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31 Summary

32  Woody biomass is a large carbon store in terrestrial ecosystems. In calculating 

33 biomass, tree stems are assumed to be solid structures. However, decomposer agents 

34 such as microbes and insects target stem heartwood, causing internal wood decay 

35 which is poorly quantified. 

36  We investigated internal stem damage across five sites in tropical Australia along a 

37 precipitation gradient. We estimated the amount of internal aboveground biomass 

38 damaged in living trees and measured four potential stem damage predictors: wood 

39 density, stem diameter, annual precipitation and termite pressure (measured as termite 

40 damage in downed deadwood). 

41  Stem damage increased with increasing diameter, wood density, and termite pressure, 

42 and decreased with increasing precipitation. High wood density stems sustained less 

43 damage in wet sites and more damage in dry sites, likely a result of shifting 

44 decomposer communities and their differing responses to changes in tree species and 

45 wood traits across sites. 

46  Incorporating stem damage reduced aboveground biomass estimates by >30% in 

47 Australian savannas, compared to only 3% in rainforests. Accurate estimates of 

48 carbon storage across woody plant communities are critical for understanding the 

49 global carbon budget. Future biomass estimates should consider stem damage in 

50 concert with effects of changes in decomposer communities and abiotic conditions. 

51

52 Keywords: carbon storage, decay, decomposition, internal stem damage, plant biomass, 

53 precipitation, termites

54

55 Introduction 

56 Living plant biomass, which includes the dead tissue in heartwood, accounts for 42% of 

57 terrestrial carbon (C) storage (Pan et al., 2011). In estimating these stores, trees are typically 

58 assumed to be solid structures with biomass often estimated using their height and diameter 

59 in relation to regional or global allometric relationships (Zuleta et al., 2023). Yet living tree 

60 stems are susceptible to biomass loss via microbial heart rot and insect damage (Romero & 

61 Bolker, 2008; Heineman et al., 2015). External stem damage is easily observable, but internal 

62 stem damage (i.e., damage to biomass underneath the bark) while long noted (Janzen, 1976; 

63 Brown et al., 1995) is usually at best implicitly accounted for as clustered standard errors in 
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64 estimates of woody aboveground biomass. It typically cannot be quantified explicitly 

65 (Heineman et al., 2015). The assumption that tree stems are internally solid structures with no 

66 damage can potentially lead to overestimates of the amount of C that forests hold. 

67

68 Tropical trees, including rainforest, seasonal forest and savannas, represent ~70% of 

69 the global forest C sink (Pan et al., 2011; Le Quéré et al., 2016; Mitchard, 2018). A handful 

70 of studies in the tropics demonstrated microbial heart rot and termite hollowing of tree trunks 

71 in rainforests (Apolinário & Martius, 2004; Heineman et al., 2015; Eleuterio et al., 2020), 

72 savannas (Werner & Prior, 2007; N'Dri et al., 2011) and peat swamps (Monda et al., 2015). 

73 In tropical rainforests, Eleuterio et al. (2020) and Heineman et al. (2015) provided estimates 

74 of the extent of internal stem damage in the Amazon and Borneo, respectively. Additionally, 

75 Monda et al. (2015) offered revised allometric models that incorporated stem damage for 

76 tropical peat swamp forests in Sarawak, estimating stem volume to be reduced by 42% from 

77 hollowing. Studies in other tropical rainforests, as well as arid and semi-arid forests, have yet 

78 to scale up observations of internal stem damage to the ecosystem level. Further, comparative 

79 biomass loss from internal stem damage across forest types has not been quantified. Given 

80 differences in tree and decomposer species composition and biomass, there is a need to better 

81 estimate the extent of internal stem damage and its consequences for aboveground biomass 

82 across tropical forests, for example wet to dry, to accurately determine forest biomass and C 

83 residence times in the tropics.

84 To scale biomass estimates from trees to ecosystems, it is additionally important to 

85 understand correlates of internal stem damage. Given that heartwood in living stems is dead, 

86 the extent of internal stem damage in living trees may be related to factors that similarly 

87 affect rates of deadwood decomposition on the forest floor. Wood decomposition is impacted 

88 by wood density, morphology, chemical construction (Kirk & Cowling, 1984; Zanne et al., 

89 2015), as well as moisture availability (Boddy & Rayner, 1983; Chambers et al., 2000), and 

90 decomposer activity (Bani et al., 2018; Griffiths et al., 2019). At the stem-level, large 

91 diameters may carry more damage because they have more tissue at risk to decay agents. In 

92 fact, large trees had more frequent heart rot in tropical rainforests (Heineman et al., 2015; 

93 Eleuterio et al., 2020) and more hollowing by termites in savannas (Werner & Prior, 2007). 

94 Trees with high wood density may be slow to decompose (Chambers et al., 2000), mediated 

95 by microbial and termite (major biotic decay agents in the tropics, Cornwell et al., 2009; 

96 Zanne et al., 2022) decay. Dense wood can be inaccessible due to its greater structural 

97 integrity (Chambers et al., 2000 but see ; Weedon et al., 2009; Harmon et al., 2020) and 
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98 smaller pore spaces, decreasing water permeability and slowing pathogen attack and 

99 decomposition (Augspurger & Kelly, 1984; Chave et al., 2009; Mori et al., 2014). 

100 Nevertheless, studies in tropical rainforests failed to find links between wood density and 

101 internal stem damage (Heineman et al., 2015), which may be explained by presence of 

102 extractives that confer resistance to decomposers (Bultman & Southwell, 1976). 

103 Across sites, moisture variation directly affects the decay process by determining the 

104 composition and activity of the decomposer community in wood (Cheesman et al., 2018; 

105 Steidinger et al., 2019; Clement et al., 2021). For downed deadwood, decomposition by 

106 microbes decreases and by termites increases with increasing aridity (Veldhuis et al., 2017; 

107 Cheesman et al., 2018; Clement et al., 2021; Zanne et al., 2022; but see Law et al., 2023). 

108 We know less about living tree decomposers, but microbial heart rot (Highley & Kirk, 1979; 

109 Gilbert et al., 2016) and termite hollowing have been documented (Werner & Prior, 2007; 

110 N’dri et al., 2014; Eleuterio et al., 2020). Based on this past work, we predict that microbial-

111 driven internal stem damage is more prevalent at wet sites and termite driven decay at dry 

112 sites. Precipitation can also indirectly affect decay as it determines the tree species 

113 composition and wood construction of those species. Trees are often smaller in dry sites 

114 likely in part due to slower growth (Pretzsch et al., 2018) and resource limitations. 

