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Abstract

Learning and Planning for Industrial Robotic Manipulation

by

Shiyu Jin

in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Industrial robot manipulators are widely deployed in various manufacturing tasks. Compared
with human workers, industrial robot manipulators have advantages in terms of precision,
efficiency, and repeatability. But it often requires tremendous engineering efforts to set up
and program the manipulator for a specific task. The deficiency of intelligence restricts robots
from broader applications. Therefore, it becomes more and more important to enable robots
to acquire skills that can accomplish complex tasks and generalize across different scenarios.
This dissertation aims to develop skill learning and planning methods for industrial robotic
manipulation. We study 1) how to learn manipulation skills when there are uncertainties
in the object state estimation, 2) how to generalize the manipulation skills across different
scenarios, 3) how to achieve high-level task planning for long-horizon manipulation tasks.

Robotic manipulation of both rigid and deformable objects is studied in this dissertation.
To manipulate rigid objects, a contact pose identification method is proposed to compen-
sate for the pose uncertainties in the peg-in-hole assembly. In addition to rigid objects, the
manipulation of deformable objects is also studied. A tracking and manipulation framework
is proposed to robustly estimate the state of the cable and manipulate the cable to desired
shapes. For more complex cable manipulation tasks, which often require long-horizon plan-
ning, a spatial representation is proposed to model the spatial relationship between the cable
and environment fixtures. Multiple manipulation primitives are efficiently learned to config-
ure the cable to desired states. For the task that combines both assembly and deformable
object manipulation, a trajectory optimization with complementarity constraints is formu-
lated to model the hybrid dynamics in belt drive units assembly. The problem is solved as
a mathematical program with complementarity constraints to obtain feasible and efficient
assembly trajectories.
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Chapter 1

Introduction

1.1 Background and Motivations

Industrial robots play an important role in the manufacturing production line. They are
widely deployed in various manufacturing tasks. Compared with human workers, robots
have advantages in terms of precision, efficiency, and repeatability. They can move fast
and be precise at the same time. They can work 24 hours a day and do the same task
repeatedly without making mistakes. With the help of robots, productivity in manufacturing
has been increased significantly, which greatly improves the quality of human life. However,
tremendous engineering efforts are often required to set up and program the robot for a
specific task. The tasks that robots can accomplish are also limited due to the lack of
intelligence. As a result, it is more and more important to enable robots to acquire skills
that can accomplish complex tasks and generalize across different scenarios.

Consider a wire harness task in the assembly line, the goal is to manipulate the cables
to the desired configurations constrained by several fixtures. This task is easy for human
workers, but difficult for robot manipulators to accomplish. The difficulty mainly comes
from the unexpected deformation of the flexible objects during the manipulation. This
brings challenges in perception, planning, and control. 1) The perception includes the state
estimation of the deformable cable in a complex and cluttered environment. 2) The planning
includes high-level task planning on what to do in a logical way for the long-horizon wire
harness. It also includes low-level reasoning about the kinematic and dynamic constraints
of the task. 3) The control includes generating safe and efficient robot actions to grasp and
manipulate the cables to the desired configurations. With the recent development in machine
learning, optimization, and control theory, now we are able to combine those technologies and
develop general methodologies to make the industrial robots deal with the above challenges
by learning and acting as intelligent agents.

The objective of this dissertation is to develop effective methodologies to enable robots
to learn manipulation skills and plan the optimal actions for high-demanding industrial
manipulation tasks. We demonstrated the effectiveness of the proposed methods in various



CHAPTER 1. INTRODUCTION 2

tasks including peg-in-hole assembly (Chapter 2), cable manipulation (Chapter 3), belt drive
units assembly (Chapter 4), and cable routing (Chapter 5).

1.2 Dissertation Outlines

In this dissertation, we develop skill learning methodologies for industrial robotic manipula-
tion. We study 1) how to learn manipulation skills when there are uncertainties in the object
state estimation, 2) how to generalize the manipulation skills to different even unseen sce-
narios, 3) how to learn the high-level task planning for long-horizon tasks. In particular, we
study the manipulation of both rigid objects and deformable objects. For the manipulation
of rigid objects, we study the typical peg-in-hole assembly task, where we utilize vision and
force/torque feedback to compensate the pose uncertainties between the peg and the hole
[24]. For the manipulation of deformable objects, which have infinite degrees of freedom, we
study how to track the object states in real-time from vision feedback and then manipulate
the cable to the desired configurations [23]. We also study the long-horizon deformable object
manipulation tasks, belt-drive-unit assembly [27] and cable routing [26], from the assembly
challenges competition [56, 20]. The structure of the dissertation is shown in Figure 1.1.

Peg-in-Hole Assembly under Uncertainties

In Chapter 2 , we first study the well-known peg-in-hole assembly task under small position
uncertainties. Peg-in-hole assembly is a challenging contact-rich manipulation task. Most
of the assembly tasks in the factory are pre-defined, and the robots just need to follow the
programmed trajectory to finish the task. However, uncertainties in the pose of workpieces
may prevent the robots from accomplishing the task robustly. There is no general solution to
identify the relative position and orientation between the peg and the hole yet. We propose
a novel method to classify the contact poses based on a sequence of contact measurements.
When the peg contacts the hole with pose uncertainties, a tilt-then-rotate strategy is ap-
plied, and the contacts are measured as a group of patterns to encode the contact pose. A
convolutional neural network (CNN) is trained to classify the contact poses according to the
patterns. In the end, an admittance controller guides the peg towards the error direction
and finishes the peg-in-hole assembly. Simulations and experiments are provided to show
that the proposed method can be applied to the peg-in-hole assembly of different geometries.
We also demonstrate the ability to alleviate the sim-to-real gap [24].

In the scenarios where both the peg and the hole have large pose uncertainties in 6 degrees
of freedom, we propose a framework to deal with pose uncertainties with two modules,
the alignment module and the insertion module. The alignment module utilizes a 3D pose
estimation to reduce the pose uncertainties into a small region and provide a safe and efficient
action space for the insertion module. The insertion module compensates for the remaining
small uncertainties with an impedance controller by tracking a reference generated from a
reinforcement learning (RL) policy. We have successfully validated the proposed method in
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Figure 1.1: The structure of the dissertation.

simulations. We have also shown that the alignment module can work well in real-world
peg-in-hole experiments.

Robust Deformation Model Approximation for Robotic Cable
Manipulation

In Chapter 3, we study the tracking and manipulation of deformable objects. The flexible
objects, such as wire and cable are also in high demand in manufacturing. The major
challenge for the cable manipulation is that cables have high degrees of freedom and are easy
to deform during manipulation. In this chapter, we propose a novel framework SPR-RWLS
to manipulate cables, which includes real-time cable tracking and robust local deformation
model approximation. For cable tracking, structure preserved registration (SPR) is utilized
to robustly estimate the movement of selected points on a cable even in the presence of
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sensor noise, outliers, and occlusions. Robust weighted least squares (RWLS) is then applied
to calculate the local deformation model of the cable under uncertainties. We show that
SPR-RWLS enables the dual-arm robots to manipulate cables with different thicknesses and
lengths to different desired curvatures in multiple scenarios. We also show that real-time
implementation of the proposed method can be simplified by parallel computation [23].

Trajectory Optimization for Manipulation of Deformable Objects:
Assembly of Belt Drive Units

Chapter 4 presents a novel trajectory optimization formulation to solve the robotic assembly
of the belt drive unit. Unlike previous tasks, belt drive unit assembly involving contact
between deformable and rigid objects, which makes the overall problem even more challenging
in terms of modeling and planning. For modeling, variations in the belt tension and contact
forces between the belt and the pulley could dramatically change the system dynamics.
For trajectory planning, it is computationally expensive to plan trajectories for such hybrid
dynamical systems as it usually requires planning for discrete modes separately. In this
chapter, we formulate the belt drive unit assembly task as a trajectory optimization problem
with complementarity constraints to avoid explicitly imposing contact mode sequences. The
problem is solved as a mathematical program with complementarity constraints (MPCC) to
obtain feasible and efficient assembly trajectories. We validate the proposed method both in
simulations with a physics engine and in real-world experiments with a robotic manipulator
[27].

Robotic Cable Routing with Spatial Representation

Chapter 5 studies the robotic cable routing task. To accomplish the task, it requires a high-
level path planner to generate a sequence of cable configurations from the initial state to
the target state and a low-level manipulation planner to plan the robot motion commands
to transit between adjacent states. However, there are yet no proper representations to
model the cable with the environment objects, impeding the design of both high-level path
planning and low-level manipulation planning. In chapter 5, we propose a framework for
cable routing with spatial representation. For high-level planning, by considering the spa-
tial relations between the cable and the environment objects such as fixtures, the proposed
method is able to plan a path from the initial state to the goal state in a graph. For low-level
manipulation, multiple manipulation primitives are efficiently learned from human demon-
stration, to configure the cable to planned intermediate states leveraging the same spatial
representation. We also implement a cable state estimator that robustly extracts the spatial
representation from raw RGB-D images, thus completing the cable routing framework. We
evaluate the proposed framework with various cables and fixture settings, and demonstrate
that it outperforms some baselines in terms of reliability and generalizability [26].
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Chapter 2

Peg-in-Hole Assembly under
Uncertainties

2.1 Introduction

As discussed in Chapter 1, industrial robots are widely used in manufacturing tasks, such as
assembly. Most of the assembly tasks in the factory are pre-defined, and the robots just need
to follow the programmed trajectory to finish the task. However, uncertainties in the pose
of workpieces could prevent the robots from accomplishing the assembly robustly. In this
chapter, we introduce the proposed state estimation and planning algorithms for peg-in-hole
assembly under uncertainties.

In the first section of this chapter, we study the peg-in-hole assembly under small posi-
tion uncertainties. We propose a tilt-then-rotate strategy to classify the contact poses. A
sequence of contacts is measured and plotted as a group of patterns to encode the contact
pose. A convolutional neural network is trained to classify the contact poses according to
the patterns. In the second section, we consider the scenario where the peg and the hole
have large pose uncertainties in 6 DoF . We propose an assembly framework with two mod-
ules, the alignment module and the insertion module. The alignment module reduces the
pose uncertainties into a small region and provides a safe and efficient action space for the
insertion module. The insertion module compensates for the remaining small uncertainties
with an impedance controller by tracking a reference pose generated from an RL policy.

2.2 Contact Pose Identification for Peg-in-Hole

Assembly under Position Uncertainties

Identifying the contact pose, the relative position and orientation between the peg and the
hole, is required to align the peg and the hole before insertion. Visual feedback is the most
common strategy to identify the pose [80, 70]. However, vision sensors suffer from high
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precision requirements and occlusions during the assembly task. In order to avoid such
problems, search-based algorithms such as random search or spiral search [6] have been
proposed to compensate the uncertainties of contact pose. The search strategy generates a
search path within the search area for hole localization, which is not efficient especially when
the search area is large and the search dimension is high.

For insertion, the clearance between the peg and the hole is usually smaller than the
precision of a robot. A tiny position and orientation error could cause workpieces to jam
and wedge and may lead to failure or even damage to the workpieces. Compliance, either
passive or active, has shown to be effective in handling the small uncertainties of position
and orientation. Passive compliance utilizes passive compliance hardwares such as RCC [11,
78] to compensate uncertainties. In constrast, active compliance applies control strategies
from software to let the robot mimic the spring-damping behavior [4, 48].

In contact-rich scenarios, force/torque-based method normally conveys more informa-
tion than vision-based and search-based methods. Tang[65] analyzed a three-point contact
model for round peg and hole. But the method lacked the ability to generalize to complex
geometries. Kim proposed a peg shape recognition and hole detection algorithm using the
force/torque sensor by inclining the peg in all directions, but their method suffered from the
cumulative error [31]. In recent years, many learning-based methods have been proposed
to solve the peg-in-hole assembly problem [68, 37, 13, 74, 36]. They treated the task as
a Markov decision process, where the contact feedback at the current time step is used to
determine the action of the next step. However, the mapping from the force/torque feedback
to the contact pose is not injective as shown in Fig. 2.1. On one hand, the same contact
forces can be measured at different contact poses. On the other hand, the same contact
pose could generate different contact forces, i.e. all the possible forces within the Coulomb
friction cone. To deal with the above problem, particle filter was applied to identify the
location based on multiple observations in [7, 71]. However, it is time-consuming to generate
the force-position mapping in the real world and hard to generalize.

We propose a novel method that can identify the contact poses based on a sequence of
contact measurements. At initialization, the peg contacts the hole with pose uncertainties.
The peg then follows a designed tilt-then-rotate motion to make contact with the hole. The
contact measurements are plotted in polar coordinates to generate a group of patterns. An
injective mapping between the patterns and contact poses is learned by a convolutional
neural network (CNN), which classifies the contact poses based on the error directions.
Finally, an admittance controller will guide the peg towards the error direction and finish
insertion. There are two main contributions: 1) We construct the mapping using a sequence
of measurements as input instead of feedback at one single time step. This makes the
mapping become one-to-one. 2) We classify the contact pose based on patterns, which
improves the generalization ability of the proposed method. It can even tackle the sim-to-
real gap.
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(a) (b)

Figure 2.1: (a) The same upward contact force could come from many possible contact poses.
(b) The same contact pose could generate many possible contact forces within the Coulomb
friction cone.

Background

Task Description

We focus on the peg-in-hole assembly task under small pose uncertainties. Generally speak-
ing, the pose of the peg and the hole might be noisy due to sensor inaccuracy. To simplify
the problem, we assume the peg is fixed with the robot end-effector, and the pose can be
obtained via forward kinematics. The hole is fixed on the table. After calibration, the pose
can be estimated with uncertainties in 6 degrees of freedom (DOF). The magnitudes of the
uncertainties are roughly ±20mm and ±3◦ for position and orientation respectively, which
are determined by the precision of the calibration. The clearance between the peg and the
hole is 1mm.

The goal of the task is to compensate the uncertainties of contact pose and achieve the
peg-in-hole assembly. The contact surfaces of both the peg and the hole are assumed to be
flat.

Admittance Control

Admittance control [4, 48] is widely used in robotic manipulation tasks to handle contact
dynamics. By adding a virtual spring-damping system, the contact between the robot and the
environment becomes soft, which improves the manipulation performance and prevents from
damaging either the robot or the environment. We apply admittance control to the following
assembly strategy to track the desired peg trajectory and compensate small uncertainties in
assembly.
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Environment

Figure 2.2: Admittance Control.

In admittance control, the desired pose x0 and measured external force/torque Fext are
inputs to the admittance control block (Fig. 2.2), which generates the reference pose xd for
the PD position control.

F + Fext = mẍ (2.1)

F = kp(xd − x)− kdẋ (2.2)

Fext = Md(ẍd − ẍ0) +Dd(ẋd − ẋ0) +Kd(xd − x0) (2.3)

where Md, Dd, and Kd represent the desired inertia , damping, and stiffness, respectively.
kp and kd are PD position control gains.

Assembly Strategy

Peg-in-hole assembly has been studied for decades. An efficient and widely used assembly
strategy divides the task into several stages [31, 28]: initialization, approaching, contact
pose estimation, alignment, and insertion. At initialization, the peg and the hole are fixed
on the robot manipulator and the table, respectively. The pose of the hole can be roughly
estimated after calibration. At approaching, the peg approaches to the hole with an admit-
tance controller. With well-tuned controller parameters, the plane contact between the flat
surface of the peg and the hole could eliminate the pose uncertainties in 3 dimensions, roll
axis, pitch axis, and z-axis. At contact pose estimation, the peg explores along the surface
of the hole to estimate the relative position and orientation between the peg and the hole.
This stage eliminates the uncertainties in x and y axes. Finally, based on the contact pose
estimation, the peg can slide towards the hole and finish insertion with an admittance con-
troller. Small oscillation is added to the yaw axis in this stage, together with admittance
control, to compensate small uncertainties of yaw axis. In this work, we mainly focus on the
contact pose estimation stage, which is introduced in section 2.2.
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Figure 2.3: Framework of the proposed method.

Proposed Method

Peg-in-hole assembly can be accomplished easily by a human even with eyes closed. The
human will first use the peg to make contact with the hole. Then he/she will locally move
the peg to sense hole’s location based on a sequence of contacts instead of just one single
contact. If there is a hole in one direction, the tip of the peg could slide into the hole a
little bit and the force/torque feedback also have an impulse in that direction. Based on the
historical measurements in a sequence of contacts, the human keeps updating the knowledge
of the contact pose and eliminating the hole uncertainties.

