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Genome-Wide Association Studies
Reveal Susceptibility Loci for
Noninfectious Claw Lesions in
Holstein Dairy Cattle
Ellen Lai, Alexa L. Danner, Thomas R. Famula and Anita M. Oberbauer*

Animal Science Department, University of California, Davis, Davis, CA, United States

Sole ulcers (SUs) and white line disease (WLD) are two common noninfectious claw
lesions (NICL) that arise due to a compromised horn production and are frequent causes
of lameness in dairy cattle, imposing welfare and profitability concerns. Low to moderate
heritability estimates of SU and WLD susceptibility indicate that genetic selection could
reduce their prevalence. To identify the susceptibility loci for SU, WLD, SU and/or
WLD, and any type of noninfectious claw lesion, genome-wide association studies
(GWAS) were performed using generalized linear mixed model (GLMM) regression,
chunk-based association testing (CBAT), and a random forest (RF) approach. Cows
from five commercial dairies in California were classified as controls having no lameness
records and ≥6 years old (n = 102) or cases having SU (n = 152), WLD (n = 117), SU
and/or WLD (SU + WLD, n = 198), or any type of noninfectious claw lesion (n = 217).
The top single nucleotide polymorphisms (SNPs) were defined as those passing the
Bonferroni-corrected suggestive and significance thresholds in the GLMM analysis or
those that a validated RF model considered important. Effects of the top SNPs were
quantified using Bayesian estimation. Linkage disequilibrium (LD) blocks defined by
the top SNPs were explored for candidate genes and previously identified, functionally
relevant quantitative trait loci. The GLMM and CBAT approaches revealed the same
regions of association on BTA8 for SU and BTA13 common to WLD, SU + WLD,
and NICL. These SNPs had effects significantly different from zero, and the LD blocks
they defined explained a significant amount of phenotypic variance for each dataset
(6.1–8.1%, p < 0.05), indicating the small but notable contribution of these regions
to susceptibility. These regions contained candidate genes involved in wound healing,
skin lesions, bone growth and mineralization, adipose tissue, and keratinization. The LD
block defined by the most significant SNP on BTA8 for SU included a SNP previously
associated with SU. The RF models were overfitted, indicating that the SNP effects were
very small, thereby preventing meaningful interpretation of SNPs and any downstream
analyses. These findings suggested that variants associated with various physiological
systems may contribute to susceptibility for NICL, demonstrating the complexity of
genetic predisposition.

Keywords: sole ulcer, pododermatitis circumscripta, white line disease, lameness, genome-wide association
study, random forest, Bayesian regression, dairy cattle

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 657375

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.657375
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.657375
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.657375&domain=pdf&date_stamp=2021-05-28
https://www.frontiersin.org/articles/10.3389/fgene.2021.657375/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657375 May 23, 2021 Time: 12:48 # 2

Lai et al. GWAS for Noninfectious Claw Lesions

INTRODUCTION

Lameness, or abnormal gait and/or posture, is a pathognomonic
sign that the affected cow is in pain and frequently reflects claw
damage. Many claw conditions can cause lameness, including
injury, infectious claw lesions, and noninfectious claw lesions.
The two most common noninfectious claw lesions causing
lameness in dairy cattle are sole ulcers (SUs), also known as
pododermatitis circumscripta, and white line disease (WLD)
(Green et al., 2002; Shearer and van Amstel, 2017). These
lesions are not only a welfare issue but are also associated
with reduced milk production and decreased fertility (Green
et al., 2002, 2010; Hernandez et al., 2005; Charfeddine and
Pérez-Cabal, 2017). Consequently, SU and WLD represent a
considerable financial burden, with the average costs associated
with prevention, treatment, and losses from reduced productivity
ranging from $181 (Dolecheck et al., 2019) to $258 (Cha et al.,
2010) per case of SU and $155 for WLD (Dolecheck et al.,
2019) (adjusted to 2020 US dollars). Production losses from
extended calving interval, increased culling, and decreased milk
production increase greenhouse gas emissions by 33 (3.6%) and
39 (4.3%) kg CO2 equivalents per ton of fat- and protein-
corrected milk per case of SU and WLD, respectively (Mostert
et al., 2018). Reducing the prevalence of SU and WLD would
alleviate these welfare, economic, and environmental concerns
and thereby improve the sustainability of dairy production.

Both genetic and non-genetic factors contribute to
susceptibility to SU and WLD, and prevention can be achieved
through genetic means and herd management. Current
prevention methods focus on management control primarily
through regular claw trimming (Shearer and van Amstel, 2001)
and providing rubber flooring in stalls and alleys (Vanegas et al.,
2006; Fjeldaas et al., 2011; Eicher et al., 2013). Although dairies
have implemented these prevention methods, SU and WLD
remain prevalent worldwide, with estimates ranging from 4.1
to 27.8% for SU and from 2.0 to 11% for WLD in Holstein
cattle depending on parity and the housing style (Cramer et al.,
2008; Bicalho et al., 2009; van der Linde et al., 2010; Oberbauer
et al., 2013). Heritability estimates of susceptibility range from
0.01 to 0.3 for SU and from 0.017 to 0.26 for WLD (Van der
Waaij et al., 2005; van der Linde et al., 2010; Häggman and Juga,
2013; Oberbauer et al., 2013; van der Spek et al., 2013, 2015a;
Malchiodi et al., 2015a), implying that these non-genetic means
to reduce prevalence could be bolstered by genetic selection
against susceptibility to these claw lesions. Although many
genome-wide association studies (GWAS) have been performed
to identify the susceptibility loci, loci previously associated
with SU and WLD are discordant (Malchiodi et al., 2015b;
van der Spek et al., 2015b; Sánchez-Molano et al., 2019), and
susceptibility to these claw lesions is believed to be a complex
trait governed by loci of small effect (van der Spek et al., 2015b).
Some have postulated that selection against susceptibility to SU,

Abbreviations: BTA, Bos taurus autosome; CBAT, chunk-based association
testing; GLMM, generalized linear mixed model; GRM, genetic relatedness matrix;
GWAS, genome-wide association studies; LD, linkage disequilibrium; MAF, minor
allele frequency; NICL, noninfectious claw lesions; PVE, proportion of phenotypic
variance explained; RF, random forest; SUs, sole ulcers; WLD, white line disease.

