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Data privacy and security are among the grand challenges in the emerging era of massive

data and collective intelligence. On the one hand, the rapid advances of several technologies,

including artificial intelligence, are directly dependent on harnessing the full potential of data.

On the other hand, such colossal collections of data inherently have sensitive information about

individuals; explicit access to the data violates the privacy of content owners. While a number

of elegant cryptographic solutions have been suggested for secure storage as well as secure

transmission of data, the ability to compute on encrypted data at scale has remained a standing

challenge. Secure computation is a set of developing technologies that enable processing on

xx



the unintelligible version of the data. Secure computation can create a zero-trust platform

where two or more individuals or organizations collaboratively compute on their shares of data

without compromising data confidentiality. Computing on encrypted data removes several critical

obstacles that prohibit scientific advances in which collaboration between distrusting parties is

needed. Nevertheless, secure computation comes at the cost of significant computational overhead

and higher communication between the pertinent parties. Currently, the high computational

complexity prevents secure computation to be adopted in compute-intensive systems. This

dissertation introduces several holistic algorithm-level, protocol-level, as well as hardware-level

methodologies to enable the large-scale realization of the emerging secure computing and privacy

technologies.

The key contributions of this dissertation are as follows:

• Introducing a novel secure computation framework in which several secure function eval-

uation protocols are integrated. The integration allows to choose a specific protocol to

execute each unique operation based on the underlying mathematical characteristics of the

protocol. The proposed methodology enables the secure execution of machine learning

models 4-133× faster than the prior art.

• Designing a neural network transformation and a customized secure computation protocol

for secure inference on deep neural networks. The transformation translates the contempo-

rary neural network operations into several Boolean operations that can more efficiently

be executed in secure computation protocols. The proposed transformation in conjunction

with the customized protocol enable privacy-preserving medical diagnosis on four medical

datasets for the first time.

• Design and end-to-end implementation of a new high-performance hardware architecture

for computing on encrypted data. The proposed architecture outperforms high-end GPUs

by more than 30× and modern CPUs by more than two orders of magnitude.

xxi



• Creating an efficient methodology based on hardware synthesis tools to produce compact

Boolean circuit representation of a given function. The Boolean representation is optimized

according to the cost function of secure computation protocols. The methodology reduces

the computation and communication costs by up to 4×.

• Designing a new substring search algorithm customized for secure computation that does

not require random access to the text. The proposed algorithm outperforms all state-of-the-

art substring search algorithms when run within the secure computation protocol.

• Introducing the first secure content-addressable memory for approximate search. The design

enables high-accuracy similarity-based approximate search while keeping the underlying

data private without relying on a trusted server. The construction is the first to provide

post-breach data confidentiality.

• Proposing a new methodology to create large-volume synthetic human fingerprints that are

computationally indistinguishable from real fingerprints. The methodology enhances the

security of any fingerprint-based authentication system.
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Chapter 1

Introduction

Rapid advances in computing capabilities, together with exponential growth in the number

of sensors, have led to the generation of an unprecedented volume of data. In addition, faster

Internet connections have paved the way for ubiquitous use of online services. Thus, several

privacy and security issues are emerging as a result of poor data management and insufficient

security mechanisms. Data centers are increasingly prone to both internal and external hacks, and

preserving consumers’ data privacy is becoming more challenging every day. To this end, novel

cryptographic solutions are needed to enhance the security of large-scale systems and the privacy

of consumers.

Secure computation is a new set of technologies that enables computation on the encrypted

data. In contrast to traditional encryption mechanisms that protect data in storage or transit,

secure computation protects data during computation: closing the loop for data confidentiality.

The security guarantees, however, come at the cost of several orders of magnitude computation

and communication overhead, limiting the real-world deployment of this technology.

This thesis addresses several standing challenges related to secure computation. In

particular, several algorithmic, protocol-level, and hardware-level methodologies are proposed

that enable computing on encrypted data to become ubiquitous. In this section, I will review the
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challenges as well as my proposed methodologies to address such problems.

1.1 Mixed-Protocol Secure Computation Framework for Ma-

chine Learning

Secure Function Evaluation (SFE) is one of the most influential achievements of modern

cryptography. It allows two or more parties to evaluate a function on their inputs without

disclosing the inputs to each other; that is, all inputs are kept private by the respective owners.

In fact, SFE emulates a trusted third party which collects inputs from different parties and

returns the result of the function to all (or a specific set of) parties. SFE has many applications

in privacy-preserving biometric authentication [EFG+09], secure auctions [FPRSJ04], secure

search [RSK17b], privacy-preserving machine learning [DGBL+16a], and data mining [LP00].

SFE was initially introduced in 1982 by Andrew Yao [Yao82] as the millionaires’ problem in

which two millionaires are interested to know which one has more money without disclosing

their amount of wealth. Later on, the problem was formalized as a general question for any

function. The two most prominent SFE protocols are Yao’s Garbled Circuits (GC) [Yao86b] and

the Goldreich-Micali-Wigderson (GMW) protocol [GMW87].

In theory, any function that can be represented as a Boolean circuit can be evaluated

securely using GC or GMW protocols. For certain frequent operations such as multiplication, the

Boolean circuit description can result in a substantial overhead. The number of Boolean gates in

the circuit grows quadratically with respect to the bit-width of the operands. As a result, GC and

GMW can often be too slow and hence are of limited practical value. In addition to generic secure

computation protocols, i.e., GC and GMW, there exist solutions that enable a subset of operations

while imposing less computational overhead. For instance, secret sharing based methodologies

allow one to perform linear operations such as multiplication and addition on the encrypted data.

Non-linear operations, however, are not supported by these methodologies.
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I introduce Chameleon, a fast, modular, and hybrid (mixed-protocol) secure computa-

tion framework for machine learning tasks that utilizes GC, GMW, and additive secret sharing

protocols and achieves unprecedented performance both in terms of runtime and communica-

tion between parties. The proposed methodology securely executes linear operations, such as

multiplication and addition, on encrypted values using additive secret sharing. The computation

on the additive shares takes place in the ring Z2l , integers modulo a power-of-two number. As

such, linear operations can be computed significantly faster than generic SFE protocols due to the

inherent properties of the ring Z2l .

Non-linear operations on the encrypted values will be computed using either of the generic

protocols, i.e., GC or GMW. To switch the underlying protocol, one needs to change the secret

types from additive shares to Yao and Boolean shares, and vice versa. Chameleon provides

efficient mechanisms to realize this requirement and enable execution of different protocols

interchangeably. In addition, Chameleon introduces a new secure Vector Dot Product (VDP)

protocol that requires less computation and communication, both asymptotically and concretely,

compared to prior standard protocols for VDP. Since VDP is usually the computational bottleneck

of almost all machine learning models, Chameleon substantially reduces the secure evaluation of

various machine learning models. To further reduce the communication between parties, certain

compression and seed expansion techniques are incorporated. In a nutshell, Chameleon provides

a new approach to securely execute any type of machine learning application with 4-133× faster

runtime.

1.2 Neural Network Transforming for Secure Computation

The advent of big data and striking recent progress in artificial intelligence are fueling

the impending industrial automation revolution. In particular, Deep Learning (DL) —a method

based on learning Deep Neural Networks (DNNs) —is demonstrating a breakthrough in accuracy.
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DL models outperform human cognition in a number of critical tasks such as speech and visual

recognition, natural language processing, and medical data analysis. Given DL’s superior perfor-

mance, several technology companies are now developing or already providing DL as a service.

They train their DL models on a large amount of (often) proprietary data on their own servers;

then, an inference API is provided to the users who can send their data to the server and receive

the analysis results on their queries. The notable shortcoming of this remote inference service is

that the inputs are revealed to the cloud server, breaching the privacy of sensitive user data.

Oblivious inference is the task of running the DL model on the client’s input without

disclosing the input or the result to the server itself. Several solutions for oblivious inference have

been proposed that utilize one or more cryptographic tools such as Homomorphic Encryption

(HE) [BV14, BGV14], Garbled Circuits, GMW protocol [GMW87], and Secret Sharing (SS).

Each of these cryptographic tools offer their own characteristics and trade-offs.

I introduce XONN, a novel end-to-end framework which provides a paradigm shift

in the conceptual and practical realization of privacy-preserving interference on deep neural

networks. The existing work has largely focused on the development of customized security

protocols while using conventional fixed-point deep learning algorithms. XONN, for the first

time, suggests leveraging the concept of the Binary Neural Networks (BNNs) in conjunction with

the GC protocol. In BNNs, the weights and activations are restricted to binary (i.e, ±1) values,

substituting the costly multiplications with simple XNOR operations during the inference phase.

The XNOR operation is known to be free in the GC protocol [KS08a]; therefore, performing

oblivious inference on BNNs using GC results in the removal of costly multiplications. Using my

approach, I show that oblivious inference on the standard DL benchmarks can be performed with

minimal, if any, decrease in the prediction accuracy.

State-of-the-art approaches for oblivious inference require at least one round of interaction

between client the server. This requirement, in turn, can substantially increase the runtime of

oblivious inference in real-world settings where the network latency is high and unstable. One
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of XONN’s design principles is to have a constant rounds of interaction between client and the

server regardless of the number of layers in the neural network. The removal of many interaction

rounds paves the way to run very deep neural networks. For instance, XONN enables secure

medical diagnosis on four medical datasets for the first time, i.e., breast cancer, diabetes, liver

disease, and Malaria. Leveraging XONN, medical agencies can obtain AI-based medical diagnosis

through third parties without disclosing patients’s data: the private data remains encrypted at all

times, even during the computation by the third party. Thus, medical agencies can enhance their

diagnosis without violating patients’ privacy.

1.3 High-Performance Hardware Architecture for Comput-

ing on Encrypted Data

Cloud computing has, in a short time, fundamentally changed the economics of computing.

It allows businesses to quickly and efficiently scale to almost arbitrary-sized workloads; small

organizations no longer need to own, secure, and maintain their own servers. However, cloud

computing comes with significant risks that have been analyzed in the literature over the last

decade (see [DWC10,HN08,SK11]). Specifically, many of these risks revolve around data security

and privacy. For example, data in cloud storage might be exposed to both outsider and insider

threats, and be prone to both intentional and unintentional misuse by the cloud provider. Recently,

the European Union and the State of California have passed strong data privacy regulations. In

this light, companies and organizations that possess highly private data are hesitant to migrate to

the cloud, and cloud providers are facing increasing liability concerns.

Fully Homomorphic Encryption (FHE) provides provable security guarantees without any

trust assumptions on the cloud provider, and it can be used to enable several secure and privacy-

preserving cloud-based solutions. For instance, in the context of Machine Learning as a Service

(MLaaS), FHE can be used to perform oblivious neural network inference [DGBL+16b,DSC+18]:
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clients send the encrypted version of their data, the cloud server runs ML models on the encrypted

queries, and returns the result to the clients. All intermediate and final results are encrypted and

can only be decrypted by the clients. Perhaps, the most critical obstacle today to deploy FHE at

large-scale is the enormous computation overhead compared to a plaintext counterpart in which

data is not kept confidential.

The ciphertext in FHE schemes is a set (usually a pair) of polynomials with degree

n−1 (vectors of n integers) modulo a big integer. One of the main challenges of designing an

architecture for FHE is that homomorphic operations on ciphertexts involve computationally

intensive modular arithmetic on big integers (with several hundred bits). These operations have

convoluted data dependency among different parts of the computation, making it challenging to

design a high-throughput architecture. Moreover, the degree of the underlying polynomials is

enormous (in the order of several thousand). Storing the entire intermediate results on FPGA chip

is prohibitive.

Prior work that propose customized hardware have taken one of these approaches: (i)

Designing co-processors that only accelerate certain low-level ring operations [CRS16, CGRS14,

WH13, CMO+14, DÖS14b, JGCM+15]; high-level operations are performed on the CPU-side,

which makes the co-processors of limited practical use. (ii) Storing intermediate results on

off-chip memory, which significantly degrades the performance [PNPM15] to the extent that it

can be worse than naive software execution [RJV+18]. (iii) Designing a hardware for a fixed

modest-sized parameter, e.g., n = 212 [RTJ+19]. However, encryption parameters determine the

security-level and the maximum number of consecutive multiplications that one can perform on

ciphertext, both of which are application-dependent. One of our primary design goals in HEAX

is to have an architecture that can be readily used for a wide range of encryption parameters. In

addition, we propose several techniques to efficiently store and access data from on-chip memory

and minimize (or eliminate for some parameter sets) off-chip memory accesses.

I introduce HEAX (stands for Homomorphic Encryption Acceleration): a novel high-
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performance hardware architecture for computing on (homomorphically) encrypted data. I

design several optimized core computation blocks for fast modular arithmetic and introduce a

new architecture for high-throughput Number-Theoretic Transform (NTT). NTT is a ubiquitous

operation in FHE as well as many lattice-based cryptography systems. Efficient NTT engine

directly improves the performance of these cryptosystems since NTT operation is usually the

computational bottleneck. Building on top of the NTT module I design modules to perform

high-level operations supported by FHE, thus accelerating any FHE-based privacy-preserving

system. HEAX has been internally implemented and integrated with Microsoft Azure. Proof-

of-concept realization of HEAX provides 36-81× higher computation capability compared to

datacenter GPUs while consuming significantly less power. Compared to modern CPUs, HEAX

has 164-268× higher performance.

1.4 Compact Circuit Representation for Secure Computation

Secure multi-party computation (MPC a.k.a., SMC) protocols provide a provably-secure

method for multiple parties to jointly evaluate a function on their private inputs without disclosing

the input values to each other. MPC protocols can be categorized into two main groups: protocols

based on (i) the Goldreich-Micali-Wigderson paradigm [GMW87] and (ii) the Garbled-Circuit

paradigm [Yao86b]. The original idea of two-party GC is later generalized for multi-party setting

in the Beaver-Micali-Rogaway (BMR) protocol [BMR90]. Both paradigms require the underlying

function to be represented as a Boolean circuit. The tools and methods for Boolean computations

of two-party protocols are available, but they are not readily scalable or available for multiple

parties. Present ad-hoc realization of secure multi-party tasks do not provide a holistic tool usable

for a variety of other MPC applications.

I present the first automated methodology to generate Boolean circuits, customized for

MPC protocols with state-of-the-art optimizations. Inspired by TinyGarble [SHS+15], the most

7



efficient Boolean circuit generator for the two-party setting, I leverage standard logic synthesis

tools for this purpose. Note that two-party libraries such as TinyGarble cannot be used for

the MPC problem since the synthesis technology libraries are not compatible with the MPC

protocols. In addition, the order of logic computation (determined by the API and the Boolean

netlist sorter) is radically different for two-party protocols. MPCircuits relies on designing new

technology libraries for the logic synthesis tools customized for MPC protocols. My solution can

be integrated with any cryptographic back-end engine for the MPC protocol, e.g., the realizations

in [BELO16, CHK+12], to allow users to perform a holistic secure multi-party computation.

The experimental results on five real-world applications, i.e., secure auction, voting, nearest-

neighbor search, private set intersection, and stable matching demonstrates up to 4× reduction

of computational and communication overhead of the underlying MPC protocol due to a more

optimized Boolean representation of the problem.

1.5 Efficient Search on Private Data

String search allows one to learn whether or not a query string is present within a usually

much larger text. Substring search also has numerous applications in different fields, ranging

from search engines to surveillance to genomic data processing. Many of these applications

involve processing private information. It is ideal to perform the search while keeping this

information secret. For example, string search on genomic data is used in personalized medicine

and identifying criminals using FBI Combined DNA Index System (CODIS)1. Meanwhile, an

individual’s genomic data carries highly sensitive information about her and her family. Therefore,

it is necessary to devise a solution for genomic string search with respect to certain security and

privacy requirements. Another example is a government surveillance system that can search

patterns or particular words (e.g., “bomb”) in chat logs, text messages, and documents without

1
https://www.fbi.gov/services/laboratory/biometric-analysis/codis
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undermining citizens’ privacy.

Substring search is a very well-studied problem in computer science, and many ingenious

algorithms have been proposed to solve it efficiently. However, prior algorithms are optimized

with respect to search within a public text, i.e., there exist a party where both query as well

as the text are available in the unencrypted form (cleartext). In the privacy-preserving setting

where both query and text hold sensitive data, it is crucial to keep query and text private to

their respective owners. One can realize privacy-preserving substring search using generic SFE

protocols by describing the substring algorithm as a Boolean circuit. Unfortunately, due to the

radically different computation cost functions of atomic operations within secure computation

compared to the cleartext execution, state-of-the-art substring search algorithms perform less

efficiently compared to the brute-force algorithm. For instance, random access to the text has a

constant cost independent from the text size assuming the text fully resides in the memory. In

contrast, random access to the text is a very expensive operation in secure computation, thus,

algorithms that need many random accesses will have high computational cost.

I introduce PriSearch, a novel privacy-preserving string search which does not need

random access to the text while storing linear-size precomputed data (with respect to the keyword

length). The computations required in PriSearch are mainly based on symmetric key encryption

and are far less expensive compared to HE. I also design new synthesis libraries and leverage

logic synthesis tools to automatically generate an optimized sequential circuit for PriSearch to

achieve minimal cost in GC. Moreover, PriSearch is designed such that it can be easily extended

to support multiple variants of string search.