Inspired by the human strategy, we propose to use a sequence of contact feedback to
identify the contact pose under uncertainties (Fig. 2.3).

Tilt-then-Rotate Strategy

The peg contacts the hole after the approaching stage (Fig. 2.4.1). The peg and the hole
have some overlaps but are not aligned well due to the uncertainties of the contact pose. We
propose a tilt-then-rotate strategy to identify the contact pose.

We tilt the peg for α degrees in all directions by rotating the peg for 2π (Fig. 2.4). The
tilt-then-rotate trajectory can be described as continuously changing θ from 0 to 2π in order
to change the roll and the pitch angle:

{roll, pitch} = {αsin(θ), αcos(θ)}, θ ∈ [0, 2π) (2.4)

The desired tilt-then-rotate trajectory is tracked by an admittance controller. At the same
time, a constant downward force is applied to the peg in order to maintain contact with the
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Figure 2.4: Snapshots of the tilt-then-rotate strategy. The blue line is z-axis. The yellow
cone represents the designed trajectory for rotation. Tilt (2) then rotate (2-9) the peg for
2π. While the peg is being rotated, a constant downward force is applied to maintain a
single point contact (3,5,9), line contact (2,4,6,8), or two points contact (7) between the peg
and the hole.

hole. During the procedure, contact force and torque are measured by a force/torque sensor.
As the peg is tilted in all directions, the contact keeps switching between one point contact,
two points contact, and line contact (Fig. 2.4.2-2.4.9). The tip of the peg could go into the
hole when the peg tilts towards the hole and the force/torque measurements would also have
an impulse. Different contact poses will result in different sequences of measurements along
the designed tilt-then-rotate trajectory. Comparing with one measurement at a single time
step, the mapping from a sequence of measurements to contact poses becomes an injective
mapping.

Contact Pattern Generation

The tilt-then-rotate strategy generates a sequence of measurements in 12 dimensions includ-
ing force (R3), torque (R3), and peg pose (R6). For different control forces or different sizes
of the parts, those measurements can be different in the order of magnitude. Human can
sense the contact pose in different scenarios by the same exploring strategy. There must be
some high-level features we can extract from the measurements.

We propose to plot the measurements of each dimension in polar coordinate as one
channel. The data in each channel is normalized, then smoothed by moving average. The
normalization makes the data invariant to control forces and sizes of the parts. The moving
average reduces the sensor noises. We utilize the plotted image with 12 channels as one
contact pattern, which encodes high-level features about the contact pose. Fig. 2.5 shows
z-axis channel of the contact pattern for different contact poses.

One contact pose corresponds to one contact pattern with 12 channels. In order to con-
struct an informative mapping, we need to perform hundreds of tilt-then-rotate motions for



CHAPTER 2. PEG-IN-HOLE ASSEMBLY UNDER UNCERTAINTIES 11

Contact Pose 1 Contact Pose 2 Contact Pose 3

Figure 2.5: Contact patterns in polar coordinates for 3 different contact poses. Only z-axis
channel is shown.

all contact poses. This is not only time-consuming but also inaccurate due to the limitation
of pose sensing in the real world. We propose to generate the contact pattern in the MuJoCo
physics engine. The simulated environment can perform hundreds of trails in a short time.
In addition, ground truth contact pose can be obtained easily in simulation (Fig. 2.4).

Contact Pose Classification Neural Network

Contact poses of a square peg-hole can be classified into 9 classes according to which edge
of the peg contacts the hole (Fig. 2.6). Each class of contact pose has a different error
direction. Classifying the contact poses from the contact patterns is an image recognition
problem. CNN has shown great success in image recognition in terms of efficiency and
accuracy [33]. We train one simple CNN to classify the contact patterns. The CNN has two
convolutional layers, two pooling layers, and one fully-connected layer. The input data are
the 3 most informative channels out of the 12-channel pattern. The output is the class of
contact pose, which has 9 error directions for a square peg-hole and 11 error directions for
a pentagonal peg-hole. Once the contact pose is identified, the peg will be guided towards
the error direction with admittance control and inserted into the hole.

Failure Recovery

From the experiments, we observe failure cases even with the method described above. The
reason is either the contact pose classification model predicts a wrong error direction or the
admittance control fails to compensate small uncertainties. To increase the robustness of
the proposed method, we add a failure recovery module. If we fail to insert the peg into the
hole, the peg will be initialized to a slightly different pose than the original one, and redo
the tilt-then-rotate strategy again.
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Figure 2.6: The contact poses are classified into 9 classes according to which edge of the hole
contacts the peg.

Simulations and experiments

Simulations

Simulation Setup The simulated environment in MuJoCo is shown in Fig. 2.4. The
environment includes a peg and a hole, where the hole is fixed on the ground, and the peg is
controlled by a well-tuned admittance controller. The side length of the hole is 50mm and
the side length of the peg is 49mm (clearance = 1mm). Contact force/torque is measured
at the peg’s center of mass.

Data Collection A self-supervised scheme is applied to collect the data and build the
contact pose mapping. As mentioned in 2.2, once the peg contacts the hole on the flat
surface, the uncertainties in roll, pitch, and z-axis are eliminated. We only consider the
remaining uncertainties in the x, y, and yaw axis. The contact poses are uniformly sampled
from x ∈ [−20,+20]mm, y ∈ [−20,+20]mm, and yaw ∈ [−3◦,+3◦]. After the approaching
stage in 2.2, the tilt-then-rotate strategy is applied, and α in equation (2.4) is set to 15◦.
The tilt-then-rotate motion is executed by the admittance controller in N time steps, where
N = 2000. The 12-dimension peg pose and contact force/torque are recorded in a matrix
A ∈ RN×12. The data of each dimension is normalized then smoothed by moving average
with a window length n = 20, and the contact pattern is recorded in polar coordinates as
a 12 × 200 × 200 binary image. We label the contact patterns of a square peg-hole with 9
classes according to the initial contact poses (Fig. 2.6). The uncertainty in the yaw axis is
compensated by the admittance controller and small oscillations in the yaw axis. We also
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Table 2.1: Peg-in-hole assembly in simulation

# of attempts 1 2 3 > 3 total success rate
square (50mm) 96 3 1 0 100 100%
pentagon (37mm) 82 11 3 4 100 96%

add 5% noise to the parameters of the admittance controller in order to introduce variance
to the collected data. We perform the self-supervised data collection for 5000 trails. The
computation time is around 10 minutes. We split 80% data as the training set and 20% data
as the test set.

Model Training From the 12 channels contact patterns, we select 3 channels A′ ∈ RN×3

including the position in z axis Xz, the torque in roll axis Mx, and the torque in pitch
axis My as the input to the CNN. The reason that we select these 3 channels is that we
experimentally find that these channels contain more features than other channels. We
downsample the contact patterns into 3×20×20 images. We use an NVIDIA GeForce GTX
1080 Ti GPU for training. The training time is around 1 minute.

Results The test accuracy of the contact pose classification neural network is 97.4%. Most
of the failure cases are the contact pose at the boundary between two classes. We test on
a second data set by collecting 1000 data from a smaller square peg-hole, where the side
length of the hole is 32mm (clearance = 1mm). The test accuracy is 96.8%. This shows the
generalization ability of the proposed method. Although the sizes of the parts, the contact
measurements such as force, torque are different, the model still works very well. The reason
is that we predict the contact pose according to the contact pattern, which is invariant to
the size of the parts.

We perform another simulation experiment on a pentagonal peg-hole. The side length
of the hole is 37mm (clearance = 1mm). Because the contact pattern highly depends on
the geometry of the peg-hole, we cannot apply the model learned from square peg-hole to
pentagonal peg-hole. We redo the data collection and model training on the pentagonal
pen-hole. Everything is the same as square peg-hole, except the number of contact pose
classes becomes 11. The test accuracy is 91.0%.

We test the entire peg-in-hole assembly framework using the proposed method. We
perform 100 trials on both square and pentagonal peg-hole. If the peg fails to be inserted
into the hole, the failure recovery module will initialize the peg to a slightly different pose
than the original one, and redo this trial again. If it requires more than 3 attempts to finish
the task, we claim it fails. Table 5.1 shows the number of attempts needed to finish assembly
in simulation. The high success rate shows that the proposed framework works well.
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Figure 2.7: Snapshots of the experiments.

Experiments

Experimental Setup The experiment environment (Fig. 2.7) includes a 6 DOF FANUC
LR-Mate 200iD, an ATI Mini45 F/T sensor, and 3D printed peg-holes. The F/T sensor is
embedded in the robot end-effector to measure the force and torque during assembly. The
force/torque measured at the robot wrist can be transfer to the force/torque at the peg’s
center of mass. The peg is fixed on the robot end-effector and the hole is fixed on a vise. The
peg’s pose can be controlled with an admittance controller at 125Hz. The hole is randomly
initialized with position and orientation uncertainties ±20mm and ±3◦, respectively. Three
pairs of 3D printed peg-holes are tested, including a 50mm square hole (clearance = 1mm),
a 32mm square hole (clearance = 0.5mm), and a 37mm pentagonal hole (clearance = 1mm).

Results Fig. 2.8 shows the comparison of the contact patterns generated from tilt-then-
rotate strategy in simulation and real-world experiments. They are generated from the same
class of contact pose. The data collected from the real-world has much noise than from
simulation. Although there is a huge sim-to-real gap[72] between the simulated environment
and the real world in terms of friction coefficient, inertia, stiffness, damping ratio, etc., we
observe that the contact patterns do share similar features.

The contact pattern classification model learned in the simulation are applied to real-
world experiments. Fig. 2.7 shows the snapshots of the assembly experiments. We perform
20 experiments on 3 different pairs of peg-hole respectively. Table 5.2 shows the number
of attempts needed to finish assembly in real-world experiments. The model learned in
simulation (50mm square, clearance = 1mm ) can be successfully applied to real-world peg-
hole of different sizes (32mm) and smaller clearance (0.5mm). This shows that the proposed
method is able to tackle the sim-to-real gap. Supplementary videos can be found in [1].
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Figure 2.8: Comparison of the contact patterns in simulations and real-world experiments.
They are generated from the same class of contact pose

Table 2.2: Peg-in-hole assembly in real-world experiments

# of attempts clearance 1 2 3 > 3 total success rate
square (50mm) 1mm 16 3 1 0 20 100%
square (32mm) 0.5mm 10 5 2 3 20 85%
pentagon (37mm) 1mm 15 3 1 1 20 95%

2.3 Peg-in-Hole Assembly under 6 DoF Pose

Uncertainties

In this section, we consider a peg-in-hole assembly scenario where both the peg and the hole
have large pose uncertainties in 6 degrees of freedom. We propose a framework to deal with
pose uncertainties with two modules, the alignment module and the insertion module. In
the alignment module, we utilize the Deep Neural Network (DNN) to segment the peg and
the hole from depth images. With the knowledge of CAD model, we can recover the 3D
point cloud of the workpieces’s surface using Ransac. Then we use registration method to
find the rotation and translation to align the peg and the hole. The alignment module is
able to reduce the pose uncertainties into a small region and provides a safe and efficient
action space for the insertion module. The insertion module compensates the remaining
small uncertainties with an impedance controller by tracking a reference generated from
Reinforcement Learning (RL).
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Figure 2.9: Peg-hole alignment

Background and Preliminary

Task Description

The previous chapter only considers small pose uncertainties which are roughly ±20mm
and ±3◦ for position and orientation respectively. In this chapter, we consider a scenario
where both the peg and the hole have 6 DoF large pose uncertainties. The magnitude of the
uncertainties are within ±200mm and ±20◦ for position and orientation respectively. The
clearance between the peg and the hole is 1mm. The contact surfaces of both the peg and
the hole are assumed to be flat. The goal of the task is to compensate the pose uncertainties
using the proposed alignment and insertion modules and achieve the peg-in-hole assembly.

Image Segmentation using U-Net

Image segmentation has many applications in robotic perception. It involves partitioning
images into multiple segments or objects. The segmentation can be formulated as a clas-
sification problem of pixel with individual objects. Over the past few years, deep learning
models have shown remarkable performance and achieved very high accuracy rate on image
segmentation. U-Net was proposed by Ronneberger et al. [55] for segmenting biological
microscopy images. The architecture comprises two parts, a contracting path to capture
context, and a symmetric expanding path that enables precise localization. Feature maps
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from the down-sampling part of the network are copied to the up-sampling part to avoid los-
ing pattern information. Finally, a 1× 1 convolution processes the feature maps to generate
a segmentation map that categorizes each pixel of the input images. In this work, we utilize
the U-Net to segment the peg and the hole from a depth image input. The segmentation is
then utilized to reconstruct the 3D point cloud of the peg and hole.

Reinforcement Learning for Robotic Manipulation

In recent years, we have seen a lot of applications of Reinforcement Learning on robotic
manipulation tasks. RL has shown the ability to adapt to different scenarios. It utilizes a
high-level reward function to indicate what to do and learn how the task should be performed.
RL also performs well on peg-in-hole assembly task by learning a locally searched strategy to
compensate the pose uncertainties. However, most of the works only consider the position
uncertainties in a small region. If the orientation uncertainties are being considered, the
action space becomes larger and the complexity increases exponentially, making the problem
much harder to solve. In this work, we utilize the output from the alignment module as a
constraint of the RL’s action space. The constraint creates a safe and efficient region for the
RL policy to explore even in high dimension. By adding an admittance controller, the RL
policy is able to safely interact with the environment without damaging neither the robot
nor the workpieces.

Proposed Method and Implementation Details

In this section, we describe the proposed alignment module and insertion module for the
peg-in-hole assembly. We partition the space into two sets, the alignment set Sa where
the alignment module is used, and the insertion set Si where the insertion module is used.
Si ⊂ Sa. In Sa, the peg and the hole have large relative pose errors. We utilize 3D pose
estimation to estimate the pose of both the peg and the hole. Then we align the peg and
the hole without making contacts. The alignment module can only coarsely reduce their
relative pose uncertainties due to the resolution and calibration error of the vision system.
Once the pose uncertainties below a small threshold, we are in the insertion set Si, where
reinforcement learning is used to compensate the remaining small pose uncertainties.

Alignment Module

Vision systems are one of the most efficient tools for robot to perceive the environment
and obtain the pose of an object. But the perception system may not have high accuracy
due to the resolution of the camera and the calibration error. To avoid the extensive effort
on camera calibration, we propose an alignment module for peg-in-hole assembly which
aligns the pose of peg and hole based on their relative pose error in Sa. Since the pose
alignment is done in the camera frame, the proposed alignment module does not require
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Figure 2.10: The alignment module mainly contains a segmentation neural network module,
a point cloud recovery module, and a point set registration module.

precise camera calibration. The alignment module can be divided into three parts: 1) depth
image segmentation. 2) occluded point cloud recovery. 3) peg-hole pose registration.

Depth Image Segmentation At the initial, the hole is fixed on the table and the peg is
grasped by a robot end-effector. Both the peg and the hole have unknown poses in 6 DoF.
We propose to segment the peg and the hole from an image using U-Net. For each time
step, the only input is a depth image captured by depth camera. The outputs are binary
segmentation masks categorize each pixel of the input depth images. In our setup, the masks
are the upper flat surface of both the peg and the hole.

In order to generate the dataset D for training the U-Net. We utilize a well-calibrated
depth camera. The pose of the hole is known exactly. The pose between the peg and the
robot end-effector is also known. Then the segmentation masks for both the peg and the
hole can be computed using the intrinsic and extrinsic matrix of camera calibration. By
randomly moving the robot end-effector above the hole without making contacts, we can
generate depth images and corresponding labels as many as we want to train U-Net. Note
that we do need the camera calibration matrix to generate the labels in D. But once the
U-Net is well trained, we do not require a precise camera calibration during the test time.

Occluded Point Cloud Recovery The segmentation masks provide us the pixel coor-
dinates of the peg and the hole on the depth image at time step t. Due to the occlusions,
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Figure 2.11: The insertion module.

reprojecting the depth information back to 3D space can only give us the occluded 3D point
cloud of the peg P t

o and the hole H t
o. Taking the advantage of the CAD models, we can

reconstruct the virtual 3D point cloud by detecting and refilling a flat surface using Ransac.
We denote the recovered point cloud of the peg and the hole at time step t as P t

r and H t
r,

respectively.

