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ORIGINAL ARTICLES

Atypical Relationships Between Spontaneous EEG
and fMRI Activity in Autism

Lisa E. Mash,1,2 Brandon Keehn,3 Annika C. Linke,1 Thomas T. Liu,4 Jonathan L. Helm,2,5 Frank Haist,2,6

Jeanne Townsend,2,7 and Ralph-Axel Müller1,2

Abstract

Autism spectrum disorders (ASDs) have been linked to atypical communication among distributed brain net-
works. However, despite decades of research, the exact nature of these differences between typically developing
(TD) individuals and those with ASDs remains unclear. ASDs have been widely studied using resting-state neu-
roimaging methods, including both functional magnetic resonance imaging (fMRI) and electroencephalography
(EEG). However, little is known about how fMRI and EEG measures of spontaneous brain activity are related in
ASDs. In the present study, two cohorts of children and adolescents underwent resting-state EEG (n = 38 per
group) or fMRI (n = 66 ASD, 57 TD), with a subset of individuals in both the EEG and fMRI cohorts (n = 17
per group). In the EEG cohort, parieto-occipital EEG alpha power was found to be reduced in ASDs. In the
fMRI cohort, blood oxygen level-dependent (BOLD) power was regionally increased in right temporal regions
and there was widespread overconnectivity between the thalamus and cortical regions in the ASD group relative
to the TD group. Finally, multimodal analyses indicated that while TD children showed consistently positive re-
lationships between EEG alpha power and regional BOLD power, these associations were weak or negative in
ASDs. These findings suggest atypical links between alpha rhythms and regional BOLD activity in ASDs, pos-
sibly implicating neural substrates and processes that coordinate thalamocortical regulation of the alpha rhythm.

Keywords: alpha; autism; EEG; functional MRI; resting state

Introduction

Autism spectrum disorders (ASDs) are neurodevelop-
mental disorders defined behaviorally by social commu-

nication deficits and the presence of restricted/repetitive
patterns of behavior or interest (American Psychiatric Associ-
ation, 2013). It is at present estimated that 1 in 59 eight-year
olds in the United States is on the autism spectrum (Baio
et al., 2018). However, the neurobiological basis of these dis-
orders remains poorly understood. Research clarifying the na-
ture of brain differences in ASDs may improve treatment and
diagnostic strategies and is therefore a high priority.

Over the past several decades, interest in brain functioning
in ASDs has grown rapidly. Studies using functional mag-
netic resonance imaging (fMRI) and electroencephalography
(EEG) to examine neural activity in vivo comprise the major-

ity of this literature. While fMRI research broadly supports
atypical coordination (i.e., functional connectivity [FC])
across distributed brain networks in ASDs, there have been
mixed and sometimes conflicting reports of underconnectiv-
ity and overconnectivity involving numerous regions and
functional networks (Di Martino et al., 2014; Hull et al.,
2016). However, findings of atypical thalamocortical cir-
cuitry have been relatively consistent, with multiple studies
reporting overconnectivity between the thalamus and senso-
rimotor cortical regions (Cerliani et al., 2015; Nair et al.,
2015; Woodward et al., 2017). These findings are further
supported by evidence of structural thalamic differences in
ASDs (Schuetze et al., 2016). Much like the fMRI literature,
EEG studies have produced mixed results with respect to
both power and coherence across a range of frequencies
(O’Reilly et al., 2017; Wang et al., 2013). Despite these
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inconsistencies, one of the best replicated findings in ASDs is
decreased power in the alpha frequency band (i.e., 8–12 Hz)
at rest (Chan et al., 2007; Dawson et al., 1995; Keehn et al.,
2017; Murias et al., 2007; Sheikhani et al., 2012; Tierney
et al., 2012).

To date, there has been little progress relating findings
across modalities in ASDs (Mash et al., 2018), and it is at
present unknown how reports of reduced EEG alpha power
and atypical thalamocortical activity may be associated.
While EEG directly measures postsynaptic potentials (Nie-
dermeyer et al., 2011; Heller and Volegov, 2014), fMRI de-
tects the blood oxygen level-dependent (BOLD) signal, an
indirect measure of neural activity influenced by vascular
and metabolic factors (Hillman, 2014). Therefore, measures
of magnitude (i.e., power) and synchronicity (i.e., FC) de-
rived from different modalities may reflect neuronal commu-
nication in fundamentally different ways. Studies combining
both modalities in the same individuals allow for joint anal-
ysis and direct comparison between EEG and fMRI results.

In typically developing (TD) adults, a large body of simul-
taneous EEG-fMRI work has consistently demonstrated that
spontaneous EEG alpha power is positively associated with
thalamic BOLD activity (Bridwell et al., 2013; de Munck
et al., 2007; Goldman et al., 2002) and negatively related
to cortical BOLD activity (Bridwell et al., 2013; Goldman
et al., 2002; Laufs et al., 2003; Olbrich et al., 2009). The re-
lationship between EEG alpha power and BOLD FC is less
well established; however, there is some evidence that in-
creased EEG alpha power is associated with reduced anticor-
relation (i.e., less negative correlations) between the
thalamic and cortical regions (Allen et al., 2018; Scheeringa
et al., 2012). Multimodal imaging research in ASDs remains
very limited. To our knowledge, only two small EEG-fMRI
studies in ASDs have been published, both of which explored
neural processing during auditory and language processing
tasks using concurrent EEG-fMRI (Hames et al., 2016; Joc-
haut et al., 2015). While these efforts provide first glimpses
of potential links between electrophysiological and hemody-
namic measures during task performance in ASDs, they can-
not speak to unimodal resting-state findings involving EEG
alpha power and thalamocortical networks.