1.6 Secure Content-Addressable Memory

Content Addressable Memories (CAMs) have conventionally been used for fast and

efficient packet forwarding in Internet routers [PA01]. CAM can be viewed as hardware engine for
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efficient lookup table search. Unlike traditional algorithmic solutions that require sequential access

to memory elements, CAM provides a hard-wired architecture that searches the entire memory in

a single clock cycle. Asides from their usage in networks, emerging methodologies have been

proposed to use CAMs for the purpose of in-memory computing, aiming to improve the energy

efficiency and performance of conventional processors [IKRR16, RGC+15, IPRR16, RIKR17].

This means that CAMs will be tightly coupled with the main processing elements of emerging

computers, hence, their security is of great importance. Nevertheless, to the best of my knowledge,

there has been no prior work to address the security of CAM. A naive solution for security is

storing encrypted data in CAM. This approach is not feasible since the nature of semantically

secure encryption mechanisms (e.g., AES) implies that the similarity of two elements is not

preserved in the ciphertext domain. Hence, one cannot use the encrypted data to perform the

approximate search using CAMs.

I propose CAMsure, a lightweight solution for securing emerging CAM technologies in

the context of approximate search. Instead of writing the raw data on CAM, my approach stores

distance-preserving hash embeddings to provide data privacy. The hashing scheme that is utilized

in CAMsure is a variant of Locality Sensitive Hashing (LSH) [IM98a]. This family of hashing

methods creates a randomized embedding of data while preserving the pairwise similarity. The

methodology in CAMsure relies on the curse of dimensionality and introduces a new practical

trade-off between the mutual information between hash bits and the accuracy of the search results.

CAMsure is the first solution for CAMs that provides post-breach data security: even in the case

of a data breach, the data stored in the CAM has no direct information about the original data.

1.7 Synthetic Human Fingerprints

Human fingerprints are frequently used in several applications for authentication and

identification, ranging from smart doors to authorizing payments on cell phones. Evaluating the
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performance and reliability of identification and verification fingerprint-based systems requires

access to a large fingerprint database. However, in practice, obtaining a massive corpus of

fingerprint images incurs a high cost. In many cases, the research groups that are developing

fingerprint-based authentication systems, do not have access to a large publicly-available database.

The performance of these systems is directly dependent on the quality and quantity of the available

data.

In addition to the above obstacles, gathering fingerprint impressions of a large population

of people raises severe privacy and security concerns. In case of a breach, the fingerprint of many

users will be directly exposed to attackers and can be used to fool any other authentication systems

that accept fingerprints. To this end, we study the task of generating synthetic fingerprints which

can solve the challenges mentioned above. Synthetic fingerprints solve the availability concern as

they can be generated for virtually any number of samples. Moreover, synthetic fingerprints are

artificially generated; hence, they do not leak any information about real identities.

I present SynFi, a new comprehensive framework to automatically generate high-quality

synthetic fingerprints at scale. My solution formulates the process of generating synthetic finger-

prints as two parallel deep learning tasks based on Generative Adversarial Network (GAN) and

Super-Resolution (SR) paradigm. In particular, SynFi formalizes and satisfies the following de-

sign goals to meet real-world expectations: (i) the generated samples should preserve the minutiae

characteristics of fingerprints used for authentication systems, e.g., ridge structure, bifurcations,

and ridge endings. (ii) An ideal system should be able to generate full-finger impressions as

opposed to partial fingerprints. (iii) Synthetic fingerprints should be computationally indistin-

guishable from real impressions to be used as a means to extend the security of biometric storage

systems. (iv) The system should be fully automated, requiring no manual feature engineering to

have high scalability. SynFi satisfies all of the above requirements.
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1.8 Impact

This dissertation affects several aspects of secure computation and introduces various

methodologies, i.e., algorithms, protocols, and hardware, to enhance the efficiency of secure

computation and reduce the communication overhead. The contributions of this dissertation

can be applied to different applications ranging from healthcare to financial services to cloud

computing. The open-sourced projects, as well as the Application Programming Interfaces (APIs),

can be found at https://github.com/sadeghriazi.
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Chapter 2

Background

2.1 Cryptographic Protocols

In the following, we provide a concise overview of the basic protocols and concepts that

are used in this thesis. Intermediate values are kept as secret shares of different types. We denote

a share of value x, in type T , and held by party i as 〈x〉Ti .

2.1.1 Oblivious Transfer Protocol

Oblivious Transfer (OT) is a building block for secure computation protocols. The OT

protocol allows a receiving party R to obliviously select and receive a message from a set of

messages that belong to a sending party S , i.e., without letting S know which message was

selected. In 1-out-of-2 OT, S has two l-bit messages x0,x1 and R has a bit b indicating the index

of the desired message. After performing the protocol, R obtains xb without learning anything

about x1−b and S learns no information about b. We denote n parallel 1-out-of-2 OTs on l-bit

messages as OT n
l .

The OT protocol requires costly public-key cryptography that significantly degrades the

performance of secure computation. A number of methods have been proposed to perform a
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large number of OTs using only a few public-key encryptions together with less costly symmetric

key cryptography in a constant number of communication rounds [Bea96, IKNP03, ALSZ13].

Although the OT extension methods significantly reduce the cost compared to that of the original

OT, the cost is still prohibitively large for complex secure computation that relies heavily on OT.

However, with the presence of a semi-trusted third party, the parties can perform OT protocols

with very low cryptographic computation cost as explained in Section 3.4.5.

2.1.2 Garbled Circuit Protocol

One of the most efficient solutions for generic secure two-party computation is Yao’s

Garbled Circuit (GC) protocol [Yao86b] that requires only a constant number of communication

rounds. In the GC protocol, two parties, Alice and Bob, wish to compute a function f (a,b) where

a is Alice’s private input and b is Bob’s. The function f (., .) has to be represented as a Boolean

circuit consisting of two-input gates, e.g., AND and XOR. For each wire w in the circuit, Alice

generates and assigns two random k-bit strings, called labels, X0
w and X1

w representing 0 and 1

Boolean values where k is a security parameter, usually set to k = 128 [BHKR13]. Next, she

encrypts the output labels of a gate using the two corresponding input labels as the encryption

keys and creates a four-entry table called garbled table for each gate. The garbled table’s rows are

shuffled according to the point-and-permute technique [NPS99] where the four rows are permuted

by using the Least Significant Bit (LSB) of the input labels as the permutation bits. Alice sends

the garbled tables of all the gates in the circuit to Bob along with the labels corresponding to her

input a. Bob also obliviously receives the labels for his inputs from Alice through OT. He then

decrypts the garbled tables one by one to obtain the output labels of the circuit’s output wires.

Alice on the other hand has the mapping of the output labels to 0 and 1 Boolean values. They can

learn the output of the function by sharing this information.
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2.1.3 GMW Protocol

The Goldreich-Micali-Wigderson (GMW) protocol is an interactive secure multi-party

computation protocol [GMW87,Gol09]. In the two-party GMW protocol, Alice and Bob compute

f (a,b) using secret-shared values, where a is Alice’s private input and b is Bob’s. Similar to the

GC protocol, the function f (., .) has to be represented as a Boolean circuit. In GMW, the Boolean

value of a wire in the circuit is shared between the parties: Alice has 〈v〉B0 , Bob has 〈v〉B1 , and

the actual Boolean value is v = 〈v〉B0 ⊕〈v〉B1 . Since the XOR operation is associative, the XOR

gates in the circuit can be evaluated locally and without any communication between the parties.

The secure evaluation of AND gates requires interaction and communication between the parties.

The communication for the AND gates on the same level of the circuit can be done in parallel.

Suppose an AND gate x∧ y = z (where ∧ is the AND operation) where Alice has shares 〈x〉B0 and

〈y〉B0 , Bob has shares 〈x〉B1 and 〈y〉B1 , and they wish to obtain shares 〈z〉B0 and 〈z〉B1 , respectively.

As shown in [DSZ15], the most efficient method for evaluating AND gates in the GMW

protocol is based on Beaver’s multiplication triples [Bea91]: Multiplication triples are random

shared-secrets a, b, and c such that 〈c〉B0 ⊕〈c〉B1 = (〈a〉B0 ⊕〈a〉B1 )∧ (〈b〉B0 ⊕〈b〉B1 ). The triples can

be generated offline using OTs (cf. [SZ13]) or by a semi-trusted third party (cf. Section 3.4.4).

During the online phase, Alice and Bob use the triples to mask and exchange their inputs of

the AND gate: 〈d〉Bi = 〈x〉Bi ⊕〈a〉Bi and 〈e〉Bi = 〈y〉Bi ⊕〈b〉Bi . After that, both can reconstruct

d = 〈d〉B0 ⊕〈d〉B1 and e = 〈e〉B0 ⊕〈e〉B1 . This way, the output shares can be computed as 〈z〉B0 =

(d∧ e)⊕ (〈b〉B0 ∧d)⊕ (〈a〉B0 ∧ e)⊕〈c〉B0 and 〈z〉B1 = (〈b〉B1 ∧d)⊕ (〈a〉B1 ∧ e)⊕〈c〉B1 .

2.1.4 BMR Protocol

For brevity, we only report proof-of-concept evaluations based on BMR [BMR90]. This

protocol has two main phases: garbling and evaluation. In the first phase, all parties jointly create

the garbled version of the circuit. In the second phase, each party receives partial information
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from other parties and begins to evaluate the circuit locally. The garbling phase is usually the

most costly stage in the protocol execution. However, since it is independent of the actual inputs

from the participating parties, it can be pre-computed in advance.

Garbling. In this phase, all parties assign two random labels for every wire in the

circuit, one for semantic value zero and one for semantic value one. We use notations consistent

with [BELO16]: ki
w,a ∈ {0,1}κ denotes random label of wire w for the semantic value a ∈ {0,1}

held by party Pi i = 1...n where n is the total number of parties. κ is the security parameter

and is usually set to 128. For each gate, parties encrypt output labels using F2, a double-key

pseudorandom function and use two input labels as keys. Consider gate g, with two inputs u and

v, and output wire w. For example, in the case of an AND gate, output label for semantic value 1

(kw,1) is encrypted using the two input labels of semantic value 1 (ku,1 and kv,1). Since there are

four possible input combinations for any two-input Boolean gate, parties create four different

encryptions of the correct output label and their corresponding input keys. The collection of all

four encrypted values is called a garbled table. More precisely, for every a,b ∈ {0,1}, the output

label for c = g(a,b) ∈ {0,1} is encrypted as

{( n⊕
i=1

F2
ki

u,a, ki
v,b
(ng ◦ j)⊕ k j

w,g(a,b)

)}n

j=1

(2.1)

where ng is the unique ID number for a gate and ◦ denotes concatenation operation. In order

to mask the relationship between labels and actual semantic values, each party also assigns a

permutation bit λi
w and sets λw =⊕n

i=1λi
w. All four encrypted values are permuted according to

permutation bits.

Evaluation. In order to transfer the labels associated with the true value of an input wire,

the Oblivious Transfer (OT) protocol is used. In OT, one party holds two (or multiple) messages

mi and another party holds the selection bit(s) b. At the end of the protocol, the receiver gets mb

and learns nothing about other message(s) while the sender learns nothing about the selection
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bit(s). Given the collection of n keys for each input wire, all parties can decrypt one row of each

garbled table (those connected to input gates) and generate the output keys of those gates. The

evaluation process continues until output gates are reached. Therefore, the evaluation process

can be computed locally once each party has the correct combination of all n keys for all input

gates. Note that none of the intermediate values are revealed to any party. In fact, the semantic

value of each wire is XOR-shared among all parties. All labels are unintelligible by themselves.

At the end of the protocol, each party only sends her share of the output wires’ labels such that

everyone can locally compute the plaintext output result. Please see [BELO16] for more detailed

explanation.

Free-XOR Optimization. Kolesnikov et al. [KS08b] proposed a method that eliminates

the need for creating garbled tables for XOR gates, rendering them almost free of cost. To utilize

this technique, each party Pi needs to create a one-time random number Ri ∈ {0,1}κ. Same as

before, ki
w,0 is generated randomly but ki

w,1 is set to Ri⊕ki
w,0 for every wire. Due to this correlation

of labels, the output label of each XOR gate can be computed by XORing the two input labels

without any communication between parties.

2.1.5 Additive Secret Sharing

In this protocol, a value is shared between two parties such that the addition of two secrets

yields the true value. All operations are performed in the ring Z2l (integers modulo 2l) where

each number is represented as an l-bit integer. A ring is a set of numbers which is closed under

addition and multiplication.

In order to additively share a secret x, a random number within the ring is selected,

r ∈R Z2l , and two shares are created as 〈x〉A0 = r and 〈x〉A1 = x− r mod 2l . A party that wants to

share a secret sends one of the shares to the other party. To reconstruct a secret, one only needs to

add the two shares x = 〈x〉A0 + 〈x〉A1 mod 2l .

Addition, subtraction, and multiplication by a public constant value η (z = x◦η) can be

18



done locally by the two parties without any communication: party i computes the share of the

result as 〈z〉Ai = 〈x〉Ai ◦η mod 2l , where ◦ denotes any of the aforementioned three operations.

Adding/subtracting two secrets (z = x+− y) also does not require any communication and can be

realized as 〈z〉Ai = 〈x〉Ai +−〈y〉
A
i mod 2l . Multiplying two secrets, however, requires one round of

communication. Furthermore, the two parties need to have shares of precomputed Multiplication

Triples (MTs). MTs refer to a set of three shared numbers such that c = a×b. In the offline phase,

party i receives 〈a〉Ai , 〈b〉Ai , and 〈c〉Ai (cf. Section 3.4.4). By having shares of an MT, multiplication

is performed as follows:

1. Party i computes 〈e〉Ai = 〈x〉Ai −〈a〉Ai and

〈 f 〉Ai = 〈y〉Ai −〈b〉Ai .

2. Both parties communicate to reconstruct e and f .

3. Party i computes its share of the multiplication as

〈z〉Ai = f ×〈a〉Ai + e×〈b〉Ai + 〈c〉Ai + i× e× f

For more complex operations, the function can be described as an Arithmetic circuit only

consisting of addition and multiplication gates where in each step a single gate is processed

accordingly.

2.2 CKKS Fully Homomorphic Encryption Scheme

The homomorphic property of FHE schemes enables computation on encrypted data

without the access to the decryption key. For example, adding two ciphertexts results in a

ciphertext that encrypts “summation of the corresponding plaintext values”. Multiplication,

however, is significantly more complicated. It increases the number of polynomials in the
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resulting ciphertext; requiring an operation, called relinearization, to transform the ciphertext

back to a pair of polynomials. In order to avoid the underlying plaintext values in the ciphertext

to blow-up, an operation called rescaling is performed which divides the plaintext value by a

constant number. To enable SIMD-style operations, an encoding step is performed by the client

to embed many numbers in a single ciphertext. CKKS scheme supports rotation in which the

numbers encoded in a ciphertext can be rotated.

Relinearization, rescaling, and rotation operations can be expressed as a unified operation

called Key Switching (plus certain pre- and/or post-processing steps). Modular arithmetic oper-

ations can be computed more efficiently if ciphertext coefficients are represented in a Residue

Number System (RNS). The full-RNS variant of the CKKS scheme was introduced in [CHK+19].

Another orthogonal optimization based on NTT provides a more efficient polynomial multiplica-

tion. In what follows, we provide more background on CKKS.

Notation. Throughout the thesis, integers and real numbers are written in normal case,

e.g. q. Polynomials and vectors are written in bold, e.g. a. Vectors of polynomials and matrices

are written in upper-case bold, e.g. A. We use subscripts to denote the indices, e.g. ai is the i-th

polynomial or row of A.

We assume that n is a power-of-two integer and define a polynomial ring R =

Z[X ]/(Xn +1) whose elements have degrees at most n− 1 since Xn = −1 ∈ R. We write

Rq = R/qR for the residue ring of R modulo an integer q whose elements have coefficients in

[−b(q−1)/2c , bq/2c]∩Z. In the actual computation, we represent coefficients in [0, q−1]∩Z.

We denote by u · v the multiplication of two polynomials where the product is reduced mod-

ulo Xn + 1 in R and further reduced modulo q in Rq. We denote by 〈u, v〉 the dot product

of two vectors, which gives ∑i ui · vi. We denote by u� v the coefficient-wise multiplication

(u0 · v0, u1 · v1, . . .).

For a real number r, bre denotes the nearest integer to r, and brc is the largest integer

smaller than or equal to r. For an integer a, [a]p denotes the reduction of a modulo an integer p to
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[0, p−1]∩Z. We use a← χ to denote sampling a according to distribution χ. For a finite set S,

U(S) denotes the uniform distribution on S.

Residue Number System (RNS). There is a well-known technique to achieve asymp-

totic/practical improvements in polynomial arithmetic over Rq with an RNS by choosing q =

∏
L
i=0 pi where pi’s are pair-wise coprime integers, based on the ring isomorphism Rq 7→∏

L
i=0 Rpi .