WLD, and other noninfectious claw lesions could be achieved
through indirect selection on body conformation traits or feet
and leg traits (Van der Waaij et al., 2005; Häggman et al., 2013).
However, the genetic correlation between the conformation traits
and susceptibility to noninfectious claw lesions appears to be low
(Häggman and Juga, 2013; Malchiodi et al., 2015b; Ring et al.,
2018), further accentuating the need to identify loci associated
directly with susceptibility to noninfectious claw lesions. Thus,
the objective of this study was to identify the genomic regions
associated with susceptibility to SU, WLD, SU and/or WLD,
and noninfectious claw lesions using well-characterized herds
under similar management practices: we hypothesized that we
would identify small-effect loci associated with predisposition to
noninfectious claw lesions in addition to those already identified.

MATERIALS AND METHODS

All procedures were conducted in accordance with the ethical
standards set by the University of California, Davis, and
approved by the Institutional Animal Care and Use Committee
(protocol no. 22099).

Phenotypic Data
Dairies were selected to minimize environmental variations
by including dairies in Central and Northern California using
freestall housing, a flush system for waste removal, and diets
balanced to meet the nutrition requirements from the National
Research Council (National Research Council (NRC), 2001).
Case/control phenotypes were defined using hoof trimming
records. The hoof trimming records were generated by three
hoof trimmers: one serviced dairies A, B, and C; one serviced
dairy D; and the last trimmer serviced dairy E. Hoof trimmer
qualifications were described in a previous paper (Lai et al., 2020),
and the three trimmers employed common criteria in defining
the lesions. Hoof trimming regimens varied among dairies: cows
were trimmed at the beginning of and at mid-lactation, at dry off,
and when lame (dairy A); at dry off and when lame (dairies B
and C); only when lame (dairy D); and at mid-lactation, at dry
off, and when lame (dairy E). The following claw lesions were
documented in the hoof trimming records: SU, hemorrhage, sole
fracture, sole abscess, wall abscess, white line abscess (WLD), heel
abscess, laminitis, foot wart, and foot rot. Cows were phenotyped
as cases or controls based on whether they had or lacked records
of claw lesions, respectively. Four case/control datasets were
generated based on the type(s) of claw lesions the cases had.
For datasets 1 (SU) and 2 (WLD), cases were defined as cows
with at least one record of SU or WLD, respectively. For dataset
3 (SU + WLD), cases included cows with either one or both
of the claw lesions. Cases for dataset 4 (noninfectious claw
lesions, NICL) included cows with at least one of the following
noninfectious claw lesions: SU, hemorrhage, sole fracture, sole
abscess, wall abscess, WLD, heel abscess, and/or laminitis. Cows
with no claw lesions and that were at least 6.0 years old were
considered sound controls. The age restriction was imposed to
avoid misphenotyping younger cows that had insufficient time
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to develop claw lesions. The same sound controls were used to
compare against the cases in each of the four datasets.

Genotypes
Whole blood was collected from cows phenotyped as cases
and controls. DNA was extracted from whole blood samples
using the QIAGEN QIAamp DNA Blood Mini Kit (QIAGEN
Inc., Valencia, CA) and quantified using the NanoDrop (ND-
2000 v3.2.1) spectrophotometer (Thermo Scientific, Wilmington,
DE, United States). DNA samples were genotyped on the
BovineHD BeadChip [777K single nucleotide polymorphisms
(SNPs), Illumina Inc., San Diego, CA, United States] by GeneSeek
(Lincoln, NE, United States), and Illumina’s GenCall algorithm
was used to call genotypes. A portion of the controls used in
this study were the same controls used in our previous study
(Lai et al., 2020), for which raw and processed genotype data
are publicly available at the NCBI Gene Expression Omnibus
database (GEO series record GSE159157). Additional cows
genotyped in this study are available in the GEO database (GEO
series record GSE165945).

Genotypes were updated to the ARS-UCD1.2 assembly
positions (Rosen et al., 2020) and quality filtered using PLINK
1.9 (Chang et al., 2015; Purcell and Chang, 2015) to remove
from further analyses SNPs and cows with genotyping rates
<95%, SNPs with significant deviation from Hardy–Weinberg
equilibrium (p < 1E−6) to exclude systematic genotyping errors,
and SNPs with minor allele frequencies (MAFs) < 5% to
exclude rare variants. To visualize genetic similarity among the
remaining cows, multidimensional scaling (MDS) analysis was
performed, and the first two dimensions were plotted. Because
the downstream programs for GWAS analysis [the generalized
linear mixed model (GLMM) and random forest (RF)] required
genotypes at each SNP, missing genotypes remaining after quality
filtering were imputed using BEAGLE 5.1 (Browning et al., 2018)
using the default parameters and an effective population size
of 58 previously estimated for North American Holstein cattle
(Makanjuola et al., 2020).

Generalized Linear Mixed Model GWAS
Because disease phenotype was binary (cases and controls), the
model used for association testing needed to reflect this binary
outcome. Accordingly, logistic regression was used to model the
binary outcome for the power analysis and for association testing.
Power analysis was conducted using the genpwr R package
(Moore et al., 2019), assuming an additive genetic effect and
a sample size and case rate similar to the sample population
(sample size = 275, case rate = 0.6). Given these parameters,
the smallest effect SNP that the GWAS was expected to detect
would have an odds ratio of at least 1.7 and a MAF of at least
0.34. For association testing, a genetic relatedness matrix (GRM)
and farms were included as covariates in the model to account
for population stratification and relatedness as well as the effect
of farm, respectively. The probability of disease was defined as
pijk for the k-th cow on the i-th farm identified in the j-th
SNP genotype class and the logit of this probability, as θijk =

log
[
pijk/

(
1− pijk

)]
. The logit of the probability of disease was

modeled as a function of the recorded explanatory variables (e.g.,
farm and SNP genotype) along with a presumed quantitative
genetic contribution for each SNP:

θijk = µ+ Fi + Sj + ak

where µ is an unknown constant common to all cows, Fi
the contribution of i-th farm to the risk of disease, and Sj
is the contribution of the j-th SNP genotype to the risk of
disease. The additive genetic effect ak is assumed to be drawn
from the multivariate normal density N(0, Aσ2

a), with A as the
standardized GRM among the animals in the dataset calculated
in GEMMA (Zhou and Stephens, 2012) and σ2

a is the unknown
additive genetic variance of the disease risk. Model fitting and
association testing via the score test (i.e., the Legrange multiplier
test) were implemented with the generalized linear mixed model
association test (GMMAT) R package (Chen et al., 2016).