To our knowledge, there are at present no published
resting-state EEG-fMRI studies of ASDs. However, estab-
lished relationships between thalamocortical networks and
EEG alpha power in typical development described above
provide a compelling direction for future ASD research com-
bining EEG and fMRI. Although there are advantages to si-
multaneous data acquisition, this procedure is often lengthy
and uncomfortable. This is especially problematic for children
with developmental disorders. Separately acquired EEG-
fMRI data cannot speak to concurrent fluctuations in regional
BOLD activity/coordination and EEG alpha power within in-
dividuals. However, these data may still provide important in-
sight into multimodal relationships between individuals.

To investigate links between separately acquired EEG and
fMRI, suitable summary measures for EEG alpha power,
BOLD activity, and BOLD FC must be selected. EEG
alpha power can be averaged over an acquisition period to
yield a specific value for each participant. Calculating a sin-
gle representative BOLD value over an entire scan period for
an individual, on the contrary, is challenging as BOLD units
are arbitrary and only relative BOLD activity changes can be

interpreted meaningfully. Therefore, spontaneous BOLD ac-
tivity (i.e., power) is best summarized by the amplitude of
low-frequency fluctuations (ALFF) (Zang et al., 2007), a
measure that captures power in BOLD frequencies typically
around 0.01–0.1 Hz. ALFF is often reported together with
fractional ALFF (fALFF), that is, the ratio between low-
frequency power and total power of all frequencies (Zou
et al., 2008); ALFF tends to have better test/retest reliabil-
ity, whereas fALFF is considered more robust to non-
neuronal artifact (Zuo et al., 2010). However, ALFF/
fALFF has only played a minimal role in the ASD neuro-
imaging literature to date. A few relevant studies have
reported varying findings, from broadly increased ALFF
(Supekar et al., 2013) to regionally increased fALFF in
right frontal and temporal regions (Di Martino et al., 2014)
and decreased fALFF in occipital regions (Di Martino
et al., 2014; Itahashi et al., 2015).

The primary aims of this study were to (1) clarify previous
unimodal EEG and fMRI findings in ASDs described above
and (2) establish interindividual relationships between EEG
alpha power and thalamic activity, cortical activity, and tha-
lamocortical FC in a sample of adolescents with and without
ASDs.

Materials and Methods

Participants

Resting-state EEG was collected from 76 individuals (38
ASD, 38 TD), ages 7–18 years. Groups did not significantly
differ with respect to age, handedness, sex, nonverbal IQ, or
EEG length after preprocessing (Table 1). None of the TD
participants was taking psychotropic medications or had
any documented history of psychiatric or developmental dis-
orders. In the ASD group, medication status was documented
for 23 of 38 individuals. Of these, six reported taking psycho-
tropic medications.

fMRI data were separately acquired from 123 individuals
(66 ASD, 57 TD), ages 6–18 years. ASD and TD groups did
not significantly differ with respect to age, handedness, sex,
nonverbal IQ, or root mean-squared displacement (RMSD;
i.e., in-scanner head motion) (Table 2). As in the EEG sam-
ple, none of the TD participants was taking psychotropic
medications or had any documented history of psychiatric
or developmental disorders. In the ASD group, 23 individu-
als reported taking psychotropic medications, 37 were un-
medicated, and medication status was undocumented for
6 individuals.

A subset of participants underwent fMRI and EEG acqui-
sition within 3 months of one another (22 ASD, 25 TD, ages
12–17 years; Table 3). Four individuals with ASDs and six
TD individuals were excluded from multimodal analyses
due to excessive fMRI artifacts. One individual with ASD
was excluded due to an incidental finding on MRI. Two ad-
ditional TD individuals were excluded from the multimodal
sample to improve matching and to maintain equal sample
sizes. The final EEG-fMRI sample consisted of 17 individu-
als per group with high-quality data in both modalities. Of
these participants, 6 ASD participants were prescribed med-
ications and the remaining 11 were unmedicated. All avail-
able medication and comorbidity data are summarized in
Supplementary Table S1.
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Across all samples, ASD diagnoses were confirmed based
on the Autism Diagnostic Interview–Revised (ADI-R) (Lord
et al., 1994), the Autism Diagnostic Observation Schedule-
Generic (ADOS-G) (Lord et al., 2000), or Autism Diagnostic
Observation Schedule, Second Edition (ADOS-2) (Gotham
et al., 2007), and expert clinical judgment according to
DSM-5 (Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition) criteria. The Wechsler Abbreviated
Scales of Intelligence (WASI) (Wechsler, 1999) or Wechsler
Abbreviated Scales of Intelligence, Second Edition (WASI-II)
(Wechsler, 2011) was administered to all participants. Informed
assent and consent were obtained from all participants and
caregivers in accordance with the University of California,
San Diego, and San Diego State University Institutional
Review Boards.

Electroencephalography

Acquisition. Continuous EEG was recorded using a Bio-
semi ActiveTwo system with 68 Ag/AgCl active electrodes.
Sixty-four electrodes were mounted in an elastic cap accord-
ing to locations in the modified International 10–20 system.
Remaining electrodes were placed below the right eye, on
the outer canthus of the left eye (to monitor blinks and sac-
cades), and over the left and right mastoids (reference).
EEG data were recorded at a sampling rate of 256 Hz, and
direct current (DC) offsets were kept below 25 mV at all

channels. Participants completed 6 min of eyes-open EEG,
during which a black central fixation crosshair was presented
on a gray background. Participants were instructed to relax,
remain as still as possible, and look at the crosshair.

