom
panel: The quality of the fit. Each panel shows the relative difference between the simulated data
and the model (using the parameters in Tables 4.2). The fitting functions mostly matches both
definitions to 5% or better (indicated by dashed lines).
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Figure 4.8: Scatter in the projected concentrations as a function of redshift for halos" ∈ 109−11 "�.
The scatter (solid curves) at each redshift are well described by a log-normal distribution (dashed
curves) with scatter of ∼ 0.12 − 14 dex for both mass definitions.

minimization fit with the mass range 109−11 ℎ−1"� and are plotted as the dashed lines. The

resulting best-fit parameters are listed in Table 4.2. The quality of the model to the simulation

data are also shown in bottom panel of Figure 4.7, where both results for the definitions matches

to ∼ 5% or better for the solid lines. For even down to 108 ℎ−1"� (open circles), for which the

fit was applied to, the extrapolate values are in fairly good agreement. The accuracy of the model,

while also being physically motivating, should leave one confident with extrapolating to lower halo

masses. The behavior of our concentration model above " ' 1011 "� is one of uncertainty given

that upturn in concentration at higher redshifts. It should be made clear that the intended behavior

of masses higher than what is explored here is questionable, but the intention of this work is to

models halo masses . 1010 "�.
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4.4.4 Scatter in structural parameters

The spread in values for the projected concentration at fixed mass could be of significance for

observations and models in substructure lensing. The distributions of C(") at each redshift for

halo masses " ∈ 109−11 "� are shown in Figure 4.8 for the two mass definitions. The distributions

in the projected concentrations of the LOS halos are well described using a log-normal distribution:

%(C) = (C log 10)−1
√

2c flog10 C
exp

[
−

(
log10 C − log10 C0

)2

2f2
log10 C

]
, (4.35)

where flog10 C is the scatter and and log10 C0. The scatter in the distributions for redshifts I = 0 to 3

are well described using flog10 C ∼ 0.12. Each distribution shows a slight excess of lower projected

concentration halos compared to the log-normal shape. This is due to the unrelaxed halos within

out sample, which also in the case of halo concentrations (e.g. Klypin et al. 2016, Child et al. 2018),

have much lower projected concentrations on average.

4.5 Summary and concluding remarks

This chapter studies the evolution and scatter of the surface density structure of LOS dark matter

halos using FIREbox, a dark matter only cosmological simulation that for halos of mass "vir =

108−11 ℎ−1"� within a ΛCDM. We begin by assessing the halo concentration-mass relation within

FIREbox for Einasto density structures. The median relation is well described by the Diemer and

Joyce (2019) model to within 5% accuracy (Figure 4.2). The scatter of these concentrations, based

of the median best-fit parameters of the Diemer and Joyce (2019) model is also well described as a

log-normal distribution (Figure 4.3).

Similar to the mass-concentration relation of cold dark matter halos, the median projected concen-

tration, determined from best-fit values of '−1 of each halo, as a function of halo mass is shaped as
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a simple power-law relation that evolves to lower projected concentrations, i.e., dark matter halos

become less dense as redshift increases (Figure 4.5). Moreover, when parameterizing projected

concentrations as peak height, a, instead of mass (Figure 4.6), the projected concentrations are

more robustly parameterize as a function of redshift.

We use the physical arguments of the Diemer and Joyce (2019) model to accurately calibrate the

median relation of the projected concentration as a function of halo mass, redshift, and cosmology

to within 5 % accuracy (Figure 4.7). In addition, the scatter is quantified and is robustly describe

to have a log-normal distribution (Figure 4.8). Knowing the analytical functions will aid in future

substructure lensing studies. The next appropriate steps of this chapter would be to utilize our

analytical machinery in a more in-depth statistical lensing analysis in order to more stringently

bound the differences seen from modeling the projected structure of dark matter halos.
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