Peg-hole Pose Registration The relative pose error between the peg and the hole at
time step t can be found by registering the recovered point cloud P t

r and H t
r. We utilize point

set registration method to find the rotation Rt ∈ R3×3 and translation T t ∈ R3 between two
point clouds, H t

r = RtP t
r + T t.

Insertion Module

After Rt and T t are computed, we are able to align the peg and the hole using the robot.
Due to the accuracy of U-Net prediction, resolution of the camera, and calibration, the peg
and the hole cannot be perfectly aligned. The previous alignment module reduce the relative
pose errors and brings peg-hole into the insertion set Si, where only small pose uncertainties
are remaining.

We propose to use the state of the art reinforcement learning, Soft Actor-Critic, to com-
pensate this remaining pose uncertainties. The RL policy does not require global information
such as the images input. Because the alignment module has already brought the state into
Si. The RL policy only needs to explore in Si and focuses on locally searching the hole
locations by making contacts. The Si acts as a boundary for the RL policy, making the
exploration more efficient by only learning a locally policy. Even if the state goes outside
the Si, the alignment module will bring it back. This guarantees the safety of the RL policy
in the insertion module.

The input of the RL policy includes the positions and euler angles of the peg, their first
derivatives, and the force/torque feedback. Instead of directly output a robot command, the
output of the RL policy is a reference pose. We then utilize an admittance controller to track
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the reference pose. Admittance control [4, 48] is widely used in robotic manipulation tasks to
handle contact dynamics. By adding a virtual spring-damping system, the contact between
the peg and the hole becomes soft, which improves the insertion performance and prevents
from damaging either the robot or the environment. For the reward, we use a negative L2
norm to the estimated pose error in the alignment module. We will also assign a reward 1
when the insertion is finished.

Framework

The framework of combining the alignment module and the insertion module is shown in
Algorithm 3. We denote the position and euler angle of the pose error at time step t as
st ∈ R6. The algorithm switches between alignment and insertion based on whether st is in
Sa or Si.

Algorithm 1: Peg-in-Hole Assembly under 6 DoF Pose Uncertainties

1 Initialize the peg and the hole, t = 0;
2 while not inserted and episode ≤ max episode do
3 depth image segmentation;
4 occluded point cloud recovery;
5 peg-hole pose registration;
6 obtain st from Rt and T t;
7 if st not in Sa then
8 reset robot;
9 else if st not in Si then

10 align the peg with the hole based on st;
11 else
12 RL policy generates reference pose at;
13 add (st, at, st+1, rt) to replay buffer;
14 admittance controller tracks at;

15 end
16 t = t+ 1

17 end
18

Simulations and experiments

In this section, we explain the simulations and experiments to validate the proposed method.

Simulations



CHAPTER 2. PEG-IN-HOLE ASSEMBLY UNDER UNCERTAINTIES 21

Segmentation mask Recover point cloud
Figure 2.12: Simulation environment.
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Figure 2.13: Peg and hole segmentation from a depth image input.

Simulation Setup The simulated environment in MuJoCo is shown in Fig. 2.12. The
environment includes a square peg, a square hole, and a Faunc LR-Mate 200iD robot. The
hole is fixed on the ground, and the peg is fixed to the robot end-effector. The robot end-
effector can be controlled by a well-tuned admittance controller. The side length of the hole
is 50mm and the side length of the peg is 49mm (clearance = 1mm). Contact force/torque is
measured by the force/torque sensor mounted at the robot wrist. A depth camera is utilized
to capture the depth images for the alignment module.

Alignment Module A self-supervised scheme is applied to collect the depth images and
labels. We randomly initialize the pose of the peg and the hole. The poses of both the peg
and the hole are uniformly sampled from [−200, 200]mm in x, y, z positions and [−20◦,+20◦]
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in roll, pitch, yaw axes. The 3D poses of both the peg and the hole are known exactly. By
utilizing the camera’s intrinsic and extrinsic matrix, we are able to label the pixel of the
perceived depth images. We use binary masks to represent the upper flat surface of the
workpieces in the depth images. The input to the U-Net is a 800 × 800 × 1 depth image.
The output is a 800× 800× 2 segmentation mask, where the masks of the peg and the hole
are in two separate channels. 3000 depth images/labels are collected within 5 minutes for
training the U-Net. We split 80% data as the training set and 20% data as the test set. The
training takes about 12 hours on an NVIDIA GeForce GTX 1080 Ti GPU. The prediction
results can reach above 99.5% pixel-wised success rate on the test set.

Insertion Module We use simplified environment to train the RL policy in the insertion
module. The environment only contains a peg and a hole. The hole is randomly initialized
with ±5mm in positions and ±5◦ in orientations. We can directly control the pose of the
peg using an admittance controller by tracking the output from Soft Actor-Critic policy.

(a) (b) (c) (d)

Figure 2.14: Snapshots of alignment and insertion in simulation.

Results We have conducted experiments on randomly initial pose of the hole. The relative
pose between the peg and the robot end-effector is also unknown. The alignment module can
successfully reduce to pose uncertainties under 2mm in positions and 1◦ in orientations. The
insertion module can compensate the remaining pose uncertainties and achieve the insertion
with 100% success rate on 20/20 trails. Even if we add 5% noises to both the depth image
input and force/torque feedback, the proposed method can still achieve fully assembly on
19/20 trails.

Experiments

Experimental Setup The experiment environment (Fig. 2.7) includes a 6 DOF FANUC
LR-Mate 200iD, an ATI Mini45 F/T sensor, an Ensenso camera, and 3D printed peg-holes.
The F/T sensor is embedded in the robot end-effector to measure the force and torque during
assembly. The force/torque measured at the robot wrist can be transfer to the force/torque
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at the peg’s center of mass. The peg can be fixed on the robot end-effector and the hole can
be fixed on the table. We assume no movement between the peg and the robot end-effector,
or between the hole and the table during assembly. The peg’s pose can be controlled with an
admittance controller at 125Hz. The side length of the 3D printed peg and hole are 49mm
and 50mm, respectively.

(a) (b) (c)

Figure 2.15: Snapshots of peg-hole alignments in real-world experiments.

Alignment Module and Results In order to collect the real-world data for training the
U-Net. We need to well calibrate the Ensenso camera. We assume that the pose of the peg
and the hole are known exactly after precise calibration. The segmentation mask can be
obtained using the calibration matrix. By randomly moving the robot end-effector above
the hole, we can collect the depth images and corresponding segmentation masks in a semi-
self-supervised way. It takes about one hour to collect 400 data. We augment this dataset
10X using the affine and image-based transformation. The U-Net trained in simulation is
then fine-tuned with the collected real-world data.

By using the proposed method, the alignment module can successfully reduce the relative
pose uncertainties within ±6mm in x, y positions, ±1mm in z position, ±2◦ in pitch, roll
axes, and ±6◦ in yaw axis. The remaining pose uncertainties will be compensate with the
insertion module.
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2.4 Chapter Summary

In the first section of this chapter, we propose a novel framework to identify contact pose for
peg-in-hole assembly under uncertainties. The proposed method utilizes a tilt-then-rotate
strategy to generate contact patterns. A CNN is utilized to classify the contact poses and
guide the robot to achieve the assembly task with admittance control. Simulation and
experiment results are provided to demonstrate the effectiveness of the proposed method.
The main advantages of the proposed method include:

• An injective mapping from the contact pattern to the contact pose.

• The contact pose classification model is easy to obtain. All the training data can be
quickly generated in simulation with a self-supervised scheme.

• Good generalization ability and small sim-to-real gap. Since the contact data is nor-
malized and recorded in a polar coordinate, the pattern is sensitive neither to the size
of the object nor the parameters of the admittance controller. A model learned from
a larger peg-hole can be successfully applied to smaller ones as long as the geometries
are the same. Furthermore, the model learned in simulation can be adapted to the real
world, despite the huge sim-to-real gap.

Here are the limitations of the proposed framework:

• The proposed method can only find the directions of the error, while it is unable to
obtain the magnitude. In order to compensate for the error, the admittance controller
needs to be well-tuned.

• The contact pose classification model can handle only position uncertainties, but it
cannot classify the orientation uncertainties in the yaw axis.

In the second section, we consider a peg-in-hole assembly scenario where both the peg and
the hole have large pose uncertainties in 6 degrees of freedom. We propose a framework with
an alignment and an insertion module. In the alignment module, we utilize a Deep Neural
Network (DNN) to segment the peg and the hole from depth images. We can recover the 3D
point cloud of the workpieces by detecting the flat surfaces. Then we use point set registration
to find the rotation and translation to align the peg and the hole. The alignment module
is able to reduce the pose uncertainties into a small region and provides a safe and efficient
action space for the insertion module. The insertion module compensates the remaining
small uncertainties with an impedance controller by tracking a reference pose generated
from a RL policy. We have successfully validate the proposed method in simulations. We
also show that the alignment module can work well in real-world peg-in-hole experiments.

For future works, we plan to improve the tilt-then-rotate strategy so that it can handle
large orientation uncertainties and test it with more challenging peg-hole shapes. We also
intend to incorporate active and adaptive sensing strategies to our framework, so that we
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don’t have to use a predefined tilt-then-rotate strategy. For the alignment-insertion module,
we will train and test the reinforcement learning and compliance controller in real-world.
Considering the scenario where peg can slip in the robot end-effector during assembly is an
interesting research direction.
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Chapter 3

Robust Deformation Model
Approximation for Robotic Cable
Manipulation

In addition to the rigid objects, manipulating deformable objects are also in high demand
in manufacturing, for example, wire harness and cable assembly. Unlike rigid objects, de-
formable objects, such as cables, wires, clothes, are soft and can deform to unexpected shapes
during the manipulation. In chapter 3, 4, 5, we study the manipulation of deformable ob-
jects with applications on deformation model approximation (Chapter 3) [23], belt drive
units assembly (Chapter 4) [27], and cable routing (Chapter 5) [26].

3.1 Introduction

Robotic cable manipulation has a wide range of applications, such as cable harnessing in
factories, thread packing in production lines, and suturing in medical surgeries. However,
these tasks are challenging for robots. Compared with rigid objects, models of cables are
high dimensional and computationally expensive. Besides, such an object can easily deform
to unexpected shapes during manipulation, which may make the manipulation process fail.

There are already some studies on robotic cable manipulation. Many of them are model-
based methods. The deformation properties of the cable in terms of stiffness, Young’s modu-
lus, and/or FEM coefficients are required to build models for trajectory planning. However,
such deformation parameters are difficult to estimate accurately and may even change dur-
ing the manipulation process, especially for objects made by nonlinear elastic or plastic
materials.

In this chapter, we introduce a robust online deformation model approximation method
for cable manipulation planning. A deformation model is constructed to describe the rela-
tionship between the movement of the robot end-effectors and the displacement of the cable.
The idea of the online deformation model approximation was first proposed by Navarro-
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Figure 3.1: Two robots manipulating a cable to a desired shape

Alarcon [47]. Cables have infinite degrees of freedom and it is hard to find an explicit model.
Instead of finding a global model, real-time data is utilized for local linear model approxi-
mation. After the model is obtained, we find the pseudo-inverse of the model, which takes
the desired movement of the cable as the input and the velocity of the robot end-effectors as
the output. As the robots manipulate the cable, the deformation model is updated online
using real-time data.

In order to approximate the local deformation model of the cable, the motion data of
the robot end-effectors and the cable are required. The motion of the end-effectors can
be accurately obtained by solving forward kinematics. However, the motion of the cable
is hard to obtain without the help of markers. Sensor noise and occlusions could introduce
uncertainties when estimating the motion of the cable. Such uncertainties significantly affect
the accuracy of the approximate deformation model.

To handle the above challenges, we propose a framework that is robust in both cable
tracking and model approximation. For cable tracking, the core method we use is called
structure preserved registration (SPR) [63], which is a robust non-rigid registration method
for mapping one point set to another. Considering both global and local structure, SPR
can robustly estimate the motion of the deformable object in real-time even in the presence
of sensor noise, outliers, and occlusions. For model approximation, we take tracking uncer-
tainties into account by solving a robust optimization problem. We formulate the problem
as a ’Min-Max’ problem, where the maximization takes the worst case of the measurement
uncertainty into account, and the minimization penalizes the cost function to find an op-
timal deformation model. The deformation model is then utilized to plan a trajectory to
manipulate the cable.
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The remainder of this chapter is organized as follows. Section 3.2 introduces related works
on cable tracking and manipulation. Section 3.3 describes the SPR method for cable rep-
resentation and tracking. Section 3.5 explains the local model approximation method using
robust optimization. Section 3.6 explains the design of the framework, which includes point
tracking, local model approximation, and trajectory planning modules. Section 3.7 tests the
performance of the proposed method by a series of experiments. Section 3.8 concludes the
chapter and proposes future work.

3.2 Related works

Robotic cable manipulation is gaining more attentions recently for its broad applications. In
order to accomplish this challenging task, a robust state estimator to track the configuration
of the cable in real-time is vital. Metaxas and Terzopoulos [41] constructed a second-order
dynamic model for multi-body objects, and recursively estimated the body motion from
sequences of point clouds by an extended Kalman filter. Schulman et al. [em] proposed a
modified expectation maximization (EM) algorithm for deformable object tracking,

Similarly, Petit et al. [49] introduced a finite element method for tracking elastic objects.
Navarro-Alarcon et al. proposed a Fourier-based shape servoing method for deformable
object representation [46]. Tang and Tomizuka used a non-rigid registration tracking method
called structure preserved registration (SPR) [63]. SPR is able to estimate the positions of
virtual tracking points on the deformable object in real-time robustly by considering both
the local structure and the global topology of the deformable object (Fig. 3.2).

For manipulation planning, Morita et al. [43] developed a ‘knot planning from obser-
vation’ (KPO) system which estimated the states of ropes, especially the overlap orders by
knot theory. Kudoh et al. [34] built a multi-finger hand and programmed skill motions
by imitating human knotting procedures. They realized three dimensional in air knotting
with diverse types of knots. However, many of these methods require empirical laws and
are developed for a specific task, which is not easy to generalize for other tasks. To gener-
alize the manipulation skills, Schulman et al. [57] proposed to teach robots to manipulate
deformable objects from human demonstrations. They implemented the thin plate spline -
robust point matching (TPS-RPM) algorithm [9] to warp the original trajectory taught by
human demonstration to get a new trajectory which was suitable for the test scene. Tang
et al. [66] proposed tangent space mapping method which guaranteed not to overstretch the
cable during manipulation. Several follow-up works further improved this demonstration-
based method. Tang et al. [64] proposed a uniform framework based on coherent point
drift for robustly manipulating deformable linear objects. However, these methods lack the
ability to achieve accurate position and can hardly apply to new scenarios which have sig-
nificant differences with the training scene. Navarro-Alarcon et al. [47] proposed the idea of
local deformation model approximation and then utilized the local model to automatically
servo-control the soft object to desired shapes. Hu et al. [22] improved the performance
by Gaussian process regression. Zhu et al. [87] extended their work by setting up a frame-
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(a) Fourier-Based Estimation (b) SPR Estimation

Figure 3.2: Comparison of Fourier-based method and SPR on cable tracking. Blue dots (or
the blue line) are the point cloud with outliers and occlusions, and red circles (or the red
line) are the estimated position. Fourier-based method fails to estimate the state, while SPR
still works well and can give the variance of estimation uncertainty.

work, Fourier-LS, which combines the truncated Fourier series visual servoing method and
an efficient continuous local model approximation method. The framework proposed in this
chapter has a similar structure to the Fourier-LS.

Compared with other methods, the proposed method SPR-RWLS is the first to take visual
tracking uncertainties into consideration for robotic cable manipulation. As shown in Fig.
3.2, for cable tracking, compared with the Fourier-based visual servoing method, SPR works
robustly in the presence of outliers and occlusions. For deformation model approximation, a
novel algorithm for solving robust weighted least squares is introduced in this chapter. The
robust local deformation model for trajectory planning can be obtained efficiently by solving
several second-order cone program (SOCP) in parallel. We show that our method is able to
obtain robust deformation models in different scenarios with modest computational cost by
several experiments.

3.3 Structure preserved registration

In order to track the shape of cable, we select finite number of virtual tracking points along
the cable to represent the state of the cable. In Fig. 3.3, the blue dots represent the tracking
points, which we select to track the shape of the cable, and the red circles are the feature
points, which we use to solve the deformation model in later section. Usually, feature points
are a subset of tracking points. Because of the sparsity of feature points, we can assume
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Tracking points Feature points

Figure 3.3: Illustration of tracking points and feature points.

that the position of every feature point is uncorrelated with other feature points.