Data processing. Data were processed in EEGLAB
(Delorme and Makeig, 2004), high-pass filtered at 1 Hz,
and rereferenced to the grand average. Independent compo-
nent analysis (ICA) was applied using the Fieldtrip toolbox
(Oostenveld et al., 2011). Each participant’s component ac-
tivations were first visually inspected for motor artifact,
and noisy segments were manually rejected. Component ac-
tivations and their scalp maps were then examined to identify
ocular artifacts, and artifact-contaminated components were
removed ( Jung et al., 2000a,b). Finally, noisy channels were
excluded and replaced as missing values. After preprocess-
ing, all participants had at least 2 min of remaining data for
subsequent analyses (Tables 1 and 3). For each channel, a
fast Fourier transform (EEGLab’s spectopo) was applied to
continuous (unepoched) data to determine the magnitude of
power at frequencies ranging from 0.25 to 128 Hz, at
0.25 Hz increments. The spectral power values were con-
verted from decibels to microvolts squared (lV2).

Alpha power analysis. Alpha power, expressed as lV2,
was extracted from and averaged across parieto-occipital
(Oz, POz, O1, O2, PO3, PO4) electrodes. There is strong

Table 1. EEG Sample Characteristics

ASD (n = 38) TD (n = 38) Statistic p

Sex 32 male 29 male v2(1) = 0.75 0.39
Handedness 35 right 32 right v2(1) = 1.13 0.29
Age 12.6 (2.4), 7.1–17.1 13.0 (2.8), 7.1–18.0 t(74) =�0.57 0.57
Usable EEG (min) 4.9 (1.0), 2.2–6.0 5.2 (0.7), 2.9–6.0 t(74) =�1.83 0.07
VIQ 105 (18), 72–147 108 (11), 83–126 t(74) =�0.86 0.39
NVIQ 104 (18), 64–140 107 (12), 77–129 t(74) =�0.61 0.54
ADOS SC 10 (4), 1–19
ADOS RRB 4 (4), 0–19
ADOS Total 14 (4), 8–23

Values are presented as mean (SD), range.
ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; EEG, electroencephalography; FSIQ, full-scale IQ;

NVIQ, nonverbal IQ; RMSD, root mean-squared displacement; RRB, restricted/repetitive behavior; SC, social communication; SD, standard
deviation; TD, typically developing; VIQ, verbal IQ.

Table 2. fMRI Sample Characteristics

ASD (n = 66) TD (n = 57) Statistic p

Sex 54 male 45 male v2(1) = 0.16 0.69
Handedness 58 right 49 right v2(1) = 0.10 0.75
Age 13.4 (2.6), 8.0–18.0 13.1 (2.8), 6.9–17.6 t(121) = 0.53 0.60
Usable fMRI (time points) 175 (7), 144–180 176 (7), 145–180 t(121) =�0.48 0.63
RMSD 0.08 (0.04), 0.02–0.19 0.07 (0.04), 0.02–0.17 t(121) = 0.36 0.72
VIQ 101 (17), 67–147 107 (11), 73–127 t(121) =�2.19 0.03
NVIQ 105 (17), 53–140 106 (13), 62–137 t(121) =�0.58 0.56
ADOS SC 12 (4), 6–22
ADOS RRB 2 (2), 0–7
ADOS Total 14 (4), 7–24

Values are presented as mean (SD), range.
fMRI, functional magnetic resonance imaging.
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evidence that peak alpha frequency varies substantially be-
tween individuals (Haegens et al., 2014), shifts throughout
childhood and adolescence (Cragg et al., 2011; Miskovic
et al., 2015), and may differ between ASDs and typical de-
velopment (Dickinson et al., 2018; Edgar et al., 2015).
Therefore, it has been recommended that alpha frequency
windows be individually defined for each participant (Kli-
mesch, 1999). For this study, the alpha peak was defined as
the local maximum of the average parieto-occipital power
spectrum between 7 and 13 Hz. Because the alpha rhythm
is most prominent in posterior regions (Britton et al., 2016),
only parieto-occipital electrodes were used to optimize signal-
to-noise ratio and improve peak estimates. Parieto-occipital
alpha power (referred to henceforth as ‘‘alpha power’’) was
then extracted from the 4-Hz window surrounding this mid-
point (e.g., an alpha window of 7–11 Hz for a participant
with an alpha peak at 9 Hz). For participants with no clear
alpha peak (n = 7, all ASD), a standard window of 8–12 Hz
was applied. Individual alpha peaks ranged from 7.5 to
12.5 Hz and did not differ significantly between groups
(ASD mean [SD] = 9.76 [0.87] Hz, TD mean [SD] = 9.80
[0.73] Hz, p = 0.82).

Absolute and relative parieto-occipital alpha power were
compared between groups using two-sample t-tests with de-
grees of freedom adjusted for unequal variances (using Sat-
terthwaite’s approximation). These group analyses were
repeated on an unmedicated subsample of ASD participants
and a matched TD group. To ensure that findings were not
primarily due to differences in individual alpha windows, a
standard alpha window of 8–12 Hz was compared with our
method described above for calculating alpha windows.
Absolute parieto-occipital alpha power calculated using a
standard alpha window was highly correlated with the indi-
vidualized window method (r = 0.99, p < 0.00001; Supple-
mentary Fig. S1).