115 Additionally, wood density is typically high in dry sites (Chave et al., 2014; Zanne et al., 

116 2015), perhaps mediated through selection for resistance to cavitation (Greenwood et al., 

117 2017) and slow growth. Both maximum plant size and wood density vary across the plant 

118 phylogeny, with some clades having particularly dense wood or large stems; these traits will 

119 have shaped the biogeographic distribution of tree species. It is therefore likely that clades 

120 with more internal stem damage in dry sites are different from those in wet sites, with 

121 damage driven by different biotic factors. 

122 Given the interactive ways that wood traits, decay agents and moisture availability 

123 change across sites, we examined their effects on internal stem damage individually and in 

124 combination. Specifically, we investigated the amount of internal stem damage in living trees 

125 across a tropical rainfall gradient in Queensland, Australia. Our sites span a range of biomes 

126 (savanna to rainforest) along a precipitation gradient from ~800mm yr-1 to ~4,500mm yr-1. 

127 We measured four internal stem damage predictors at the stem- and site- level: wood density, 

128 stem diameter, precipitation, and termite pressure (the relative damage by termites of downed 

129 deadwood)). To understand the within- and across-site patterns in stem damage across the 

130 tree-of-life, we visualized the distribution of wood density and diameter at breast height of 

131 individuals, biomass, and internal stem damage among the different clades of the plant 

Page 4 of 33

Manuscript submitted to New Phytologist for review



For Peer Review

5

132 phylogeny present at our sites. To place these findings in a broader context, we used 

133 allometric equations to compare aboveground biomass estimates of our sites before and after 

134 accounting for internal stem damage, as modeled by our four predictors. Given that internal 

135 stem damage may or may not accumulate randomly across the width and height of the tree, 

136 we explored the sensitivity of biomass estimates to different assumptions about the extent of 

137 internal stem damage. Here we asked the following questions:

138 1. Do sites differ in internal stem damage and potential predictors? Is greater internal 

139 stem damage associated with lower wood density, smaller stem diameters, wetter 

140 sites, and where there is higher termite pressure (measured as amount of termite 

141 damage in downed deadwood), as expected?

142 2. With a shift in the expected dominant decay agent (between microbes and termites), is 

143 there a shift in the effect of wood density on internal stem damage? 

144 3. Are there particular plant clades that are more susceptible to internal stem damage and 

145 do these susceptible clades differ across the precipitation gradient?

146 4. Does accounting for internal stem damage strongly alter aboveground biomass 

147 estimates, and does the degree of this alteration vary across the precipitation gradient? 

148

149 Materials and methods

150 We sampled the woody plants in 50 x 50 m survey plots at five sites along a 100-km rainfall 

151 gradient in northeast Queensland, Australia with mean annual rainfall ranging from 812 to 

152 4458 mm (Fig. 1 and Table S1). Mean annual rainfall over 30 years was obtained at 90m 

153 resolution from the Bureau of Meteorology for each site (Australian Bureau of Meteorology, 

154 2021). Our wettest site is located in the Daintree Rainforest (Rft2; -16.10 S, 145.44 E) part of 

155 James Cook University’s Daintree Rainforest Observatory next to the Coral Sea. Our driest 

156 site, Pennyweight (Sav1; -16.57 S,144.92 E), is a dry savanna 58 km inland from the Coral 

157 Sea coast and located on the western side of the Great Dividing Range of northeast 

158 Queensland. Three intermediate precipitation sites are found on Mt. Lewis, located to the 

159 southeast of site Sav1. Station Creek (Sav2; -16.61 S,145.24 E) averages 1728 mm of rainfall 

160 annually and is a wet savanna located at the western slope of Mt. Lewis. A wet sclerophyll 

161 forest (Scl1; 2189 mm of rain annually; -16.58 S,145.26 E) and a high elevation rainforest 

162 (Rft1; 2630 mm of rain annually; -16.59 S,145.28 E) are located on Mt. Lewis. All sites 

163 experience a distinct wet and dry season, with 77% of rainfall occurring between November 

164 and April (Cheesman et al., 2018). Sav1, Sav2, Scl1, and Rft1 are located within the 
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165 Australian Wildlife Conservancy’s Brooklyn Sanctuary, Rft2 is located in James Cook 

166 University’s Daintree Rainforest Observatory.

167

168

169 We measured the diameter at breast height (DBH) of all trees > 10 cm in each plot at our five 

170 sites. Wood density data were extracted from the Tree Functional Attributes and Ecological 

171 Database (Harja et al., 2019). Wherever possible we used species-level data (n = 51). If no 

172 species data existed, we used genus- (n = 39) or family-mean values (n = 13), in that order of 

173 preference. Termite pressure (i.e., percentage termite damage in downed deadwood) was 

174 taken from Clement et al. (2021), in which they established 50 m deadwood survey transects 

175 within 50 m x 50 m termite survey plots adjacent to the woody plant survey plots studied 

176 here. In total, four randomly placed transects were sampled in each plot, two during the wet 

177 season and two during the dry season. Each piece of wood >2 cm diameter intersecting the 

178 transect was assessed for termite damage (i.e., piping, runways or termite tunnels) using a 

179 drywall hammer to break wood open in three places to look for termites (additional details in 

180 Clement et al., 2021). Termite damage in downed deadwood was calculated as percentage of 

181 deadwood pieces showing termite damage. Sampling for termite damage took place at wet to 

182 dry and dry to wet seasons, to capture the maximum amount of termite pressure in deadwood 

183 (Clement et al., 2021). 