Gaussian Mixture Model

We need to estimate the tracking points from the dense and noisy point cloud. Gaussian
mixture model (GMM) is utilized here to estimate the positions of tracking points. In
GMM, those tracking points are represented by Gaussian centroids and the point cloud is
a set of randomly sampled points from this GMM. We denote the Gaussian centroids as
X t = [xt

1, x
t
2, ..., x

t
N ] ∈ RN∗D, where xt

i is the position of i-th centroid at time step t, N is the
number of tracking points and D is the dimension of the position for each tracking point.
The point cloud of cable is denoted as Y t = [yt1, y

t
2, ..., y

t
M ] ∈ RM∗D, where yti is the position

of i-th point in the point cloud. M is the total number of points in point cloud and usually
M >> N . Then the point cloud distribution can be expressed as

p(ytm) =
N∑

n=1

1

N
N (ytm;x

t
n, σ

2I)

=
N∑

n=1

1

N

1

(2πσ2)D/2
exp(−∥ytm − xt

n∥2

2σ2
) (3.1)

All the Gaussians share the same weight. To account for the noise and the outliers of the
point cloud, an additional uniform distribution is added to p(ytm):

p(ytm) =
N+1∑
n=1

p(n)p(ytm|n) (3.2)
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with

p(n) =

{
(1− µ) 1

N
, n = 1, . . . , N

µ, n = N + 1
(3.3)

p(ytm|n) =
{

N (ytm;x
t
n, σ

2I), n = 1, . . . , N
1
M
, n = N + 1

(3.4)

where µ denotes the weight of the uniform distribution.
The Gaussian centroid and corresponding covariance that best represent the point cloud

of cable can be obtained by maximizing the following log-likelihood function.

L(xt
n, σ

2|Y t) = log
M∏

m=1

p(ytm) (3.5)

=
M∑

m=1

log(
N+1∑
n=1

p(n)p(ytm|n)) (3.6)

The above maximization problem is non-convex due to the summation inside log(.) func-
tion. Hence, the problem is hard to solve efficiently. Instead of solving the above problem,
we aim to maximize the lower bound for (3.6).

Q(xt
n, σ

2) =
M∑

m=1

N+1∑
n=1

p(n|ytm)log(p(n)p(ytm|n)) (3.7)

It can be proved by Jensen’s inequality [lower˙bound] that (3.7) is the lower bound of
(3.6). It can be efficiently solved by using EM algorithm in which we iteratively update
the GMM parameters and posteriori probability distribution. In the expectation(E) step,
we compute the posteriori probability distribution using GMM parameters from the last
maximization(M) step. In M step, we compute the new GMM parameters using posteriori
probability distribution from the last E step. By iteratively executing E-M step, the log-
likelihood function will converge and we can get a pair of local optimal parameters (xt∗

n , σ
2∗)

of GMM.

Structure Preserved Registration

Although the above GMM can register the point cloud of the cable to several tracking
points, the estimation performance is poor especially when a part of the point cloud is
missing, for example when occlusion happens during perception, which is very common in
robot manipulation. The major problem is that there are no constraints on the positions of
Gaussian centroids between different time steps. In reality, the cable cannot move arbitrarily
and its deformation must follow some topological constraints. Globally those registered
Gaussian centroids must form a smooth curvature, and locally those Gaussian centroids
should maintain certain distance with their neighborhood.
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Figure 3.4: Framework of point set registration. Y t is the perceived point cloud at time
step t. X t−1 is the state estimated at the previous step. A new estimate X t is achieved by
registering X t−1 to Y t .

To deal with this problem, we introduce both global and local structure regularization
to (3.7) in GMM registration.

Q̃ = Q(xt
n, σ

2)− τ

2
ELocal −

λ

2
EGlobal (3.8)

where τ ∈ R+ and λ ∈ R+ are trade-off weights that balance the regularization on local and
global structure. ELocal and EGlobal are regularization terms which will be explained in the
following.

For local structure, any point at time step t− 1 can be characterized as a weighted sum
of its neighbor points. That is xt−1

n =
∑

i∈In Sni · xt−1
i , where Sni is the weight matrix and

In is the set for K nearest points to xt−1
n . When the cable deforms to another shape at

time step t, the position of tracking points might change, but their relative local structure
is expected to be maintained, which means at time step t, xt

n ≈
∑

i∈In Sni · xt
i. The local

structure weights Sni can be obtained by solving a least squares problem. There could be
many sub-optimal weights due to the singularity of matrix when solving least squares, so we
integrate all L sub-optimal weights to characterize the local structure. More details can be
found in [63].

ELocal =
N∑

n=1

L∑
l=1

||
N∑
i=1

S
(l)
ni x

t
i||2 (3.9)

Global structure should also be preserved during registration. Since cable in real world
cannot move arbitrarily, the registered tracking points should also follow a smooth trajectory
in neighboring time step. In order to preserve the global structure, we regularize the coherent
movement xt

n = v(xt−1
n ). v : RD → RD is a transformation function which should to be as
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smooth as possible. The smoothness can be evaluated by
∫
RD

|V (s)|2
G(s)

, where V (s) is the

Fourier transform of v and G(s) is a low-pass filter.

EGlobal =

∫
RD

|V (s)|2

G(s)
ds (3.10)

Substituting (3.9) and (3.10) into (3.8) we obtain the modified likelihood function Q̃.

Q̃ = Q(xt
n, σ

2)− τ

2

N∑
n=1

L∑
l=1

||
N∑
i=1

S
(l)
ni x

t
i||2 −

λ

2

∫
RD

|V (s)|2

G(s)
ds (3.11)

Though the global and local structure regularization can be formulated in other different
ways, the reason for the above regularization is to obtain closed-form solution for it. This is
crucial if we want to solve the problem in real-time. More details about SPR and the proof
of the existence of closed-form solution can be found in [63].

3.4 Point Cloud Recovery

The state estimator registers the old simulated rope to the point cloud in order to update the
simulation. During tracking, human hands or robot arms may occlude the object resulting
in a partially observed point cloud. From experiments, we found SPR [63] is robust when
the occluded part is small. However, if a large portion of the point cloud is missing (Fig.
3.5) or the tip of the cable is occluded, SPR would fail to estimate the correct cable state.

Inspired by the background subtraction method in computer vision, we proposed to use
a foreground mask to recover the occluded point cloud (Fig. 3.6). Fig. 3.6 (a) shows
the environment background captured with a stationary RGB-depth camera. (b) and (c)
are RGB images with their color-filtered point clouds in time step t − 1 and t. (d) is the
foreground mask constructed by subtracting background from frame t.

The goal of the point cloud recovery is to complete point cloud in frame t using the
foreground mask and the recovered point cloud in frame t−1 . Fig. 3.7 provides an example
of the process. First, point clouds at frame t−1 and t are projected to the RGB image plane
as (a) and (c) show. Second, we compute a foreground mask in frame t as shown in (b).
Third, the projected image in frame t− 1 is multiplied in pixel with the mask to obtain the
complementary part. Finally, the complement is combined with origin point clouds in frame
t to get (d). The advantage of this operation is that it could distinguish rope movement from
occlusion. For the convenience of discussion, we divide rope’s point clouds in each frame
into four parts and labeled 1 to 4 in Fig. 3.7. The point cloud in the frame t (c) at part
3 is missing compared to the frame t − 1 (a). However, the foreground mask (b) shows no
occlusion at part 3, so the corresponding point cloud at frame t− 1 will be discarded. The
proposed algorithm is summarized in Algorithm 3.

Due to sensor noise and mismatch on RGB and depth cameras, there are alignment errors
when constructing the foreground mask. This would result in a segmentation error of the
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Figure 3.5: (left) Kinect is occluded by human arm. (middle) Partial observed point cloud.
(right) Foreground mask.

point cloud. In our case, we prefer a false-negative mask rather than a false-positive. In other
words, we could discard some occluded points, but not preserve inexistent points. Thus, an
erosion operation is applied on the foreground mask to avoid false-positive masks.

Algorithm 2: Point Cloud Recovery

1 Initialize the environment, record the background;
2 Put the rope in the environment, obtain the point cloud of the rope using a color

filter, t+ = 1;
3 while Tracking do
4 Obtain the point cloud of the rope using a color filter;
5 Obtain the foreground mask by subtracting the background from the current

frame;
6 for each pixel of the frame do
7 if point cloud in frame t is True then
8 preserve the point cloud ;
9 else if point cloud in frame t− 1 is True and foreground mask is True then

10 preserve the point cloud ;
11 else
12 discard the point cloud ;
13 end

14 end
15 t = t+ 1;

16 end
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(a) (d)(c)(b)

Figure 3.6: (a) Background. (b) t− 1 frame. (c) t frame. (d) Foreground mask.

Figure 3.7: Point Cloud Recovery
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3.5 Local Linear Deformation Model

Deformation Model

To approximate the deformation model, we uniformly select several feature points along the
cable, which are a subset of the tracking points (Fig. 3.3).

By holding two tips of the cable, end-effectors of the robots are assumed to be fixed
with cable tips. We can build a deformation model for describing the interaction between
the end-effectors and the cable. Assuming that there are Nf selected feature points on the
cable and the degrees of freedom for each point is D. The state of the cable is denoted as
c = [c1, c2, ..., cNf

]T ∈ RNf×D, where ci = [ci1, ci2, ..., ciD] ∈ R1×D, cij denotes the coordinate
of the i-th point in the j-th direction, for example in 2D space, c5,2 denotes the second
direction of the 5-th selected point. Assume that there are L manipulators and each end-
effector has K degrees of freedom. The motion of the robots end-effectors is denoted as
r = [r11, r12, ..., r1K , ..., rLK ] ∈ RL×K . The local linear model we used is expressed in (3.12)
[47]. As shown in (3.12) the desired local linear model is δc

δr
, and each row of δc

δr
is decoupled

with each other, therefore we can make use of parallel computation to find linear model δci
δr

for each direction simultaneously, which can greatly improve the efficiency.

δc(t) =

 δc1(t)
...

δcNf
(t)

 =
δc

δr
(t)δr(t) =


δc1
δr
(t)
...

δcNf

δr
(t)

 δr(t)

= A(t)δr(t)

(3.12)

Local Linear Model

The time-varying deformation model is difficult to obtain due to its high dimensions, non-
linear behaviors and configuration dependent properties. Actually, it is unnecessary to find
a global deformation model which is suitable for every possible cable configuration. If the
displacement of the robots end-effectors is small enough, the local deformation model can
be approximated with linear functions.

The local linear deformation model is expressed in (3.12), where A(t) ∈ RNf×LK is a time-
varying Jacobian Matrix, which represents the relation between the movement of the robots
and the movement of the feature points. Remember that our goal is to plan trajectory for
the robots end-effectors to manipulate the deformable cable to a desired shape. To achieve
this, we try to find the motion of the robots δr(t) given the desired displacement of the cable
δc(t). For convenience, instead of calculating the Jacobian matrix A(t), we directly find
the pseudo-inverse of Jacobian matrix G(t) = A†(t). Since A(t) ∈ RNf×LK , in practice, the
number of feature points on the cable is always larger than the DOF of robots end-effectors
Nf >> LK. Therefore, we can guarantee that G(t) exists.
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To estimate G(t), we denote the current time as tm. Using a constant sampling period
δt, within the time period (m− 1)δt, we collect m consecutive data of δci and δri while the
robot is moving:

δC(tm) =
[
δc(t1) δc(t2) . . . δc(tm)

]
∈ RNf×m

δR(tm) =
[
δr(t1) δr(t2) . . . δr(tm)

]
∈ RLK×m

The local linear model can be found by solving (3.13), which can be decomposed to a sum
of several least squares. GT

n (t) represents the n-th column of the matrix GT (t), and similarly
δRT

n (t) represents the n-th column of δRT
n (t).

G(t)∗ = argmin
G(t)

∥δCT (t)GT (t)− δRT (t)∥2F

=
LK∑
n=1

argmin
Gn(t)

∥δCT (t)GT
n (t)− δRT

n (t)∥22
(3.13)

In the next subsection, we will introduce how to improve the robustness of the local
model approximation by using robust optimization.

Robust weighted least squares

The displacement of the robots end-effectors δR(t) can be calculated accurately using the
robotic forward kinematics. However, δC(t) is an estimation with lots of uncertainties from
visual tracking. If uncertainties are not considered, we may fail to recover a suitable local
deformation model. Uncertainty in δC(t) can be approximated by Gaussian distribution, so
we are able to bound it inside a certain area given a confidence probability.

In SPR, we regard the tracking points in the last time step as Gaussian centroids and
each point in the new point cloud as a sample from the Gaussian mixture model. The
objective is to maximize the log-likelihood of the point cloud sampled from the GMM. Thus
it is reasonable to regard the variance of each Gaussian as the uncertainty of this movement.
Taking the i-th point as an example, µ(ci(t)) is the mean of the i-th point at time step t,
and σt is the uncertainty from time step t− 1 to t. Besides, we assume that each Gaussian
has an equal membership probability 1/N and a consistent isotropic covariance σ2I in SPR
registration. So all the selected tracking points on the cable have the same variance σt at
time step t, and all the feature points are uncorrelated.

δCT (t) = µ(δCT (t)) + ∆ (3.14)

(3.14) shows the uncertainty in the matrix δCT (t) for robust optimization, where ∆
describes the uncertainty. From the above analysis, the j−th column of the matrix ∆ can be
regarded as a sample from a Gaussian Distribution N(0,Σ), where Σ = diag(σ2

1, σ
2
2, ..., σ

2
m).
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We rewrite (3.13) in the form of robust optimization in (3.15),

LK∑
n=1

min
Gn(t)

max
∥∆∥2≤s

∥W [(µ(δCT (t)) + ∆)GT
n (t)− δRT

n (t)]∥22 (3.15)

where s is the upper bound or equivalently the largest singular value of ∆, and W =
diag(w1, w2, ..., wm) is a weight matrix for the data from different time steps.

When solving the robust optimization problem (3.15), a tight bound s is preferred. Each
column of ∆ can be regarded as a random sample from the Gaussian distribution, and
there are some existing works in statistics to bound the largest singular value with a desired
probability.

Theorem 1 Let ∆ ∈ Rm×n be drawn according to the Σ-Gaussian ensemble. Then for all
δ > 0, the maximum singular value σmax(∆) satisfies the upper deviation inequality,

P [
σmax(∆)√

n
≤ γmax(

√
Σ)(1 + δ) +

√
trace(Σ)

n
] ≥ 1− e−nδ2/2

where γmax(
√
Σ) denotes the largest eigenvalue of

√
Σ.

Theorem 1 provides a theoretically tight bound of the random matrix ∆ which is proved
in Chapter 6 of [thm1]. Using this theorem, we can find an upper bound of the largest
singular value of uncertainty matrix ∆ given a desired probability.

Theorem 2 Any robust least squares in the form:

min
x∈Rn

max
∥∆∥2≤s

∥(A+∆)x− b∥2

is equivalent to a SOCP problem:

min
x∈Rn

∥Ax− b∥2 + s∥x∥2

For fixed x, and using the fact that the Euclidean norm is convex, we have

∥(A+∆)x− b∥2 ≤ ∥Ax− b∥2 + ∥∆x∥2

By the definition of the largest singular value norm, and given our bound on the size of the
uncertainty, we have

∥∆x∥2 ≤ ∥∆∥2∥x∥2 ≤ s∥x∥2
Thus, we have a bound on the objective value of the robust least squares problem:

max
∥∆∥2≤s

∥(A+∆)x− b∥2 ≤ ∥Ax− b∥2 + s∥x∥2
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The upper bound is actually attained by

∆ =
s

∥Ax− b∥2∥x∥2
(Ax− b)xT

Therefore, the robust weighted least squares (RWLS) in (3.15) can be written in the form
of a summation over several SOCPs as shown in (3.16). For each SOCP, we find one column
of the model matrix GT (t). The columns of GT (t) do not depend on each other, which means
that we can make use of parallel computation to solve each SOCP and greatly increase the
efficiency of the solution process.

LK∑
n=1

min
Gn(t)

∥Wµ(δCT (t))GT
n (t)−WδRT

n (t)∥2 + s∥WGT
n (t)∥2 (3.16)

If the matrix G(t) is obtained, it means that the local model at time step t is approxi-
mated. Given a desired movement of cable, we are able to obtain the trajectory of the robots
end-effectors.