Functional magnetic resonance imaging

Acquisition. Imaging data were acquired on a GE 3T
MR750 scanner with an 8-channel head coil at the Center
for Functional MRI (University of California, San Diego).
High-resolution structural images were acquired with a stan-
dard FSPGR T1-weighted sequence (TR: 8.108 ms, TE:
3.172 ms, flip angle: 8�; FOV 256 mm; 1 mm3 resolution;
172 slices). Functional T2*-weighted images were acquired

using a single-shot, gradient-recalled, echo-planar imaging
pulse sequence (TR: 2000 ms; TE: 30 ms; flip angle: 90�;
3.4 mm isotropic resolution; FOV: 220 mm; matrix:
64 · 64; 42 axial slices). One 6-min 10-sec resting-state
scan was obtained consisting of 185 whole-brain volumes.
The first five volumes were discarded to account for T1-
equilibration effects. Subjects were instructed to fixate on a
cross projected onto the middle of a screen, viewed through
a mirror in the bore, and to ‘‘Let your mind wander, relax, but
please stay as still as you can–do not fall asleep.’’ Compli-
ance with instructions to remain still and awake was moni-
tored via video recording.

Data processing. Functional images were processed
using Analysis of Functional NeuroImages software (AFNI
v17.2.07) (Cox, 1996), FMRIB Software Library (FSL;
v5.0) (Smith et al., 2004), and FreeSurfer (Dale et al.,
1999; Fischl, 2012; Fischl et al., 1999). Images were slice-
time corrected and each functional volume was registered
to the middle time point of the scan to adjust for motion
via rigid-body realignment as implemented in AFNI. Field
map correction was applied to minimize distortions due to
magnetic field inhomogeneity. The functional images were
registered to the anatomical scan via FSLs FLIRT (Jenkin-
son and Smith, 2001). Anatomical and functional images
were resampled to 3 mm isotropic voxels and standardized
to the atlas space of the Montreal Neurological Institute
(MNI) template using FSLs nonlinear registration tool
(FNIRT). AFNIs 3dBlurToFWHM was used to smooth func-
tional images to a Gaussian full-width at half-maximum
(FWHM) of 6 mm. fMRI time series were highpass filtered
at 0.008 Hz using a second-order Butterworth filter, which
was also applied to the 10 nuisance regressors (see further
in this section).

Given the known impact of motion on BOLD correlations
(Power et al., 2014), additional measures were taken to cor-
rect for motion. The mean signal from ventricles and white
matter masks (obtained from FreeSurfer segmentation of
T1-weighted structural image and eroded by one voxel) as
well as six motion parameters (obtained from rigid-body re-
alignment) and their first temporal derivatives were
regressed from the signal. Residuals from nuisance regres-
sion were used for all subsequent FC analyses. RMSD, an es-
timate of head motion across all time points, was calculated
for each participant. Framewise displacement (FD) was

Table 3. EEG-fMRI Imaging Sample Characteristics

ASD (n = 17) TD (n = 17) Statistic p

Sex 16 male 13 male v2(1) = 2.11 0.15
Handedness 15 right 13 right v2(1) = 0.81 0.37
Age 14.3 (1.5), 12.7–17.1 14.5 (1.4), 12.4–16.8 t(32) =�0.43 0.67
Usable EEG (min) 5.3 (0.59), 3.9– 6.0 5.2 (0.72), 2.9–5.9 t(32) = 0.07 0.94
Usable fMRI (time points) 176 (7), 153–180 177 (5), 165–180 t(32) =�0.53 0.60
RMSD 0.07 (0.04), 0.02–0.15 0.07 (0.04), 0.03–0.16 t(32) =�0.17 0.87
VIQ 116 (13), 88–147 107 (10), 87–126 t(32) = 2.32 0.03
NVIQ 116 (11), 100–140 110 (12), 86–129 t(32) = 1.67 0.11
ADOS SC 10 (3), 7–19
ADOS RRB 2 (1), 0–4
ADOS Total 12 (4), 8–23

Values are presented as mean (SD), range.
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calculated as a volume-by-volume measure of motion. Time
points with >0.5 mm FD as well the two subsequent time points
were censored. Time series fragments with <10 consecutive
time points remaining after censoring were also excluded. Min-
imal censoring was performed (ASD mean = 2.8% censored,
TD mean = 2.2% censored), and groups did not differ with re-
spect to the number of remaining time points (Table 2). All
structural and functional data were visually inspected at
every preprocessing stage by at least two blinded reviewers
to ensure acceptable data quality.

For ALFF and fALFF analyses, data were processed as
above with the exception of highpass filtering and censoring,
to preserve the full time series and range of frequencies. In FC
analyses, minimal censoring was necessary in both groups
(averages of 2.8% for ASD and 2.2% for TD). Therefore, in-
cluding these few outlier time points for ALFF/fALFF analy-
ses is unlikely to affect findings, which summarize the entire
time series. Bandpass filtering was applied for ALFF analyses
in the subsequent analysis steps (described below).

Performing global signal regression (GSR) to remove
global noise from resting-state fMRI time series is controver-
sial, and a consensus has not been reached (Liu et al., 2017;
Murphy and Fox, 2017; Power et al., 2017a,b; Uddin, 2017).
While the global BOLD signal at least partially reflects phys-
iological artifact (Power et al., 2017b), it also contains neural
information (Fox et al., 2009; Schölvinck et al., 2010). We
matched ASD and TD groups on motion, included only par-
ticipants with high-quality data, and used white matter and
cerebrospinal fluid regressors, which have been shown to
contain physiological artifact as well, for denoising. GSR
was therefore not performed to avoid potential removal of
true neuronal signal.