The effective number of independent markers (Me) was
calculated as the number of SNPs remaining after linkage
disequilibrium (LD) pruning using the Genetic Type I error
calculator and used as the denominator for Bonferroni correction
of the association p values (Li et al., 2012). Significant SNPs
were defined as those with p ≤ 0.05/Me and suggestive SNPs
were defined as those with p ≤ 1/Me (Lander and Kruglyak,
1995). Genomic inflation factors were calculated as the ratio of
the median of the observed and expected p values. Quantile–
quantile plots (qqplots) and Manhattan plots were plotted
using the R package qqman (R Development Core Team, 2010;
Turner, 2014).

Chunk-Based Association Testing
Chunk-based association testing (CBAT), also called set-based
association testing, was performed to decrease multiple testing
and, in turn, improve the power of detecting associated regions
in the small sample size. In contrast to gene-based association
testing, which jointly tests variants within genes for association
with the phenotype (e.g., Xia et al., 2017), CBAT analyzes
consecutive windows of variants (i.e., chunks) across each
chromosome without prior filtering. Accordingly, CBAT includes
variants in non-coding regions containing regulatory elements
that could contribute to phenotypic variation in complex traits
(Koufariotis et al., 2014, 2018). Quality-filtered SNPs were split
into 100-kb chunks overlapping by 50 kb. Each chunk was LD-
pruned to remove SNPs that were in strong LD (R2 > 0.98) and
then tested for association with the phenotype by determining
whether the phenotypic variance explained (PVE) by the chunk
was significantly greater than zero. Specifically, association
testing for each chunk was performed by calculating a GRM using
the SNPs in the chunk and regressing the phenotype on the GRM.
In addition to the chunk-based GRM, a thinned GRM (from
genome-wide SNPs) and farms were included as covariates in
the model to adjust for population stratification and differences
among farms. The thinned GRM was calculated using genome-
wide LD-pruned SNPs: SNPs within a window of 1 Mb and
a R2 > 0.5 were pruned out such that only SNPs in linkage
equilibrium were used in the GRM calculation. For each chunk
of SNPs, the following linear model was used to define the
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disease phenotype y for the k-th cow as a function of phenotypic
contribution from the j-th chunk that comprised m SNPs and the
i-th farm:

yijk = µ + Fi + Cj + ak + εijk

where µ, Fi, and ak are the same components outlined in the
previous equation contributing to phenotype (coded as 0 for

controls and 1 for cases), Cj =
m∑

l=1
Sl is the contribution of the

chunk to the phenotype in which Sl is the contribution of the l-th
SNP in the chunk, and εijk is the residual term. Estimates of PVE
for each chunk were transformed to the underlying liability scale
to adjust for ascertainment of cases using prevalence estimates
from the literature: 4.08% for SU, 7.89% for WLD, 0.10 for
SU + WLD, and 0.10 for NICL (DeFrain et al., 2013; Oberbauer
et al., 2013). Calculating the thinned GRM, estimating PVE by
each chunk, association testing with the likelihood ratio test, and
p value estimation via 10 permutations for each chunk (Listgarten
et al., 2013) were performed using the linkage disequilibrium-
adjusted kinships (LDAK) program (Speed et al., 2012). For
each dataset, the significance thresholds were adjusted using
Bonferroni correction: chunks with p≤ 0.05/(number of chunks)
were defined as significant and chunks with p ≤ 1/(number of
chunks) were defined as suggestive (Lander and Kruglyak, 1995).
Manhattan plots and qqplots were plotted using the R package
qqman (R Development Core Team, 2010; Turner, 2014).

Random Forest GWAS
A RF fits a model that includes all SNPs and does not require
an assumption about the mode of inheritance (e.g., additive,
dominant, and recessive), making RFs an appealing approach for
complex traits such as susceptibility to claw lesions, in which
the trait is highly polygenic and epistasis is present (Goldstein
et al., 2010). Furthermore, RFs are insensitive to uneven sampling
of cases and controls across different dairies, as RFs first build
decision trees, then quantify the importance values afterward
with data available in the trees.

Linkage disequilibrium pruning and RF analyses were
performed as previously detailed (Lai et al., 2020) for each
of the four datasets. Briefly, LD-pruned genotypes and farms
were used as predictors for the RF analyses performed using
the caret R package (Kuhn, 2008; R Development Core Team,
2010). For each dataset, the population was randomly divided
into a training (two-thirds of the cows) and a test (one-
third of the cows) population. Using the training population,
the number of predictors considered at each node of each
decision tree, mtry, was tuned using five values, 0.1p, 0.2p,
0.5p, 0.8p, and p, where p is the total number of predictors
(Goldstein et al., 2010; Brieuc et al., 2018). The mtry resulting
in the most accurate RF model was used for downstream
analyses. The most important predictor was assigned a value
of 100, and any other predictor’s importance values was scaled
accordingly (e.g., a predictor with an importance value of 50
is 50% as important as the most important predictor). Model
validation was performed by using the predictors and their
importance values to predict the case/control phenotype in
the test population. To determine which SNPs were important

and worthy of further investigation, a scree plot was plotted
and the second-order point of inflection was identified using
the inflection R package (Christopoulos, 2016, 2017) (i.e., the
“elbow method”). Predictors with importance values equal to or
greater than the second-order point of inflection were defined
as important SNPs and explored in downstream analyses if and
only if the RF model was significantly more accurate at predicting
phenotype in the test population than the non-information rate
(i.e., the frequency of the more common phenotype).

Defining Associated Regions
For each of the four datasets, the top SNPs were defined as
significant and suggestive SNPs from the GLMM regression
or important SNPs from a significantly predictive RF model.
Boundaries of the genomic regions of association were defined
using SNPs in LD with top SNPs. Similar to the methodology
of Richardson et al. (2016) and Twomey et al. (2019), the
positions of SNPs within 5 Mb and with R2

≥ 0.5 of
each top SNP were determined using non-pruned imputed
genotypes, and the furthest SNP upstream and downstream in
LD with the significant or suggestive SNP defined the LD block
boundaries. Overlapping LD blocks were combined. Using the
same procedure outlined for CBAT, the PVE by the LD blocks
defined from the GLMM and RF analyses was estimated and
compared against the PVE by chunks of SNPs of the same size
that overlapped by 50 kb from all chromosomes.