184

185 Internal stem damage identification

186 To measure internal stem damage at each of our five sites, we selected trees with varying 

187 DBH stratified by species. In total, we sampled 258 unique stems (average 51.6 stems per 

188 site) from 87 species. We used an IML-RESI power drill, mounted on a tripod to reduce 

189 measurement error (Step 1 in Fig. S1; Residrill; PD-500, IML, Germany), to determine the 

190 presence of stem damage in living trees. Resistance drilling inference is based on the 

191 correlation between drilling resistance and the material composition (Lear et al., 2011). A 

192 slender drill bit (~ 3mm in diameter) is rotated into the wood at a constant speed and feed 

193 rate, and the energy needed for the drill to move forward is recorded as a function of its 

194 position. Changes in the resistance (e.g., abrupt loss of resistance) are used to infer changes in 

195 the material, in our case the presence of voids in the wood. Among other applications, 

196 resistance drilling has been used to assess termite damage in wood (Hickman & Forschler, 

197 2012), radial changes in wood density in pedunculate oak stands (Tomczak et al., 2022) and 

198 examine climate-associated variation in wood in Eucalyptus nitens plantations (Rocha 
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199 Sepúlveda, 2023). Trees across all sites were drilled at breast height (at 130 cm above 

200 ground) across the longest diameter from end to end (Fig. S1). Our goal was to measure a 

201 trace across the entire longest axis; however, this was not always possible. Given the high 

202 speeds of drilling, the drill can be damaged if there are problems with the stylus. We 

203 measured 23.9 - 100% of the stem in the longest direction (median = 97.6, sd = 12.84). 

204 Because we were measuring damage based on changes in resistance, damaged wood could 

205 not be attributed to microbe versus termite pressure. The source of damage was inferred via 

206 evidence of termite pressure measured at the site level and extracted from Clement et al. 

207 (2021; see section above).

208 Internal stem damage was quantified as the percentage change from sound wood (Fig. 

209 S1). We used a dynamic programming algorithm to detect discontinuities (i.e., change points) 

210 in the wood resistance to drilling. This approach assumes that the resistance to drilling 

211 fluctuates around some underlying signal (otherwise known as ‘sound wood’), “f”, associated 

212 with properties of the stem. Here, f(t) represents the response at depth z(t), and ej represents a 

213 sequence of residual errors. Then, if t1,t2,…,tn are the sampling radius, we can decompose 

214 resistance to drilling yj as:

215 (1)  yj=f(tj)+ej;1≤j≤n

216 Assuming the wood properties of the stem do not change within each section means 

217 that f is a piecewise constant. We expect that there exist discontinuities τ1,τ2,…τK−1 and wood 

218 segments values μ1,μ2,…,μK such that:

219 (2) f(t) = μk if τk−1<t≤τk

220 where K is the number of wood segments, and where τ0=0 and τK=n. Thus, for any τk−1<j≤τk,

221 (3) yj = μk+ej .

222 To select the number of segments, we examined the relationship between the residual 

223 sum of squares (RSS) from the piecewise function (above) and the number of segments K 

224 (Kmax = 50) with the goal of minimizing RSS with respect to the number of segments in the 

225 wood. For each stem, we looked for the value of K at which the total RSS of the piecewise 

226 regression (above) abruptly changed, that is the inflection or knee point of the curve between 

227 RSS and K; this provided an estimate K̂ (i.e., optimal number of segments for the piecewise 

228 regression). To diagnose whether the segments of wood identified in the previous step were 

229 sound or damaged, we ran a lower-tailed z-test (alpha = 0.05). For each stem, we compared 

230 the segments derived on the piecewise regression (above) to the mean of sound wood, 

231 represented by 10-50% of the stem. Damage may accumulate unevenly across the diameter of 
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232 the stem; for each stem we split the internal stem damage trace in half prior to detecting 

233 discontinuities in the wood resistance to drilling trace as described above. 

234

235 Analyses

236 Assumptions on patterns of stem damage accumulation

237 Internal stem damage in trees may accumulate in different patterns. Detected internal 

238 damage at a given height may represent the amount of damage along the entire height and 

239 diameter of the tree, or damage may differ at different heights or parts of the diameter within 

240 the tree. We were unable to account for all possible patterns of internal stem damage 

241 accumulation, but here we assess four different assumptions for estimating damage (Table 

242 S2). If damage accumulates randomly across the diameter of the tree, then a linear, cross-

243 sectional transect of the tree stem will be representative of the damage throughout the tree. 

244 On the other hand, damage could accumulate predictably in a few different ways. For 

245 example, internal stem damage may be more prevalent near the pith or further out near the 

246 sapwood, depending on the decay agents. Damage closer to the pith of the tree will contribute 

247 less to the proportion of cross-sectional area damaged than damage closer to the sapwood 

248 (due to the nature of radial scaling). Further, damage could change with height in the stem 

249 depending for instance on where decay agents enter or external damage occurs in the stem 

250 (Roisin et al., 2006; Li et al., 2016). Alternatively, crown damage could differentially affect 

251 the amount of biomass in the crown versus the main stem. The consequences of such 

252 nonrandom damage could be significant given that two of the biggest damage agents, 

253 microbes and termites, cause heart rot and stem hollowing in our systems; they are both 

254 expected to target the oldest heartwood closest to the pith. To determine the pattern of 

255 internal stem damage, we first identified if damage accumulated randomly across the 

256 diameter of the trees, and then tested the effect of vertical change in stem damage 

257 accumulation and its impact on the biomass of the crown using a two-step approach. 

258

259 First, to test the sensitivity of our damage estimates to random and nonrandom 

260 damage assumptions across the radius of the stem, we estimated the proportion of internal 

261 stem damage on a linear- and area-basis, with the area-basis allowing us to estimate 

262 nonrandom effects of distance from pith. Then we ran a standard major axis analysis to 

263 compare the relationship between the linear- and area-based methods to estimate internal 

264 stem damage (assumption one versus two). This analysis revealed a relationship that is not 

265 significantly different from isometric (i.e., slope overlaps 1) between these two methods to 
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266 estimate damage (slope = 0.99 CI 0.92-1.06, P < 0.0001, Fig. S2), leading us to continue with 

267 the linear assumption to estimate how internal stem damage reduces biomass estimates.