3.6 Framework Details

Algorithm Overview

Combining the above SPR estimation with RWLS for solving local deformation model, we
propose our method ’SPR-RWLS’ to manipulate soft cables to desired shapes. SPR is utilized
to estimate the cable state in real-time. Robust weighted least squares (RWLS) is used to
obtain a robust local deformation model considering tracking uncertainties. The proposed
method is summarized in Algorithm 3.

Algorithm 3: SPR-RWLS

1 Initialize cable, and record desired cable shape;
2 Using SPR to get initial and desired tracking points along the cable;
3 Downsample tracking points with a fixed index to get feature points;
4 Initialize data set D(δR, δC) by randomly executing robot δR and collecting

corresponding movement of cable δC for m0 times;
5 while diff(ccurrent, cdesired) > ϵ do
6 Compute weight matrix W ;
7 Solve Robust Weighted Optimization for local deformation Jacobian Matrix G(t);
8 Compute δr = λG(t)δCdesired;
9 Execute δr, collect new δc by SPR;

10 Append δr and δc to dataset D;

11 end
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Cable Tracking

We select Ntracking tracking points uniformly distributed along the initial point cloud. At
time step t, the tracking points are denoted as X t = {xt

1, x
t
2, ..., x

t
Ntracking

}, where xt
n ∈

R2. At the next time step t + 1, the cable deforms to a new shape, and its point cloud
Y t+1 = {yt+1

1 , yt+1
2 , ..., yt+1

M } ∈ R2 is captured by the camera. By applying SPR registration
as described in Section III, the node positions Xk can be smoothly registered towards the
point cloud Y t+1, and we can get the new estimation of tracking point positions X t+1, and
the variance σt+1 of this step.

As shown in Fig. 3.4, running the above procedure iteratively, we can obtain the estimated
position of each tracking point in real time.

Deformation Approximation

We select Nfeature feature points from the tracking points just as Fig. 3.3 shows. Also at
time step t, the movement of each feature point δc(t) = c(t) − c(t − 1), and the tracking
uncertainties of this step σk can be obtained from SPR registration. The movement of the
robots end-effectors δr can also be calculated by forward kinematics. Then we append these
new data δc(t), δr(t), and σt to data set δC(t), δR(t), and Σ(t) respectively. Before we
calculate the deformation model, we assign weights to different (δr, δc) pairs in the data set.
We rank the data pairs in data set based on their mean squared errors to the current cable
shape. A discount factor γ is used to assign weights to different data pairs. The discount
factor is a tuning parameter and we use 0.95 in our experiments. Besides, the bound of the
uncertainties can be efficiently calculated by a given confidence probability. In practice, we
set the confidence probability larger than 99%. Finally, the local deformation model G(t)
can be solved by the robust optimization problem (3.16).

By running this algorithm iteratively, we are able to get an approximation of the defor-
mation model in real-time.

Trajectory Planning

After the deformation model G(t) is obtained at time step t, we first need to compute the
desired movement of the cable δcdesired(t) in order to get the motion of the robots. For the
scenarios which desired shape is far away from the initial shape, several intermediate desired
shapes cintermediate are preferred to be generated and reached in sequence. In order to achieve
such δC, the desired movement of end-effectors is computed using δr(t) = λG(t)δcdesired(t),
where λ is a gain we need to tune. In order to make the cable moving in a low speed without
vibration and make sure the deformation model is locally accurate, the gain λ is chosen to
be small. In our experiment, λ is set to 0.1.
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Figure 3.8: Without point cloud recovery. Waving hands above the rope without touching
the rope. Registration fails and the simulated rope deforms to unexpected shapes due to
point cloud missing.

3.7 Experiments and Results

To test the proposed point cloud recovery module, several representative rope tracking tasks
were conducted.

Shown in Figs. 3.5, 3.8, and 3.9, a 1-meter-long red rope was placed on a green table. A
Microsoft Kinect (version 2) was utilized to get point cloud of the rope. The simulated rope
in the Bullet Physics Engine was modeled by fifty linked capsules with density 1.5g/cm3.
The stiffness gain Kp and damping gain Kd were set as 10N/m and 0.5Ns/m respectively
in the feedback linearization controller.

During the experiment, we manipulated the rope at a moderate speed. Fig. 3.8 shows the
tracking results using the previous work [63], which do not have point cloud recovery module
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Figure 3.9: With point cloud recovery. Tracking is robust to large occlusion.

and feedback linearization controller. The tracking result is not stable due to missing point
cloud. Fig. 3.9 shows the tracking result under occlusion with our proposed framework.
A large portion of point cloud is missing due to occlusions. With the point cloud recovery
module, we can recover most of the point cloud as the middle row images show, which
improves the performance of node registration. Some point cloud, however, may still be
missing when the rope is moving under occlusion even with the point recovery module.
Such is a case when human holds the rope in hands as Fig. 3.9(c) shows. In this case, the
foreground mask does not have historical information to recover the points until the occluded
part is exposed to the Kinect again.

We conduct several experiments on two FANUC LR-Mate 200iD robots to show that
SPR-RWLS is efficient and robust in the presence of outliers and occlusions for robotic cable
manipulation.
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Figure 3.10: The testbed setup

Cable Tracking

As shown in Fig.3.10, an IDS Ensenso N35 stereo camera was utilized to monitor the envi-
ronment. The captured point cloud was sent to a Windows 10 desktop (Intel i7@3.60 GHz
+ RAM 8GB), which ran SPR registration algorithms in real-time in MATLAB. Using a
color filter, the point cloud of the cable was extracted from the red background. Since the
cable was manipulated in a two dimensional plane, 3D point cloud was projected to the 2D
plane. Given the initial point cloud of a straight cable, we manually selected 55 tracking
points uniformly distributed along the cable. When the cable deformed to a different shape
in the next step, we registered the newest point cloud to the point cloud from the last time
step using SPR. Then the corresponding 55 tracking points which represent the current cable
state were obtained.

Tracking results show that SPR cable tracking module is able to robustly track the
movement of the cable in real-time. SPR outperforms Fourier-Based estimation when the
point cloud is contaminated by outliers, noise, and occlusions. When manually adding white
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(a) RGB Image (b) Object Tracking
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Figure 3.11: SPR cable tracking in the presence outliers and occlusions. In (b), blue dots
represent the perceived point cloud; yellow dots represent the target shape; red squares
represent the desired feature points; and green squares represent current feature points.

noise to the point cloud and removing 20% of the point cloud from the middle part to
simulate occlusions (Fig. 3.2), Fourier-Based estimation fails tracking the cable, while SPR
is still able to provide a robust estimation of the cable position as well as estimation of the
uncertainties. Fig.3.11 shows SPR tracking performance in the presence of occlusions and
outliers due to objects of similar colors to the cable appear in the work space.

Cable Manipulation

To evaluate the performance of the proposed framework, we conducted experiments to ma-
nipulate cables of different thickness under different scenarios. The goal is to manipulate the
cable from straight lines to given desired shapes. Experimental videos can be found in [2].

The robots end-effectors are parallel grippers which can open and close. When closing,
the gripper can clamp the cable firmly without any slipping. Since the experiment is con-
ducted on a 2D plane, each end-effector has 3 degrees of freedom including two orthogonal
displacement on horizontal plane and one rotation along axis that is perpendicular to the
horizontal plane. For the model approximation, ECOS [10], an efficient SOCP solver, was
utilized to solve the problem (3.16).

Given the positions and variances of 55 estimated tracking points from SPR, we select
19 feature points from the tracking points to estimate the deformation model. Each feature
point has two degrees of freedom in 2D plane. Using Algorithm 3 introduced in section
V, several experiments are conducted to test the proposed framework. We use the mean
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Figure 3.12: Mean Squared Error vs Timesteps. (a) shows the results of manipulation a
cable to different curvatures, which are shown in Fig. 3.13, and (b) compares SPR-RWLS
with Fourier-LS in different scenarios, which are introduced in Section VI.B

squared distance errors of 55 tracking points between the cable and the desired shape to
evaluate the manipulation performance.

A sequence of snapshots is shown in Fig.3.13. The cable was successfully manipulated
from a straight line to given desired curvatures. For a simple desired shapes (Fig.3.13 (a),
(b)), the manipulated cable overlaps with the desired shape perfectly with the mean squared
error (MSE) smaller than 0.08 cm2. For complicated desired shapes with more curvatures
(Fig.3.13 (c)), the MSE is about 1.5 cm2. Fig. 3.12 (a) shows that the MSE converges over
time steps.

The performance of the algorithm with different cables is analyzed in Table 5.1. We
conducted experiments with two cables of different diameters. One Ethernet cable has a
diameter of 4.04mm, and the other cable has a diameter of 8.10mm. We manipulate both
cables to the same simple desired shape (curvature 1 in Fig.3.13) 10 times. Both experiments
have very high success rates. The thinner cable has a little bit higher MSE. It is reasonable
because the thinner cable is more likely to deform, which makes the deformation model not
accurate.

We also performed several experiments to show that SPR-RWLS is able to perform
robustly in the presence of outliers and occlusions. As shown in Table 5.2, we conducted
experiments to manipulate the blue Ethernet cable to curvature 1 in 4 different scenarios. In
the first scenario where there are no outliers and occlusions, both Fourier-LS and SPR-RWLS
performe very well. Uncertainty scenario 1,2 and 3 are the scenarios in the presence of noise,
outliers, and occlusions. In uncertainty scenario 1, we manually occluded 20% of the point
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(a) Curvature 1

(b) Curvature 2

(c) Curvature 3

Figure 3.13: Snapshots of the cable manipulation experiments. Two robot arms were collab-
orating to manipulate a cable to desired shapes, which are shown by the yellow lines. (a),
(b), and (c) show three different curvatures.

Table 3.1: Experiments with different cables

Cable diameters Success rate Mean squared error (cm2)
4.04mm 9/10 0.242± 0.079
8.10mm 10/10 0.051± 0.014

cloud, and added 5% white noise with σ = 10%δc. In uncertainty scenario 2, we occluded
25% point cloud, and added 10% white noise with σ = 15%δc. Uncertainty scenario 3 is
shown in Fig.3.11, where objects of color similar to the Ethernet cable are placed on the table
and part of the Ethernet is occluded by other objects. In Table 5.2, we can clearly see that
SPR-RWLS outperforms Fourier-LS [87] in the presence of noise, outliers, and occlusions.
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Table 3.2: Comparison of mean squared error of our robust method and Fourier-LS Method

Feature Fouriers-LS SPR-RWLS
No outliers and occlusions 0.045± 0.026cm2 0.051± 0.014cm2

Uncertainty scenario 1 14.712± 1.5832cm2 0.411± 0.093cm2

Uncertainty scenario 2 23.45± 1.259cm2 0.629± 0.1623cm2

Uncertainty scenario 3 fail 2.503± 0.438cm2

3.8 Chapter Summary

In this chapter, a novel framework SPR-RWLS for cable manipulation is proposed. In the
framework, we combine real-time cable tracking and online deformation model approxima-
tion. For real-time tracking, a Gaussian mixture model based non-rigid registration is able
to track deformable cable robustly in the presence of sensor noise, outliers, and occlusions.
For deformation model approximation, the local deformation model can be approximated
online by solving a robust optimization in parallel under uncertainty. Experiments showed
that the proposed method is able to manipulate deformable cable to desired shape robustly.

For future work, we plan to test the performance on more complicated desired shapes.
For a desired shape that is far from the initial shape or when the cable is too long, we plan
to develop a method that can automatically and efficiently generate intermediate desired
shapes. SPR is proved to be robust for deformable cable tracking in 3D space. More
manipulation tasks with deformable cable and deformable 2D cloth will be tested in 3D
space.
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Chapter 4

Trajectory Optimization for
Manipulation of Deformable Objects:
Assembly of Belt Drive Units

4.1 Introduction 1

As we studied in Chapter 3, we can robustly manipulate deformable cables via online ap-
proximating the deformation model. However, the scenarios may be more challenging in the
factory. In the assembly challenge competition in World Robot Summit 20182, assembly
of a polyurethane belt onto pulleys (see Figure 5.1) was one of the most challenging tasks
[12]. While there have been attempts to solve manipulation problems involving deformable
objects [86, 52, 88, 69, 64, 25], there is no general approach to it.

In this chapter, we consider the problem of wrapping a belt around a two pulleys system,
considering as use case the challenge introduced in the World Robot Summit 2018. Working
with a deformable object like the belt presents several challenges. These include: (i) infinite
degrees of freedom for the belt; (ii) contact rich manipulation; and (iii) long-horizon planning
problem.

Optimization-based planning and control may be applied to various problems in robotic
manipulation. Given a controlled dynamical system, ẋ = f(x, u), trajectory optimization
aims to design a finite-time input trajectory, u(t), ∀t ∈ [0, T ], which minimizes some cost
functions over the resulting input and state trajectories [50, 32, 85].

In the belt drive unit assembly, variations in the belt tensions and contact forces between
the belt and the pulleys result in a hybrid dynamical system. Elastic force can exist or
not, depending on whether the belt is slack or stretched. Contact forces can exist or not,
depending on whether the belt contacts the pulley or not. Both elastic and contact forces

1The preliminary version of the results of this Chapter is obtained during the author’s internship at
Mitsubishi Electric Research Laboratories.

2https://worldrobotsummit.org/en/about/
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Figure 4.1: Belt drive unit assembly task. The robot grips a polyurethane belt and assembles
it on two pulleys, P1 and P2.

might greatly impact the system dynamics. Planning for such a hybrid system usually
requires planning for each dynamic system separately. There are many existing works on
trajectory planning for hybrid systems [75, 14, 29]. But the drawback is that those methods
require a task-specific mode schedule, which may bring extensive efforts in modeling and
parameter tuning.

Inspired by the work on trajectory optimization of rigid bodies through contact [50, 85,
84, 83], we model the physics of contacts and the elastic properties through complementarity
constraints. The elastic belt is modeled through a 3D keypoint representation. The hybrid
behavior of the keypoints is captured by the complementarity constraints. We formulate
the trajectory optimization problem as a Mathematical Program with Complementarity
Constraints (MPCC) [39]. We successfully solve the MPCC to compute feasible and efficient
trajectories to assemble the belt drive unit. Finally, we implement the solution into the real
system with a controller to track the optimized trajectory.

The main contributions presented in this chapter are:

1. Trajectory optimization formulation for deformable objects manipulation with com-
plementarity constraints. This provides a general-purpose, mathematical framework
to tackle these problems.

2. Introduction of 3D keypoint representation for deformable objects.

3. Validation of the proposed approach through simulation as well as real experiments.
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4.2 Related Work

Deformable linear (one-dimensional) object manipulation has been studied for decades. A
randomized algorithm was proposed to plan a collision-free path for elastic objects [35].
Minimal-energy curves were applied to plan paths for deformable linear objects in stable
configurations [42]. In [47], a local deformation model approximation method was proposed
to control the soft objects to desired shapes. The authors of [87, 23] extended the local
deformation model to the manipulation of cables. A deep neural network was trained to
manipulate a rope to target shape based on a sequence of images [45]. However, those
works do not consider the interaction between the deformable cables and the environment.
In [86], the authors proposed a strategy to assemble a flexible beam into a rigid hole. An
optimization-based trajectory planning was utilized to assembly ring-shaped elastic objects
in [52], but the authors only validated their method in simulation. In [88], the authors took
the advantage of environmental contacts to shape deformable linear objects by a vision-
based contact detector. The authors of [69] considered a scenario to assemble the roller
chain to sprockets. Their strategy successfully assemble the chain but lacks in generalization
because each step is engineered for the specific system. To advance the research on robotic
manipulation, the World Robot Summit 2018 proposed a competition on assembly challenges
[12]. The challenge highlighted the complexity of solving manipulation tasks in a general
manner, which still remains an open problem.

Optimization-based methods have been successfully implemented in many trajectory
planning scenarios [53, 30, 58]. [50] proposed a trajectory optimization method for rigid
bodies contacting the environment. They formulated an MPCC to eliminate the prior mode
ordering in discontinuous dynamics due to inelastic impacts and Coulomb friction. The
MPCC framework was extended to a quadrotor with a cable-suspended payload system
in [15]. The complementarity constraint was utilized to model the limitation of a non-
stretchable cable length. Inspired by [85, 84, 83, 50, 15], we introduce complementarity
constraints to the belt drive unit assembly task to avoid the hybrid modes selection due to
elastic force in the belt and contact force between the belt and the pulleys. We extend the
keypoints representation introduced for rigid objects, [40], to model elastic objects like the
belt and to formulate an MPCC to perform the assembly.