Bayesian Estimation of SNP Effects and
Assessing Model Fit
A Bayesian approach was used to test the association of the top
SNPs identified in the GLMM and the RF with the case/control
phenotype for the four datasets. Bayesian methodology was
selected because it allows multiple SNPs to be fitted jointly,
recognizes that some SNPs are correlated and most likely
have small effects on susceptibility (van der Spek et al.,
2015b), and can account for the uneven sampling of cases
and controls from dairies. Additionally, the effect size estimates
obtained from Bayesian estimation are directly interpretable,
and Bayesian model evaluation is extremely thorough. Because
highly correlated predictors complicate Bayesian regression, the
significant and suggestive SNPs detected in the GLMM GWASs
were LD-pruned (R2 > 0.9) using PLINK 1.9 (Chang et al., 2015;
Purcell and Chang, 2015) prior to estimating effects to keep the
most significant SNP in each LD block for inclusion into the
Bayesian model. Estimation of SNP effects was performed using
a Bayesian logistic regression model as described in Lai et al.
(2020). The important SNPs from the RF did not need to be LD-
pruned, as SNPs were LD-pruned prior to RF analyses. Briefly,
each set of top SNPs (i.e., LD-pruned suggestive/significant SNPs
from the GLMM analyses and important SNPs from RF analyses)
was used as predictors along with farm as a covariable in a
Bayesian logistic regression model, and the model was fitted
via sampling the posterior using the Hamiltonian Monte Carlo
algorithm in the R package rstanarm (Gelman et al., 2020;
Goodrich et al., 2020). The same population was used in the
GLMM and RF GWAS as for the SNP effect estimation, which
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could lead to the inclusion of false-positive associations in the
Bayesian model. Thus, to discern whether the included SNPs
were false positives, the fit of the Bayesian model using the
estimated parameters was evaluated using leave-one-out (LOO)
cross-validation and posterior predictive checking (PPC) using
the loo and bayesplot R packages (Vehtari et al., 2017, 2020; Gabry
et al., 2019). Bayesian estimation of the SNP effects generated a
distribution of where the true value of the SNP effect was, and
this range was quantified in the 95% uncertainty intervals (UI),
as opposed to a point estimate in frequentist methods. SNPs with
95% UIs that did not overlap zero were considered significantly
associated with susceptibility to the respective claw lesion(s).

Functional Annotation of Associated
Regions
Genes and previously defined quantitative trait loci (QTL) falling
within or overlapping with the associated LD blocks and chunks
were obtained using FAANGMine using the genomic regions
search function (Functional Annotation of Animal Genomes
(FAANG), 2019) and the CattleQTLdb (Hu et al., 2019). RefSeq
genes were extracted from the resulting gene list and used in the
pathway and gene ontology enrichment analysis in FAANGMine.
Genes were searched in the Mouse Genome Informatics batch
query database to find the associated mammalian phenotypes
(Smith and Eppig, 2009). Genes were also queried in the Cattle
Gene Atlas (Fang et al., 2020) to determine in which tissues
they were expressed.

RESULTS

Descriptive Data
The percentage and count of cows with records of each claw
lesion from each dairy are presented in Table 1. Of the cows that
had hoof trimming records from the five dairies, 5.6 and 12.0%
had records of SU and WLD, respectively, similar to previous
prevalence estimates (Cramer et al., 2008; Bicalho et al., 2009;
van der Linde et al., 2010; Oberbauer et al., 2013). For cows that
were genotyped, cases were sampled from all five dairies, whereas
controls were sampled from dairies A and D, which had cows
that met our strict soundness and age criteria for controls. The
dataset included 156 SU cases, 119 WLD cases, 203 SU + WLD
cases (72 cows had both SU and WLD), 222 NICL cases, and 104
sound controls, for a total of 287 cows (Table 2). The average age
of the controls sampled was 8.7 years old (SD = 1.4), and when
compared to the average age of onset of 4.2 (SD = 1.7) for SU and
4.5 (SD = 2.6) years for WLD, it indicated that our age cutoff of
6.0 years old was sufficient to avoid misphenotyping control cows.

After quality filtering, ∼556,000 SNPs for 152 SU cases, 117
WLD cases, 198 SU + WLD cases (71 cases had both SU and
WLD), 217 NICL cases, and 102 sound controls remained for
MDS, GLMM, Genetic Type I error calculation, CBAT, and RF
analyses. The MDS plot showed some population stratification,
with a prominent center cluster and two other sparse clusters,
although clustering was not by farm or case/control phenotype
(Supplementary Figure 1). Pairwise relationship coefficients
calculated for the GRM ranged from −0.094 to 0.50, with TA
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negative values indicating that the two cows were less related
to each other than other random pairs of individuals. The
distribution of the pairwise relationship coefficients did not differ
greatly between pairs of cows from the same farm and pairs
from different farms (Supplementary Figure 2). The Genetic
Type I error calculator determined that the effective number of
markers on autosomal chromosomes for Bonferroni correction
was ∼156,000 SNPs for the four datasets, yielding a significance
threshold of p = 3.2 × 10−7 [6.5 on −log10(p) scale] and a
suggestive threshold of p = 6.4 × 10−6 [5.2 on −log10(p) scale].
The total number of 100-kb chunks used in CBAT was ∼51,730
for the four datasets, yielding a significance threshold of p = 9.7
× 10−7 [6.0 on −log10(p) scale] and a suggestive threshold of p
= 1.9 × 10−5 [4.7 on −log10(p) scale]. Linkage disequilibrium
pruning at R2 > 0.90 left 215,343–218,185 SNPs for RF analysis,
depending on the dataset.

Generalized Linear Mixed Model GWAS
and CBAT
The GLMM analyses detected a region of association on BTA8 for
SU and BTA13 for WLD, SU + WLD, and NICL while sufficiently
accounting for population stratification and relatedness, as
indicated by the qqplots and the genomic inflation factors of
1.01, 1.02, 1.01, and 0.99 for SU, WLD, SU + WLD, and
NICL, respectively (Supplementary Figure 3). The CBAT using
100-kb overlapping chunks across the genome also properly
accounted for population stratification and relatedness (qqplots
in Supplementary Figure 5) and identified the same regions as
the single-marker GLMM GWAS for each of the four datasets,
providing further support for these regions (Supplementary
Table 1; Manhattan plots in Supplementary Figure 6). The
SU CBAT also identified two suggestive chunks on BTA17
(Supplementary Table 1 and Supplementary Figure 6A). For
the NICL CBAT, the reduction in the number of tests performed
allowed the chunk at BTA13:46,450,001–46,550,001 to reach
genome-wide significance (p = 6.9 × 10−7; Supplementary
Table 1 and Supplementary Figure 6D). This significant chunk
contained the most significant SNP from the single-marker
GLMM GWAS and three suggestive SNPs downstream.