We denote the RNS representation of an element a ∈ Rq by A =
(

ai = [a]pi

)
0≤i≤L

∈

∏
L
i=0 Rpi . The inverse mapping is defined based on the formula a = ∑

L
i=0 aiπi

[
π
−1
i

]
pi

(mod q),

where πi =
q
pi

. Multiplications or additions in Rq, denoted by c = Func(a,b), can be performed

on their RNS representation: ci = Func(ai,bi) in Rpi (in parallel), i = 0,1, . . . ,L.

Gadget Decomposition. Let g ∈ Zd be a gadget vector and q an integer. The gadget

decomposition, denoted by g−1, is a function from Rq to Rd which transforms an element a ∈ Rq

into A ∈ Rd , a vector of small polynomials such that a = 〈g,A〉 (mod q). We integrate the

RNS-friendly gadget decomposition from [BEHZ16, HPS19].

CKKS Subroutines. We briefly review relevant subroutines:

• CKKS.Setup(λ): For a security parameter λ, set a ring size n, a ciphertext modulus q, a

special modulus p coprime to q, and a key distribution χ and an error distribution Ω over R.

• CKKS.SymEnc(m, sk): Let m ∈ R be a given plaintext and sk = s ∈ Rqp be a secret

key. Sample a←U(Rqp) and e← Ω, compute b = −a · s+ e ∈ Rqp, and return the ciphertext

ct= (c0, c1) = (b, a).

• CKKS.KeyGen(): Sample s← χ. Return a secret key sk = s and a public key pk =

SymEnc(0, sk).

• CKKS.KskGen(sk′,sk): Let sk= s∈Rqp be the generated secret key, sk′= s′ ∈Rqp be a

different key, and a gadget vector g∈Zd . Return a key switching key ksk= (D0 |D1)∈ R(L+2)×2
q`p ,

where (d0,i, d1,i)← SymEnc(gi · s′, s) for i = 0, 1, . . . , d−1.

• CKKS.Add(ct0, ct1): Given ciphertexts ct0, ct1 ∈ R2
q` encrypting pt0, pt1 ∈ R, gen-

erate ct′ = ct0 +ct1 ∈ R2
q` which is equivalent to the encryption of pt0 +pt1 ∈ R.

21



Algorithm 1 Optimized Modular Mult. | MulRed(x, y, y′, p)

Input: x,y ∈ Zp, p < 2w−2, and y′ = by ·2w/pc
Output: z← x · y (mod p)

1: z← x · y (mod 2w) . the lower word of the product
2: t← bx · y′/2wc . the upper word of the product
3: zε← t · p (mod 2w) . the lower word of the product
4: z← z− zε . single-word subtraction
5: if z≥ p then
6: z← z− p
7: end if

Two frequently used operations in homomorphic evaluation are modular reduction and

modular multiplication:

• Mod(x, p): Used to perform modular reduction of a single-word or double-word in-

teger [Bar87]. For a modulus p with at most w bits, given an integer x ∈
[
0, (p−1)2], pre-

compute u =
⌊
22w/p

⌋
, and compute z = x (mod p). Mod(a, p) performs Mod(ai, p) for all

i = 0, 1, . . . , n−1.

• MulRed(x, y, y′, p): For w-bit words and a modulus p < 2w−2, given x, y ∈ Zp and

precomputed y′ = by ·2w/pc, compute x · y (mod p) according to Algorithm 1.

2.3 Deep Neural Networks

The computational flow of a deep neural network is composed of multiple computational

layers. The input to each layer is either a vector (i.e., x ∈ Rn) or a tensor (i.e., X ∈ Rm×n×k). The

output of each layer serves as the input of the next layer. The input of the first layer is the raw

data and the output of the last layer represents the network’s prediction on the given data (i.e.,

inference result). In an image classification task, for instance, the raw image serves as the input to

the first layer and the output of the last layer is a vector whose elements represent the probability

that the image belongs to each category. Below we describe the functionality of neural network

layers.
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Linear Layers:Linear operations in neural networks are performed in Fully-Connected

(FC) and Convolution (CONV) layers. The vector dot product (VDP) between two vectors x ∈ Rn

and w ∈ Rn is defined as follows:

VDP (x,w) =
n

∑
i=1

w[i] ·x[i]. (2.2)

Both CONV and FC layers repeat VDP computation to generate outputs as we describe next.

A fully connected layer takes a vector x ∈ Rn and generates the output y ∈ Rm using a

linear transformation:

y =W ·x+b, (2.3)

where W ∈Rm×n is the weight matrix and b ∈Rm is a bias vector. More precisely, the i-th output

element is computed as y[i] = VDP (W [i, :],x)+b[i].

A convolution layer is another form of linear transformation that operates on images. The

input of a CONV layer is represented as multiple rectangular channels (2D images) of the same

size: X ∈ Rh1×h2×c, where h1 and h2 are the dimensions of the image and c is the number of

channels. The CONV layer maps the input image into an output image Y ∈ Rh1′×h2′× f . A CONV

layer consists of a weight tensor W∈Rk×k×c× f and a bias vector b∈R f . The i-th output channel

in a CONV layer is computed by sliding the kernel W[:, :, :, i] ∈ Rk×k×c over the input, computing

the dot product between the kernel and the windowed input, and adding the bias term b[i] to the

result.

Non-linear Activations: The output of linear transformations (i.e., CONV and FC) is

usually fed to an activation layer, which applies an element-wise non-linear transformation to the

vector/tensor and generates an output with the same dimensionality. In this thesis, we particularly

utilize the Binary Activation (BA) function for hidden layers. BA maps the input operand to its

sign value (i.e., +1 or −1).

Batch Normalization: A batch normalization (BN) layer is typically applied to the output
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of linear layers to normalize the results. If a BN layer is applied to the output of a CONV layer,

it multiplies all of the i-th channel’s elements by a scalar γγγ[i] and adds a bias term βββ[i] to the

resulting channel. If BN is applied to the output of an FC layer, it multiplies the i-th element of

the vector by a scalar γγγ[i] and adds a bias term βββ[i] to the result.

Pooling: Pooling layers operate on image channels outputted by the CONV layers. A

pooling layer slides a window on the image channels and aggregates the elements within the

window into a single output element. Max-pooling and Average-pooling are two of the most

common pooling operations in neural networks. Typically, pooling layers reduce the image size

but do not affect the number of channels.

2.3.1 Generative Adversarial Networks

One family of deep learning models that has become very popular in recent years is

Generative Adversarial Networks (GAN) [GPAM+14]. Using GANs, one can estimate the

distribution of a given dataset. The key idea in GANs is to train two different neural networks

in parallel and make use of each of them to improve the other one. One of the networks, the

generative network, tries to generate samples from the given data distribution. The other one,

the discriminator network, is in charge of learning to distinguish the samples generated by the

generative network from the real data samples. During the training phase, the feedback from the

discriminator network is used to enhance the quality of the samples produced by the generative

network.

After their introduction, GANs has been used in different areas and tasks. One of their

most important applications is generating synthetic images. For example, [KLA19] generates

artificial images of human faces and [PLWZ19] uses GANs to generate landscape images from

doodles.
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2.4 Human Fingerprints

Each fingerprint has a set of micro-features that can be used to uniquely identify the finger.

Minutiae points correspond to the particular locations of fingerprint, e.g., ridge bifurcations or

endings. Each Minutia is represented as a tuple of the location (x, y), orientation θ, and a quality

factor q. Since different impressions of the same finger can result in drastically different minutiae

tuples, fingerprint matching methodologies rely on a scale- and rotation-invariant algorithms to

detect whether two sets of minutiae points belong to the same finger or not. An ideal synthetic

fingerprint generator should produce impressions such that the distribution of minutiae points is

not far from real ones.

2.5 Sub-String Search Algorithms

The set of all alphabet letters is denoted as Σ. For example, in genomic processing, the

alphabet set is Σ = {‘A’, ‘C’, ‘G’, ‘T’}. The size of the alphabet set is defined as R = |Σ|. Given

a query Q and a text T , string search looks for a contiguous substring in T which is equal to Q.

More precisely the output o is:

o =


1, iff ∃i | Q = T [i : i+m−1], 0 6 i 6 n−m

0, otherwise

where Q ∈ {Σ}m and T ∈ {Σ}n (usually m << n). In a two-party privacy-preserving string search,

Alice holds Q, and Bob holds T , and the goal is that one or both parties learn o while the contents

of Q and T remain secret from the other party (m and n are public).
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2.6 Content-Addressable Memory

Conventional Random Access Memories (RAMs) offer an address-based access to the

data. During a read operation, a RAM takes an address and outputs the corresponding content. In

RAM-based architectures, the data is physically separated from the processor. Current processors

need to fetch the data from the memory, thus, they suffer from the overhead of data movement in

different levels of the memory hierarchy.

Another trend of memory architectures offers content-based access to the data [KTFY03].

Unlike conventional RAMs, CAMs store a table of contents and identify the index of a row in

the table that matches the query. In other words, CAMs take the content as the input and output

the address in which the content is stored. This memory architecture searches the entire table

in a single clock cycle, hence, it provides several benefits in terms of search speed and energy

consumption.

Figure 2.1 presents a schematic view of the CAM architecture, which comprises an input

buffer, a set of stored words, and an address encoder. Each stored word, called a match-line, is

composed of multiple CAM cells that are responsible for holding bit values. In a search operation,

the buffer distributes the input (search key) among all the words (rows) in the CAM. The output

voltage of a cell is discharged if the stored value is not equal to the corresponding bit in the input

query. If all cells within a row match the input query, the output voltage of the whole match-line

remains high and triggers the address encoder. The address encoder then generates the matching

index based on the triggered match line.

The focus of this work is to provide the security of CAM’s contents. The functionality

of CAM is to perform search operations; thus, we employ the CAM architecture to implement

efficient lookup tables for secure near-neighbor search. Note that any lookup table can be

implemented using conventional RAM architectures. Nevertheless, CAMs are superior compared

to RAMs due to the following reasons:
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Figure 2.1: Schematic view of Content Addressable Memory (CAM).

• CAMs can search the entire table in a single clock cycle while RAMs perform sequential

fetch and comparison operations.

• CAMs enable in-memory computation while RAMs require a processing unit which incurs

additional delay and energy cost of data movement.

• CAMs reduce the response delay, improving the runtime of data-intensive applications.

CMOS-based CAMs [ACS03] and resistive CAMs [MHM+09] have been proposed in

the literature. CMOS-based CAMs are area-intensive and power consuming. For instance, a

CMOS-based CAM consumes about 20× more power and requires 3.8× larger area compared to

a RAM of the same storage capacity [GG10]. Alternatively, resistive cells deliver high-density

and low-power CAMs [LMIC14, MKN+11].

2.7 Approximate Search

In approximate search, the goal is to find all entries in a database that are similar to a

given query q. Throughout this thesis, we use the terms approximate search and near-neighbor

search interchangeably. We refer to each entry of the database as a word. The user’s request

is referred to as a query. Each data is represented as a D-dimensional vector whose elements

are binary, integer, or real values depending on the underlying application. To quantify the
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similarity, a metric (e.g., Jaccard, Cosine, or Euclidean) which is application-specific should

be defined. For example, one of the most popular similarity metrics for web documents is the

Jaccard similarity. In this case, each document is represented as a set. The Jaccard similarity for

two sets x, y⊆Ω = {1,2, ..., |Ω|} is defined as

R =
|x∩ y|
|x∪ y|

. (2.4)

Another popular metric is the Cosine similarity. For two vectors x,y ∈ RD, the Cosine

similarity can be computed as

C =
xT y

||x||2 · ||y||2
, (2.5)

where ||.||2 denotes norm-2 of a vector.

The output of the search is the indices of words in the database whose similarities are

more than a predefined threshold (TS). More precisely, we are looking for

Search(q) = {i | Similarity(di,q)> t},

where di is the ith word in the database. Without loss of generality, the similarity measurement can

always be normalized to a value between zero (no similarity) and one (identical). The approximate

search is called secure if the database holder outputs indices i without inferring any information

about the query q and words di.

LSH is a popular approximate search method that creates a probabilistic embedding (hash)

of a data with the following property: if two inputs are similar in the input domain, their hashes

have a higher probability of collision. More precisely,

Probability{h(x) = h(y)} = f (Similarity(x,y)) (2.6)

where h(.) is the hash function and f (.) is a monotonically increasing function. There exist
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variants of LSH that preserve different similarity metrics. For instance, MinHash preserves

Jaccard similarity and SimHash preserves Cosine similarity. We briefly describe each of these

hash functions while the reader can refer to [RCS+16] for more detailed explanation.

Jaccard Similarity and MinHash

As we discussed in Section 2.7, Jaccard similarity is defined over sets. To compute the

hash value, a random permutation π : Ω→Ω is applied on the input set. The hash is the minimum

value of the permuted set; more precisely, hmin(x) = min(π(x)). For instance, consider the set

x = {2,4,5} ⊂Ω = {1,2,3,4,5} and the random permutation

π : 1→ 4,2→ 1,3→ 5,4→ 2,5→ 3

that maps the set x to π(x) = {1,2,3}, hence, hmin(x) = 1. It has been shown [RCS+16] that

MinHash is a valid LSH since

Probability{hmin(x) = hmin(y)} = R ,

where R is the Jaccard similarity defined in Equation 2.4 and the function f (.) in Equation 2.6 is

equal to f (α) = α which is a monotonically increasing function.

Alternatively, each set can be represented as a binary vector of length |Ω| where the jth

binary value indicates whether j is a member of the set (value one) or not (value zero). Therefore,

MinHash can be viewed as a function over binary vectors of length D = |Ω|, hmin : {0,1}D→ N.

In order to consume less storage space, it is preferable to generate 1-bit LSH (h1−bit
min : {0,1}D→

{0,1}) by applying a universal hash function to the output of MinHash (see [RCS+16] for

more information about the universal hash function). The collision probability of h1−bit
min (x) with

h1−bit
min (y) is shown to be 1+ R

2 [RCS+16]. One needs to perform the hash evaluation l times with

l different random permutations to generate an l-bit LSH embedding.
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Cosine Similarity and SimHash

SimHash is a popular LSH method that preserves Cosine similarity and is based on

Signed Random Projections (SRP) [LRU14] which can be computed as follows: first, a random

D-dimensional row vector w is generated where vector components are drawn from i.i.d normal

distributions, wi ∼ N(0,1). The 1-bit SimHash is generated by computing the sign of the

projection of input vector to the randomly generated vector w, hsim(x) = sign(w · xT ). In fact, we

have hsim : RD→{0,1}. It is not difficult to show the following

Probability{hsim(x) = hsim(y)} = 1− θ

π
,

where θ = cos−1( xT y
||x||2·||y||2 ). Comparing this with Equation 2.6, the function f (.) can be formu-

lated as f (α) = 1− cos−1(α)
π

. In order to generate an l-bit LSH embedding, we need to compute

1-bit SimHashes l times with l different randomly sampled w vectors.
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Chapter 3

Chameleon: Mixed-Protocol Secure

Computation Framework for Machine

Learning

We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function

evaluation (SFE) which enables two parties to jointly compute a function without disclosing

their private inputs. Chameleon combines the best aspects of generic SFE protocols with the

ones that are based upon additive secret sharing. In particular, the framework performs linear

operations in the ring Z2l using additively secret shared values and nonlinear operations using

Yao’s Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from

the common assumption of additive or linear secret sharing models where three or more parties

need to communicate in the online phase: the framework allows two parties with private inputs

to communicate in the online phase under the assumption of a third node generating correlated

randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed

in an offline phase which substantially reduces the communication overhead. Chameleon is both

scalable and significantly more efficient than the ABY framework (NDSS’15) it is based on. Our
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framework supports signed fixed-point numbers. In particular, Chameleon’s vector dot product of

signed fixed-point numbers improves the efficiency of mining and classification of encrypted data

for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5

layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft

CryptoNets (ICML’16) and MiniONN (CCS’17), respectively.

3.1 Introduction

Secure computation frameworks can be categorized based on the offline/online run-

time, the number of computing nodes (two-party or multi-party), offline/online communi-

cation, the set of supported instructions, and the programming language which describes

the functionality. These frameworks accept the description of the function as either (i)

their own customized languages [MNPS04, MGC+16], (ii) high-level languages such as

C/C++ [HFKV12] or Java [HEKM11, LWN+15], or (iii) Hardware Description Languages

(HDLs) [SHS+15, DDK+15].

A number of SFE compilers have been designed for translating a program written in a high

level language to low-level code [MNPS04, HKS+10, MGC+16] [BK15b, BHWK16, BKJK16].

The low-level code is supported by other SFE frameworks which serve as a backbone for executing

the cryptographic protocols. In addition to generic SFE protocols, additive/linear secret sharing

enables secure computation of linear operations such as multiplication, addition, and subtraction.

In general, each framework introduces a set of trade-offs. The frameworks based on secret-

sharing require three (or more) computing nodes which operate on distributed shares of variables

in parallel and require multiple rounds of communication between nodes to compute an operation

on shares of two secret values.

One of the most efficient secure computation frameworks is Sharemind [BLW08] which is

based on Additive Secret Sharing (A-SS) over the specific ring Z232 . All operations are performed
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by three computing nodes. Sharemind is secure against honest-but-curious (semi-honest) nodes

which are assumed to follow the protocol but they cannot infer any information about the input

and intermediate results as long as the majority of nodes are not corrupted. We consider the same

adversary model in this thesis. Securely computing each operation in Sharemind needs multiple

communication rounds between all three nodes which makes the framework relatively slow in the

Internet setting. Computation based on additive shares in the ring Z2l enables very efficient and

fast linear operations such as Multiplication (MULT), Addition (ADD), and Subtraction (SUB).