4.3 Problem Formulation

The belt drive unit consists of two pulleys attached to a base and of a deformable and stretch-
able belt as shown in Figure 5.1. The belt is assumed to be composed of a homogeneous
isotropic linear elastic material which is a common assumption in mechanics. The pulleys
have known geometries and can rotate freely around the shafts axis. The base of the belt
drive unit is fixed to the workbench in a known pose. We assume that at the initial config-
uration, called ρ0, the belt is grasped and lifted by a gripper held by a robotic manipulator,
and the belt is freely hanging under the effect of gravity, see Figure 4.2. The task objective
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Figure 4.2: Initial belt configuration, ρ0, with keypoints representation. The red dots repre-
sent the “grasped” keypoint K1 and “opposite” keypoint K2. The yellow dashed line shows
the virtual cable, C, of length L.

is to wrap the belt around the two pulleys as shown in Figure 5.1.
Inspired by recent work [40], we introduce a 3D keypoints representation for deformable

objects. This representation consists of identifying points in the object that are representa-
tive of the whole object. With the proposed representation, the problem is mathematically
tractable with a finite, low dimensional state space and interpretable constraints and cost
function. In particular, we select two 3D keypoints for the belt as shown in Figure 4.2.
The “grasped” keypoint, K1, corresponds to the point-mass on the belt grasped by the
robot gripper, and the “opposite” keypoint, K2, which is the point on the belt that is
the furthest away from K1 when the belt is in configuration ρ0. In the proposed keypoint
representation, configuration ρ0 can be represented by a virtual elastic cable, C, that con-
nects K1 and K2. The generalized coordinates of the system can now be described as
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1 are the orientation of K1

with reference frame shown in Figure 4.2. We utilize the orientation of K1 to express the
rotation and the twist of the belt. The action space u = [Fx, Fy, Fz,Mx,My,Mz]

⊤ ∈ R6 is
the vector of forces and torques that are applied to K1 through the gripper. This makes
the belt drive unit an underactuated system as we cannot directly control K2. Finally, we
assume that in configuration ρ0 the ellipsoidal shape of the belt is large enough to go around
the first pulley P1.

Subtasks Decomposition

Belt drive unit assembly is a complex task that requires a long-horizon planner. As often
proposed in the literature, long-horizon planning tasks are decomposed into subtasks to
reduce complexity. The belt drive unit assembly can have highly engineered solutions with a
dense sequence of subtasks and simple planners whose subgoals are trivial to reach. However,
this kind of approach requires extensive effort in parameter tuning and engineering work and
lacks generality, since the goals of the subtasks need to be redefined as the scenario changes.
We partially address this problem by reducing the number of subtasks to two. Following
a logic similar to a human’s approach, the first subtask, S1, corresponds to wrap the belt
around the first pulley, and the second subtask, S2, corresponds to wrap the second pulley
keeping the belt taut to maintain the wrap around the first pulley, see Figure 4.3. In a
qualitative description, in S1, the belt has to avoid the outer surface of the first pulley P1

and K2 has to get into the groove creating a contact force, while K1 is stretched until the
belt is taut. In S2, the belt is assembled on the second pulley P2 by rotation around the first
pulley. During the rotation, the belt should remain taut in order to remain in the groove of
the first pulley. Finally, the belt has to hook the internal groove of P2 and K1 has to reach
the bottom of the second pulley to accomplish the task.

Given the proposed 3D keypoint representation of the belt drive unit, we can formulate
a trajectory optimization problem, that uses complementarity constraints to model the con-
tacts and the deformation of the belt, to solve each of the two subtasks. The two optimized
trajectories are then executed sequentially in order to accomplish the task, the final condition
of S1 corresponds to the initial condition of S2.

4.4 Trajectory Optimization for the Belt Drive Unit

Assembly

We approach the belt drive unit assembly as a trajectory optimization problem formulated
as an MPCC. The complexity of this problem is given by the presence of hybrid nonlinear
dynamics due to contacts that may happen between the pulleys and the belt, the elastic
properties of the belt, the obstacle avoidance constraints, and the long planning horizon. A
trajectory optimization problem is solved for each of the two subtasks described in Sec. 4.3
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Figure 4.3: Two subtasks decomposition. P1 and P2 are two pulleys. The blue lines represent
the belt gripped at keypoint K1 by a robot. S1: The belt wraps the first pulley P1 and it
stretched. S2: The belt rotates around the first pulley and is assembled onto the second
pulley P2.

of the form

min
q,q̇,u,λ

L(q, q̇, u, λ) (4.1a)

s.t. H(q)q̈ + C(q, q̇) +G(q) = B(q)u+ λ (4.1b)

g(q, q̇, u, λ) ≤ 0 (4.1c)

q ≤ q ≤ q, q̇ ≤ q̇ ≤ q̇, u ≤ u ≤ u, λ ≤ λ ≤ λ (4.1d)

where L(q, q̇, u, λ) is the cost function, q ∈ R9 are the generalized coordinates described
in Sec. 4.3, q̇ and q̈ are its first and second order time derivatives, u ∈ R6 is the control input
and λ are the external forces acting on the belt. Eq. (4.1b) is the forward dynamics, where
H(q), C(q, q̇), G(q) are the inertial matrix, the Coriolis terms, and the gravitational forces,
respectively. B(q) is input mapping. The general nonlinear constraints (4.1c) include the
complementarity constraints and collision avoidance. Eq. (4.1d) represents the lower and
upper bounds of the optimization variables.

We solve (4.1) as a nonlinear program and use a direct approach which in general has
better numerical properties than shooting methods, and we can exploit the sparsity structure
of the problem. We directly optimize the feasible general coordinates and its first-time
derivative, the control inputs, and the external forces. The discretization of the forward
dynamics is obtained by the trapezoidal rule. The formulation of the contact and elastic
forces as complementarity constraints fits naturally well in this formulation. In practice,
for numerical advantages, we use a relaxed version of the complementarity constraints as
described in [51].
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Figure 4.4: Force analysis at the two keypoints. Fu is the control input force. λ0 is the
elastic force. λ1 is the contact normal force. g is the gravity force.

In the following, the dynamical constraints and the cost function for MPCC (4.1) are
described for the two subtasks.

Dynamics Constraints

The system is composed of the two keypoints, K1 and K2, and the virtual elastic cable, C.
It is modeled similarly to a mechanical mass-spring-damper second-order system, with an
actuator acting on K1 and subject to the gravity and the external forces given by the elastic
force λ0 and the normal force λ1 experienced during contacts. Figure 4.4 shows a schematic
example of the forces that act on the system at the end of subtask S1.

The system dynamics are defined as

ẋ = Ax+Bu+G+ f(x, λ) (4.2)

where x = [q⊤, q̇⊤]⊤ ∈ R18 is the system state and λ = [λ⊤
0 , λ

⊤
1 ]

⊤ is the vector of the external
forces. The state transition matrix

A =


09×9 I9×9

03×9 − kd
m1

I3×3
kd
m1

I3×3 03×3

03×9
kd
m2

I3×3 − kd
m2

I3×3 03×3

03×9 03×9

 ∈ R18×18

represents the effect of the mass-spring-damper system with kd the damping coefficient and
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m1, m2 are the masses of the keypoints K1 and K2, respectively. The input matrix

B =


09×6

I3×3

m1
03×3

03×6

03×3
I3×3

M1

 ∈ R18×6

maps the 6-dimensional end-effector force/torque input u to the linear and angular acceler-
ation of the “grasped” keypoint K1. M1 is the moment of inertia of K1. The gravitational ac-

celeration is applied to the two keypoints through the vectorG =
[
01×11, −g, 01×2, −g, 01×3

]⊤ ∈
R18×1.

The contribution of the external forces is now given by the sum of the elastic and normal
force f(x, λ) = λ0 + λ1. The elastic force is defined as

λ0 =
[
03×9, − I3×3

m1
, I3×3

m2
, 03×3

]⊤
ΠK1,p λ̄0 ∈ R18×1

where λ̄0 ∈ R is the magnitude of the elastic force and is the variable optimized, ΠK1,p =
[(Kx

1−px),(Ky
1−py),(Kz

1−pz)]⊤

||K1−p|| is the projection operator of the elastic force into the 3 axis. The
point p is K2 in S1 and O1 in S2 for simplicity of computation. O1 is the position of the first
pulley’s center. The normal force due to the contacts between the pulley and the keypoint
K2 is defined as

λ1 =
[
03×12, − I3×3

m2
, 03×3

]⊤
ΠO1,K2λ̄1 ∈ R18×1

where λ̄1 ∈ R is the magnitude of the normal force and is the variable optimized and

ΠO1,K2 =
[(ox1−Kx

2 ),(o
y
1−Ky

2 ),(o
z
1−Kz

2 )]
⊤

||o1−K2|| is the projection operator of the normal force into the
3-axis.

Complementarity Constraints

In order to model the hybrid dynamics due to elastic force and contact force, we use com-
plementarity constraints

0 ≤ g(·) ⊥ h(·) ≥ 0 (4.3)

Complementary constraints are a way to model constraints that are combinatorial in nature
and impose the positivity and orthogonality of the variables.

Elastic force constraint. The first complementarity constraint is formulated as

λ2 =
λ̄0

kp
+ L− l(x) ≥ 0 (4.4a)

λ̄0 ≥ 0 (4.4b)

λ̄0λ2 = 0 (4.4c)
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where L and kp are respectively the length at configuration ρ0 and the stiffness coefficient of
the virtual elastic cable, C. The length of C at each temporal instant is l(x) = ||K1−K2|| in
S1, and l(x) = ||K1 − O1|| + r1 in S2, where r1 denotes the radius of P1. The pulley center
O1 is chosen because it is a fixed known point while the pulley is rotating. From eq. (4.4a)
the elasticity of the belt is defined as proportional to the length L− l(x) and depends on the
stiffness coefficient kp. λ2 is an algebraic variable. If the cable is stretched, then L < l(x),
λ̄0 > 0, and λ2 = 0. If the cable is slack, then L > l(x), λ̄0 = 0, and λ2 > 0.

Contact force constraint. The second complementarity constraint is formulated as

λ3 =
√
||K2 −Oe||2 + ϵ2 ≥ ϵ (4.5a)

λ̄1 ≥ 0 (4.5b)

λ̄1λ3 = 0 (4.5c)

where Oe is the contact point on the edge of P1. ϵ denotes a small number to relax the
complementarity constraint [51]. λ3 is the algebraic variable describes whether the belt
contacts the pulley. If the belt contacts the pulley, then λ3 = ϵ, and contact force λ̄1 ≥ 0. If
there is no contact, then λ3 > ϵ, and contact force λ̄1 = 0.

Obstacle avoidance

This constraint imposes that the keypoints cannot penetrate into the pulleys. Each pulley is
approximated with an ellipsoid, since there is a known analytical expression of the distance
function between a point and an ellipsoid. The obstacle avoidance constraints between a
keypointKi and a pulley Pj can be denoted as distance(Ki, Pj) =

√
(Ki −Oj)⊤S(Ki −Oj)−

1 ≥ 0, where S = diag{1/a2, 1/b2, 1/c2} is a diagonal matrix, a, b, c are half the length of
the principal axes. Oj denotes the center of pulley Pj.

Physics Limitation

The belt might break if stretched over a certain limit, this condition is approximated by
constraining the length of the virtual cable C, l(x) ≤ Lmax. Moreover, Lmax is assumed large
enough for the loop to go around two pulleys.

Cost Function

We use a common quadratic cost function that penalizes the difference to the goal state xgoal

and the control input u(k):

J(x, u, λ) =
N∑
k=0

(x(k)− xgoal)⊤Q(x(k)− xgoal) + u(k)TRu(k) + w(λ̄0(k)− λ̄desired
0 )2 (4.6)

where the weights Q and R are diagonal matrices and w is a scalar. Moreover, the term
w(λ̄0(k)− λ̄desired

0 )2 adds a soft constraint in the elastic force. A positive λ̄desired
0 encourages
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a solution with the belt in tension. This constraint is used in subtask S2 to maintain the
belt taut. Instead, in S1 we set w = 0.

4.5 Experimental Results

In this section, we present the results of the proposed method both in simulation using the
physic engine MuJoCo [73] and in a real system with a 6-DoF manipulator. We use the
Ipopt [76] solver in a python wrapper.

Simulations

Simulation Setup

The belt drive unit is represented in a simulated environment in MuJoCo as shown in the top
left corner of Fig. 4.5. The environment includes two pulleys and one belt. The radius of the
pulleys are of 30[mm] for P1 and 15[mm] for P2. The belt is composed of 41 linked objects
called capsules in MuJoCo. Any two adjacent capsules are connected by two hinge joints
and one prismatic joint. The physical properties of the simulated belt are tuned to resemble
the belt of the real belt drive unit. The belt is held by a parallel gripper attached to a 6
DOF Fanuc LR-Mate 200iD. The purpose of the manipulator is to actuate the end-effector
in order to track the optimal trajectory, but in simulation could be removed.

Trajectory Optimization in Different Scenarios

In order to verify the generality of the approach to different known geometries, we consider
4 different scenarios, where the position of P1 is fixed and the position of the smaller pulley
P2 varies, see Figure 4.5 and Table 5.1. Each pulley is modeled as three adjacent cylinders,
and the two outer cylinders have larger radius than the inner one. The belts’ lengths, Pbelt,
are chosen in each scenario based on the distance between two pulleys. The mass of the
keypoints is m1 = m2 = 0.042[kg]. The moment of inertia of K1 is M1 = 10−7[kgm2].
The belt’s stiffness and damping coefficient are kp = 63.34[N/m] and kd = 4.65[Ns/m],
respectively.

In the trajectory optimization formulation described in Section 4.4, the goal for subtask
S1 is set vertically above the pulley P1 for keypoint K1, and right under the pulley P1 for
keypointK2, respectively, e.g., q

goal
1 = [0.10, 0.55, 0.53, 0.10, 0.23, 0.34, 0, 0, 0]T and both with

zero velocity. In this substask there is a change of mode in the dynamics from no contact to
contact between the belt and the environment and the deformation of the belt for reaching
the desired target.

In the second subtask S2, the goal, qgoal2 , is set only for K1 in both the Cartesian coor-
dinates and angular orientation, according to the position of the pulley, P2. A qualitative
representation of the goal position is shown in Figure 4.5 for each of the scenarios. The de-
sired [Kroll

1 , Kpitch
1 , Kyaw

1 ]⊤ is [−π/2, 0, π/2]⊤. The twist of the virtual cable C approximates
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(1)

(4)(3)

(2)

Figure 4.5: Snapshots of 4 different simulation scenarios at the goal position of subtask S2.
The relative positions of the two pulleys vary in each scenario.

Table 4.1: Simulation results in 4 scenarios. In each scenario the position of the pulley center
O2 varies.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Pbelt 0.4m 0.4m 0.4m 0.4m
O1 [0.100, 0.550, 0.340] [0.100, 0.550, 0.340] [0.100, 0.550, 0.340] [0.100, 0.550, 0.340]
O2 [0.100, 0.680, 0.340] [0.100, 0.680, 0.340] [0.100, 0.680, 0.340] [0.100, 0.680, 0.340]

Feasible trajectory 10/10 10/10 10/10 10/10
Successful assembly 10/10 8/10 7/10 9/10

the twist of the belt which leads to the assemble onto the groove of the pulley P2. Based
on qgoal2 and kp it is possible to compute the target elastic force as λ̄desired

0 , which encourages
the belt to be stretched during rotation.

We perform 10 experiments for each scenario. In each experiment, the goal positions of
the “grasped” keypoint K1 are sampled from the normal distributions N (µ1, Σ) in S1 and
N (µ2, Σ) in S2. Where, µ1, µ2 ∈ R3 are the components [Kx

1 , K
y
1 , K

z
1 ]

⊤ in a pre-selected
successful qgoal1 and qgoal2 and Σ = diag{0.005, 0.005, 0.005}. The lower and upper constraints
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Figure 4.6: Trajectory of keypointK1 in a successful assembly for scenario Figure 4.5(3). The
dashed line is the reference trajectory obtained from MPCC. The solid line is the measured
trajectory.

of position, velocity, tilt angle, and force are ±1m, ±0.5m/s, ±π, and ±50N , respectively.