The GLMM association testing for SU susceptibility identified
12 suggestive SNPs on BTA8 falling in or directly upstream of
the gene DCAF12 (also known as DDB1 and CUL4-associated

TABLE 2 | Distribution of cases for sole ulcers (SU), white line disease (WLD),
SU + WLD, noninfectious claw lesions (NICL), and sound controls after quality
filtering across the five dairies.

Farm Controls Cases

SU WLD SU + WLD NICL

A 81 44 48 75 87

B 0 8 13 17 23

C 0 4 7 9 10

D 21 71 33 72 72

E 0 25 16 25 25

Total 102 152 117 198 217

factor 12) (Tables 3, 4). The 12 suggestive SNPs collectively
defined a 3.2-Mb LD block at BTA8:74,345,807–77,546,693
(Table 3 and Figure 1A) encompassing or overlapping with
60 genes: 52 protein-coding genes, four long non-coding RNA
(lncRNA) genes, a transfer RNA (tRNA) gene, a microRNA
(miRNA) gene, a small nuclear RNA (snRNA) gene, and a
small nucleolar RNA (snoRNA) gene. Because the 12 suggestive
SNPs from the SU GLMM were in strong LD (R2 > 0.9),
the most significant SNP, BovineHD0800023021, was selected
to represent this LD block in the Bayesian logistic regression
model. The minor allele at BovineHD0800023021 (T) had an
effect that was significantly less than zero at 95% UI (Table 3
and Figure 2A), indicating that it was associated with reduced
susceptibility to SU. The LOO analysis yielded acceptable Pareto
k values (k < 0.5) for all cows, which indicated that the model
was able to predict the phenotype of each cow with similar
accuracy using the genotypes at BovineHD0800023021 from all
other cows. Goodness-of-fit assessment via PPC also showed
that the distribution of the phenotypes simulated using the
estimated SNP effect closely aligned with that of the observed
data (Supplementary Figure 7A), further validating the fit
of the model. In addition to identifying suggestive chunks
in the same regions on BTA8, CBAT for SU detected two
significant chunks on BTA17 (Supplementary Table 1 and
Supplementary Figure 6A) that both fell within TMEM12
(transmembrane protein 132B).

For WLD, the GLMM association testing found a
single suggestive intergenic SNP at BTA13:46,491,619
(BovineHD1300013725; Supplementary Figure 4A), which was
also the most significant SNP identified by the GLMM analyses
for SU + WLD and NICL (Table 3 and Supplementary Figure 4B
and Figure 1B). In addition to detecting BovineHD1300013725,
the GLMM analyses for the SU + WLD and NICL datasets
detected eight other suggestive SNPs in the same LD block as
BovineHD1300013725 (Table 3 and Supplementary Figure 4).
These nine suggestive SNPs detected in the SU + WLD GWAS
were slightly more significant in the NICL GWAS and defined a
2.4-Mb LD block at BTA13:45,283,136–47,676,681 containing 27
genes: 16 protein-coding genes, six lncRNA genes, two snRNA
genes, two snoRNA genes, and one miRNA gene. For all four
GLMM GWAS, the limited number of genes in the LD blocks
defined from suggestive SNPs precluded pathway and gene
ontology analyses.

Given that the GLMM GWAS for SU + WLD and NICL
identified nine suggestive SNPs in the same LD block (R2 >
0.5) on BTA13 (Figure 1B and Supplementary Figure 4) and
the top SNP is the same as that in the WLD GWAS, only the
NICL Bayesian SNP effect estimation results are presented. Eight
of these suggestive SNPs were in strong LD (R2 > 0.9), whereas
the remaining suggestive SNP (BTB-00525539) was in weaker LD
with the others (R2 = 0.7). Consequently, the most significant
SNP in the LD block of eight SNPs (BovineHD1300013725) and
BTB-00525539 were included in the Bayesian logistic regression
model. The minor allele at BovineHD1300013725 representing
the eight SNPs in strong LD had an effect that was significantly
greater than zero at 95% UI (Figure 2B), indicating that the
minor allele (C) was associated with increased susceptibility to

Frontiers in Genetics | www.frontiersin.org 6 May 2021 | Volume 12 | Article 657375

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657375
M

ay
23,2021

Tim
e:12:48

#
7

Laietal.
G

W
A

S
for

N
oninfectious

C
law

Lesions

TABLE 3 | SNPs that were suggestive in the generalized linear mixed model association analysis and the linkage disequilibrium (LD) blocks they defined for sole ulcers (SU), white line disease (WLD), sole ulcers and/or
white line disease (SU + WLD), and noninfectious claw lesions (NICL).

Dataset BTA SNP SNP position
(bp)

Minor/
major allele

Minor allele
count

Minor allele
frequency

Scorea

(variance)
p SNP significance in

Bayesian estimationb
LD block
start (bp)

LD block
end (bp)

LD block
length (kb)

Cases Controls Cases Controls

SU 8 BovineHD0800023014 75,489,164 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023015 75,490,011 T/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 ARS-BFGL-NGS-112795 75,490,692 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023016 75,491,531 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023017 75,492,307 G/A 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023018 75,493,464 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023019 75,494,163 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023021 75,496,244 T/C 77 97 0.253 0.476 −20.4
(18.8)

2.66E−06 * 74,345,807 77,546,693 3,200.9

8 BovineHD0800023022 75,496,918 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023023 75,497,471 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023024 75,498,118 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023025 75,501,482 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

WLD 13 BovineHD1300013725 46,491,619 C/T 106 48 0.453 0.235 19.9 (19.4) 6.13E−06 * 46,307,416 47,584,595 1,277.2

SU + WLD 13 BovineHD1300013725 46,491,619 C/T 183 48 0.462 0.235 25 (25.5) 7.03E−07 * 45,283,136 47,676,681 2,393.5