However, operations such as Comparison (CMP) and Equality test (EQ) are not as efficient and

non-linear operations cannot easily be realized in the ring Z2l .

We introduce Chameleon, a fast, modular, and hybrid (mixed-protocol) secure two-party

computation framework that utilizes GC, GMW, and additive secret sharing protocols and achieves

unprecedented performance both in terms of run-time and communication between parties. The

analogy comes from the fact that similar to a chameleon that changes its color to match the

color of the environment, our framework allows changing the executing SFE protocol based on

the run-time operation. The main design goal behind Chameleon is to create a framework that

combines the advantages of the previous secure computation methodologies.

The idea of a mixed-protocol solution was first introduced in [BPSW07] which com-

bines GC with Homomorphic Encryption (HE). HE enables to perform MULT and ADD op-

erations on encrypted values without actually knowing the unencrypted data. The TASTY

framework [HKS+10] enables automatic generation of protocols based on GC and HE. However,

due to the high computational cost of HE and costly conversion between HE and GC, they achieve

only a marginal improvement compared to the single protocol execution model [KSS14].

Our framework Chameleon is based on ABY [DSZ15] which implements a hybrid of

additive SS, GMW, and GC for efficient realization of SFE. However, we overcome two major

limitations, thereby improving efficiency, scalability, and practicality: The ABY model relies

on oblivious transfers for precomputing arithmetic triples which we replace by more efficient
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protocols using a Semi-honest Third Party (STP). The STP can be a separate computing node

or it can be implemented based on a smartcard [DSZ14] or Intel Software Guard Extensions

(SGX) [BBB+17]. Therefore, the online phase of Chameleon only involves two parties that have

private inputs. Additionally, we extend ABY to handle signed fixed-point numbers which is

needed in many deep learning applications, but not provided by ABY and other state-of-the-art

secure computation frameworks such as TASTY.

Chameleon supports 16, 32, and 64 bit signed fixed-point numbers. The number of bits

assigned to the fraction and integral part can also be tuned according to the application. The input

programs to Chameleon can be described in the high-level language C++. The framework itself

is also written in C++ which delivers fast execution. In addition to a rich library of pre-defined

functions, the user can simply add any function description as a Boolean circuit or a C/C++

program to our framework and use them seamlessly.

Machine Learning on Private Data Using Chameleon. Chameleon’s efficiency helps

us to address a major problem in contemporary secure machine learning on private data. Matrix

multiplication (or equivalently, vector dot product computation) is one of the most frequent and

essential building blocks for many machine learning algorithms and applications. Therefore,

in addition to scalability and efficiency described earlier, we design an efficient secure vector

dot product protocol based on the Du-Atallah multiplication protocol [DA01] that has very fast

execution and low communication between the two parties. We address secure Deep Learning

(DL) which is a sophisticated task with increasing attraction. We also provide privacy-preserving

classification based on Support Vector Machines (SVMs).

The fact that many pioneering technology companies have started to provide Machine

Learning as a Service (MLaaS1,2,3) proves the importance of DL. Deep and Convolutional Neural

Networks (DNNs/CNNs) have attracted many machine learning practitioners due to their capabil-

1Amazon AWS AI (https://aws.amazon.com/amazon-ai/)
2Google Cloud Machine Learning Engine (https://cloud.google.com/ml-engine/)
3Microsoft Azure Machine Learning Services (https://azure.microsoft.com/services/

machine-learning-services/)
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ities and high classification accuracy. In MLaaS, clients provide their inputs to the cloud servers

and receive the corresponding results. However, the privacy of clients’ data is an important driving

factor. To that end, Microsoft Research has announced CryptoNets [DGBL+16a]. CryptoNets is

an HE-based methodology that allows secure evaluation (inference) of encrypted queries over

already trained neural networks on cloud servers: queries from the clients can be classified

securely by the trained neural network model on a cloud server without inferring any information

about the query or the result.

Our Contributions. Our main contributions are as follows:

• We introduce Chameleon, a novel mixed SFE framework based on ABY [DSZ15] which

brings benefits in terms of efficiency, scalability, and practicality by integrating signed fixed-

point arithmetic, STP-based protocols for precomputing OTs and generating arithmetic and

Boolean multiplication triples, and an optimized STP-based vector dot product protocol for

vector/matrix multiplications.

• We provide detailed performance evaluation results of Chameleon compared to state-of-

the-art frameworks. Compared to ABY, Chameleon requires up to 321× and 256× less

communication for generating arithmetic and Boolean multiplication triples, respectively.

• We present a proof-of-concept implementation and experimental results on deep and

convolutional neural networks. Comparing to the state-of-the-art Microsoft Cryp-

toNets [DGBL+16a], we achieve a 133x performance improvement. Comparing to the

recent work of [LJLA17a], we achieve a 4.2x performance improvement using a comparable

configuration.
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3.2 Related Work

Chameleon is essentially a two-party framework that uses a Semi-honest Third Party

(STP) to generate correlated randomness in the offline phase. In the following, we review the

use of third parties in secure computation as well as other secure two-party and multi-party

computation frameworks.

Third Party-based Secure Computation. Regarding the involvement of a third party

in secure two-party computation, there have been several works that consider an outsourcing

or server-aided scenario, where the resources of one or more untrusted servers are employed

to achieve sub-linear work in the circuit size of a function, even workload distribution, and

output fairness. Realizing such a scenario can be done by either employing fully-homomorphic

encryption (e.g., [AJLA+12]) or extending Yao’s garbled circuit protocol (e.g., [KMR12]).

Another important motivation for server-aided SFE is to address the issue of low-powered mobile

devices, as done in [CMTB13,CLT14,DSZ14,CMTB15,MOR16,CMTB16]. Furthermore, server-

aided secure computation can be used to achieve stronger security against active adversaries

[HS12].

The secure computation framework of [Hua12, Chapter 6] also utilizes correlated ran-

domness. Beyond passive security and one STP, this framework also covers active security and

multiple STPs.

GC-based Frameworks. The first implementation of the GC protocol is Fair-

play [MNPS04] that allows users to write the program in a high-level language called Se-

cure Function Definition Language (SFDL) which is translated into a Boolean circuit. Fair-

playMP [BDNP08] is the extension of Fairplay to the multiparty setting. FastGC [HEKM11]

reduces the running time and memory requirements of the GC execution by using pipelining.

TinyGarble [SHS+15, HRK20] is one of the recent GC frameworks that proposes to generate

compact and efficient Boolean circuits using industrial logic synthesis tools. TinyGarble also
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supports sequential circuits (cyclic graph representation of circuits) in addition to traditional com-

binational circuits (acyclic graph representation). ObliVM [LWN+15] provides a domain-specific

programming language and a secure computation framework that facilitates the development

process. Frigate [MGC+16] is a validated compiler and circuit interpreter for secure computation.

Also, the authors of [MGC+16] test and validate several secure computation compilers and

report the corresponding limitations. ARM2GC [SRH+19] is a framework based on the garbled

circuit protocol for secure computation that accepts high-level programs. PCF (Portable Circuit

Format) [KSMB13] has introduced a compact representation of Boolean circuits that enables

better scaling of secure computation programs. Authors in [KSS12] have shown the evaluation of

a circuit with more than a billion gates in the malicious model by parallelizing operations.

Secret Sharing-based Frameworks. The Sharemind framework [BLW08] is based on

additive secret sharing over the ring Z232 . The computation is performed with three nodes and

is secure in the honest-but-curious adversary model where only one node can be corrupted.

SEPIA [BSMD10] is a library for privacy-preserving aggregation of data for network security and

monitoring. SEPIA is based on Shamir’s secret sharing scheme where computation is performed

by three (or more) privacy peers. VIFF (Virtual Ideal Functionality Framework) [DGKN09]

is a framework that implements asynchronous secure computation protocols and is also based

on Shamir’s secret sharing. PICCO [ZSB13] is a source-to-source compiler that generates

secure multiparty computation protocols from functions written in the C language. The output

of the compiler is a C program that runs the secure computation using linear secret sharing.

SPDZ [DPSZ12] is a secure computation protocol based on additive secret sharing that is secure

against n−1 corrupted computation nodes in the malicious model. Recent work of [AFL+16,

FLNW17,ABF+17] introduces an efficient protocol for three-party secure computation. In general,

for secret sharing-based frameworks, three (or more) computation nodes need to communicate in

the online phase and in some cases, the communication is quadratic in the number of computation

nodes. However, in Chameleon, the third node (STP) is not involved in the online phase which
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reduces the communication and running time.

While Chameleon offers more flexibility compared to secret-sharing based frameworks,

it is also computationally more efficient compared to Sharemind and SEPIA: To perform each

multiplication, Sharemind originally4 needed 6 instances of the Du-Atallah protocol [BLW08]

while Chameleon needs 1 (when one operand is shared) or 2 (in the general case where both

operands are shared). In SEPIA [BSMD10], all operations are performed modulo a prime number

which is less efficient compared to modulo 2l and also requires multiple multiplications for

creating/reconstructing a share.

Mixed Protocol Frameworks. TASTY [HKS+10] is a compiler that can generate mixed

protocols based on GC and HE. Several applications have been built that use mixed protocols,

e.g., privacy-preserving ridge-regression [NWI+13], matrix factorization [NWI+13], iris and

finger-code authentication [BG11], and medical diagnostics [BFK+09].

Recently, a new framework for compiling two-party protocols called EzPC [CGR+17] was

presented. EzPC uses ABY as its cryptographic back-end: a simple and easy-to-use imperative

programming language is compiled to ABY input. An interesting feature of EzPC is its “cost

awareness”, i.e. its ability to automatically insert type conversion operations in order to minimize

the total cost of the resulting protocol. However, authors claim that ABY’s GC engine always

provides better performance for binary operations than GMW and thus convert only between

A-SS and GC.

Our framework extends the ABY framework [DSZ15]. Specifically, we add support

for signed fixed-point numbers which is essential for almost all machine learning applications

such as processing deep neural networks. Our framework provides a faster online phase and a

more efficient offline phase in terms of computation and communication due to the usage of an

STP. Moreover, we implement a highly efficient vector dot product protocol based on correlated

4Sharemind replaced the Du-Atallah protocol with a new three-party multiplication protocol [BNTW12]. Due to
its symmetry, we cannot modify this protocol to work with only two parties in the online phase as we do for the
Du-Atallah protocol in §3.4.2.

39



randomness generated by an STP.

Automatic Protocol Selection. The authors of [KSS14] propose two methods, one

heuristic and one based on integer programming, to find an optimal combination of two secure

computation protocols, GC and HE. This methodology has been applied to the ABY framework in

CheapSMC [PKUM16]. The current version of Chameleon does not provide automatic protocol

selection. However, the methods of [KSS14, PKUM16, CGR+17] can be applied in future work

in order to automatically partition Chameleon programs.

Generation of Multiplication Triplets. Very recently, Lu and Sakuma [jLS18] presented

an efficient protocol for generating MTs that are specially crafted for matrix multiplications by

using additively shared matrices. The protocol results in a significant performance improvement

in the offline phase compared to prior work, e.g., up to 110x faster run-time compared to

SecureML [MZ17a] and MiniONN [LJLA17a]. However, this protocol is limited to matrix

multiplications, whereas Chameleon is generic and thus efficient for any operation.

3.3 The Chameleon Framework

Chameleon comprises of an offline phase and an online phase. The online phase is a two-

party execution model that is run between two parties who wish to perform secure computation on

their data. In the offline phase, a Semi-honest Third Party (STP) creates correlated randomness

together with random seeds and provides it to the two parties as suggested in [Hua12]. We

describe how the STP can be implemented in Section 3.3.3 and its role in Section 3.4.2.

The online phase itself consists of three execution environments: GC, GMW, and Addi-

tive Secret Sharing (A-SS). We described the functionality of the GC and GMW protocols in

Section 2.1 and we detail our implementations of these protocols in Section 3.4.1. We implement

two different protocols for the multiplication operation on additive shares: a protocol based on

Multiplication Triples (MTs) that we described in Section 2.1.5 and an optimized version of
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the Du-Atallah (DA) protocol [DA01] (cf. Section 3.4.2). In Section 3.3.1, we explain how the

online phase works. In order to support highly efficient secure computations, all operations that

do not depend on the run-time variables are shifted to the offline phase. The only cryptographic

operations in the online phase are the Advanced Encryption Standard (AES) operations that are

used in GC for which dedicated hardware acceleration is available in many processors via the

AES-NI instruction set.

The offline phase includes four tasks: (i) precomputing all required OTs that are used in

GC and type conversion protocols, thereby providing a very fast encryption-free online phase

for OT, (ii) precomputing Arithmetic Multiplication Triples (A-MTs) used in the multiplication

of additive secret shares, (iii) precomputing Boolean Multiplication Triples (B-MTs) used in

the GMW protocol, and lastly, (iv) precomputing vector dot product shares (VDPS) used in the

Du-Atallah protocol [DA01]. In order to reduce the communication in the offline phase from the

STP to the two parties, we use the seed expansion technique [DSZ14] for generating A-MTs and

B-MTs (cf. Section 3.4.4). We also introduce a novel technique that reduces the communication

for generating VDPS (cf. Section 3.4.2).

3.3.1 Chameleon Online Execution Flow

In this section, we provide a high-level description of the execution flow of the online

phase. As discussed earlier, linear operations such as ADD, SUB, and MULT are executed in

A-SS. The dot product of two vectors of size n is also executed in A-SS which comprises n

MULTs and n− 1 ADDs. Non-linear operations such as CMP, EQ, MUX and bitwise XOR,

AND, OR operations are executed in the GMW or GC protocol depending on which one is more

efficient. Recall that in order to execute a function using the GMW or GC protocol, the function

has to be described as a Boolean circuit.

However, the most efficient Boolean circuit description of a given function is different for

the GMW and the GC protocol: In the GC protocol, the computation and communication costs
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only depend on the total number of AND gates (NAND) in the circuit. Regardless of the number of

XOR gates, functionality, and depth of the circuit, GC executes in a constant number of rounds.

Communication is a linear function of the number of AND gates (2× k×NAND). Due to the Half-

Gates optimization (cf. Section 3.4.1), computation is bounded by constructing the garbled tables

(four fixed-key AES encryptions) and evaluating them (two fixed-key AES encryptions). The

GMW protocol, on the other hand, has a different computation and communication model. It needs

only bit-level AND and XOR operations for the computation, but one round of communication is

needed per layer of AND gates. Therefore, the most efficient representation of a function in the

GMW protocol is the one that has minimum circuit depth, more precisely, the minimum number

of sequentially dependent layers of AND gates. As a result, when the network latency or the depth

of the circuit is high, we use GC to execute non-linear functions, otherwise, GMW will be utilized.

The computation and communication costs for atomic operations are given in Section 5.6.

The program execution in Chameleon is described as different layers of operations where

each layer is most efficiently realized in one of the execution environments. The execution starts

from the first layer and the corresponding execution environment. Once all operations in the first

layer are finished, Chameleon switches the underlying protocol and continues the process in the

second execution environment. Changing the execution environment requires that the type of the

shared secrets should be changed in order to enable the second protocol to continue the process.

One necessary condition is that the cost of the share type translation must not be very high to

avoid diminishing the efficiency achieved by the hybrid execution. For converting between the

different sharing types, we use the methods from the ABY framework [DSZ15] which are based

on highly efficient OT extensions.

Communication Rounds. The number of rounds that both parties need to communicate

in Chameleon depends on the number of switches between execution environments and the

depth of the circuits used in the GMW protocol. We want to emphasize that the number of

communication rounds does not depend on the size of input data. Therefore, the network latency
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added to the execution time is quickly amortized over a high volume of input data.

3.3.2 Security Model

Chameleon is secure against honest-but-curious (HbC), a.k.a. semi-honest, adversaries.

This is the standard security model in the literature and considers adversaries that follow the pro-

tocol but attempt to extract more information based on the data they receive and process. Honest-

but-curious is the security model for the great majority of prior art, e.g., Sharemind [BLW08],

ABY [DSZ15], and TinyGarble [SHS+15].

The Semi-honest Third Party (STP) can be either implemented using a physical entity, in

a distributed manner using MPC among multiple non-colluding parties, using trusted hardware

(hardware security modules or smartcards [DSZ14]), or using trusted execution environments

such as Intel SGX [BBB+17]. In case the STP is implemented as a separate physical computation

node, our framework is secure against semi-honest adversaries with an honest majority. The

latter is identical to the security model considered in Sharemind [BLW08]. In Section 3.2, we

list further works based on similar assumptions. Please note that we introduce a new and more

practical computational model that is superior to Sharemind since only two primary parties

are involved in the online execution. This results in a significantly faster run-time while better

matching real-world requirements.

3.3.3 Semi-honest Third Party (STP)

In Chameleon, the STP is only involved in the offline phase in order to generate correlated

randomness [Hua12]. It is not involved in the online phase and thus does not receive any

information about the two parties’ inputs nor the program being executed. The only exception

is when computing VDPS for the Du-Atallah protocol: the STP needs to know the size of the

vectors in each dot product beforehand. Since the security model in Chameleon is HbC with
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honest majority, some information can be revealed if the STP colludes with either party.