Results

The simulation results are shown in Table 5.1. We initialize the trajectory with all states
x(k) = x(0), where k = 0, 1, .., N . The solver finds a feasible trajectory for both subtasks
given any sampled goals. The optimal trajectory obtained for K1 is then tracked by the
end-effector, and the assembly is completed successfully in 34/40 experiments. The failure
cases happen when the goal is sampled away from qgoal1 or qgoal2 because the belt fails to wrap
around the pulley. The purpose of these experiments is to show that the engineering effort
in finding the goal position for the subtask is reduced as it is not required to provide one
specific point. But also the trade-off of having only two keypoints, more keypoints would
make a more accurate model but also a more complex optimization problem. We use an Intel
12 Cores i7-9850H CPU @ 2.60GHz. The average computational time for one trajectory with
600 time steps is 36.138± 5.747[s]. The computational time highly depends on the number
of time steps selected. Figure 4.6 shows one full successful assembly trajectory for scenario
Figure 4.5(3).
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Figure 4.7: Snapshots of the experiment.

Real-World Experiments

Experimental Setup

As shown in Figure 5.1, the experiment environment includes a 6 DOF FANUC LR-Mate
200iD, an ATI Mini45 F/T sensor, and a 3D printed belt drive unit of the same dimensions
in the assembly challenge [12] fixed on a vise. The belt is the same as in the challenge with
length 0.40[m] and is gripped by a parallel jaw gripper. We assume no slip between the belt
and the robot gripper. The pose of the pulleys is known exactly.

Results

Figure 4.7 provides the snapshots of the main phases during the execution of a successful
experiment. Figure 4.8 shows the trajectory of the gripper tip that corresponds to K1 and
the measured forces at the robot’s wrist along the trajectory. In the beginning, (Figure 4.7a),
the belt approaches the pulley and position X increases and the forces are zero. The position
Z goes down at 5.57[s] to avoid the outer cylinder of the first pulley. At 6.29[s], position X
stops increasing because the pulley is reached (Figure 4.7b). Then the Z position increases as
the belt is lifted and contacts the pulley at 7.82[s] with a corresponding increase in force along
the negative direction in Z. At 10.50[s], the system accomplishes S1 (Figure 4.7c). After
that, the belt is rotated around O1 (the Z position decreases, and Y position increases) while
being stretched (Figure 4.7d). In this phase, the measured net force is closed to the desired



CHAPTER 4. TRAJECTORY OPTIMIZATION FOR MANIPULATION OF
DEFORMABLE OBJECTS: ASSEMBLY OF BELT DRIVE UNITS 61

0 5 10 15 20 25 30

Time (s)

-40

-20

0

20

Fo
rc

es
 (

N
)

Forces vs Time

Y
Z
X

0 5 10 15 20 25 30

Time (s)

-0.05

0

0.05

0.1

Po
si

tio
ns

 (
m

)

Positions vs Time

Y
Z
X

Figure 4.8: Forces and positions of the end-effector in a successful experiment. The red circle
and square represent the end of subtask S1, S2, respectively.

elastic force λ̄desired
0 . The target orientations are [Kroll

1 , Kpitch
1 , Kyaw

1 ]⊤ = [−π/2, 0, π/4]⊤.
The belt is twisted so that it hooks the second pulley without jamming. Finally, the goal of
subtask S2 is reached at 29.00[s] (Figure 4.7e) and the gripper releases the belt (Figure 4.7f).

The experiment has been repeated multiple times but given the robot’s accuracy the
results were similar to each other.

4.6 Chatper Summary

In this chapter, we propose a trajectory optimization formulation to assemble the belt drive
unit. We propose a 3D keypoints representation to model the elastic belt, which simplifies
the complexity of the trajectory optimization problem. The problem is formulated as an
MPCC with complementarity constraints to model the hybrid dynamics due to contact
and elastic forces. Simulations results show that the proposed approach can find feasible
trajectories for the belt drive unit assembly with known but variable geometry. To the best
of our knowledge, this is the first work that formalizes the trajectory optimization problem
for the belt drive unit assembly, and the solution works in the real system. Several future
works are possible. The current method is based on the execution of an open-loop trajectory
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which could fail under uncertainties in the position of the pulleys or of the belt. Adding
a feedback controller is fundamental for a more robust and reliable solution. Moreover, in
order to improve the generality of the problem, we are interested in an autonomous selection
of the 3D keypoints for a given task. Our formulation of a trajectory optimization problem
for deformable objects using complementarity constraints is not limited to belt drive unit
assembly. The proposed method might be applied to a wider range of tasks such as cable
routing and wire harness.
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Chapter 5

Robotic Cable Routing with Spatial
Representation

5.1 Introduction 1

In this chapter, we consider a cable routing task (Fig. 5.1), as described in Chapter 1, where
cables need to follow a designated path constrained by a set of fixtures on the table. Given
randomly placed fixtures and a goal cable configuration, robots need to manipulate the cable
from an initial configuration to the goal configuration. Sense-plan-act is an effective frame-
work tackling the routing problem, which consists of 1) visual perception, 2) intermediate
configuration planning, and 3) low-level manipulation planning and execution. However,
there are multiple practical challenges preventing this method from being widely adopted.
1) For visual perception, a chain of connected nodes is commonly used to represent the cable
state, where the node positions are estimated from the point cloud of the cable. The node
estimation is significantly affected by the quality of the segmented cable point cloud and
lacks robustness with conventionally used color filters [59, 67, 63, 8] requiring manual tun-
ing and susceptible to environment lighting changes. 2) For configuration planning, human
demonstrated sequences composed of intermediate cable states are often needed, and the
robots can finish the task following the predefined sequence [64]. Demonstrating the full
routing sequence requires extensive human efforts and does not generalize when the cable
configuration changes. 3) During manipulation, the cable can easily deform to unexpected
shapes. An over-stretched cable may break the cable or fixtures, while a slack cable may fail
to reach the desired configuration due to the under-actuated dynamics.

To address the challenges in planning and manipulation, we propose a simple yet effective
representation, called spatial representation, to model the spatial relations between the cable
and environment objects (namely fixtures). The core insight of this representation comes
from an empirical observation: the spatial relation between the cable and fixtures, instead

1The preliminary version of the results of this Chapter is obtained during the author’s internship at
Intrinsic.
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Figure 5.1: Cable routing task setup. Two robot manipulators attempt to manipulate the
cable to the goal configuration, which is constrained by several fixtures, through a sequence
of picking, placing, and holding actions.

of their accurate positions, contains the full information relevant to the routing task. With
the proposed spatial representation, configuration planning can be efficiently achieved by
searching a path from the initial to the goal state without the need for human demonstration.
In addition, this representation enables efficient data collection and model learning for low-
level manipulation. We design three low-level manipulation primitives, stretch, cross, and
insert, to manipulate the cable from one spatial representation to another. A manipulation
primitive takes the cable state, fixture positions, and the target spatial representation as
input, and outputs picking and placing targets for robots. The stretch primitive stretches
the cable to another configuration without changing the spatial representation. The cross

and insert primitives change the cable configuration between two spatial representations.
As will be shown in Sec. 5.5, cable routing with the learned primitives outperforms rule-based
heuristics and achieves reliable performance with diverse cable and fixture settings.

Besides, to address the robustness and generalization challenge in visual perception, we
propose a cable state estimator composed of a neural network and non-rigid registration,
which is robust to different cable colors and backgrounds. Particularly, the cable segmen-
tation neural network is trained with collected real images and data augmentation without
human annotation. Experiments show the cable state estimation is robust to different cable
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colors and backgrounds as long as the cable and the background have contrasting appear-
ances.

The main contributions presented in this chapter are summarized as below:

• Spatial representation is proposed to model the topological relationship between the
cable and fixtures. Based on this spatial representation, a high-level path planner is
designed to remove the need for human demonstrated intermediate states.

• Three manipulation primitives are designed and learned to manipulate the cable from
one spatial representation to another.

• A robust cable state estimator is implemented leveraging neural network based segmen-
tation and non-rigid registration, thus attaining an end-to-end cable routing framework.

5.2 Related Work

State Estimation of Deformable Linear Objects

Detecting cables in a cluttered environment is a challenging problem as cables, unlike rigid
bodies, have infinite degrees of freedom. Some previous works apply end-to-end methods
without extracting the structure of the cable, but the representation is not informative for
downstream planning [45, 79, 19, 60]. Another commonly used approach is color filtering,
which relies on manual tuning and is sensitive to environmental changes such as lighting
conditions [59, 67, 63, 8]. Though deep neural networks (DNNs) have been widely used
in rigid object detection [55, 16, 54, 17], few works deploy DNNs to cable detection. One
major reason is that, unlike rigid bodies, labeling deformable cables is time consuming. [61,
82] learn the cable detection using synthetic data generated in simulation. Although their
methods do not require a manually tuned color filter to perceive the cable, there is a large
sim-to-real gap when deployed to real-world tasks. Different from above, we train a cable
segmentation neural network with collected real images adopting various data augmentation
techniques while still avoiding the need of human annotation.

Deformable Linear Object Manipulation

Deformable linear object manipulation has been studied for decades. A randomized algo-
rithm is proposed to plan a collision-free path for elastic objects [35]. Minimal-energy curves
are applied to plan paths for deformable linear objects in stable configurations [42]. A defor-
mation model is utilized to manipulate the cable to desired shapes [87, 23]. There are also
a lot of works on knot planning [81, 43, 64] and untangling knots [38, 62].

Different from the above works that do not consider the environment constraints in the
workspace, cable routing requires the cable to establish contact with environment objects
such as fixtures. [27] formulates a trajectory optimization problem for belt drive unit as-
sembly. [77] generates a visual plan for cable routing tasks via a casual InfoGAN, but the
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method cannot generate discontinuous actions such as the cable crossing a fixture. [88] an-
alyzes the contact mobility for cable routing around fixtures, but their method requires a
customized end-effector that allows the cable to slip. [3] builds a state machine for cable
routing, which requires extensive human efforts to choose the state machine parameters and
lacks generalization to unseen scenarios. Inspired by [81, 62], which combine topological
planning and manipulation primitives to solve long-horizon cable knotting tasks, we intro-
duce spatial representation for cable routing, bridging high-level configuration planning and
low-level primitive execution.

5.3 Problem Statement

Inspired by the cable routing/USB insertion task in the Robotic Grasping and Manipulation
Challenge in IROS 2020 [21], we formulate a simplified and reconfigurable cable routing task
as follows (Fig. 5.1). A cable is placed on a worktable with several fixtures. One end of the
cable is rigidly attached to the table. Given a goal configuration, where the cable makes
contact with the single fixtures or goes through the channel fixtures in a particular order
(as illustrated in Fig. 5.4), two robotic manipulators attempt to manipulate the cable to the
goal configuration through a sequence of picking, placing, and holding actions. We make
the following assumptions on the task: 1) the number of fixtures and their positions are
known in advance; 2) the parallel-jaw grippers can firmly grasp the cable during execution;
3) the cable is within the RGB-D camera’s field-of-view throughout the task; 4) the cable is
distinguishable by color contrast to its background.

Inspired by [81, 62], we decompose the cable routing problem into three subtasks. 1)
Perception. A proper state representation of the cable needs to be extracted from the
raw RGB-D image. The state extraction has to be robust to the cable color, background,
environment lighting, and the cable being partially occluded. 2) Planning. Given the current
cable state, positions of the fixtures, and the goal configuration, we need to generate the
next intermediate state. This is expected to be generated autonomously without human
demonstration. 3) Manipulation. Given the current and next intermediate states, robot
commands such as picking and placing poses need to be inferred. To prevent the cable from
moving to undesired states, a holding action is introduced after each cable placement as
described in Sec. 5.4.

5.4 Approach

We propose a cable routing framework with three modules: 1) cable state estimation, 2)
planning with spatial representation, and 3) learning manipulation primitives (Fig. 5.2).
1) The cable state estimation module takes an RGB-D image as the input and outputs a
chain of nodes representing the cable state. 2) The planning module generates a sequence of
intermediate states based on the spatial relation between the estimated cable state and the
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Figure 5.2: The proposed cable routing framework consists of three modules: 1) cable state
estimation, 2) planning with spatial representation, and 3) learning manipulation primitives.
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known fixtures. These intermediate states define a path for the cable to reach the goal from
the initial configuration. 3) The manipulation primitives generate different robot actions
that can manipulate the cable from the current states to the next intermediate states.

Cable State Estimation

Segmentation neural network

We propose a self-supervised data generation method that efficiently generates labeled images
for cable mask segmentation without human annotation. The idea is to utilize a manually
tuned color filter to automatically obtain the cable’s segmentation mask from a pre-recorded
video, then the images and the corresponding masks are augmented with different colors,
backgrounds, occlusion, and noise.

We choose a cable with a contrasting color (e.g., a red cable) distinguished from the
background and hand-design a color filter. We then record a video while an operator manip-
ulates the cable to different configurations, changes the background, and adds occlusion. For
each video frame, a cable segmentation mask can be generated automatically with the color
filter. Afterwards we augment the data by randomly sampling different color distributions
and impainting on the cable’s mask. We apply standard augmentation techniques to increase
robustness for the cable’s mask and the remaining background, such as dropping out small
patches and injecting pixel-wise noise [5]. Finally, the augmented data is utilized to train a
U-Net [55].

Cable initialization with multi-resolution Reeb Graph

The segmentation neural network outputs the inferred point cloud of the cable. To facilitate
the downstream planning and manipulation, a chain of nodes is preferred to represent the
cable state, as shown in Fig. 5.2. We construct the cable nodes from the point cloud with
multi-resolution Reeb Graph [59, 18]. Specifically, the segmented point clouds are grouped
into different clusters, and the clusters are connected to form a smooth path while penalizing
the path length and angle changes.

Non-rigid registration

Although cable initialization with Reeb Graph can handle minor occlusion, it would fail in
practice because of heavy occlusion by the robot arms during task execution. To tackle this
issue, we find the node positions at the current step X t = [xt

1, x
t
2, ..., x

t
N ] ∈ RN×D with non-

rigid registration, given the node positions from the previous step X t−1 as a prior, where xt
i

is the position of i-th node at t-th frame, N is the number of nodes (N = 50 throughout our
experiments), and D is the dimension of node positions (D = 3 in our case). We initialize the
cable nodes X0 from the result of Reeb Graph as described in Sec. 5.4. For each new frame,
the cable nodesX t can be obtained from the current point cloud Y t = [yt1, y

t
2, ..., y

t
M ] ∈ RM×D
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Figure 5.3: An example spatial representation. Red dots 1,2,3,6 are single fixtures. Red dots
4 and 5 form a channel fixture. The cable from head to tail is traced following the orange
arrow. The green arrows are the projection of fixtures onto the cable. The spatial state for
each fixture is determined by the sign of the cross product between the green and orange
arrows. In this particular example, the spatial representation is (+,-,-,-,+,+). Intuitively,
the spatial representation means that the six fixtures are on the (right, left, left, left, right,
right) side of the cable.

+ - + + + +

+ + + + + +

+ - - + + +

+ - + - + +

+ + - + + +

+ + + - + +

+ - - - + +

+ + - - + +

Figure 5.4: Planning from the initial spatial representation to the goal spatial representation.
Intermediate states are generated along each path, where the spatial representation vector
changes in one and only one dimension at every step.

and X t−1 via Coherent Point Drift (CPD) [44], where yti is the position of i-th point in the
point cloud, M is the number of points in the point cloud, and usually M >> N .

One problem of registration cables using CPD is that the registered nodes do not have
equal distances between neighboring nodes. [63] adds a regularization term in its optimiza-
tion objective to maintain the local structure. Here we apply a simpler remedy by connecting
the registered nodes and re-sampling along the connected path to obtain equally distributed
nodes, which is found effective in our experiments.
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Planning with Spatial Representation

Empirically, we observed that matching the cable nodes exactly with their correspondences
on the goal configuration is unnecessary. Rather, it is sufficient that the spatial relation
between the cable and the fixtures matches the goal configuration.