268  Second, the internal stem damage measured at DBH may extend throughout the stem 

269 or it may only occur locally. As it extends, the amount of damage may increase, decrease or 

270 stay constant across the height of the tree (assumption three). Third, internal stem damage 

271 may lead to crown loss (assumption four). Consequently, the proportion of internal damage 

272 measured at DBH may under or overestimate damage across the tree. To bracket the potential 

273 effect of internal stem damage variation on biomass calculations, we compared aboveground 

274 (i.e., including the crown) and only stem biomass (i.e., excluding the crown) estimates, as 

275 well as aboveground biomass and only stem biomass estimates assuming constant (i.e., 

276 excluding the crown), 50% increase and 50% decrease in internal stem damage (see below in 

277 section for aboveground biomass calculation; Table S2). We estimated the relationship 

278 between stem biomass and AGB using the BAAD dataset (Biomass and Allometry Database, 

279 Falster et al., 2015) of individual trees (log-transformed) and applied this regression model to 

280 predict stem biomass using our AGB estimates (Table S3). We only included records that had 

281 information available for total, stem, and root biomass (n = 8642). 

282

283 Stem damage, DBH and wood density across sites

284 We ran Analysis of Variance (ANOVAs) to test whether stem damage, DBH and wood 

285 density varied across our sites, and, for significant ANOVA’s, we ran Tukey’s HSD tests to 

286 determine which sites were significantly different from one another. To determine if internal 

287 stem damage varied with each of the site and species level predictors, we ran bivariate 

288 models with each of the individual stem-level (stem diameter, wood density) and site-level 

289 (rainfall, termite pressure measured as percentage of termite damage in downed woody 

290 debris) variables as predictors and proportion of internal stem damage as the response 

291 variable. Given the expected shift in decomposer activity (between microbes and termites) 

292 across sites from rainforest to savanna, we explored how the interaction of wood density and 

293 site variables predicted internal stem damage. For all models, we fit a logistic binomial 

294 regression with a random intercept for site. It was not possible to measure internal stem 

295 damage across the entire cross section for all stems in our plots, therefore for each stem we 

296 added a weight to the model to account for the proportion of the stem sampled. The weight in 

297 such models represents, for each individual tree, the completeness of the internal stem 

298 sampled. We used the likelihood ratio to compare the explanatory power of the interaction 

299 against the bivariate models. 
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300 Stem damage mapped across phylogeny

301 Additionally, we visualized how species across the phylogeny varied across sites in 

302 their susceptibility to internal stem damage. Given the few species in our study and the 

303 nonrandom sampling of them across the evolutionary tree, we were unable to run 

304 comparative analyses. The visualization though, is a first step to consider which clades are 

305 particularly susceptible (or not) to internal stem damage in different environments. Finally, 

306 we examined the possible impacts of interspecific susceptibility to internal stem damage on 

307 species and site level aboveground biomass estimates. We first estimated the amount of 

308 aboveground biomass contributed by each species at each site in our woody plant survey 

309 plots by estimating the aboveground biomass for each individual tree > 10 cm in DBH in our 

310 communities following Chave et al. (2014). Second we added up the individual tree estimates 

311 (n = 679) at each site. Briefly, when height data were available we used the Chave et al. 

312 (2014) pantropical model to estimate tree aboveground biomass (AGB) as follows: 

313 (4) 𝐴𝐺𝐵 = 0.0673 ∙  (𝑊𝐷 ∙ 𝐻 ∙  𝐷2)0.976

314 Where WD is wood density in g cm-3, H is height in m, D is diameter in cm (measured at 130 

315 cm above ground across all trees and sites) and AGB is in Mg (metric tonnes). When height 

316 data were not available (in Rf1 and Rf2), we used the Chave et al. (2014) AGB model based 

317 on diameter, wood density and environmental stress:

318

319 (5) 𝐴𝐺𝐵 = exp [ ― 1.803 ― 0.976𝐸 + 0.976ln(𝑊𝐷) + 2.673ln(𝐷) ―0.0299[ln(𝐷)2]]

320

321 In this allometric model of AGB, E is a measurement of environmental stress based on the 

322 effect of temperature seasonality, climatic water deficit and precipitation seasonality (Chave 

323 et al., 2014). To visualize differences among lineages across the plant phylogeny, we mapped 

324 the average species wood density, as well as species average internal stem damage and total 

325 aboveground biomass for species at each site subsetting the Smith and Brown (2018) 

326 phylogeny to those species in our study. We use phyndr to maximize the overlap between the 

327 phylogenetic tree and the diameter and internal stem damage data (Pennell et al., 2016). 

328

329 Stem damage and C accounting

330 To understand the consequences of internal stem damage on C accounting, we 

331 calculated aboveground biomass with and without damage for every site following the Chave 

332 et al. (2014) equation above. First, we used the AGB for every individual tree > 10 cm in 
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333 DBH in our communities (n = 679). Once we estimated the aboveground biomass at the tree 

334 level, we determined area-based estimates at each site by summing all stems and dividing by 

335 the plot area. We compared the stem biomass and AGB estimates at the plot level, with and 

336 without the damage prediction across our five sites using a paired t-test. We use the wood 

337 density and precipitation interaction model to predict damage, as few studies quantify termite 

338 pressure (i.e., termite damaged in downed deadwood, DDW), while precipitation is readily 

339 available for most locations. We ran all the analyses above for both linear- and area-based 

340 internal stem damage estimates. Area-based estimates allowed us to examine non-random 

341 changes in damage with radius, although we only present linear-based estimates in the main 

342 text. Area based estimates are presented in Supplementary information (Tables S5 and S6). 