In order to prevent the STP from observing communication between the two parties,

authenticated encryption is added to the communication channel. Also the communication

between the STP and the two parties is encrypted, so they cannot reconstruct the other party’s

private inputs from observed messages.

3.4 Chameleon Design and Implementation

In this section, we provide a detailed description of the different components of Chameleon.

Chameleon is written in C++ and accepts the program written in C++. The implementation of

the GC and GMW engines is covered in Section 3.4.1 and the A-SS engine is described in

Section 3.4.2. Section 3.4.3 illustrates how Chameleon supports signed fixed-point representation.

The majority of cryptographic operations is shifted from the online to the offline phase. Thus, in

Section 3.4.4, we describe the process of generating Arithmetic/Boolean Multiplication Triples

(A-MTs/B-MTs). Section 3.4.5 provides our STP-based implementation for fast Oblivious

Transfer and finally the security justification of Chameleon is given in Section 3.4.6.

3.4.1 GC and GMW Engines

Chameleon’s implementation of the GC and GMW protocol is based on ABY [DSZ15].

Therefore, the input to the engines is the topologically sorted list of Boolean gates in the circuit as

an .aby file. The GC engine includes the most recent optimizations: Free-XOR [KS08b], fixed-

key AES garbling [BHKR13], and Half-Gates [ZRE15]. We synthesized GC-optimized circuits

for many primitive functions. Likewise, for the GMW engine all circuits are depth-optimized

as described in [DDK+15] to incur the least latency during the protocol execution. A user can

simply use these circuits by calling regular functions in C++.
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3.4.2 A-SS Engine

In Chameleon, linear operations, i.e., ADD, SUB, MULT, are performed using additive

secret sharing in the ring Z2l . We discussed in Section 2.1.5 how to perform a single MULT

using a multiplication triple. However, there are other methods to perform a MULT: (i) The

protocol of [BELO16] has very low communication in the online phase. However, in contrast to

our computation model, it requires STP interaction with the other two parties in the online phase.

(ii) The Du-Atallah protocol [DA01] is another method to perform multiplication on additive

shared values which we describe next.

The Du-Atallah Multiplication Protocol [DA01]. In this protocol, two parties P0

(holding x) and P1 (holding y) together with a third party P2 can perform the multiplication

z = x×y. At the end of this protocol, z is additively shared between all three parties. The protocol

works as follows:

1. P2 randomly generates a0,a1 ∈R Z2l and sends a0 to P0 and a1 to P1.

2. P0 computes (x+a0) and sends it to P1. Similarly, P1 computes (y+a1) and sends it to P0.

3. P0, P1, and P2 can compute their share as 〈z〉A0 =−a0× (y+a1), 〈z〉A1 = y× (x+a0), and

〈z〉A2 = a0×a1, respectively.

It can be observed that the results are true additive shares of z: 〈z〉A0 + 〈z〉A1 + 〈z〉A2 = z. Please

note that this protocol computes shares of a multiplication of two numbers held by two parties

in cleartext. In the general case, where both x and y are additively shared between two parties

(P0 holds 〈x〉A0 , 〈y〉A0 and P1 holds 〈x〉A1 , 〈y〉A1 ), the multiplication can be computed as z = x× y =

(〈x〉A0 +〈x〉A1 )×(〈y〉A0 +〈y〉A1 ). The two terms 〈x〉A0 ×〈y〉A0 and 〈x〉A1 ×〈y〉A1 can be computed locally

by P0 and P1, respectively. Two instances of the Du-Atallah protocol are needed to compute

shares of 〈x〉A0 ×〈y〉A1 and 〈x〉A1 ×〈y〉A0 . Please note that Pi should not learn 〈x〉A1−i and 〈y〉A1−i,
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otherwise, secret values x and/or y are revealed to Pi. At the end, P0 has

〈x〉A0 ×〈y〉A0 ,
〈
〈x〉A0 ×〈y〉A1

〉A
0 ,
〈
〈x〉A1 ×〈y〉A0

〉A
0

and P1 has

〈x〉A1 ×〈y〉A1 ,
〈
〈x〉A0 ×〈y〉A1

〉A
1 ,
〈
〈x〉A1 ×〈y〉A0

〉A
1 ,

where 〈z〉A0 , 〈z〉A1 are the summations of each party’s shares.

The Du-Atallah protocol was used in Sharemind [BLW08] where there are three active

computing nodes that are involved in the online phase, whereas, in Chameleon, the third party

(STP) is only involved in the offline phase. This problem can be solved since the role of P2 can be

shifted to the offline phase as follows: (i) Step one of the Du-Atallah protocol can be computed in

the offline phase for as many multiplications as needed. (ii) In addition, P2 randomly generates

another l-bit number a2 and computes a3 = (a0×a1)−a2. P2 sends a2 to P0 and a3 to P1 in the

offline phase. During the online phase, both parties additionally add their new shares (a2 and a3)

to their shared results: 〈z〉A0,new = 〈z〉A0 +a2 and 〈z〉A1,new = 〈z〉A1 +a3.

Security. This modification is perfectly secure since P0 has received a true random

number and P1 has received a3 which is an additive share of (a0× a1). Since a2 has uniform

distribution, the probability distribution of a3 is also uniform [BLW08] and as a result, P1 cannot

infer additional information.

Du-Atallah Protocol with one cleartext operand. In many cases, the computation

model is such that one operand x is held in cleartext by one party, e.g., P0, and the other operand

y is shared among two parties: P0 has 〈y〉A0 and P1 has 〈y〉A1 . This situation repeatedly arises when

the intermediate result is multiplied by one of the party’s inputs which is not shared. In this case,

only one instance of the Du-Atallah protocol is needed to compute x×〈y〉A1 . As analyzed in this

section, employing this variant of the Du-Atallah protocol is more efficient than the protocol

based on MTs. Please note that in order to utilize MTs, both operands need to be shared among
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the two parties first, which, as we argue here, is inefficient and unnecessary. Table 3.1 summarizes

the computation and communication costs for the Du-Atallah protocol and the protocol based on

MTs (Section 2.1.5). As can be seen, online computation and communication is improved by

factor 2x. Also, the offline communication is improved by factor 3x. Unfortunately, using the

Du-Atallah protocol in this format will reduce the efficiency of vector dot product computation

in Chameleon. Please note that it is no longer possible to perform a complete dot product of

two vectors by two parties only. The reason is that the third share (〈z〉A2 = a0× a1) is shared

between two parties (P0 and P1). However, this problem can be solved by a modification which

we describe next.

Table 3.1: Summary of properties of the Du-Atallah multiplication protocol and the protocol
based on Multiplication Triples.

Protocol # MULT ops Online Comm. Offline Comm. Rounds
Multiplication Triple (3,4) 2 · l 3 · l 2∗

Du-Atallah (1,2) l 2 · l 1

Du-Atallah Protocol and Vector Dot Product. We further modify the optimized Du-

Atallah protocol such that the complete vector dot product is efficiently processed. The idea

is that instead of the STP additively sharing its shares, it first sums its shares and then sends

the additively shared versions to the two parties. Consider vectors of size n. The STP needs

to generate n different a0 and a1 as a list for a single vector multiplication. We denote the jth

member of the list as [a0] j and [a1] j. Our modification requires that the STP generates a single

l-bit value a2 and sends it to P0. The STP also computes a3 = ∑
n−1
i=0 [a0] j× [a1] j−a2 and sends

it to P1. We call a2 and a3 the Vector Dot Product Shares (VDPS). This requires that the STP

knows the size of the array in the offline phase. Since the functionality of the computation is not

secret, we can calculate the size and number of all dot products in the offline phase and ask for

the corresponding random shares from the STP.

Reducing Communication. A straightforward implementation of the offline phase of
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the Du-Atallah protocol requires that the STP sends ∼n random numbers of size l ([a0] j and

[a1] j) to P0 and P1 for a single dot product of vectors of size n. However, we suggest reducing

the communication using a Pseudo Random Generator (PRG) for generating the random numbers

as was proposed in [DSZ14]. Instead of sending the complete list of numbers to each party,

the STP can create and send random PRG seeds for each string to the parties such that each

party can create [a0] j and [a1] j locally using the PRG. For this purpose, we implement the PRG

using Advanced Encryption Standard (AES), a low-cost block cipher, in counter mode (AES

CTR-DRBG). Our implementation follows the description of the NIST Recommendation for

DRBGs [BK15a]. From a 256-bit seed, AES CTR-DRBG can generate 263 indistinguishable

random bits. If more than 263 bits are needed, the STP sends more seeds to the parties. The

STP uses the same seeds in order to generate a2 and a3 for each dot product. Therefore, the

communication is reduced from n× l bits to sending a one-time 256-bit seed and an l-bit number

per single dot product.

Performance Evaluation. We give an empirical performance evaluation of our opti-

mized VDP protocol in Section 3.5: the evaluated SVM classification mainly consists of a VDP

computation together with a negligible subtraction and comparison operation.

3.4.3 Supporting Signed Fixed-point Numbers

Chameleon supports Signed Fixed-point Numbers (SFN) in addition to integer operations.

Supporting SFN requires not only that all three secure computation protocols (GC, GMW, and

Additive SS) support SFN but also the secret translation protocols to be compatible. We note that

the current version of the ABY framework only supports unsigned integers and IEEE 754 floating

point numbers [DDK+15]. We added an abstraction layer to the ABY framework such that it

supports SFN.

All additive secret sharing protocols only support unsigned integer values. However,

in this section, we describe how such protocols can be modified to support signed fixed-point

48



numbers. Supporting signed integers can be done by representing numbers in two’s complement

format. Consider the ring Z2l which consists of unsigned integer numbers {0,1,2, ...,2l−1−

1,2l−1, ...,2l−1}. We can perform signed operations by simply interpreting these numbers as the

two’s complement format: {0,1,2, ...,2l−1−1,−2l−1, ...,−1}. By doing so, signed operations

work seamlessly.

In order to support fixed-point precision, one solution is to interpret signed integers as

signed fixed-point numbers. Each number is represented in two’s complement format with the

Most Significant Bit (MSB) being the sign bit. There are α and β bits for integer and fraction

parts, respectively. Therefore, the total number of bits is equal to γ = 1+α+β. While this works

perfectly for addition and subtraction, it cannot be used for multiplication. The reason is that

when multiplying two numbers in a ring, the rightmost 2×β bits of the result correspond to the

fraction part while β bits of the MSBs are overflown and discarded. Our solution to this problem

is to perform all operations in the ring Z2l where l = γ+β. After each multiplication, we shift the

result β bits to the right while replicating the sign bit for β MSBs. While bitshifting by a constant

and sign bit replication is essentially free in GC/GMW, it is non-trivial in additive sharing. Thus,

a conversion from additive sharing to GC/GMW and back is required between multiplications.

Compared to [MZ17a], where the authors apply a similar approach to fixed-point arithmetic but

simply truncate additive shares, this prevents introducing up to 1 bit inaccuracy per multiplication.

The overhead for the conversions is smaller than adapting the approach of [RRK18], where the

authors naively apply the same method as used for floating-point arithmetic in ABY [DDK+15],

i.e., they use hardware compilers to generate circuits which perform fixed-point arithmetic in GC.

Following the observation that in GC the overhead for multiplication even for integer numbers is

large, we expect our mixed-protocol approach to greatly outperform their implementation. Please

note that for the machine learning applications no preventable overhead for protocol conversion

occurs: between all multiplications a non-linear function is computed, which requires conversion

to GC/GMW anyhow.
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This assumes that in addition to the support by the computation engines, share translation

protocols actually work correctly. Share translation from GC to GMW works fine as it operates on

bit-level and is transparent to the number representation format. Share translation from GC/GMW

to additive sharing either happens using a subtraction circuit or OT. In the first case, the result

is valid since the subtraction of two signed fixed-point numbers in two’s complement format is

identical to subtracting two unsigned integers. In the second case, OT is on bit-level and again

transparent to the representation format. In Chameleon, as in ABY, we use the OT method for

share translation from GC/GMW to additive due to reduced complexity. Finally, share translation

from additive sharing to GC/GMW is correct because it uses an addition circuit, which is identical

for unsigned integers and signed fixed-point numbers.

Floating Point Operations. Chameleon supports floating point operations by performing

all computations in the GC or GMW protocol as described in [DDK+15] for ABY. A future

direction of this work can be to break down the primitive floating point operations, e.g., ADD,

MULT, SUB, etc. into smaller atomic operations based on integer values. Consequently, one

can perform the linear operations in the ring and non-linear operations in GC/GMW, providing a

faster execution for floating-point operations.

Most methods for secure computation on floating and fixed point numbers proposed in

the literature were realized in Shamir’s secret sharing scheme, e.g. [CS10, ABZS13, ZSB13,

KW14, PS15], but some of them also in GC [PS15], GMW [DDK+15], and HE [LDD+16] based

schemes. The quality of the algorithms varies from self-made to properly implemented IEEE 754

algorithms, such as in [PS15, DDK+15]. The corresponding software implementations were done

either in the frameworks Sharemind [BLW08] and PICCO [ZSB13], or as standalone applications.

For fixed-point arithmetics, Aliasgari et al. [ABZS13] proposed algorithms that outperform even

integer arithmetic for certain operations. As a future direction of this work, we plan to integrate

their methodology in Chameleon.
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3.4.4 Generating Multiplication Triples

As we discussed in Section 2.1.5, each multiplication on additive secret shares requires an

Arithmetic Multiplication Triple (A-MT) and one round of communication. Similarly, evaluating

each AND gate in the GMW protocol requires a Boolean Multiplication Triple (B-MT) [DSZ14].

In the offline phase, we calculate the number of MTs (NA-MT and NB-MT). The STP precomputes

all MTs needed and sends them to both parties. More precisely, to generate A-MTs, the STP

uses a PRG to produce five l-bit random numbers corresponding to a0,b0,c0,a1, and b1. We

denote the jth triple with [.] j. Therefore, the STP completes MTs by computing c1’s as [c1] j =

([a0] j + [a1] j)× ([b0] j + [b1] j)− [c0] j. Finally, the STP sends [a0] j, [b0] j, and [c0] j to the first

party and [a1] j, [b1] j, and [c1] j to the second party for j = 1,2, ...,NA-MT. Computing B-MTs is

also very similar with the only differences that all numbers are 1-bit and [c1] j is calculated as

[c1] j = ([a0] j⊕ [a1] j)∧ ([b0] j⊕ [b1] j)⊕ [c0] j.

Reducing Communication. A basic implementation of precomputing A-MTs and

B-MTs requires communication of 3× l×NA-MT and 3×NB-MT bits from the STP to each party,

respectively. However, similar to the idea of [DSZ14] presented in Section 3.4.2, we use a PRG

to generate random strings from seeds locally for each party. To summarize the steps: the STP

1. generates two random seeds: seed0 for generating [a0] j, [b0] j, and [c0] j and seed1 for [a1] j

and [b1] j;

2. computes [c1] j = ([a0] j +[a1] j)× ([b0] j +[b1] j)− [c0] j for j = 1,2, ...,NA−MT ;

3. sends seed0 to the first party and seed1 together with the list of [c1] j to the second party.

After receiving the seeds, both parties locally generate their share of the triples using

the same PRG. This method reduces the communication from 3× l×NA-MT to 256 and 256+

l×NA-MT bits for the first and second party, respectively. The STP follows a similar process to

generate B-MTs. Figure 3.1 illustrates the seed expansion idea to generate MTs [DSZ14].

51



STP

P1

P0

R
seed0

seed1
R

seed0

seed1

PRG

PRG
[c1]j

PRG

PRG

[a0]j , [b0]j , [c0]j

[a1]j , [b1]j [c1]j 

[a0]j , [b0]j , [c0]j

[a1]j , [b1]j

Figure 3.1: Seed expansion process to precompute A-MTs/B-MTs with low communication.

3.4.5 Fast STP-aided Oblivious Transfer

Utilizing the idea of correlated randomness [Hua12], we present an efficient and fast

protocol for Oblivious Transfer that is aided by the Semi-honest Third Party (STP). Our protocol

comprises an offline phase (performed by the STP) and an online phase (performed by the two

parties). The protocol is described for one 1-out-of-2 OT. The process repeats for as many OTs as

required. In the offline phase, the STP generates random masks q0, q1 and a random bit r and

sends q0, q1 to the sender and r, qr to the receiver. In the online phase, two parties execute the

online phase of Beaver’s OT precomputation protocol [Bea95] described in Figure 3.2. Please

note that all OTs in Chameleon including OTs used in GC and secret translation from GC/GMW

to Additive are implemented as described above.

Sender Receiver

Has: messages q0,q1 Has: message qr and r
Input: messages m0,m1 Input: choice bit b
Output: - Output: mb

b′←− b′ = r⊕b
(s0,s1) ={
(q0⊕m0,q1⊕m1) if b′ = 0
(q0⊕m1,q1⊕m0) if b′ = 1

(s0,s1)−→ mb = sr⊕qr

Figure 3.2: Beaver’s OT precomputation protocol [Bea95].