Amplitude of low-frequency fluctuations. All 96 cortical
regions (Supplementary Table S2) and the thalamus from
the Harvard–Oxford Atlas (Bohland et al., 2009) were used
as regions of interest (ROIs). This relatively coarse parcella-
tion minimized the computational burden of the present
brain-wide analysis. Furthermore, an anatomical parcellation
avoids potential confounds related to the greater inter- and
intraindividual variability of functional atlases (Salehi et al.,
2019), which may be especially problematic when studying
clinical groups. ALFF and fALFF were extracted from each
ROI using AFNIs 3dRSFC (Taylor and Saad, 2013), with a
frequency range of 0.008–0.08 Hz specified for ALFF.

Functional connectivity. FC was assessed between the left
and right thalamus and all ipsilateral cortical ROIs, given the
predominantly ipsilateral connectivity between the thalamus
and cerebral cortex ( Jones, 2007). Average timecourses
were extracted from each ROI using AFNIs 3dmaskave. Pear-
son correlations were calculated between ipsilateral thalamus
and cortical ROIs and then transformed to Fisher’s z values.

Analysis approach. Groups were compared on fMRI
measures (i.e., ALFF, fALFF, and thalamocortical FC) at
two levels of analysis. (1) To reduce the dimensionality of
the data while preserving broad regional patterns of interest,
multilevel modeling (MLM) was conducted separately for
six mutually exclusive ROI groups in the left and right hemi-
spheres (frontal, limbic, somatomotor, temporal, parietal, oc-
cipital; Supplementary Table S2), which included all 96

cortical ROIs. For example, group differences in ALFF
were examined for all left frontal ROIs nested within sub-
jects, all left limbic ROIs nested within subjects, and so
on, for all six ROI groups in both hemispheres (Supplemen-
tary Fig. S2). In other words, for these models, each partici-
pant had one observation for diagnosis (ASD or TD), and n
observations (where n = number of ROIs) for ALFF. Degrees
of freedom for each multilevel model were calculated as fol-
lows: (number of participants · number of nested ROIs) �
number of model parameters. This approach both reduces
the number of comparisons and accounts for nonindepen-
dence of multiple ROIs within each participant. (2) Follow-
ing MLM, post hoc analyses were conducted at the single
ROI-level to characterize group differences in finer detail.
For ALFF, fALFF, and thalamocortical FC, two-sample
t-tests were conducted for each individual cortical ROI
and the thalamus, with degrees of freedom adjusted for un-
equal variances. ROI-level analyses were repeated for an
unmedicated subsample of ASD participants and a matched
TD group.

Multimodal analyses

For the 34 individuals described above with both EEG and
fMRI data (Table 3), multimodal analyses were conducted.
First, the relationship between absolute EEG alpha power
and ALFF, which is considered more comparable with abso-
lute EEG power than fALFF (Luchinger et al., 2012), was
examined. Furthermore, ALFF demonstrates better test/
retest reliability than fALFF, and is therefore a more appro-
priate measure for evaluating between-subjects relationships
(Zuo et al., 2010). As in fMRI-only analyses, effects of inter-
est were examined with both MLM and at the single ROI
level. MLM was conducted for each of the six groups of
ROIs (as above) to determine the effect of diagnostic status,
alpha power, and their interaction on ALFF. Sex and nonver-
bal IQ were not well matched between multimodal groups
and were therefore included as covariates. As described
above for fMRI MLM, each participant had one observation
for each predictor and covariate, and n observations (where
n = number of ROIs) for ALFF. At the ROI level, analogous
general linear models were used to examine these effects for
each individual cortical ROI and the thalamus.

Finally, the relationship between alpha power and thala-
mocortical connectivity was explored. As in the multimodal
ALFF analysis, MLM was conducted for each ROI group
with thalamocortical FC (Fisher’s z) as the dependent vari-
able. General linear models were also run at the ROI level,
as described above.

Multiple comparison approach

The analyses described above involve numerous compar-
isons among cortical ROIs. Traditional approaches to multi-
ple comparison correction rely on conservative adjustments
to significance values (i.e., p-values), with the goal of
reducing type 1 error or false discovery rate. However,
p-values are influenced by data precision, which is closely
tied to sample size. Therefore, particularly in smaller sam-
ples, inferences based on p-values alone may lead to errone-
ous conclusions (c.f. Schmidt and Rothman, 2014).
Alternatively, hierarchical models (i.e., MLM) have been
proposed to account for multiple comparisons without the
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adjustment of p-values (Gelman et al., 2012), and have dem-
onstrated specific utility in neuroimaging (Friston and Penny,
2003; Friston et al., 2002). To balance between more liberal
(i.e., uncorrected p-values for ROI analyses) and conserva-
tive approaches (i.e., corrections using MLM), we present re-

sults from MLM, followed up with uncorrected ROI-level
comparisons to describe patterns driving MLM findings.
Therefore, individual comparisons are best interpreted with
caution, and in the context of MLM results.