343 We performed all analyses using R 4.2.2 (R Core Team, 2022) 

344

345 Results

346 Internal stem damage (proportion of trace with damage) was instead greater in savanna sites 

347 (P < 0.0001, Fig. 2a, Table S4), as precipitation decreased (P = 0.0002, R2 = 0.20, n = 226; 

348 Fig. S3c). Larger stems accumulated more internal damage (P < 0.0001, R2 = 0.02, n = 226; 

349 Fig. S3a), whereas stem diameter distributions showed little variation among sites (P = 0.18, 

350 Fig. 2b, Table S4). Wood density was higher at dry sites (P < 0.0001, Fig. 2c, Table S4). 

351 Denser stems also accumulated more internal damage (P < 0.0001, R2 = 0.02, n = 226; Fig. 

352 2a, S3). Our dry sites were previously shown to have greater termite pressure damage in 

353 downed deadwood (percentage termite damage in downed deadwood; Fig. 2d, Clement et al 

354 2021); internal stem damage increased at these sites where termite pressure was high (P 

355 <0.0001, R2 = 0.25, n = 226; Fig. S3). The explanatory power of each of the single predictor 

356 models of internal stem damage was low to moderate, with stem level predictors explaining 

357 2% and site level predictors explaining 20-25% of the variation in damage (Table S4). 

358

359

360 In multivariate models of stem damage, wood density was retained in both site level 

361 models, as well as a significant interaction term between wood density and site level 

362 predictors (Fig. 3, Table S6). Stems with high wood density experienced less internal damage 

363 in wet sites and more internal damage in dry sites. Similarly, stems with high wood density 

364 experienced more internal stem damage in sites with high termite pressure than those with 

365 low termite pressure. However, stems with low wood density showed little change in internal 

366 stem damage across changes in either precipitation or termite damage in downed deadwood. 
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367 Although these models with an interaction term between wood density and site level 

368 predictors only explained ~3% more variation than the single site-level predictor models, 

369 both models had highly significant interaction terms and represented a better explanation of 

370 the data (LRT P <0.001) than the single variable models (Fig. 3; Table S6).

371

372

373

374 While across-site differences in internal stem damage appeared at least in part driven 

375 by the internal stem damage response of denser wooded species (Fig. 3, Table S5), large 

376 variation in both internal stem damage and wood density occurred within sites (Fig 2D, Fig. 

377 4, Table 1). Aboveground biomass in drier sites was dominated by Myrtaceae, which had 

378 dense wood and high internal stem damage (Fig. 4, Table 1), with internal stem damage also 

379 high (> 0.1) in members of the Combretaceae, Fabacaeae, Moraceae, Rubiaceae and 

380 Santalaceae. Wet sites had species broadly distributed across the phylogeny with Fabaceae, 

381 Lauraceae, Myrtaceae, Proteaceae and Rutaceae contributing considerable aboveground 

382 biomass > 20 Mg ha-1). Species with the most damage (> 0.1) were in the Annonaceae, 

383 Cardiopteridaceae, Euphorbiaceae, Fabaceae, Lauraceae, Myrtaceae, Podocarpaceae, 

384 Rutaceae and Sapotaceae. Overall, wet site species were more variable in wood density, 

385 aboveground biomass, and internal stem damage. The intermediate site aboveground biomass 

386 was dominated by Casuarinaceae and Proteaceae (>0.5), followed by Myrtaceae (>0.1); 

387 interestingly, species in the Lauraceae had the lowest wood density and some of the lowest 

388 internal stem damage.

389

390 To understand consequences of internal stem damage on aboveground biomass 

391 estimates, we used our internal stem damage prediction model with an interaction for wood 

392 density and precipitation (see Precipitation model in Table S5). Our modified model 

393 estimated that across our sites 60.8 Mg ha-1 may be damaged, or between 2.9-36.2% of 

394 aboveground biomass per site, with some of this biomass entirely missing. Percentage 

395 aboveground biomass damage was variable across our sites with the drier savanna sites (with 

396 the highest termite pressure; Fig. 2D) estimated to have much higher damage than other sites 

397 (Figure 4A), with >30% damaged at our driest and <3% damaged at our wettest sites. This 

398 result is despite the lower total biomass found in savannas than rainforests (Fig. 5b, c). When 

399 we tested sensitivity of these differences to variation within the tree, our bracketed internal 

400 stem damage estimate (with a +50% increase and decrease in damage across the height of the 
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401 tree; assumption three) suggests that the damaged biomass across our sites could be as low as 

402 30.4 Mg ha-1 and as high as 91.2 Mg ha-1. Meanwhile, assuming internal stem damage only 

403 impacts stem but not the crown biomass (assumption four), we estimated internal stem 

404 damage to be 38.4 Mg ha-1 when assuming constant damage across the stem, or as high as 

405 57.6 Mg ha-1 or as low as 19.2 Mg ha-1when assuming a 50% increase or decrease in damage 

406 across the stem height, respectively. All scenarios predicted a significant difference in 

407 aboveground biomass estimates when comparing modified estimates of aboveground biomass 

408 (gray bars and dashed lines) from our internal stem damage model to estimates without 

409 incorporating internal stem damage (white bars) with (P = 0.02; Fig. 5b) or without the crown 

410 (P = 0.01; Fig. 5c).

411

412

413 Discussion

414 Here we show that internal stem damage can significantly reduce the C residence time of 

415 living trees across ecosystems over a five-fold change in precipitation. This finding has 

416 implications for the mapping and accounting of living tree biomass across our study sites and 

417 in tropical and subtropical ecosystems in general. The relationship that we detected between 

418 internal stem damage and wood density did not fit expectations based on microbial 

419 decomposition studies of coarse woody debris. Internal stem damage did not decrease with 

420 increasing wood density, as would be expected if wood density always has a defensive effect 

421 against predators and pathogens. In fact, the shape of the relationship between internal stem 

422 damage and wood density varied across our sites. Higher wood density was associated with 

423 higher internal stem damage in arid and semiarid ecosystems, where termites are abundant, 

424 and lower internal stem damage in wet ecosystems where fungal damage is more prevalent. 

425 Deadwood in arid and semiarid ecosystems may therefore be more dynamic experiencing 

426 shorter residence times than expected, with significant decomposition beginning even before 

427 trees die. Our observations suggest internal stem damage is likely defined by the composition 

428 and activity of the decomposer community. Understanding the evolution and interactions of 

429 trees and their decomposers will be important in estimating internal stem damage and 

430 ultimately key in measuring the residence time of wood in ecosystems.