Reducing Communication. Similar to the idea discussed in Section 3.4.4, the STP does

not actually need to send the list of (q0,q1) to the sender and r to the receiver. Instead, it generates

two random seeds and sends them to the two parties. The STP only needs to send the full list of
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qr to the receiver.

3.4.6 Security

Chameleon is based on the ABY framework [DSZ15] where we replace the interactive

offline phase with the following STP-based protocols: (i) STP-aided OTs (cf. Section 3.4.5) are

implemented via Beaver’s OT precomputation [Bea95] where the original OTs are sent by the

STP, which is trivially secure. (ii) STP-aided generation of MTs (cf. Section 3.4.4) was proven

secure in [Hua12, DSZ14]. (iii) STP-aided multiplication (cf. Section 3.4.2) is done based on

an STP-aided extension of the Du-Atallah multiplication protocol [DA01] for which we have

argued security already in Section 3.4.2; all further optimizations are simply a compression of the

data sent by the STP and hence do not leak any additional information. In summary, security of

Chameleon follows from the security of ABY and the security of our STP-based protocols, so we

can state the following theorem.

Theorem 1 Chameleon’s STP-based protocols are secure against HbC adversaries under the

assumption that at most one of the two parties is passively corrupted and none of them colludes

with the STP.

3.5 Experimental Results

We experimentally verify the efficiency of the Chameleon by securely evaluating several

machine learning models such as support vector machines and deep and convolutional neural

network. Our experimental setup is performed for 128-bit security parameter on machines

equipped with Intel Core i7-4790 CPUs @ 3.6GHz and 16GB of RAM with AES-NI support. In

this section, a highlight of the experimental results is provided and performance of Chameleon is

compared with the prior art.
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The first benchmark is a convolutional neural network with one convolution layer and two

fully connected layer which classifies hand-written digits of the MNIST dataset. Our proposed

framework is able to classify an image in 2.24 seconds with 10.5 MB of communication. The

classification accuracy is 99%.

The second benchmark is a deeper CNN with seven convolution layers, two MaxPooling

layers, and one fully connected layer. The CNN model is able to classify images from CIFAR-10

dataset. A single secure inference takes 52.67 seconds and requires 2.65 GB of communication.

The third benchmark is a support vector machine model. Classifying an input with 10

features, takes 9.88 ms and 6.5 KB of communication. Extending the feature size to 1000, the

runtime increases to 11.42 ms and the communication increases to 30.3 KB. More details about

the experimental setup and evaluation benchmarks are discussed in [RWT+18a].

3.6 Summary

We introduced Chameleon, a novel hybrid (mixed-protocol) secure computation frame-

work based on ABY [DSZ15] that achieves unprecedented performance by (i) providing an

optimized vector dot product protocol for fast matrix multiplications and (ii) employing a semi-

honest third party in the offline phase for generating correlated randomness that is used for

pre-computing OTs and multiplication triples. In contrast to previous state-of-the-art frameworks,

Chameleon supports signed fixed-point numbers. We evaluated our framework on convolutional

neural networks where it can process an image of hand-written digits 133x faster than the prior art

Microsoft CryptoNets [DGBL+16a] and 4.2x faster than the most recent MiniONN [LJLA17a].
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Chapter 4

XONN: Efficient Neural Network

Transformation for Oblivious Inference

Advancements in deep learning enable cloud servers to provide inference-as-a-service for

clients. In this scenario, clients send their raw data to the server to run the deep learning model

and send back the results. One standing challenge in this setting is to ensure the privacy of the

clients’ sensitive data. Oblivious inference is the task of running the neural network on the client’s

input without disclosing the input or the result to the server. This chapter introduces XONN

(pronounced /z2n/), a novel end-to-end framework based on Yao’s Garbled Circuits (GC) protocol,

that provides a paradigm shift in the conceptual and practical realization of oblivious inference.

In XONN, the costly matrix-multiplication operations of the deep learning model are replaced

with XNOR operations that are essentially free in GC. We further provide a novel algorithm that

customizes the neural network such that the runtime of the GC protocol is minimized without

sacrificing the inference accuracy.

We design a user-friendly high-level API for XONN, allowing expression of the deep

learning model architecture in an unprecedented level of abstraction. We further provide a

compiler to translate the model description from high-level Python (i.e., Keras) to that of XONN.
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Extensive proof-of-concept evaluation on various neural network architectures demonstrates that

XONN outperforms prior art such as Gazelle (USENIX Security’18) by up to 7×, MiniONN

(ACM CCS’17) by 93×, and SecureML (IEEE S&P’17) by 37×. State-of-the-art frameworks

require one round of interaction between the client and the server for each layer of the neural

network, whereas, XONN requires a constant round of interactions for any number of layers

in the model. XONN is first to perform oblivious inference on Fitnet architectures with up to

21 layers, suggesting a new level of scalability compared with state-of-the-art. Moreover, we

evaluate XONN on four datasets to perform privacy-preserving medical diagnosis. The datasets

include breast cancer, diabetes, liver disease, and Malaria.

4.1 Introduction

Oblivious inference, i.e., privacy-preserving inference, enables the execution of an AI

model on an encrypted query. Oblivious inference has many applications across different indus-

tries. Consider a DL model used in a medical task in which a health service provider withholds

the prediction model. Patients submit their plaintext medical information to the server, which

then uses the sensitive data to provide a medical diagnosis based on inference obtained from its

proprietary model. A naive solution to ensure patient privacy is to allow the patients to receive

the DL model and run it on their own trusted platform. However, this solution is not practical

in real-world scenarios because: (i) The DL model is considered an essential component of the

service provider’s intellectual property (IP). Companies invest a significant amount of resources

and funding to gather the massive datasets and train the DL models; hence, it is important to

service providers not to reveal the DL model to ensure their profitability and competitive ad-

vantage. (ii) The DL model is known to reveal information about the underlying data used for

training [TZJ+16]. In the case of medical data, this reveals sensitive information about other

patients, violating HIPAA and similar patient health privacy regulations.
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Several solutions for oblivious inference have been proposed that utilize one or more

cryptographic tools such as Homomorphic Encryption (HE) [BV14, BGV14], Garbled Circuits

(GC) [Yao86b], Goldreich-Micali-Wigderson (GMW) protocol [GMW87], and Secret Sharing

(SS). Each of these cryptographic tools offer their own characteristics and trade-offs. For example,

one major drawback of HE is its computational complexity. HE has two main variants: Fully

Homomorphic Encryption (FHE) [BV14] and Partially Homomorphic Encryption (PHE) [BGV14,

Pai99]. FHE allows computation on encrypted data but is computationally very expensive. PHE

has less overhead but only supports a subset of functions or depth-bounded arithmetic circuits.

The computational complexity drastically increases with the circuit’s depth. Moreover, non-

polynomial functionalities such as the ReLU activation function in DL cannot be supported.

GC, on the other hand, can support an arbitrary functionality while requiring only a

constant round of interactions regardless of the depth of the computation. However, it has a high

communication cost and a significant overhead for multiplication. More precisely, performing

multiplication in GC has quadratic computation and communication complexity with respect to

the bit-length of the input operands. It is well-known that the complexity of the contemporary DL

methodologies is dominated by matrix-vector multiplications. GMW needs less communication

than GC but requires many rounds of interactions between the two parties.

A standalone SS-based scheme provides a computationally inexpensive multiplication

yet requires three or more independent (non-colluding) computing servers, which is a strong

assumption. Mixed-protocol solutions have been proposed with the aim of utilizing the best

characteristics of each of these protocols [RWT+18a, MZ17b, LJLA17b, JVC18]. They require

secure conversion of secrets from one protocol to another in the middle of execution. Nevertheless,

it has been shown that the cost of secret conversion is paid off in these hybrid solutions. Roughly

speaking, the number of interactions between server and client (i.e., round complexity) in existing

hybrid solutions is linear with respect to the depth of the DL model. Since depth is a major

contributor to the deep learning accuracy [SLJ+15], scalability of the mixed-protocol solutions
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with respect to the number of layers remains an unsolved issue for more complex, many-layer

networks.

This chapter introduces XONN, a novel end-to-end framework which provides a paradigm

shift in the conceptual and practical realization of privacy-preserving interference on deep neural

networks. The existing work has largely focused on the development of customized security

protocols while using conventional fixed-point deep learning algorithms. XONN, for the first

time, suggests leveraging the concept of the Binary Neural Networks (BNNs) in conjunction

with the GC protocol. In BNNs, the weights and activations are restricted to binary (i.e, ±1)

values, substituting the costly multiplications with simple XNOR operations during the inference

phase. The XNOR operation is known to be free in the GC protocol [KS08a]; therefore, performing

oblivious inference on BNNs using GC results in the removal of costly multiplications. Using our

approach, we show that oblivious inference on the standard DL benchmarks can be performed

with minimal, if any, decrease in the prediction accuracy.

We emphasize that an effective solution for oblivious inference should take into account

the deep learning algorithms and optimization methods that can tailor the DL model for the

security protocol. Current DL models are designed to run on CPU/GPU platforms where many

multiplications can be performed with high throughput, whereas, bit-level operations are very

inefficient. In the GC protocol, however, bit-level operations are inexpensive, but multiplications

are rather costly. As such, we propose to train deep neural networks that involve many bit-

level operations but no multiplications in the inference phase; using the idea of learning binary

networks, we achieve an average of 21× reduction in the number of gates for the GC protocol.

We perform extensive evaluations on different datasets. Compared to the Gazelle [JVC18]

(the prior best solution) and MiniONN [LJLA17b] frameworks, we achieve 7× and 93× lower

inference latency, respectively. XONN outperforms DeepSecure [RRK18] (prior best GC-based

framework) by 60× and CryptoNets [DGBL+16b], an HE-based framework, by 1859×. More-

over, our solution renders a constant round of interactions between the client and the server,
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which has a significant effect on the performance on oblivious inference in Internet settings. We

highlight our contributions as follows:

• Introduction of XONN, the first framework for privacy preserving DNN inference with

a constant round complexity that does not need expensive matrix multiplications. Our

solution is the first that can be scalably adapted to ensure security against malicious

adversaries.

• Proposing a novel conditional addition protocol based on Oblivious Transfer (OT) [Rab05],

which optimizes the costly computations for the network’s input layer. Our protocol is 6×

faster than GC and can be of independent interest. We also devise a novel network trim-

ming algorithm to remove neurons from DNNs that minimally contribute to the inference

accuracy, further reducing the GC complexity.

• Designing a high-level API to readily automate fast adaptation of XONN, such that users

only input a high-level description of the neural network. We further facilitate the usage of

our framework by designing a compiler that translates the network description from Keras

to XONN.

• Proof-of-concept implementation of XONN and evaluation on various standard deep learn-

ing benchmarks. To demonstrate the scalability of XONN, we perform oblivious inference

on neural networks with as many as 21 layers for the first time in the oblivious inference

literature.

4.2 Related Work

One of the early solutions for oblivious inference is proposed by Barni et al. [BOP06]

that leverages homomorphic encryption. Howerver, this work leaks some information about the

intermediate states of the computation. Orlandi et al. [OPB07] improve upon this work and avoid
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any information leakage. In [SS08], authors propose a mechanism to also keep the topology

of the neural network secret, at the cost of more computation overhead. A solution based on

additively homomorphic encryption and garbled circuits is presented in [BFL+11].

CryptoNets [DGBL+16b] suggests the adaptation of Leveled Homomorphic Encryption

(LHE) to perform oblivious inference. LHE is a variant of Partially HE that enables evaluation of

depth-bounded arithmetic circuits. DeepSecure [RRK18] is a privacy-preserving DL framework

that relies on the GC protocol. CryptoDL [HTGW18] improves upon CryptoNets [DGBL+16b]

and proposes more efficient approximation of the non-linear functions using low-degree polyno-

mials. Their solution is based on LHE and uses mean-pooling in replacement of the max-pooling

layer. Chou et al. propose to utilize the sparsity within the DL model to accelerate the infer-

ence [CBL+18].

SecureML [MZ17b] is a privacy-preserving machine learning framework based on homo-

morphic encryption, GC, and secret sharing. SecureML also uses customized activation functions

and supports privacy-preserving training in addition to inference. Two non-colluding servers

are used to train the DL model where each client XOR-shares her input and sends the shares to

both servers. MiniONN [LJLA17b] is a mixed-protocol framework for oblivious inference. The

underlying cryptographic protocols are HE, GC, and secret sharing.

Chameleon [RWT+18a] is a more recent mixed-protocol framework for machine learning,

i.e., Support Vector Machines (SVMs) as well as DNNs. Authors propose to perform low-

depth non-linear functions using the Goldreich-Micali-Wigderson (GMW) protocol [GMW87],

high-depth functions by the GC protocol, and linear operations using additive secret sharing.

Moreover, they propose to use correlated randomness to more efficiently compute linear opera-

tions. EzPC [CGR+17] is a secure computation framework that enables users to write high-level

programs and create a protocol based on both Boolean and Arithmetic shares. The back-end

cryptographic engine is based on the ABY framework [DSZ15]. HyCC [BDK+18] is a high-level

secure computation framework that complies ANSI C programs into efficient hybrid protocols.
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Shokri and Shmatikov [SS15] proposed a solution for privacy-preserving collaborative

deep learning where the training data is distributed among many parties. Their approach, enables

clients to train their local model on their own training data and update the central model’s

parameters held by a central server. However, it has been shown that a malicious client can

learn significant information about the other client’s private data [HAPC17]. In [IKR+19], a

framework for secure collaborative learning is proposed which is based on the BMR protocol and

high-dimensional (HD) computing. Google [BIK+17] has recently introduced a new approach

for securely aggregating the parameter updates from multiple users. However, none of these

approaches [SS15, BIK+17] study the oblivious inference problem. An overview of related

frameworks is provided in [RRK19, RK18].

Frameworks such as ABY3 [MR18] and SecureNN [WGC18] have different computation

models and they rely on three (or four) parties during the oblivious inference. In contrast, XONN

does not require an additional server for the computation. In E2DM framework [JKLS18a], the

model owner can encrypt and outsource the model to an untrusted server to perform oblivious

inference. Concurrently and independently of ours, in TAPAS [SKGK18], Sanyal et al. study

the binarization of neural networks in the context of oblivious inference. They report inference

latency of 147 seconds on MNIST dataset with 98.6% prediction accuracy using custom CNN

architecture. However, as we show in Section 4.7 (BM3 benchmark), XONN outperforms TAPAS

by close to three orders of magnitude.

Gazelle [JVC18] is the previously most efficient oblivious inference framework. It is a

mixed-protocol approach based on additive HE and GC. In Gazelle, convolution operations are

performed using the packing property of HE. In this approach, many numbers are packed inside a

single ciphertext for faster convolutions. In Section 4.3, we briefly discuss one of the essential

requirements that the Gazelle protocol has to satisfy in order to be secure, namely, circuit privacy.

High-Level Comparison. In contrast to prior art, we propose a DL-secure computation co-

design approach. To the best of our knowledge, DeepSecure [RRK18] is the only solution
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that preprocesses the data and network before the secure computation protocol. However, the

preprocessing step reveals some information about the network parameters and structure of data.

Moreover, another advantage of XONN is the constant round complexity regardless of the number

of layers in the NN. It has been shown that round complexity is one of the important criteria in

designing secure computation protocols [BELO16] since the performance can significantly be

reduced where the network latency is high. As we show in Section 4.7, XONN outperforms all

previous solutions in inference latency. Table 4.1 summarizes a high-level comparison between

state-of-the-art oblivious inference frameworks.

Table 4.1: High-Level Comparison of oblivious inference frameworks. “C”onstant round
complexity. “D”eep learning/secure computation co-design. “I”ndependence of secondary
server. “U”pgradeable to malicious security using standard solutions. “S”upporting any non-
linear layer.

Framework Crypto. Protocol C D I U S

CryptoNets [DGBL+16b] HE 3 7 3 7 7

DeepSecure [RRK18] GC 3 3 3 3 3

SecureML [MZ17b] HE, GC, SS 7 7 7 7 7

MiniONN [LJLA17b] HE, GC, SS 7 7 3 7 3

Chameleon [RWT+18a] GC, GMW, SS 7 7 7 7 3

EzPC [CGR+17] GC, SS 7 7 3 7 3

Gazelle [JVC18] HE, GC, SS 7 7 3 7 3

XONN (This work) GC, SS 3 3 3 3 3

4.3 Circuit Privacy

In Gazelle [JVC18], for each linear layer, the protocol starts with a vector m that is

secret-shared between client m1 and server m2 (m = m1 +m2). The protocol outputs the secret

shares of the vector m′ = A ·m where A is a matrix known to the server but not to the client. The

protocol has the following procedure: (i) Client generates a pair (pk,sk) of public and secret

keys of an additive homomorphic encryption scheme HE. (ii) Client sends HE.Encpk(m1) to the

server. Server adds its share (m2) to the ciphertext and recovers encryption of m: HE.Encpk(m).

(iii) Server homomorphically evaluates the multiplication with A and obtains the encryption
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of m′. (iv) Server secret shares m′ by sampling a random vector r and returns ciphertext

c =HE.Encpk(m′− r) to the client. The client can decrypt c using private key sk and obtain

m′− r.