13 BovineHD1300013733 46,526,509 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013739 46,540,186 G/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013740 46,541,925 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013750 46,561,964 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013759 46,582,769 G/A 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013765 46,596,264 A/G 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013774 46,637,235 A/G 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BTB-00525539 47,420,271 C/A 195 59 0.492 0.289 24.6 (27.8) 3.03E−06 ns 45,283,136 47,676,681 2,393.5

NICL 13 BovineHD1300013725 46,491,619 C/T 199 48 0.459 0.235 26.4 (27.2) 3.96E−07 * 45,283,136 47,676,681 2,393.5

13 BovineHD1300013733 46,526,509 C/T 204 52 0.470 0.255 26 (27.3) 6.68E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013739 46,540,186 G/T 204 52 0.470 0.255 26 (27.3) 6.68E−07 – 45,283,136 47,676,681 2,393.5
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NICL (Table 3). In contrast, the effect of the minor allele at BTB-
00525539 was not significantly different from zero (Figure 2B).
Although the score variances of the suggestive SNPs were large
(Table 3), possibly due to the sample cohort, Bayesian estimation
was less affected than GLMM regression by these limitations and
indicated that the SNP effects were significant for SU and NICL
(Figure 2). For the LOO analysis of the model, the acceptable
Pareto k values (k < 0.5) from all cows demonstrated that the
model including BovineHD1300013725 and BTB-00525539 was
able to predict the NICL phenotype of each cow based on the
genotypes at these two SNPs from the other cows with similar
accuracy. The PPC-simulated data based on the estimated SNP
effects of these two SNPs were similar to the observed data,
indicating good model fit (Supplementary Figure 7B).

To draw attention to the impactful SNPs shown in Table 3 and
the LD blocks they defined in Table 4, the minor allele frequencies
at the most significant SNP for SU (BovineHD0800023021)
in cases and controls were 0.253 and 0.476, respectively. The
GLMM output score was negative and Bayesian estimation
indicated a significant negative effect on susceptibility; that
is, the minor allele was associated with reduced susceptibility.
In contrast, the MAF at the most significant SNP for NICL
(BovineHD1300013725) was higher in cases (0.459) than in
controls (0.235), indicating that the minor allele was associated
with higher susceptibility. Likewise, the GLMM score was
positive, and Bayesian estimation of the effect size resulted in a
significant positive effect. Similar minor allele frequencies, scores,
and significantly positive effect size estimates were observed at
BovineHD1300013725 for WLD and SU + WLD. As seen in
Table 4, the LD blocks defined by the suggestive SNPs had PVE
between 0.06 and 0.08, depending on the dataset (SU, WLD,
SU + WLD, or NICL), all of which were significantly greater
than zero (permuted p < 0.05). In contrast, the genome-wide
chunks with the same length as the LD blocks had an average PVE
∼0.008, with PVE increasingly slightly with increasing chunk
size, and average permuted p values∼0.5.

Random Forest GWAS
The RF models for all four datasets were not significantly more
accurate at predicting the phenotype in the test population
compared to the non-information rate (i.e., the frequency of the
more common phenotype), indicating that the RF models were
overfitted (Brieuc et al., 2018) such that the SNPs that passed
the significance threshold were likely random noise. Because
importance values are assigned and the importance threshold
defined after fitting the RF model, some SNPs will always pass
the importance threshold. Consequently, the value of these
important SNPs and the likelihood that the important SNPs
are truly trait linked must be gauged using model validation.
In this case, the models were invalidated because of their poor
phenotype prediction in the test population, indicating that
the SNPs classified to be important were unlikely associated
with the phenotype.

Additionally, the genomic regions identified by SNPs that
passed the importance threshold did not overlap across the
four datasets, despite their shared etiology, or with the genomic
regions on BTA8 and BTA13 detected in the GLMM association
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TABLE 4 | Proportion of phenotypic variance explained (PVE) by each linkage disequilibrium (LD) block defined from the generalized linear mixed model association
analysis compared to the mean PVE of all chunks of genomic regions with the same length for sole ulcers (SU), white line disease (WLD), sole ulcers and/or white line
disease (SU + WLD), and noninfectious claw lesions (NICL).

LD block Genome-wide mean of chunks with
same length as LD block

Dataset BTA Start (bp) End (bp) Length (kb) PVE (SD) PVE p PVE (SE) PVE p (SE)

SU 8 74,345,807 77,546,693 3,200.90 0.081 (0.054) 3.93E−04 0.00809 (0.0004) 0.478 (0.006)

WLD 13 46,307,416 47,584,595 1,277.20 0.061 (0.047) 2.93E−05 0.00794 (0.0002) 0.485 (0.004)

SU + WLD 13 45,283,136 47,676,681 2,393.50 0.071 (0.050) 1.05E−06 0.00873 (0.0004) 0.482 (0.006)

NICL 13 45,283,136 47,676,681 2,393.50 0.074 (0.051) 5.79E−09 0.00828 (0.0003) 0.484 (0.005)

FIGURE 1 | Manhattan plots from the generalized linear mixed model
regression association analyses for (A) sole ulcers and (B) noninfectious claw
lesion susceptibility. The blue line indicates the threshold of genome-wide
suggestive significance and the red line indicates the threshold of
genome-wide significance.

analyses. Model overfitting combined with the lack of common
genomic regions across the four datasets indicated that the
RFs were unable to overcome the complex genetic architecture
of noninfectious claw lesions and identify genomic regions of
biological importance. Thus, downstream analyses to estimate
SNP effects and conduct pathway and gene ontology analyses
were not pursued.