Results

EEG analyses

In the full sample with resting-state EEG data, the ASD
group showed reduced absolute [t(60.41) = 2.74, p = 0.008]
and relative [t(73.42) = 3.83, p < 0.001] power in the alpha
frequency band (Fig. 1). Groups did not differ with respect
to alpha peak frequency [t(58.40) =�0.23, p = 0.82]. In a sup-
plemental analysis of only unmedicated ASD participants and
a matched TD subgroup (n = 17 per group), similar differences
were found in both absolute power [t(27.17) =�2.22, p = 0.04]
and relative alpha power [t(31.30) =�2.39, p = 0.02; Supple-
mentary Fig. S3], and there were no significant group differ-
ences for alpha peak frequency [t(30.13) = 1.24, p = 0.23].

fMRI analyses

MLM indicated increased fALFF (ASD > TD) in right
temporal regions [t(1843) = 2.45, p = 0.01; Supplementary

FIG. 1. Group differences in EEG alpha power. Bars show
absolute and relative alpha power averaged across partici-
pants in each group. Both absolute power and relative
alpha power are smaller in the ASD group than the TD
group. ASD, autism spectrum disorder; EEG, electroenceph-
alography; TD, typically developing.

FIG. 2. fMRI and multimodal group differences. (A) ROIs showing group differences ( p < 0.05, uncorrected) in ALFF
(left), fALFF (middle), and thalamocortical FC (right) are depicted. Colors represent t-scores (positive indicates ASD >
TD). (B) Pearson correlations (colors represent r) between EEG alpha power and ALFF are depicted for each cortical
ROI in the ASD group (left) and the TD group (middle). Alpha-ALFF relationships are generally negative in the ASD
group, but positive in the TD group. ROIs with group differences in the alpha-ALFF relationship (i.e., alpha by group inter-
action; p < 0.05, uncorrected) are shown (right). Colors represent t-scores (negative indicates a less positive alpha-ALFF as-
sociation in ASD relative to TD). Figures were visualized with the BrainNet Viewer (Xia et al., 2013; www.nitrc.org/projects/
bnv). ALFF, amplitude of low-frequency fluctuations; fALFF, fractional ALFF; FC, functional connectivity; fMRI, func-
tional magnetic resonance imaging; ROI, region of interest. Color images are available online.
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Table S3]. In ROI-level analyses, ALFF was increased in
ASDs in both the anterior [t(108.50) = 2.58, p = 0.01] and
posterior [t(116.52) = 2.00, p = 0.048] segments of the right
middle temporal gyrus, and fALFF was increased in ASDs
in 12 temporal and occipital ROIs spanning both hemi-
spheres ( p range = 0.002–0.046; Fig. 2A and Supplementary
Table S4). Finally, at the ROI level, there were no group dif-
ferences in ALFF or fALFF in the thalamus (both p > 0.70).

With respect to thalamocortical FC, MLM revealed ipsi-
lateral overconnectivity (ASD > TD) involving bilateral
frontal, somatomotor, and temporal, as well as left limbic re-
gions ( p range = 0.002–0.03, Supplementary Table S3). ROI-
level results were consistent and are presented in Figure 2A
and Supplementary Table S4. Supplemental analyses of un-
medicated ASD participants and a matched TD subsample
(n = 37 per group) yielded similar results for ALFF,
fALFF, and FC to those reported in the full sample (Supple-
mentary Fig. S4).

Multimodal analyses

Alpha power and ALFF. MLM showed multiple alpha by
diagnosis interactions with respect to ALFF (i.e., the alpha-
ALFF relationship differing between groups) in bilateral fron-
tal, limbic, and somatomotor ROI groups, with consistently
less positive relationships between ALFF and alpha power
in the ASD compared with the TD group ( p range = 0.01–
0.04; Supplementary Table S5). Furthermore, MLM combin-
ing all 96 cortical ROIs in the ASD group alone found that
across the whole brain, there was an interaction between
ADOS total score and alpha power [t(1628) =�2.44,
p = 0.01], such that greater ASD symptom severity predicted
an overall less positive relationship between alpha power and
ALFF. Finally, within the ASD group, there was no effect of
medication on the overall relationship between alpha power
and ALFF in whole-brain MLM ( p = 0.90).

At the ROI level, thalamic ALFF was not predicted by
absolute alpha power, diagnosis, or their interaction (all

p > 0.09). Findings for cortical ROIs were consistent with
MLM analysis, suggesting that alpha-ALFF relationships
differed between groups in 15 frontal, limbic, somatomotor,
and temporal ROIs (Fig. 2B, Supplementary Fig. S5, and
Supplementary Table S2). Follow-up Pearson correlations
determined that across all cortical ROIs, alpha power and
ALFF were more positively related in the TD group (mean
r = 0.40, range = 0.11–0.70) than in the ASD group (mean
r =�0.18, range =�0.61 to 0.17). One-sample t-tests of
alpha-ALFF correlations (transformed to Fisher’s z) for
each ROI corroborated that this relationship was signifi-
cantly greater than zero in the TD group [t(95) = 22.15,
p < 0.0001], but significantly less than zero in the ASD
group [t(95) =�10.90, p < 0.0001].

Alpha power and thalamocortical FC. There was no effect
of alpha, diagnosis, or their interaction on thalamocortical
connectivity in MLM (all p > 0.11; Supplementary
Table S5). One-sample t-tests indicated that overall, the cor-
relation between EEG alpha and thalamocortical FC was sig-
nificantly less than zero in both the ASD [t(95) =�8.95,
p < 0.0001] and TD groups [t(95) =�3.62, p < 0.001]. At
the ROI level, the ASD group showed a more positive rela-
tionship between alpha power and thalamocortical FC than
the TD group for the right angular and supramarginal gyri,
whereas the opposite effect of group was observed in the oc-
cipital pole ( p range = 0.003–0.03; Table 4).