Gazelle uses the Brakerski-Fan-Vercauteren (BFV) scheme [Bra12,FV12a]. However, the

vanilla BFV scheme does not provide circuit privacy. At high-level, the circuit privacy requirement

states that the ciphertext c should not reveal any information about the private inputs to the client

(i.e., A and r) other than the underlying plaintext A ·m− r. Otherwise, some information is

leaked. Gazelle proposes two methods to provide circuit privacy that are not incorporated in their

implementation. Hence, we need to scale up their performance numbers for a fair comparison.

The first method is to let the client and server engage in a two-party secure decryption

protocol, where the input of client is sk and input of server is c. However, this method adds

communication and needs extra rounds of interaction. A more widely used approach is noise

flooding. Roughly speaking, the server adds a large noise term to c before returning it to the

client. The noise is big enough to drown any extra information contained in the ciphertext, and

still small enough to so that it still decrypts to the same plaintext.

For the concrete instantiation of Gazelle, one needs to triple the size of ciphertext modulus

q from 60 bits to 180 bits, and increase the ring dimension n from 2048 to 8192. The (amortized)

complexity of homomorphic operations in the BFV scheme is approximately O(logn logq), with

the exception that some operations run in O(logq) amortized time. Therefore, adding noise

flooding would result in a 3-3.6 times slow down for the HE component of Gazelle. To give some

concrete examples, we consider two networks used for benchmarking in Gazelle: MNIST-D and

CIFAR-10 networks. For the MNIST-D network, homomorphic encryption takes 55% and 22%

in online and total time, respectively. For CIFAR-10, the corresponding figures are 35%, and

10%1. Therefore, we estimate that the total time for MNIST-D will grow from 0.81s to 1.16-1.27s

(network BM3 in this chapter). In the case of CIFAR-10 network, the total time will grow from

1these percentage numbers are obtained through private communication with the authors.
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12.9s to 15.48-16.25s.

4.4 The XONN Framework

In this section, we explain how neural networks can be trained such that they incur a mini-

mal cost during the oblivious inference. The most computationally intensive operation in a neural

network is matrix multiplication. In GC, each multiplication has a quadratic computation and

communication cost with respect to the input bit-length. This is the major source of inefficiency

in prior work [RRK18]. We overcome this limitation by changing the learning process such that

the trained neural network’s weights become binary. As a result, costly multiplication operations

are replaced with XNOR gates which are essentially free in GC. We describe the training process

in Section 4.4.1. In Section 4.4.2, we explain the operations and their corresponding Boolean

circuit designs that enable a very fast oblivious inference. In Section 4.5, we elaborate on XONN

implementation.

4.4.1 Customized Network Binarization

Numerical optimization algorithms minimize a specific cost function associated with

neural networks. It is well-known that neural network training is a non-convex optimization,

meaning that there exist many locally-optimum parameter configurations that result in similar

inference accuracies. Among these parameter settings, there exist solutions where both neural

network parameters and activation units are restricted to take binary values (i.e., either +1 or

−1); these solutions are known as Binary Neural Netowrks (BNNs) [CHS+16].

One major shortcoming of BNNs is their (often) low inference accuracy. In the machine

learning community, several methods have been proposed to modify BNN functionality for

accuracy enhancement [RORF16, GSK18, LZP17]. These methods are devised for plaintext

execution of BNNs and are not efficient for oblivious inference with GC. We emphasize that, when
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Figure 4.1: Illustration of BNN customization. The bars represent the number of neurons in
each hidden layer.

modifying BNNs for accuracy enhancement, one should also take into account the implications

in the corresponding GC circuit. With this in mind, we propose to modify the number of channels

and neurons in CONV and FC layers, respectively. Increasing the number of channels/neurons

leads to a higher accuracy but it also increases the complexity of the corresponding GC circuit.

As a result, XONN provides a trade-off between the accuracy and the communication/runtime of

the oblivious inference. This tradeoff enables cloud servers to customize the complexity of the

GC protocol to optimally match the computation and communication requirements of the clients.

To customize the BNN, XONN configures the per-layer number of neurons in two steps:

• Linear Scaling: Prior to training, we scale the number of channels/neurons in all BNN

layers with the same factor (s), e.g., s = 2. Then, we train the scaled BNN architecture.

• Network Trimming: Once the (uniformly) scaled network is trained, a post-processing

algorithm removes redundant channels/neurons from each hidden layer to reduce the GC

cost while maintaining the inference accuracy.

Figure 4.1 illustrates the BNN customization method for an example baseline network

with four hidden layers. Network trimming (pruning) consists of two steps, namely, Feature

Ranking and Iterative Pruning which we describe next.

66



Feature Ranking: In order to perform network trimming, one needs to sort the chan-

nels/neurons of each layer based on their contribution to the inference accuracy. In conventional

neural networks, simple ranking methods sort features based on absolute value of the neuron-

s/channels [HPTD15]. In BNNs, however, the weights/features are either +1 or −1 and the

absolute value is not informative. To overcome this issue, we utilize first order Taylor ap-

proximation of neural networks and sort the features based on the magnitude of the gradient

values [MTK+16]. Intuitively, the gradient with respect to a certain feature determines its impor-

tance; a high (absolute) gradient indicates that removing the neuron has a destructive effect on

the inference accuracy. Inspired by this notion, we develop a feature ranking method described in

Algorithm 2.

Iterative Pruning: We devise a step-by-step algorithm for model pruning which is

summarized in Algorithm 3. At each step, the algorithm selects one of the BNN layers l∗ and

removes the first p∗ features with the lowest importance (line 17). The selected layer l∗ and the

number of pruned neurons p∗ maximize the following reward (line 15):

reward(l, p) =
ccurr− cnext

eacurr−anext
, (4.1)

where ccurr and cnext are the GC complexity of the BNN before and after pruning, whereas,

acurr and anext denote the corresponding validation accuracies. The numerator of this reward

encourages higher reduction in the GC cost while the denominator penalizes accuracy loss. Once

the layer is pruned, the BNN is fine-tuned to recover the accuracy (line 18). The pruning process

stops once the accuracy drops below a pre-defined threshold.
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Algorithm 2 XONN Channel Sorting for CONV Layers
Input: Trained BNN with loss function L , CONV layer l with output shape of h1× h2× f ,

subsampled validation data and labels {(X1,z1), . . . ,(Xk,zk)}
Output: Indices of the sorted channels: {i0, . . . , i f }

1: G← zeros(k×h1×h2× f ) . define gradient tensor
2: for i = 1, . . . ,k do
3: L = L(Xi,zi) . evaluate loss function
4: ∇Y = ∂L

∂Y l . compute gradient w.r.t. layer output
5: G[i, :, :, :]← ∇Y . store gradient
6: end for
7: Gabs← |G| . take elementwise absolute values
8: gs← zeros( f ) . define sum of absolute values
9: for i = 1, . . . , f do

10: gs[i]← sum(Gabs[:, :, :, i])
11: end for
12: {i0, . . . , i f }← sort(gs)
13: return {i0, . . . , i f }

4.4.2 Oblivious Inference

BNNs are trained such that the weights and activations are binarized, i.e., they can only

have two possible values: +1 or −1. This property allows BNN layers to be rendered using a

simplified arithmetic. In this section, we describe the functionality of different layer types in

BNNs and their Boolean circuit translations. Below, we explain each layer type.

Binary Linear Layer: Most of the computational complexity of neural networks is due

to the linear operations in CONV and FC layers. As we discuss in Section 2.3, linear operations

are realized using vector dot product (VDP). In BNNs, VDP operations can be implemented

using simplified circuits. We categorize the VDP operations of this work into two classes:

(i) Integer-VDP where only one of the vectors is binarized and the other has integer elements and

(ii) Binary-VDP where both vectors have binary (±1) values.
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Algorithm 3 XONN Iterative BNN Pruning
Input: Trained BNN with n overall CONV and FC layers, minimum accuracy threshold θ, number

of pruning trials per layer t, subsampled validation data and labels dataV , training data and
labels dataT

Output: BNN with pruned layers
1: p← zeros(n−1) . current number of pruned neurons/channels per layer
2: acurr← Accuracy(BNN,dataV |p) . current BNN validation accuracy
3: ccurr←Cost(BNN|p) . current GC cost
4: while acurr > θ do . repeat until accuracy drops below θ

5: for l = 1, . . . ,n−1 do . search over all layers
6: inds← Rank(BNN, l,dataV) . rank features via Algorithm 2
7: f ← Number of neurons/channels . number of output neurons/channels
8: for p = p[l],p[l]+ f

t , . . . , f do . search over possible pruning rates
9: BNNnext← Prune(BNN, l, p, inds) . prune p features with lowest ranks from the

l-th layer
10: anext ← Accuracy(BNNnext,dataV |p[1], . . . ,p[l] = p, . . . ,p[n−1]) . validation

accuracy if pruned
11: cnext ←Cost(BNNnext|p[1], . . . ,p[l] = p, . . . ,p[n−1]) . GC cost if pruned
12: reward(l, p) = ccurr−cnext

e(acurr−anext )
. compute reward given that p features are pruned

from layer l
13: end for
14: end for
15: {l∗, p∗}← argmaxl,p reward(l,p). select layer l∗ and pruning rate p∗ that maximize the

reward
16: p[l∗]← p∗ . update the number of pruned features in vector p
17: BNN← Prune(BNN, l∗, p∗, inds) . prune p∗ features with lowest ranks from the l∗-th

layer
18: BNN← Fine-tune(BNN,dataT) . fine-tune the pruned model using training data to

recover accuracy
19: acurr← Accuracy(BNN,dataV |p) . update current BNN validation accuracy
20: ccurr←Cost(BNN|p) . update current GC cost
21: end while
22: return BNN

Integer-VDP: For the first layer of the neural network, the server has no control over the

input data which is not necessarily binarized. The server can only train binary weights and use

them for oblivious inference. Consider an input vector x ∈ Rn with integer (possibly fixed-point)

elements and a weight vector w ∈ {−1,1}n with binary values. Since the elements of the binary

vector can only take +1 or −1, the Integer-VDP can be rendered using additions and subtractions.

69



In particular, the binary weights can be used in a selection circuit that decides whether the

pertinent integer input should be added to or subtracted from the VDP result.

XNOR

+1 +1 -1 -1

-1 +1 -1 -1
-1 +1 +1 +1 +2

1 1 0 0

0 1 0 0

0 1 1 1 +2

MULT SUM

PopCount

Figure 4.2: Equivalence of Binary-VDP and XnorPopcount.

Binary-VDP: Consider a dot product between two binary vectors x ∈ {−1,+1}n and

w ∈ {−1,+1}n. If we encode each element with one bit (i.e., −1→ 0 and +1→ 1), we obtain

binary vectors xb ∈ {0,1}n and wb ∈ {0,1}n. It has been shown that the dot product of x and w

can be efficiently computed using an XnorPopcount operation [CHS+16]. Figure 4.2 depicts the

equivalence of VDP(x,w) and XnorPopcount(xb,wb) for a VDP between 4-dimensional vectors.

First, element-wise XNOR operations are performed between the two binary encodings. Next, the

number of set bits p is counted, and the output is computed as 2p−n.

Binary Activation Function: A Binary Activation (BA) function takes input x and maps

it to y = Sign(x) where Sign(·) outputs either +1 or −1 based on the sign of its input. This

functionality can simply be implemented by extracting the most significant bit of x.

Binary Batch Normalization: in BNNs, it is often useful to normalize feature x using a

Batch Normalization (BN) layer before applying the binary activation function. More specifically,

a BN layer followed by a BA is equivalent to:

y = Sign(γ · x+β) = Sign(x+
β

γ
),
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since γ is a positive value. The combination of the two layers (BN+BA) is realized by a comparison

between x and −β

γ
.

Binary Max-Pooling: Assuming the inputs to the max-pooling layers are binarized,

taking the maximum in a window is equivalent to performing logical OR over the binary encodings

as depicted in Figure 4.3. Note that average-pooling layers are usually not used in BNNs since

the average of multiple binary elements is no longer a binary value.
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Figure 4.3: The equivalence between Max-Pooling and Boolean-OR operations in BNNs.
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Figure 4.4 demonstrates the Boolean circuit for Binary-VDP followed by BN and BA.

The number of non-XOR gates for binary-VDP is equal to the number of gates required to render

the tree-adder structure in Figure 4.4. Similarly, Figure 4.5 shows the Integer-VDP counterpart.

In the first level of the tree-adder of Integer-VDP (Figure 4.5), the binary weights determine
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whether the integer input should be added to or subtracted from the final result within the “Select”

circuit. The next levels of the tree-adder compute the result of the integer-VDP using “Adder”

blocks. The combination of BN and BA is implemented using a single comparator. Compared to

Binary-VDP, Integer-VDP has a high garbling cost which is linear with respect to the number of

bits. To mitigate this problem, we propose an alternative solution based on Oblivious Transfer

(OT) in Section 4.4.3.
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4.4.3 Oblivious Conditional Addition Protocol

In XONN, all of the activation values as well as neural network weights are binary.

However, the input to the neural network is provided by the user and is not necessarily binary. The

first layer of a typical neural network comprises either an FC or a CONV layer, both of which are
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Sender:
(1) Bit-extends all elements of v1 and creates v∗1
(2) Creates two’s complement of v∗1 : v∗1
(3) Creates random vector r : same size as v∗1
(4) Creates list of first messages as m2 = v∗1− r mod 2b′

(5) Creates list of second messages as m1 = v∗1− r mod 2b′

Sender & Receiver:
(6) Parties engage in Oblivious Transfer (OT)

Sender puts m1 and m2 as message vectors
Receiver puts v2 vector as selection bits

Receiver:
(7) Gets vector vt where:

vt[i] =

{
v∗1[i]− r[i] mod 2b′ (if v2[i] = 0)
v∗1[i]− r[i] mod 2b′ (if v2[i] = 1)

Sender:
(8) Computes her additive share of VDP result as:

y1 = ∑
n
i=1 r[i] mod 2b′

Receiver:
(9) Computes his additive share of VDP result as:

y2 = ∑
n
i=1 vt[i] mod 2b′

Figure 4.6: Oblivious Conditional Addition (OCA) protocol.

evaluated using oblivious Integer-VDP. On the one side, the user provides her input as non-binary

(integer) values. On the other side, the network parameters are binary values representing −1

and 1. We now demonstrate how Integer-VDP can be described as an OT problem. Let us denote

the user’s input as a vector v1 of n (b-bit) integers. The server holds a vector of n binary values

denoted by v2. The result of Integer-VDP is a number “y” that can be described with

b′ = d∗e log2(n · (2b−1))

bits. Figure 4.6 summarizes the steps in the OCA protocol. The first step is to bit-extend v1 from

b-bit to b′-bit. In other words, if v1 is a vector of signed integer/fixed-point numbers, the most

significant bit should be repeated (b′−b)-many times, otherwise, it has to be zero-padded for
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most significant bits. We denote the bit-extended vector by v∗1. The second step is to create the

two’s complement vector of v∗1, called v∗1. The client also creates a vector of n (b′-bit) randomly

generated numbers, denoted as r. She computes element-wise vector subtractions v∗1− r mod 2b′

and v∗1− r mod 2b′ . These two vectors are n-many pair of messages that will be used as input

to n-many 1-out-of-two OTs. More precisely, v∗1− r mod 2b′ is a list of first messages and

v∗1− r mod 2b′ is a list of second messages. The server’s list of selection bits is v2. After n-many

OTs are finished, the server has a list of n transferred numbers called vt where

vt[i] =

 v∗1[i]− r[i] mod 2b′ i f v2[i] = 0

v∗1[i]− r[i] mod 2b′ i f v2[i] = 1
i = 1, ... , n.

Finally, the client computes y1 = ∑
n
i=1 r[i] mod 2b′ and the server computes y2 =

∑
n
i=1 vt[i] mod 2b′ . By OT’s definition, the receiver (server) gets only one of the two mes-

sages from the sender. That is, based on each selection bit (a binary weight), the receiver gets

an additive share of either the sender’s number or its two’s complement. Upon adding all of

the received numbers, the receiver computes an additive share of the Integer-VDP result. Now,

even though the sender does not know which messages were selected by the receiver, she can

add all of the randomly generated numbers r[i]s which is equal to the other additive share of the

Integer-VDP result. Since all numbers are described in the two’s complement format, subtractions

are equivalent to the addition of the two’s complement values, which are created by the sender at

the beginning of OCA. Moreover, it is possible that as we accumulate the values, the bit-length of

the final Integer-VDP result grows accordingly. This is supported due to the bit-extension process

at the beginning of the protocol. In other words, all additions are performed in a larger ring such

that the result does not overflow.

Note that all numbers belong to the ring Z2b′ and by definition, a ring is closed under

addition, therefore, y1 and y2 are true additive shares of y = y1 + y2 mod 2b′ . We described the

OCA protocol for one Integer-VDP computation. As we outlined in Section 4.4.2, all linear
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operations in the first layer of the DL model (either FC or CONV) can be formulated as a series of

Integer-VDPs.

In traditional OT, public-key encryption is needed for each OT invocation which can be

computationally expensive. Thanks to the Oblivious Transfer Extension technique [IKNP03,

Bea96, ALSZ13], one can perform many OTs using symmetric-key encryption and only a fixed

number of public-key operations.