431

432 The role of wood density in internal stem damage

433 The interaction between wood density and decomposer activity (measured as damage in 

434 downed deadwood) or, to a lesser extent, precipitation, revealed a complex relationship 
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435 between wood density and internal stem damage. Dense wood confers mechanical strength 

436 (Van Gelder et al., 2006; Chave et al., 2014), is more common in arid sites (Chave et al., 

437 2009), and is generally thought to protect against herbivores, pests and pathogens (Scheffer & 

438 Morrell, 1998; Larjavaara & Muller-Landau, 2010). Local studies however reported weak or 

439 inconsistent relationships between wood density and pathogen protection (Augspurger & 

440 Kelly, 1984; Heineman et al., 2015; Eleuterio et al., 2020). Our sites encompassed a large 

441 range in precipitation, plant composition and decomposer communities. Across them, we 

442 found an overall weak negative relationship between wood density and internal stem damage. 

443

444 Resistance to biotic decay agents is dependent on the wood substrate availability, including 

445 accessibility of the substrate and range of wood traits, as any given wood trait may not deter 

446 all potential biotic decay agents (Scheffer & Morrell, 1998); what repels a fungal pathogen or 

447 saprobe may not repel a termite, and vice versa. For example, high wood density has been 

448 related to higher fungal resistance and both high and low termite resistance (Bultman & 

449 Southwell, 1976; see above; Oberst et al., 2018). Aromatic phenolics such as stilbenes have 

450 antifungal properties (Hart, 1981; Simonetti et al., 2020), while compounds such as 

451 obtusoquinanone, guaiacol, and lapachol can repel termites (Bultman & Southwell, 1976). 

452 Further, silica organic extractives are often associated with lower susceptibility of wood to 

453 decomposition (Schultz & Nicholas, 2000; Andrews et al., 2023), while prismatic crystals 

454 may contribute to mechanical support and protection against animals (Schneider, 1901). Our 

455 data demonstrate the impact that the decomposer community composition has on the 

456 relationship between plant traits (here wood density) and internal stem damage (in particular 

457 the differences between termite- and microbial-driven decomposition) and suggest that 

458 internal stem damage in drier tropical sites is likely driven by termites. This finding is yet to 

459 be tested in other systems; however, there is evidence that hollowing may be important in dry 

460 tropical sites in other continents (Jones & Eggleton, 2011; N'Dri et al., 2011), as well as 

461 broadly across other ecosystems (Monda et al., 2015; Eleuterio et al., 2020). Relative to the 

462 rainforest, termites in the savanna sites were higher in abundance, species richness, and had 

463 higher pressure in downed deadwood compared to fungi in our system (Clement et al., 2021). 

464 Importantly, here we show that: 1) wood decomposition starts earlier than expected, while 

465 trees are still alive and standing, meaning they are already accessible to biotic decay agents 

466 and 2) different decomposers respond to wood density in different ways, and these 

467 individualistic responses cannot be extrapolated from previous microbial-focused wood 

468 decomposition work. 

Page 14 of 33

Manuscript submitted to New Phytologist for review



For Peer Review

15

469

470 Internal stem damage selective filters

471 The variation we observed in internal stem damage reflects changes in the abiotic and biotic 

472 filters faced by the relevant players. Differences in wood density and other traits of plants 

473 across our communities are mediated at least in part through variation in abiotic conditions 

474 (Chave et al., 2009; Reich, 2014). Dry sites had lower biomass, had higher and less variable 

475 wood density and were largely composed of Myrtaceae species, especially Eucalyptus. Wet 

476 sites had more total living tree biomass, as well as tree species distributed broadly across the 

477 plant phylogeny, with variable wood density. The climate sensitivities of pests, pathogens 

478 and decomposers will also mediate variation in internal stem damage. Microbial decay of 

479 downed deadwood increases with increasing humidity and temperature (Cornwell et al., 

480 2009), while termite wood decay is highly sensitive to temperature but not humidity (Zanne 

481 et al., 2022). As decay occurs in the dead heartwood in living trees, there is potential for 

482 selection of different wood densities (Cornelissen et al., 2022) by the co-occurring decay 

483 agents. Particularly key are the interactions between the abiotic and biotic components, 

484 including how variation in plant traits, such as wood density but also secondary chemistry 

485 and wood morphology in turn also mediate the decomposer community and therefore decay 

486 (Cornwell et al., 2009; Weedon et al., 2009; Hu et al., 2018; Harmon et al., 2020). From the 

487 evidence here, abiotic factors directly or indirectly affect the decomposer community and 

488 hence internal stem damage. However, the wood trait preferences, such as high and low wood 

489 density, of termite- vs microbial-dominated systems lead to variation in which plant lineages 

490 sustain the greatest internal stem damage across our communities. 

491

492 In line with evidence from microbial-driven decay in coarse woody debris, we found that in 

493 rainforest, where microbial decomposition is prevalent, plant species with lower wood 

494 density sustained higher internal stem damage. Anecdotally, plant species with darker colored 

495 brown and red heartwoods (e.g., Ormosia ormondii) also sustained less internal stem damage 

496 than lighter colored species with yellow or white heartwood (e.g., Euphorbiaceae and 

497 Rutaceae; Table 2 and Figure 4). Darker colored woods were associated with higher 

498 resistance to microbial decay as compared with lighter colored heartwoods (Gierlinger et al., 

499 2004; Chave et al., 2009), perhaps because of higher deposition of extractives during 

500 heartwood formation (Kramer, 2012). Many wood rotting fungi show host preferences; for 

501 instance, white rot fungi are often angiosperm specialists, while brown rot fungi are often 

502 gymnosperm specialists (Krah et al., 2018), with individual fungal species even showing 
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503 preferences for specific tree species (Baxter, 1925; Ador et al., 2023). The observed higher 

504 variation in internal stem damage across plant families in our wet sites most likely reflects 

505 filtering of microbial decomposers (the most active decomposers in these sites) by the 

506 differences in wood density and chemistry among plant clades. 