Discussion

Our study replicates two commonly reported findings from
the unimodal EEG and fMRI literatures, showing reduced
alpha power as well as predominantly increased thalamocortical
connectivity in children and adolescents with ASDs. Although
no robust group differences were detected for ALFF, findings
suggest that spontaneous BOLD fluctuations in right tempo-
ral lobe may be increased in ASDs. Multimodal analyses iden-
tified group differences in the relationship between EEG alpha

Table 4. ROI-Level EEG-fMRI Findings

Outcome Region df Alpha · Group (t) p

ALFF L Frontal medial cortex 28 �2.40 0.02
L Frontal operculum cortex 28 �3.17 0.004
L Cingulate gyrus (anterior) 28 �2.16 0.04
L Supplementary motor cortex 28 �2.53 0.02
L Temporal fusiform cortex (anterior) 28 �2.94 0.007
L Temporal pole 28 �2.28 0.03
R Frontal medial cortex 28 �2.26 0.03
R Superior frontal gyrus 28 �2.32 0.03
R Cingulate gyrus (anterior) 28 �2.38 0.02
R Paracingulate gyrus 28 �2.24 0.03
R Parahippocampal gyrus (anterior) 28 �2.28 0.03
R Supplementary motor cortex 28 �3.49 0.002
R Middle temporal gyrus (anterior) 28 �2.50 0.02
R Temporal fusiform cortex (anterior) 28 �2.30 0.03
R Temporal fusiform cortex (posterior) 28 �2.09 0.046

Thalamocortical FC R Angular gyrus 28 3.21 0.003
R Supramarginal gyrus (posterior) 28 2.33 0.03
R Occipital pole 28 �2.52 0.02

ROIs with group differences ( p < 0.05, uncorrected) are shown.
ALFF, amplitude of low-frequency fluctuations; FC, functional connectivity; ROI, region of interest.
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power and ALFF, but not between alpha power and thalamo-
cortical FC.

Unimodal group differences

Reduced EEG alpha in ASDs. In line with previous re-
search (Keehn et al., 2017; Murias et al., 2007), our EEG
sample showed atypically reduced posterior (i.e., occipital
or parietal) resting-state alpha power in children and adoles-
cents with ASDs. Although the resting alpha rhythm is most
prominent at posterior electrodes, reduced alpha power in
ASDs has also been reported more broadly in frontal and tem-
poral regions (for review, see Wang et al., 2013). The resting
alpha rhythm is inversely associated with autonomic arousal
(i.e., electrodermal activity) in TD children (Barry et al.,
2004), which is thought to be coordinated largely by inhibitory
GABAergic interneurons ( Jensen and Mazaheri, 2010). In
ASDs, an imbalance between excitatory and inhibitory neural
activity has been proposed (Nelson and Valakh, 2015; Ruben-
stein and Merzenich, 2003), which may lead to such changes
in autonomic activity. This is supported by evidence of tonic
hyperarousal (Palkovitz and Wiesenfeld, 1980) as well as his-
tological (Hashemi et al., 2017; Oblak et al., 2010) and mag-
netic resonance spectroscopy reports (Gaetz et al., 2014; Puts
et al., 2017) of reduced GABA in this population.

Increased thalamocortical connectivity in ASDs. Previous
findings with respect to thalamocortical FC in ASDs have been
only partially consistent. Nair and colleagues (2015), who in-
cluded a smaller sample partly overlapping with that of the
present study, reported primarily reduced thalamocortical FC
with frontal, parietal, and occipital regions and increased FC
with auditory, primary motor, and limbic areas. These distinct
findings may be attributed to methodological differences. For
example, the focus on functional differences within the thala-
mus through voxel-wise analyses by Nair and colleagues
(2015) contrasts with the focus on overall thalamic connectiv-
ity with each cortical ROI in the present study.

Similarly to Nair and colleagues (2015), Cerliani and col-
leagues (2015) reported overconnectivity between the thala-
mus and primary sensory and motor networks (including
somatosensory, motor, visual, and auditory regions) identi-
fied through ICA in a larger sample of children and adults
(ages 7–50; 166 ASD, 193 TD) from the Autism Brain Imag-
ing Data Exchange (ABIDE) database. However, they did not
find any evidence of thalamocortical underconnectivity.
Another study using a large ABIDE sample (ages 6–40;
n = 228 per group) described overconnectivity between the
thalamus and primary sensory cortices (including somatosen-
sory, motor, and temporal regions) as well as prefrontal cortex
(Woodward et al., 2017). Furthermore, this study reported
greatest overconnectivity in older adolescents (ages 13–18)
compared with other age groups. These findings are consistent
with results from the present study, which also found exclu-
sive overconnectivity with frontal, temporal, somatomotor,
and limbic ROIs in children and adolescents.

Regionally increased BOLD activity in ASDs. The results
of the present study support increased BOLD activity (i.e.,
ALFF, fALFF) in bilateral (right more than left) temporal
and occipital regions; no evidence of decreased ALFF or
fALFF was found. These findings are only partly consistent

with extremely limited previous research examining ALFF
and fALFF in ASDs. In a multisite study, Supekar and col-
leagues (2013) reported broadly increased ALFF across the
brain in ASDs in multiple independent cohorts of children.
In a large ABIDE sample, increased fALFF was found in
right temporal regions (as in the present study), as well as
in right dorsal superior frontal cortex (Di Martino et al.,
2014). However, this same study and another (Itahashi
et al., 2015) reported reduced fALFF in left and right occip-
ital regions in ASDs. This is contrary to the findings from the
present study, which were exclusively positive (i.e., ASD >
TD) for both temporal and occipital regions.