DISCUSSION

Using GLMM regression, CBAT, and a RF approach to compare
the SNP genotypes of sound controls and various types of
noninfectious claw lesion cases, we identified genomic regions
associated with susceptibility to these claw lesions. Given the
overlapping etiology of the noninfectious claw lesion in this
study, we expected that association testing would detect the
genomic regions shared across some or all four datasets.
Common genomic regions were identified from the GLMM and
CBAT approaches, but not for the RF approach. Although RFs
are a promising tool to identify loci associated with complex
traits, the RF models in this study were overfitted, precluding

FIGURE 2 | Bayesian uncertainty interval (UI) plots depicting the estimated
single nucleotide polymorphism (SNP) effects of the suggestive SNPs
detected in the generalized linear mixed model regression analysis for (A) sole
ulcers and (B) noninfectious claw lesion susceptibility. Dots indicate the
median of the SNP effect, thick black bars indicate the 50% UI, and thin lines
indicate the 95% UI of the effect size distribution. The letters following SNP
names indicate the minor allele for which the effect was calculated. Positive
values indicate that the minor allele of the SNP increases susceptibility, and
negative values indicate that the minor allele of the SNP decreases
susceptibility.

meaningful interpretation of the SNPs that passed the importance
threshold. For GLMM testing and CBAT, the associated region
detected on BTA8 for SU appeared to be specific for SU because
the analyses for the other claw lesions did not detect this region;
a SNP in this region (ARS-BFGL-NGS-108587) has previously
been associated with SU (van der Spek et al., 2015b). The SNP
detected on BTA13 for WLD increased in significance as cows
with SU and other noninfectious lesions were added to the
GLMM GWAS and CBAT analysis, implying that these lesions
shared a genetic component that was less prevalent in SU cases.
LD blocks defined by the top SNPs from the GLMM GWAS
with nonzero effects from Bayesian estimation were explored
further for candidate genes and previously defined QTL that were
also functionally relevant to NICL etiology. The identification
of promising candidate genes within the associated regions may
lend more confidence to those regions; however, genetic selection
does not require candidate gene identification and instead uses
markers that are associated with, but not necessarily causal for,
the trait. Thus, the candidate genes are presented below to
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postulate their contribution to etiology rather than to inform
genetic selection.

Sole ulcers and WLD are thought to result from increased
laxity of the suspensory system from collagen breakdown and a
thinner digital cushion, allowing the distal phalanx to rotate and
sink within the claw (Lischer et al., 2002; Bicalho et al., 2009;
Newsome et al., 2017a,b; Shearer and van Amstel, 2017; Stambuk
et al., 2019). As the distal phalanx crushes the underlying corium,
a hemorrhage develops at the pressure site and horn production
through keratinization in the corium is disrupted, leading to horn
thinning and, eventually, a hole in the horn through which the
corium protrudes and develops into a SU (Greenough, 2007;
Shearer et al., 2015). Similarly, WLD is thought to develop as
a result of improper weight bearing and/or flooring causing
defective horn production along the white line that is more prone
to debris and bacteria infiltration, and when the bacteria reach the
corium, an abscess forms (Shearer and van Amstel, 2017). It has
been theorized that subclinical laminitis weakens the suspensory
system and thereby predisposes the cow to SU and WLD
(Thoefner et al., 2004), although evidence supporting this theory
is limited (Danscher et al., 2010). New bone development on
the third phalanx (Rusterholz, 1920; Blowey et al., 2000; Lischer
et al., 2002) is associated with increasing age (Tsuka et al., 2012;
Newsome et al., 2016) and is thought to contribute to a higher
incidence of ulceration (Rusterholz, 1920; Tsuka et al., 2012).
Because foot and leg conformation influences weight distribution
within and between claws, the foot and leg conformation traits are
thought to be correlated with SU + WLD susceptibility, although
stronger evidence is needed to support the low to moderate
phenotypic (Capion et al., 2008; Pérez-Cabal and Charfeddine,
2016) and genetic (Chapinal et al., 2013) correlations that were
previously observed. Based on the etiology of noninfectious claw
lesions and the possible genetic correlation of the susceptibility
of these claw lesions with the conformation traits, genes and QTL
related to collagen, keratinization, bone growth, adipose, and foot
and leg conformation were considered functionally relevant.

For SU, the suggestive SNPs fell in or near DCAF12 (DDB1
and CUL4-associated factor 12), an evolutionarily conserved
apoptosis regulation gene involved in DNA repair and protein
degradation that is required for tissue homeostasis under
stress conditions, as demonstrated in Drosophila (Hwangbo
et al., 2016). The metabolic stress associated with NICL could
potentially disrupt the regulation of DCAF12 and contribute
to aberrant tissue homeostasis within the claw. Within the
LD block, APTX, AQP7, B4GALT1, ENHO, GALT, GULO, and
UBAP2 had functions involved in wound healing, skin lesions,
bone growth and mineralization, adipose tissue, and keratin
summarized in Table 5. Notably, the LD block included a
SNP that van der Spek et al. (2015b) had previously associated
with SU susceptibility, ARS-BFGL-NGS-108587, supporting this
SNP as a susceptibility locus for SU and the investigation into
the region. No other previously defined QTL, physiologically
relevant, or foot and leg conformation QTL were identified
in the LD block. The two suggestive chunks on BTA17 both
fell in TMEM132B (transmembrane protein 132B; Table 5),
which, in humans, encodes a member of the TMEM132
family of evolutionarily ancient cell adhesion molecules that

connect the extracellular medium with the intracellular skeleton
(Sanchez-Pulido and Ponting, 2018).

For NICL, all nine suggestive SNPs fell directly upstream or
within introns of DIP2C (disco-interacting protein 2 homolog
C), which is hypothesized to play a role in transcription and
methylation regulation. DIP2C has been shown to regulate
DNA methylation and the epithelial–mesenchymal transition
in human cell lines (Larsson et al., 2017), and mutations in
DIP2C have been associated with skeletal dysplasia affecting
bone and cartilage development in humans (Maddirevula et al.,
2018). The LD block contained three additional candidate genes
with functions related to adipose tissue, bone growth, and bone
mineralization (Table 5). The LD block on BTA13 did not overlap
with previously defined QTL that were apparently related to
NICL or foot and leg conformation traits. According to the
Cattle Gene Atlas (Fang et al., 2020), some candidate genes
were expressed ubiquitously (DCAF12, APTX, GALT, UBAP2,
DIP2C, PCNA, and WDR37), and others were expressed more
highly in specific tissues, such as adipose, cardiovascular, bone
marrow, central nervous system, mammary, liver, or immune
tissues (AQP7, B4GALT1, ENHO, GULO, and RASSF2; Table 5).