507

508 In our savanna sites, Myrtaceae species with denser wood had the most internal stem damage. 

509 An important termite in these dry sites is Coptotermes acinaciformis, which builds 

510 aboveground mounds or subterranean nests at the base of living savanna trees, especially 

511 Eucalyptus species, and hollows out the inside of these trees (Werner & Prior, 2007). The 

512 high wood density of Eucalyptus trees reduces wood water (Meinzer et al., 2003; Sperry et 

513 al., 2005) and their high stilbene content inhibits delignification of wood (Hart, 1981; Pietsch 

514 et al., 2014), which may reduce fungal decomposition. Given the extensive excavation and 

515 nest site construction in savanna trees by C. acinaciformis, it makes sense that these termites 

516 target Myrtaceae species with their dense wood which can maintain strong structures despite 

517 hollowing. Similar patterns have been observed in timber species in the Amazon, where 

518 termites preferentially damage species with high wood density (Eleuterio et al., 2020). In 

519 downed deadwood, results are conflicting across studies with termites preferring low density 

520 wood (Liu et al., 2015; Guo et al., 2021; Tuo et al., 2021), no relationship between termite 

521 preference and wood traits (Law et al., 2023), and certain termites species preferring decayed 

522 wood (Cornelius et al., 2002). It seems likely that termite preference for high or low wood 

523 density species will depend on their ability to access the wood, whether they are solely 

524 sampling the wood for food or also living within the wood, as well as the co-occurring 

525 saprotrophic microbial community competing for wood as a resource. For example, variation 

526 in termite mandible hardness, elasticity, and structure (Cribb et al., 2007) allows for 

527 differentiation in wood preference among termite species. Similarly, negative (Kirker et al., 

528 2012) and positive interactions (Hyodo et al., 2003) between termites and their saprotrophic 

529 microbial competitors should play a key role in termites' wood preference and consumption.

530

531 Implications and future directions

532 At the ecosystem scale, the rate and amount of internal stem damage is important in 

533 determining the residence time of C in living biomass, with up to ~30% of biomass already 

534 damaged or even missing before the stem dies. Globally, living trees in tropical savannas are 

535 estimated to contain ~66 Gt C (Watson et al., 2000; Giri et al., 2005). Savannas, dominated 

536 by Eucalyptus species, represent 77% of Australia’s native forested area, totaling ~134 
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537 million ha (National Forest Inventory Steering Committee, 2019), and they are predicted to 

538 contain between 6 to 34 Mg ha-1 of C in biomass of living trees (Chen et al., 2003; Cook et 

539 al., 2015). Given that most termites physically remove wood to be digested in their guts 

540 within their mounds or nests whereas microbes decay wood in situ, termite-driven damage 

541 represents a complete removal of C from where the wood has been produced. Across 

542 Australia, internal hollowing may be a common phenomenon as C. acinaciformis is widely 

543 distributed (not including Tasmania; Lee et al., 2017; Wijas et al., 2022; GBIF Secretariat, 

544 2023). Such widespread internal stem damage may significantly decrease the stocks of C in 

545 live trees, well before trees senesce. The effects of these early stages of wood loss, if 

546 pervasive, could speed up the rates of C loss from wood. 

547

548 A central question derived from our analysis is to what extent internal stem damage, and in 

549 particular termite-driven internal stem damage, is pervasive at a pantropical/global scale. The 

550 processes generating internal stem damage remain largely unknown at these scales. Thus far, 

551 the pursuit of this question at local and regional scales (including our study across 

552 ecosystems) suggests that the process by which wood is lost in living stems is highly variable 

553 but stem hollowing by termites is not solely an Australian phenomenon, with evidence from 

554 sites in the African and New World tropics (Apolinário & Martius, 2004; N'Dri et al., 2011; 

555 Eleuterio et al., 2020). Building on existing evidence for both the distribution of wooded 

556 vegetation and termites that hollow trees, an approach to better understand the prevalence of 

557 internal stem damage around the globe would be to quantify the prevalence of internal stem 

558 damage in systems where both conditions are met. Woody vegetation across the Americas, 

559 Australasia, Africa, and even southern Europe – where single and intermediate dry wood 

560 feeding termites (species that completely or partially feed on their nesting substrate sensu 

561 Abe, 1987) are distributed – may experience at least some degree of internal stem damage 

562 (Eggleton & Tayasu, 2001). Beyond a pantropical to global focus on the presence of internal 

563 stem damage, there is substantial scope for further empirical studies measuring the internal 

564 stem damage variation within trees (e.g., at different heights, into the crown, belowground) or 

565 quantifying the relationship between additional wood traits and termite preferences.

566

567 Residence time of C remains a main source of uncertainty in global vegetation models 

568 (Friend et al., 2014). Much recent focus has been on forest where large trees reside (e.g, 

569 tropical forest), but savanna systems comprise a large portion of the globe, may lose wood 

570 more rapidly than rainforest, and have been understudied as compared to rainforest (Austin & 
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571 Vivanco, 2006; Dahlin et al., 2017; Vourlitis et al., 2022). How much the pattern of large 

572 internal stem damage in savannas carriers over into other continents remains an open 

573 question with global consequences. Recent advances in technologies such as remote sensing 

574 can now be blended with on-the-ground measurements (such as ours) to better understand the 

575 residence of C in woody plants. Long term monitoring of forest plot data are providing better 

576 estimates of AGB losses that now includes estimation of external damage (e.g., branch loss) 

577 and whole plant mortality (Zuleta et al., 2023). Some allometric models, when based on 

578 harvested trees, implicitly incorporate internal stem damage into their estimates, while other 

579 methods, such as Terrestrial Laser Scanning (TLS) do not. TLS is an emerging remote 

580 sensing tool that rapidly provides highly accurate estimates of tree volumes; these are 

581 translated into AGB estimates; however where internal tree damage is large (>10%) this 

582 method can overestimate AGB (Calvert et al., 2023). We suggest that combining empirical 

583 approaches outlined in this study with long term monitoring and non-invasive technologies 

584 (e.g., sonic tomograph and ground penetrating radar) will facilitate parameterization of 

585 mechanistic allometric assessments and connections to better models of C residence times. 