We define the spatial representation for cable routing in the 2D horizontal plane. The
positions of cable nodes projected in the horizontal plane are denoted as X̃ = [x̃1, x̃2, ..., x̃N ] ∈
RN×2. The fixture positions are denoted as P = [p1, p2, ..., pK ] ∈ RK×2, where K is the
number of fixtures. We define two directional vectors v⃗i1 = xj − pi (green arrows in Fig. 5.3)
and v⃗i2 = xj+1 − xj−1 (orange arrows in Fig. 5.3), where xj is the closest nodes to the i-th
fixture pi. The spatial representation for each fixture is then defined with a plus/minus sign,
as illustrated in Fig. 5.3. Formally, the spatial states are determined as s = [s1, s2, · · · , sK ] ∈
{−1,+1}K , where si = Sign( v⃗i1×v⃗i2

|v⃗i1×v⃗i2| · e⃗z) and e⃗z is the unit normal of the horizontal plane.
Intuitively, if we trace the cable from the fixed end to the other end, the spatial representation
indicates whether each fixture is on the “left” or “right” side of the cable. The channel
fixtures are treated as two single fixtures, e.g., fixture 4 and 5 in the example. Fig. 5.4
demonstrates a few example cable configurations along with their corresponding spatial
states. Note that we do not consider the scenario where the cable circles around the fixtures.

Leveraging the proposed representation, a high-level planner for the long-horizon cable
routing tasks can be easily implemented by only allowing single element changes in the
spatial state s in each step. Fig. 5.4 illustrates example paths and intermediate states
searched connecting the initial to the goal spatial state. In practice, we select the path along
which the spatial state s changes sequentially from the cable’s fixed end to the tail since it
facilitates the downstream manipulation.

Learning Manipulation Primitives

In order to manipulate the cable to a desired spatial state, low-level robot commands such
as picking and placing poses are needed. The low-level planner should be able to handle
different cable configurations as well as diverse fixture locations.

Manipulation primitives

We propose a low-level cable routing planner with three manipulation primitives, stretch,
cross, and insert, as demonstrated in Fig. 5.5. Each primitive consists of a pick-move-
place action sequence where the picking and placing actions are constrained to be vertical.
Specifically, in stretch, a robot picks a point on the cable and stretches the slack cable to
establish contact with the fixtures. In cross, a robot selects one point on the cable to pick
and transports the cable from one side of the fixture to the other. In insert, a robot picks
the cable and inserts it between two fixtures of the channel.

As shown in Fig. 5.5, cross and insert change the spatial state, while stretch does
not. The purpose of stretch is to reshape the cable to robustify cross and insert. In
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Stretch

Cross Insert

Figure 5.5: Manipulation primitives: (a) In stretch, a robot stretches the slack cable to
establish contact with the fixtures. (b) In cross, a robot transports the cable from one side
of the fixture to the other. (c) In insert, a robot inserts the cable between two fixtures of
the channel. cross and insert change the spatial state, while stretch does not.

practice, after each stretch, one robot is holding the cable at the placing location, while
the other robot performs cross or insert. The holding action is crucial since it prevents
the cable from moving to undesired states during cross or insert. By iteratively executing
stretch-cross or stretch-insert, robots are able to manipulate the cable to the desired
configuration following the planned path in the spatial state space.

Learning manipulation primitives from labeled data

Each primitive consists of a picking point and a placing point. We propose to learn the
target points from real data collected by randomly configuring the cable and fixtures in the
workspace. The picking and placing target points for each primitive are then annotated
based on the desired spatial state. Note that only the horizontal 2D positions of the target
points are learned while the height is assumed to be known. The orientation of the picking
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point is computed using the cable nodes’ positions outputted from the cable state estimation,
i.e., the yaw angle is the same as the estimated cable direction at the picking position. The
orientation of the placing point is selected based on the desired spatial state. Specifically, the
placing yaw angles are defined by the segment connecting the last and the next fixtures for
cross, and by the segment connecting the placing position and the next fixture for stretch
and insert. Learning the orientation and further, a 6-DoF pose is left to future work.

Two methods are implemented and compared to learn the target positions. In the first
method, direct regression is applied using a Multilayer Perceptron (MLP) with two fully
connected layers, whose inputs include cable nodes’ positions, fixtures’ positions, and the
target spatial state. The output is the concatenated vector of the 2D picking and placing
positions. In the second method, the cable nodes’ and fixtures’ positions are encoded in an
image as the input to a U-Net[55], and similarly, the picking and placing target positions are
encoded in a heatmap as the output. During training, the output heatmaps are constructed

by the convolution of the point coordinates with a Gaussian kernel Φ = exp(− ||p−p∗||2
2σ2 ),

where we select σ = 4 pixels. We hypothesize that outputting target point heatmaps allows
for better spatial generalization than direct regression on point coordinates. A quantitative
analysis on the two methods will be performed in Sec. 5.5.

5.5 Experiments

We aim to investigate three questions in our real-world experiments.

• First, we examine if the proposed framework based on spatial representations can solve
cable routing tasks with various cables and fixture settings.

• Second, we evaluate whether the learned manipulation primitives outperform hand-
designed policies and which learned model performs better.

• Third, we inspect whether the perception based cable state estimator provides reliable
estimates for downstream planning and manipulation.

Experimental Setup

As shown in Fig. 5.1, our system includes two 7-DoF KuKa IIWA robot manipulators, a
Kinect Azure RGB-D camera, two Robotiq Hand-E grippers, several single and channel
fixtures, and 7 non-stretchable deformable cables (Fig. 5.6). We configured four routing
scenarios with different goal configurations, as shown in Fig. 5.7. In each scenario, one end
of the cable is rigidly attached to the table, and the fixtures are fixed on the table with
known positions and orientations. We assume that the cable is within the robots’ workspace
throughout task execution, and collision-free robot motion sequences exist to manipulate the
cable to desired configurations. Solving cable routing tasks with more dense fixtures and
allowing 6-DoF picking/placing are left to future work.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.6: Cable routing with different cables for the same target spatial state (scenario 1).
First row: initial state. Second row: final state. (a) red rope. (b) pink rope. (c) lime rope.
(d) orange rope. (e) blue rope. (f) red thin rope. (g) red USB cable.

Implementation Details

Rule-based manipulation baseline

To evaluate the learned manipulation primitives, we implemented a rule-based policy that
is composed of the same set of primitives as in Sec. 5.4, except that the picking and placing
points are selected according to heuristics. Specifically, we compute the distance from all
cable nodes to the relevant fixture and find the closest cable node x̃closest to the fixture. The
node that is c nodes away from x̃closest is selected as the picking location, and the placing
location is chosen as d distance away from the relevant fixture along the desired direction. By
tuning c and d, the rule-based method achieves decent performance in each specific scenario,
but a fixed value pair is found difficult to generalize. We experimentally set c = 5 and
d = 0.05m in all scenarios.

Model learning for manipulation primitives

For each manipulation primitive, 100 human demonstrations are collected, with varying
fixture locations and different start and end cable configurations. We then annotate the
picking and placing locations for each demonstration. The annotated dataset is augmented
with flipping, rotating, injecting noise, and node resampling along the cable. Resampling
nodes is crucial to data efficiency as the exact node locations are irrelevant to the task while
the spatial relation between nodes and the fixtures matters.
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Table 5.1: Comparison of methods with differently acquired primitives. Failure modes:
A(over-stretching), B(slack and failed to cross), C(far-off prediction)

Methods Success rate Failure modes

Scenario 1
Rule-based 2/5 A(2), B(1), C(0)
Regression 4/5 A(1), B(0), C(0)
Heatmap 5/5 A(0), B(0), C(0)

Scenario 2
Rule-based 1/5 A(1), B(3), C(0)
Regression 4/5 A(1), B(0), C(0)
Heatmap 4/5 A(0), B(0), C(1)

Scenario 3
Rule-based 1/5 A(4), B(0), C(0)
Regression 3/5 A(0), B(2), C(0)
Heatmap 4/5 A(1), B(0), C(0)

Scenario 4
Rule-based 0/5 A(3), B(2), C(0)
Regression 0/5 A(0), B(5), C(0)
Heatmap 2/5 A(0), B(3), C(0)

Overall
Rule-based 4/20 A(10), B(6), C(0)
Regression 11/20 A(2), B(7), C(0)
Heatmap 15/20 A(1), B(3), C(1)

Table 5.2: Cable routing with different cables. Failure modes: A(over-stretching), B(slack
and failed to cross), C(far-off prediction), D(wrongly estimated cable state)

Cables Success rate Failure modes
Rope (red) 5/5 A(0), B(0), C(0), D(0)
Rope (pink) 5/5 A(0), B(0), C(0), D(0)
Rope (lime) 3/5 A(0), B(0), C(0), D(2)
Rope (orange) 4/5 A(0), B(0), C(1), D(0)
Rope (blue) 5/5 A(0), B(0), C(0), D(0)
Thin Rope (red) 3/5 A(0), B(1), C(1), D(0)
USB Cable (red) 3/5 A(0), B(2), C(0), D(0)
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(1) (2)

(3) (4)

Figure 5.7: Four experiment scenarios where the fixture setting and target cable configura-
tions are different.

Results

Table 5.1 compares cable routing success rates on the red rope with differently acquired
primitives in all four scenarios (Fig. 5.7). In each scenario, there are three single/channel
fixtures. As seen in the table, the rule-based policy does not perform reliably in different
cable and fixture configurations. The regression method achieves decent performance, but
its predicted target points have a large variance leading to over-stretching or slack cables. In
additionn, there are occasions where the cable or the fixture might break if not interrupted.
By contrast, learning with encoded heatmaps achieves a higher success rate with few over-
stretching or slack cable cases. This suggests that outputting heatmaps allows for better
spatial generalization than directly regressing on point coordinates. Fig. 5.7 shows some
example trials where cables are manipulated to the desired goal spatial states.

Table 5.2 shows the experimental results on different cables (Fig. 5.6) with heatmap-
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based learned primitives. As summarized in failure mode D, the cable state estimation
succeeds in 33 out of 35 trials. This illustrates the proposed cable state estimator is able
to detect cables of different colors and thicknesses in diverse configurations, despite being
accessible to only limited data with the red rope during training. The inferred segmentation
mask sometimes contains wrong predictions, especially when the robot partially occludes
the cable. Even with a lower quality mask prediction, the cable state estimation remains
accurate most times thanks to the cable initialization and node registration being robust to
occlusion and outliers, as shown in the left plot of Fig. 5.2.

Table 5.2 also reports the performance of the proposed method with cables of different
physical properties, such as thinner/softer ropes and a USB cable. Although the dynamics
of the unseen cables are different from the trained thick rope, the stretch primitives and
holding actions with reasonably predicted target points alleviate the effect of cable dynamics.
Overall, a success rate of 28 out of 35 is achieved, showing promising performance of our
cable routing method applied to various cables. To further improve the reliability, we suggest
exploring real-time cable tracking and leveraging force/torque feedback. In addition, higher-
bandwidth reactive planning and execution would help to detect failure modes early and
recover from them.

5.6 Chapter Summary

This chapter proposes spatial representation for cable routing, which bridges the high-level
long-horizon configuration planning and the low-level manipulation primitive execution. A
simple configuration planner is implemented with the proposed representation to achieve the
desired spatial relationship between the cable and fixtures. In addition, multiple execution
primitives are designed and learned from the collected data, including stretching, crossing,
and inserting. Real-world cable routing experiments are conducted with multiple cables,
varying in visual appearances, physical properties, and fixture settings, demonstrating the
method’s effectiveness.
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Chapter 6

Conclusions and Future Work

This dissertation introduced methodologies for enabling industrial robots to learn and plan
for various factory manufacturing tasks. We study 1) how to learn manipulation skills when
there are uncertainties in the object state estimation, 2) how to generalize the manipulation
skills to different even unseen scenarios, 3) how to learn the high-level task planning for
long-horizon tasks. We applied the learned skills to a series of applications including robotic
assembly (Chapter 2), deformable objects tracking and manipulation (Chapter 3), belt drive
units assembly (Chapter 4), and robotic cable routing (Chapter 5).

Chapter 2 proposes a novel framework to identify contact pose for peg-in-hole assembly
under position uncertainties. The proposed method utilizes a tilt-then-rotate strategy to
generate contact patterns. A CNN is utilized to classify the contact poses and guide the
robot to achieve the assembly task with admittance control. Simulation and experiment
results are provided to demonstrate the effectiveness of the proposed method. The proposed
method has several advantages. 1) The mapping from the contact pattern to the contact
pose is injective. 2) The method is robust to sensor noise. 3)The contact pose classification
model is easy to obtain. All the training data can be quickly generated in simulation with a
self-supervised scheme. 4) The method has good generalization ability and small sim-to-real
gap. Since the contact data is normalized and recorded in a polar coordinate, the pattern is
sensitive neither to the size of the object nor the parameters of the admittance controller. A
model learned from a larger peg-hole can be successfully applied to smaller ones as long as
the geometries are the same. Furthermore, the model learned in simulation can be adapted
to the real world, despite the huge sim-to-real gap. For future works, we plan to improve
the tilt-then-rotate strategy so that it can handle large orientation uncertainties and test it
with more challenging peg-hole shapes. We also intend to incorporate active and adaptive
sensing strategies to our framework, so that we don’t have to use a predefined tilt-then-rotate
strategy.

We also propose an alignment module and insertion module to deal with large pose
uncertainties in 6 DoF . In the alignment module, we utilize the Deep Neural Network
(DNN) to segment the peg and the hole from depth images. We can recover the 3D point
cloud of the workpieces by detecting the flat surfaces. Then we use point set registration
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to find the rotation and translation to align the peg and the hole. The alignment module
is able to reduce the pose uncertainties into a small region and provides a safe and efficient
action space for the insertion module. The insertion module compensates for the remaining
small uncertainties with an impedance controller by tracking a reference generated from an
RL policy. We have successfully validated the proposed method in simulations. We also
show that the alignment module can work well in real-world peg-in-hole experiments. For
future work, we will train and test the reinforcement learning and compliance controller in
the real-world. Considering the scenario where peg can slip in the robot end-effector during
assembly is an interesting research direction.

Chapter 3 proposes a novel framework SPR-RWLS for cable manipulation. In the frame-
work, we combine real-time cable tracking and online deformation model approximation.
For real-time tracking, a Gaussian mixture model based non-rigid registration is able to
track deformable cable robustly in the presence of sensor noise, outliers, and occlusions. For
deformation model approximation, the local deformation model can be approximated online
by solving a robust optimization in parallel under uncertainty. Experiments showed that
the proposed method is able to manipulate deformable cable to desired shape robustly. For
future work, we plan to test the performance on more complicated desired shapes. For a
desired shape that is far from the initial shape or when the cable is too long, we plan to de-
velop a method that can automatically and efficiently generate intermediate desired shapes.
SPR is proved to be robust for deformable cable tracking in 3D space. More manipulation
tasks with deformable cable and deformable 2D cloth will be tested in 3D space.

Chapter 4 proposes a trajectory optimization formulation to assemble the belt drive
unit. We propose a 3D keypoints representation to model the elastic belt, which simplifies
the complexity of the trajectory optimization problem. The problem is formulated as an
MPCC with complementarity constraints to model the hybrid dynamics due to contact
and elastic forces. Simulations results show that the proposed approach can find feasible
trajectories for the belt drive unit assembly with known but variable geometry. To the best
of our knowledge, this is the first work that formalizes the trajectory optimization problem
for the belt drive unit assembly, and the solution works in the real system. Several future
works are possible. The current method is based on the execution of an open-loop trajectory
which could fail under uncertainties in the position of the pulleys or of the belt. Adding
a feedback controller is fundamental for a more robust and reliable solution. Moreover, in
order to improve the generality of the problem, we are interested in an autonomous selection
of the 3D keypoints for a given task. Our formulation of a trajectory optimization problem
for deformable objects using complementarity constraints is not limited to belt drive unit
assembly. The proposed method might be applied to a wider range of tasks such as cable
routing and wire harness.

Chapter 5 proposes a spatial representation for cable routing, which bridges the high-level
long-horizon configuration planning and the low-level manipulation primitive execution. A
simple configuration planner is implemented with the proposed representation to achieve the
desired spatial relationship between the cable and fixtures. In addition, multiple execution
primitives are designed and learned from the collected data, including stretching, crossing,
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and inserting. Real-world cable routing experiments are conducted with multiple cables,
varying in visual appearances, physical properties, and fixture settings, demonstrating the
method’s effectiveness. For future work, the cable segmentation neural network can be
trained with more data. It will be great if the network can robustly detect a thin cable of any
color in an unseen clutter environment. The execution of manipulation primitive is open loop.
Adding force/torque feedback on the end-effector and a real-time failure detection module
could improve the robustness of the proposed method and detect the slack or overstretching
problem.
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