Prior GWAS studies of NICL, while having larger sample
sizes, were sampled from larger geographical regions and used
lower-density SNP panels. An acknowledged limitation of this
study is the small sample size. However, previous GWAS
with smaller sample sizes using the high-density SNP array
were able to detect associated loci in Holstein populations
for digital cushion thickness (n = 502) (Stambuk et al.,
2020) and left displaced abomasum (n = 406) (Lehner et al.,
2018), implying that locus detection is possible despite smaller
sample sizes. By maintaining stringent phenotyping for sound
controls, minimizing environmental and housing variability,
and increasing SNP density, we aimed to optimize the ability
to detect genomic variants at the expense of larger sample
sizes. Additionally, the CBAT approach reduced the number of
tests performed to increase power and found the same regions
of association, providing further support for these regions.
Because SU susceptibility is also affected by environmental
management, including housing and nutrition, we sought to
minimize environmental variability by sampling cows at dairies
with similar nutrition and flooring, as the diets fed at the five
dairies were similar and all dairies used a freestall flush barn
system and rubber flooring in alleys.

Whereas previous published studies of noninfectious claw
lesions have not used the high-density panel, our study with the
777K SNP panel allowed for higher resolution when defining
the LD blocks. Furthermore, RF analysis and Bayesian regression
methods were implemented to perform joint association testing
of multiple top SNPs while working around the uneven sampling
of controls. The two published GWAS for SU susceptibility found
associated SNPs on different chromosomes than those identified
in this study, specifically on BTA 8, 10, 11, 18, and 22 using a
linear animal model (van der Spek et al., 2015b) and on BTA12
and 25 using a linear mixed model (Sánchez-Molano et al., 2019).
Other GWAS for traits related to SU + WLD included digital
cushion thickness (Sánchez-Molano et al., 2019; Stambuk et al.,
2020), sole hemorrhage susceptibility (van der Spek et al., 2015b;
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TABLE 5 | Candidate genes in linkage disequilibrium blocks defined by suggestive SNPs from the generalized linear mixed model and chunk-based association testing for sole ulcers (SU), white line disease (WLD),
sole ulcers and/or white line disease (SU + WLD), and noninfectious claw lesions (NICL) and the tissues in which they were expressed.

Claw lesion Gene symbol Gene description Functional relevance RNA tissue specificity

SU DCAF12 DDB1 (damage-specific binding
protein) and CUL4 (cullin 4)-associated
factor 12

Regulates apoptosis required for tissue homeostasis under stress
conditions (Hwangbo et al., 2016)

Ubiquitous

APTX Aprataxin Decreased bone mineral content (MGI) Ubiquitous

Increased total body fat amount (MGI)

AQP7 Aquaporin 7 Abnormal white adipose tissue physiology (MGI) Adipose, cardiovascular, and bone marrow

Increased fat cell size (MGI)

B4GALT1 Beta-1,4-galactosyltransferase 1 Decreased subcutaneous adipose tissue amount (MGI) Mammary gland

Delayed wound healing (MGI)

Hyperkeratosis (MGI)

Skin lesions (MGI)

Thin skin (MGI)

ENHO Energy homeostasis associated Increased body fat mass (MGI) Central nervous system

Increased percent body fat/body weight (MGI)

GALT Galactose-1-phosphate
uridylyltransferase

Decreased subcutaneous adipose tissue amount (MGI) Ubiquitous

Delayed wound healing (MGI)

Hyperkeratosis (MGI)

Skin lesions (MGI)

Thin skin (MGI)

GULO Gulonolactone (L-)oxidase Abnormal bone mineralization (MGI) Liver

Abnormal long bone epiphyseal plate morphology (MGI)

Abnormal trabecular bone morphology (MGI)

Decreased bone mineral density (MGI)

Decreased compact bone thickness (MGI)

TMEM132B Transmembrane protein 132B Cell adhesion molecule that connects the extracellular medium with the
intracellular skeleton (Sanchez-Pulido and Ponting, 2018)

Central nervous system, testes

UBAP2 Ubiquitin-associated protein 2 Abnormal adipose tissue amount (MGI) Ubiquitous

WLD, SU + WLD, NICL DIP2C Disco-interacting protein 2 homolog C Regulates DNA methylation and the epithelial–mesenchymal transition
in human cell lines (Larsson et al., 2017)

Ubiquitous

Mutations associated with skeletal dysplasia (Maddirevula et al., 2018)

PCNA Proliferating cell nuclear antigen Abnormal adipose tissue development (MGI) Ubiquitous

Decreased percent body fat/body weight (MGI)

Decreased white fat cell number
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Sánchez-Molano et al., 2019), and laminitis susceptibility (Naderi
et al., 2018), although the SNPs detected in these studies were also
on different chromosomes from those from this study.

Because noninfectious claw lesions have a similar etiology, it
has been postulated that pleiotropy may exist across the different
noninfectious claw lesions and related traits. For instance,
estimates of the genetic correlation between SU and WLD are
significant, ranging from 0.41 to 0.60 depending on parity (van
der Linde et al., 2010). However, past GWAS have not found
associations on the same chromosomes among SU, WLD, digital
cushion thickness, sole hemorrhage, or laminitis (van der Spek
et al., 2015b; Naderi et al., 2018; Sánchez-Molano et al., 2019),
or if SNPs from the same chromosome were detected, they were
in different regions. Specifically, the only common chromosome
among these three GWAS was BTA11: van der Spek et al. (2015b)
found Hapmap38795-BTA-97039 for SU at BTA11:23302850,
and Naderi et al. (2018) found BTB-00466773 for laminitis at
BTA11:48309332 (the SNP positions were updated to the ARS-
UCD1.2 map). The QTL identified on BTA13 may thus represent
a portion of the common genetic contribution to the different
types of noninfectious claw lesions.

CONCLUSION

Using logistic mixed model single-marker regression and CBAT,
genomic regions associated with susceptibility were identified
on BTA8 for SU and BTA13 for WLD, SU + WLD, and
NICL. The associated regions on BTA8 and BTA13 contained
candidate genes related to wound healing, skin lesions, bone
growth and mineralization, adipose tissue, and keratin. The RF
approach was unable to overcome the complexity of these lesion
traits and reliably identify potential candidate QTL. Although
these findings must be validated in larger populations in other
geographical regions, the detection of a region associated with SU
susceptibility that included a previously reported locus suggested
that the study cohort was adequate to identify the regions of
susceptibility for NICL. Further exploration of these regions
through targeted sequencing or RNA-seq in claw tissues with
and without noninfectious claw lesions may uncover variants
in the genes or regulatory elements contributing to lameness.
The multiplicity of associations detected in this and other
studies demonstrated the complexity of the genetic architecture
underlying noninfectious claw lesion susceptibility.
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