586 Currently, the lack of internal stem damage measures prohibits their incorporation into 

587 emerging technology estimates of forest C and biomass (but see Calvert et al., 2023). A 

588 starting place would be to test the predictions on this study in other regions where tree-

589 hollowing termites are present. Similarly, there is substantial scope to understand the effect 

590 that climatic controls of biogeochemical cycles (Delgado-Baquerizo et al., 2018) may have 

591 on internal stem damage through changes in soil, wood, and decomposer communities. 

592

593 Conclusions

594 We have shown that internal wood loss starts well before a tree dies which may have direct 

595 impacts on the contribution of wood degradation to C loss. Describing the variability in 

596 internal stem damage across communities, including the interaction between plants and their 

597 decomposers (microbes, termites or otherwise), requires more attention particularly in 

598 tropical communities. The proportion of C potentially lost through internal stem damage may 

599 be high, especially in arid and semi-arid systems where wood is currently assumed to be 

600 immobilized until tree senescence. The accurate measurement of forest biomass, including 

601 internal stem damage, will have implications in our understanding of the fates of C and may 

602 therefore have implications for the modelling of wood and its contribution to biogeochemical 

603 cycles in global vegetation models. Understanding the prevalence of internal stem damage 

604 across woody ecosystems with high wood feeding termite diversity and pressure may also 
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605 shed light on the variable relationship between wood density and mortality (Kraft et al., 

606 2010) or the observed weak relationship between tree aboveground living and deadwood 

607 biomass (Palace et al., 2012). Our study and others (Cornwell et al., 2009; Liu et al., 2015; 

608 Hu et al., 2018; Guo et al., 2023) suggest that, while environmental selection may determine 

609 wood density and other traits that affect when and how fast woody tissue cycles, there may be 

610 other biotic factors (such as the decomposer community) that modify the effect of wood traits 

611 on wood cycling, sometimes in unexpected ways, as shown here. As C disappears from the 

612 living tree pool, this will have direct implications for global C modeling, the extent of which 

613 remains unseen. Further, insect-driven decomposition impacts the fate of the wood in 

614 different ways to predictions based on microbial-driven decomposition (Griffiths et al., 2021; 

615 Zanne et al., 2022). It is therefore critical to explore the mechanisms and implications of 

616 internal stem damage in ecosystems across the globe. 

617
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Tables

Table 1. Mean and SD of internal stem damage for species with more than three individuals per 

site. Species by site are ranked in order of most damaged to least damaged. 

Damage rank Site Species Family
Mean 
damage

SD 
damage

1 Sav2 Eucalyptus cullenii Myrtaceae
37.9 20.05

2 Sav1 Eucalyptus cullenii Myrtaceae
36.78 25.32

3 Rf2 Flindersia 
bourjotiana

Rutaceae
20.8 19.52

4 Sav2 Larsenaikia ochreata Rubiaceae
17.67 15.37

5 Sav2 Corymbia 
clarksoniana

Myrtaceae
17 22.16

6 Rf2 Brombya platynema Rutaceae
14.5 10.85

7 Scl1 Eucalyptus resinifera 
subsp. resinifera

Myrtaceae
13.15 11.22

8 Rf2 Macaranga 
subdentata

Euphorbiaceae
11.5 15.15

9 Scl1 Banksia aquilonia Proteaceae
10 12.49

10 Sav2 Acacia disparrima 
subsp. calidestris

Fabaceae
10 17.32

11 Sav1 Melaleuca 
stenostachya

Myrtaceae
8.67 10.26

12 Rf2 Austromuellera 
trinervia

Proteaceae
8.33 7.37

13 Rf2 Medicosma fareana Rutaceae
7.8 13.01
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14 Scl1 Allocasuarina 
torulosa

Casuarinaceae
7.69 8.6

15 Rf1 Castanospora 
alphandii

Sapindaceae
5.33 5.51

16 Rf1 Daphnandra 
repandula

Atherospermataceae
3.67 4.04

17 Rf2 Carnarvonia 
araliifolia

Proteaceae
1.67 4.08

18 Rf1 Syzygium 
trachyphloium

Myrtaceae
1.67 2.89

19 Rf2 Ormosia ormondii Fabaceae
0.33 0.58

20 Rf2 Licuala ramsayi Arecaceae
0 0
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Figure legends

Figure 1. Locations of the five sites in the study area in Far North Queensland, Australia and 

number of species. From driest to wettest: Sav1 (Pennyweight savanna), Sav2 (Station Creek 

savanna), Scl1 (Mt. Lewis sclerophyll), Rft1 (Mt. Lewis rainforest), and Rft2 (Daintree 

rainforest). Species number appear inside parenthesis. 

Figure 2. Variation in A. percentage internal stem damage, B. tree diameter at breast height 

(DBH, in cm), C. wood density (g m-3) across the study sites and D. termite pressure expressed 

as percentage of termite damage in downed deadwood (DDW) across the study sites and 

precipitation gradient (from Clement et al. 2021 for panel D). Sites are from driest at Sav1 to 

increasingly wetter moving from Sav2, Scl1, Rf1 to Rf2.

Figure 3. Marginal effects plots of probability of internal stem damage of individual trees (dots) 

adjusted for low (blue), intermediate (orange) and high (bright red) wood density (g m-3) across 

A. precipitation (mm) and B. termite pressure (percentage termite damage in downed deadwood 

(DDW)). Dashed lines represent a 95% CI. 

Figure 4. Phylogeny of sampled tree stems with squares indicating species wood density (g m-3, 

low in blue, high in red), and circles indicating both average species internal stem damage (in 

grayscale) and species contributions to 50x50 m plot level aboveground biomass (by size) across 

a 5-site precipitation gradient (from left to right, wettest to driest).

Figure 5. Aboveground biomass estimates per site (Mg ha-1). Panel A shows percentage 

aboveground biomass damage assuming constant damage (gray) and 50% change in internal 

stem damage (dashed lines). Aboveground biomass estimates (Panel B) and only stem biomass 

estimates (Panel C) using traditional allometric equations to estimate biomass for each site (i.e., 

no damage, white), constant damage (gray), 50% change in internal stem damage (dashed 

lines). 
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