EEG-fMRI associations differ between groups

EEG alpha and ALFF. Relationships between EEG alpha
power and fMRI measures were surprising and seemingly
counterintuitive, in light of the well-established inverse rela-
tionship between concurrent (i.e., simultaneously acquired)
EEG alpha and cortical BOLD activity in TD adults. How-
ever, simultaneous alpha and BOLD time series are distinct
from overall alpha power and ALFF, which were measured
in the present study. The former describes moment-to-
moment fluctuations, but the latter provides summary mea-
sures of alpha and BOLD magnitude across an entire record-
ing session. In the present study, alpha power had an overall
positive relationship with spontaneous BOLD activity
(ALFF) in TD adolescents, but a weakly negative relation-
ship with ALFF in those with ASDs. This difference was
driven mainly by frontal, limbic, and somatomotor regions.
Furthermore, a more negative alpha-ALFF relationship
across the entire brain was associated with greater ASD
symptom severity. The underlying neural basis of this rela-
tionship remains unclear but may relate to differences in in-
hibitory GABAergic activity, as described earlier.
Importantly, GABA is thought to mediate thalamocortical
regulation of the alpha rhythm (Hughes and Crunelli, 2005;
Lorincz et al., 2009; Lozano-Soldevilla et al., 2014). There-
fore, impaired GABAergic signaling in ASDs could conceiv-
ably disrupt modulation of alpha rhythms by thalamic and
cortical activity, leading to an atypically weak relationship
between alpha and cortical BOLD magnitudes in ASDs.

EEG alpha and thalamocortical FC. Thalamocortical FC
and EEG alpha power showed overall weakly negative asso-
ciations in both ASD and TD groups across the brain. This
diverges from findings described above for ALFF; while
the magnitude of BOLD activity appears to be dissociated
from alpha power in ASDs, coordination between the thala-
mus and cortex showed a comparatively normal relationship
with alpha power in the ASD group. This negative alpha-FC
relationship across groups in our multimodal sample may be
considered in relation to unimodal results in our larger EEG
and fMRI samples. Specifically, the ASD samples showed
reduced alpha power in EEG analyses, but widespread over-
connectivity between thalamus and frontal, limbic, somato-
motor, and temporal ROIs in functional connectivity MRI
analyses. The overall negative relationship between alpha
and thalamocortical FC detected in both ASD and TD sub-
samples with multimodal data suggests that the two findings
in the larger unimodal samples may be related, implying that
children with ASDs with most severely reduced alpha power
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will also tend to show heavier overconnectivity between the
thalamus and cerebral cortex.

Limitations and future directions

The present study included a limited subsample of partic-
ipants with high-quality data in both EEG and fMRI modal-
ities. Only high-functioning individuals with ASDs were
included, who may not represent the full autism spectrum.
Furthermore, groups were not well matched for verbal IQ
in the fMRI-only and multimodal samples. However, as ver-
bal abilities are related to core ASD symptomatology in the
sociocommunicative domain, verbal IQ was not included as
a covariate in group analyses. Therefore, reported group dif-
ferences cannot be definitively dissociated from verbal abil-
ity in the present study. Future research with larger, matched
samples representing a broader range of ASD symptom se-
verity may help to clarify some of the patterns suggested
by the present study.

Another important consideration is the distinction between
multimodal relationships within versus between individuals.
Past research using simultaneous recordings has examined
concurrent fluctuations in EEG and fMRI within TD adults,
or ‘‘state-level’’ associations. Separately acquired data can-
not answer this question, but they can speak to how these sig-
nals are related between individuals, at the ‘‘trait-level.’’ For
example, it has been established that within individuals (state
level), moment-to-moment increases in EEG alpha power are
associated with concurrent decreases in cortical (but not tha-
lamic) BOLD (Bridwell et al., 2013; Goldman et al., 2002;
Laufs et al., 2003; Olbrich et al., 2009). However, the present
study suggests a seemingly opposite relationship between
typical developing individuals (trait level), such that in typical
development, those showing higher overall alpha power also
show greater magnitude of spontaneous BOLD fluctuations.
These trait-level associations are an important bridge between
fMRI and EEG research in ASDs. Group differences reported
by unimodal studies suggest that there are meaningful, interin-
dividual differences between the ASD and TD groups. There-
fore, a clear understanding of normative interindividual
relationships between multimodal measures will provide a
common context for interpreting past EEG and fMRI findings.
Future research may further explore these important questions
with simultaneous EEG-fMRI when possible, and by conduct-
ing both within-subjects analysis of temporal dynamics and
between-subjects analysis of multimodal relationships.

Conclusion

This is the first known study to characterize relationships be-
tween resting-state EEG and fMRI measures in ASDs.
Reduced alpha power and broadly increased thalamocortical
connectivity were found in ASDs relative to TD individuals.
Results also suggest a positive relationship between EEG
alpha power and cortical BOLD activity in typical develop-
ment, which was not observed in ASDs. These findings raise
questions for future research about potential abnormalities in
thalamocortical regulation of the alpha rhythm in this disorder.
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