Required Modification to the Next Layer. So far, we have shown how to perform

Integer-VDP using OT. However, we need to add an “addition” layer to reconstruct the true value

of y from its additive shares before further processing it. The overhead of this layer, as well as OT

computations, are discussed next. Note that OCA is used only for the first layer and it does not

change the overall constant round complexity of XONN since it is performed only once regardless

of the number of layers in the DL model.

Comparison to Integer-VDP in GC. Table 4.2 shows the computation and communica-

tion costs for two approaches: (i) computing the first layer in GC and (ii) utilizing OCA. OCA

removes the GC cost of the first layer in XONN. However, it adds the overhead of a set of OTs

and the GC costs associated with the new ADD layer.

Table 4.2: Computation and communication cost of OCA.

Costs
{Sender, Receiver} GC OCA

OT ADD Layer

Comp. (AES ops) (n+1) ·b · {2, 4} n · {1, 2} b′· {2, 4}
Comm. (bit) (n+1) ·b ·2 ·128 n ·b b′ ·2 ·128

4.4.4 Security of XONN

We consider the Honest-but-Curious (HbC) adversary model consistent with all of the

state-of-the-art solutions for oblivious inference [RRK18,MZ17b,LJLA17b,RWT+18a,CGR+17,

JVC18]. In this model, neither of the involved parties is trusted but they are assumed to follow the
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protocol. Both server and client cannot infer any information about the other party’s input from

the entire protocol transcript. XONN relies solely on the GC and OT protocols, both of which are

proven to be secure in the HbC adversary model in [LP09] and [Rab05], respectively. Utilizing

binary neural networks does not affect GC and OT protocols in any way. More precisely, we have

changed the function f (.) that is evaluated in GC such that it is more efficient for the GC protocol:

drastically reducing the number of AND gates and using XOR gates instead. Our novel Oblivious

Conditional Addition (OCA) protocol (Section 4.4.3) is also based on the OT protocol. The

sender creates a list of message pairs and puts them as input to the OT protocol. Each message is

an additive share of the sender’s private data from which the secret data cannot be reconstructed.

The receiver puts a list of selection bits as input to the OT. By OT’s definition, the receiver learns

nothing about the unselected messages and the sender does not learn the selection bits.

During the past few years, several attacks have been proposed that extract some informa-

tion about the DL model by querying the server many times [TZJ+16, FJR15, SSSS17]. It has

been shown that some of these attacks can be effective in the black-box setting where the client

only receives the prediction results and does not have access to the model. Therefore, considering

the definition of an oblivious inference, these type of attacks are out of the scope of oblivious

inference frameworks. However, in Appendix 4.6, we show how these attacks can be thwarted by

adding a simple layer at the end of the neural network which adds a negligible overhead.

Security Against Malicious Adversaries. The HbC adversary model is the standard

security model in the literature. However, there are more powerful security models such as

security against covert and malicious adversaries. In the malicious security model, the adversary

(either the client or server) can deviate from the protocol at any time with the goal of learning more

about the input from the other party. One of the main distinctions between XONN and the state-

of-the-art solutions is that XONN can be automatically adapted to the malicious security using

cut-and-choose techniques [LP12, HKE13, Lin16]. These methods take a GC protocol in HbC

and readily extend it to the malicious security model. This modification increases the overhead
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but enables a higher security level. To the best of our knowledge, there is no practical solution

to extend the customized mixed-protocol frameworks [LJLA17b, RWT+18a, CGR+17, JVC18]

to the malicious security model. Our GC-based solution is more efficient compared to the

mixed-protocol solutions and can be upgraded to the malicious security at the same time.

4.5 The XONN Implementation

In this section, we elaborate on the garbling/evaluation implementation of XONN. All of

the optimizations and techniques proposed in this section do not change the security or correctness

in anyway and only enable the framework’s scalability for large network architectures.

We design a new GC framework with the following design principles in mind: (i) Ef-

ficiency: XONN is designed to have a minimal data movement and low cache-miss rate. (ii)

Scalability: oblivious inference inevitably requires significantly higher memory usage compared

to plaintext evaluation of neural networks. High memory usage is one critical shortcoming

of state-of-the-art secure computation frameworks. As we show in our experimental results,

XONN is designed to scale for very deep neural networks that have higher accuracy compared to

networks considered in prior art. (iii) Modularity: our framework enables users to create Boolean

description of different layers separately. This allows the hardware synthesis tool to generate

more optimized circuits as we discuss in Section 4.5.1. (iv) Ease-to-use: XONN provides a very

simple API that requires few lines of neural network description. Moreover, we have created a

compiler that takes a Keras description and automatically creates the network description for

XONN API.

XONN is written in C++ and supports all major GC optimizations proposed previously.

Since the introduction of GC, many optimizations have been proposed to reduce the computation

and communication complexity of this protocol. Bellare et al. [BHKR13] have provided a way to

perform garbling using efficient fixed-key AES encryption. Our implementation benefits from this
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optimization by using Intel AES-NI instructions. Row-reduction technique [NPS99] reduces the

number of garbled tables from four to three. Half-Gates technique [ZRE15] further reduces the

number of rows in the garbled tables from three to two. One of the most influential optimizations

for the GC protocol is the free-XOR technique [KS08a] which makes XOR, XNOR, and NOT almost

free of cost. Our implementation for Oblivious Transfer (OT) is based on libOTe [Rin].
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Figure 4.7: XONN modular and pipelined garbling engine.
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4.5.1 Modular Circuit Synthesis and Garbling

In XONN, each layer is described as multiple invocations of a base circuit. For instance,

linear layers (CONV and FC) are described by a VDP circuit. MaxPool is described by an OR

circuit where the number of inputs is the window size of the MaxPool layer. BA/BN layers are

described using a comparison (CMP) circuit. The memory footprint is significantly reduced in this

approach: we only create and store the base circuits. As a result, the connection between two

invocations of two different base circuits is handled at the software level.

We create the Boolean circuits using TinyGarble [SHS+15] hardware synthesis approach.

TinyGarble’s technology libraries are optimized for GC and produce circuits that have low number

of non-XOR gates. Note that the Boolean circuit description of the contemporary neural networks

comprises between millions to billions of Boolean gates, whereas, synthesis tools cannot support

circuits of this size. However, due to XONN modular design, one can synthesize each base

circuit separately. Thus, the bottleneck transfers from the synthesis tool’s maximum number

of gates to the system’s memory. As such, XONN effectively scales for any neural network

complexity regardless of the limitations of the synthesis tool as long as enough memory (i.e.,

RAM) is available. Later in this section, we discuss how to increase the scalability by dynamically

managing the allocated memory.

Pipelined GC Engine. In XONN, computation and communication are pipelined. For

instance, consider a CONV layer followed by an activation layer. We garble/evaluate these

layers by multiple invocations of the VDP and CMP circuits (one invocation per output neuron) as

illustrated in Figure 4.7. Upon finishing the garbling process of layer L−1, the Garbler starts

garbling the Lth layer and creates the random labels for output wires of layer L. He also needs

to create the random labels associated with his input (i.e., the weight parameters) to layer L.

Given a set of input and output labels, Garbler generates the garbled tables, and sends them to the

Evaluator as soon as one is ready. He also sends one of the two input labels for his input bits. At

the same time, the Evaluator has computed the output labels of the (L−1)th layer. She receives
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the garbled tables as well as the Garbler’s selected input labels and decrypts the tables and stores

the output labels of layer L.

Dynamic Memory Management. We design the framework such that the allocated

memory for the labels is released as soon as it is no longer needed, reducing the memory usage

significantly. For example, without our dynamic memory management, the Garbler had to allocate

10.41GB for the labels and garbled tables for the entire garbling of BC1 network (see Section 4.7

for network description). In contrast, in our framework, the size of memory allocation never

exceeds 2GB and is less than 0.5GB for most of the layers.

4.5.2 Application Programming Interface (API)

XONN provides a simplified and easy-to-use API for oblivious inference. The framework

accepts a high-level description of the network, parameters of each layer, and input structure. It

automatically computes the number of invocations and the interconnection between all of the base

circuits. Figure 4.8 shows the complete network description that a user needs to write for a sample

network architecture (the BM3 architecture, see Section 4.7). All of the required circuits are

automatically generated using TinyGarble [SHS+15] synthesis libraries. It is worth mentioning

that for the task of oblivious inference, our API is much simpler compared to the recent high-level

EzPC framework [CGR+17]. For example, the required lines of code to describe BM1, BM2,

and BM3 network architectures (see Section 4.7) in EzPC are 78, 88, and 154, respectively. In

contrast, they can be described with only 6, 6, and 10 lines of code in our framework.

I NPUT 28 1 8
CONV 5 16 1 0 OCA   
ACT  
MAXPOOL 2 
CONV 5 16 1 0
ACT
MAXPOOL 2
FC 100
ACT
FC 10

1
2
3
4
5
6
7
8
9

10

Descr i pt i on:  

I NPUT #i nput _f eat ur e #channel s #bi t - l engt h

CONV #f i l t er _si ze #f i l t er s #st r i de 
   #Pad #OCA ( opt i onal )

MAXPOOl  #wi ndow_si ze

FC #out put _neur ons 

Figure 4.8: Sample snippet code in XONN.
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Keras to XONN Translation. To further facilitate the adaptation of XONN, a compiler is

created to translate the description of the neural network in Keras [Cho15] to the XONN format.

The compiler creates the .xonn file and puts the network parameters into the required format

(HEX string) to be read by the framework during the execution of the GC protocol. All of the

parameter adjustments are also automatically performed by the compiler.

4.6 Attacks on Deep Neural Networks

In this section, we review three of the most important attacks against deep neural networks

that are relevant to the context of oblivious inference [TZJ+16, FJR15, SSSS17]. In all three, a

client-server model is considered where the client is the adversary and attempts to learn more

about the model held by the server. The client sends many inputs and receives the inference results

. He then analyzes the results to infer more information about either the network parameters or the

training data that has been used in the training phase of the model. We briefly review each attack

and illustrate a simple defense mechanism with negligible overhead based on the suggestions

provided in these works.

Model Inversion Attack [FJR15]. In the black-box access model of this attack (which

fits the computational model of this work), an adversarial client attempts to learn about a proto-

typical sample of one of the classes. The client iteratively creates an input that maximizes the

confidence score corresponding to the target class. Regardless of the specific training process, the

attacker can learn significant information by querying the model many times.

Model Extraction Attack [TZJ+16]. In this type of attack, an adversary’s goal is to

estimate the parameters of the machine learning model held by the server. For example, in a

logistic regression model with n parameters, the model can be extracted by querying the server n

times and upon receiving the confidence values, solving a system of n equations. Model extraction

can diminish the pay-per-prediction business model of technology companies. Moreover, it can
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be used as a pre-step towards the model inversion attack.

Membership Inference Attack [SSSS17]. The objective of this attack is to identify

whether a given input has been used in the training phase of the model or not. This attack raises

certain privacy concerns. The idea behind this attack is that the neural networks usually perform

better on the data that they were trained on. Therefore, two inputs that belong to the same class,

one used in the training phase and one not, will have noticeable differences in the confidence

values. This behavior is called overfitting. The attack can be mitigated using regularization

techniques that reduce the dependency of the DL model on a single training sample. However,

overfitting is not the only contributor to this information leakage.

Defense Mechanisms. In the prior state-of-the-art oblivious inference solu-

tion [LJLA17b], it has been suggested to limit the number of queries from a specific client

to limit the information leakage. However, in practice, an attacker can impersonate himself as

many different clients and circumvent this defense mechanism. Note that all three attacks rely

on the fact that along with the inference result, the server provides the confidence vector that

specifies how likely the client’s input belongs to each class. Therefore, as suggested by prior

work [TZJ+16, FJR15, SSSS17], it is recommended to augment a filter layer that (i) rounds the

confidence scores or (ii) selects the index of a class that has the highest confidence score.

1. Rounding the confidence values: Rounding the values simply means omitting one (or more)

of the Least Significant Bit (LSB) of all of the numbers in the last layer. This operation is in

fact free in GC since it means Garbler has to avoid providing the mapping for those LSBs.

2. Reporting the class label: This operation is equivalent to computing argmax on the last

layer. For a vector of size c where each number is represented with b bits, argmax is

translated to c · (2b+1) many non-XOR (AND) gates. For example, in a typical architecture

for MNIST (e.g., BM3) or CIFAR-10 dataset (e.g., BC1), the overhead is 1.68E-2% and

1.36E-4%, respectively.

Note that the two aforementioned defense mechanisms can be augmented to any framework
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that supports non-linear functionalities [LJLA17b, RWT+18a, RRK18]. However, we want

to emphasize that compared to mixed-protocol solutions, this means that another round of

communication is usually needed to support the filter layer. Whereas, in XONN the filter layer

does not increase the number of rounds and has negligible overhead compared to the overall

protocol.

4.7 Experimental Results

We evaluate XONN on MNIST and CIFAR10 datasets, which are two popular classification

benchmarks used in prior work. In addition, we provide four healthcare datasets to illustrate the

applicability of XONN in real-world scenarios. For training XONN, we use Keras [Cho15] with

Tensorflow backend [ABC+16]. The source code of XONN is compiled with GCC 5.5.0 using

O3 optimization. All Boolean circuits are synthesized using Synopsys Design Compiler 2015.

Evaluations are performed on (Ubuntu 16.04 LTS) machines with Intel-Core i7-7700k and 32GB

of RAM. The experimental setup is comparable (but has less computational power) compared to

the prior art [JVC18]. Consistent with prior frameworks, we evaluate the benchmarks in the LAN

setting.

4.7.1 Evaluation on MNIST

There are mainly three network architectures that prior works have implemented for the

MNIST dataset. We convert these reference networks into their binary counterparts and train them

using the standard BNN training algorithm [CHS+16]. Table 4.3 summarizes the architectures

for the MNIST dataset.
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Table 4.3: Summary of the trained binary network architectures evaluated on the MNIST dataset.
Detailed descriptions are available in Appendix A, Table A.1.

Arch. Previous Papers Description

BM1 SecureML [MZ17b], MiniONN [LJLA17b] 3 FC

BM2
CryptoNets [DGBL+16b], MiniONN [LJLA17b],
DeepSecure [RRK18], Chameleon [RWT+18a]

1 CONV, 2 FC

BM3 MiniONN [LJLA17b], EzPC [CGR+17] 2 CONV, 2MP, 2FC

Analysis of Network Scaling: Recall that the classification accuracy of XONN is con-

trolled by scaling the number of neurons in all layers (Section 4.4.1). Figure 4.9a depicts the

inference accuracy with different scaling factors (more details in Table 4.11 in Section 4.7.5). As

we increase the scaling factor, the accuracy of the network increases. This accuracy improvement

comes at the cost of a higher computational complexity of the (scaled) network. As a result,

increasing the scaling factor leads to a higher runtime. Figure 4.9b depicts the runtime of different

BNN architectures as a function of the scaling factor s. Note that the runtime grows (almost)

quadratically with the scaling factor due to the quadratic increase in the number of Popcount

operations in the neural network (see BM3). However, for the BM1 and BM2 networks, the overall

runtime is dominated by the constant initialization cost of the OT protocol (∼ 70 millisecond).

(a) (b)
Figure 4.9: Effect of scaling factor on (a) accuracy and (b) inference runtime of MNIST
networks. No pruning was applied in this evaluation.
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GC Cost and the Effect of OCA: The communication cost of GC is the key contributor

to the overall runtime of XONN. Here, we analyze the effect of the scaling factor on the total

message size. Figure 4.10 shows the communication cost of GC for the BM1 and BM2 network

architectures. As can be seen, the message size increases with the scaling factor. We also observe

that the OCA protocol drastically reduces the message size. This is due to the fact that the first

layer of BM1 and BM2 models account for a large portion of the overall computation; hence,

improving the first layer with OCA has a drastic effect on the overall communication.

Figure 4.10: Effect of OCA on the communication of the BM1 (left) and BM2 (right) networks
for different scaling factors. No pruning was applied in this evaluation.

Comparison to Prior Art: We emphasize that, unlike previous work, the accuracy of

XONN can be customized by tuning the scaling factor (s). Furthermore, our channel/neuron

pruning step (Algorithm 3) can reduce the GC cost in a post-processing phase. To provide

a fair comparison between XONN and prior art, we choose a proper scaling factor and trim

the pertinent scaled BNN such that the corresponding BNN achieves the same accuracy as the

previous work. Table 4.4 compares XONN with the previous work in terms of accuracy, latency,

and communication cost (a.k.a., message size). The last column shows the scaling factor (s) used

to increase the width of the hidden layers of the BNN. Note that the scaled network is further

trimmed using Algorithm 3.

In XONN, the runtime for oblivious transfer is at least ∼ 0.07 second for initiating the
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protocol and then it grows linearly with the size of the garbled tables; As a result, in very

small architectures such as BM1, our solution is slightly slower than previous works since the

constant runtime dominates the total runtime. However, for the BM3 network which has higher

complexity than BM1 and BM2, XONN achieves a more prominent advantage over prior art.

In summary, our solution achieves up to 7.7× faster inference (average of 3.4×) compared to

Gazelle [JVC18]. Compared to MiniONN [LJLA17b], XONN has up to 62× lower latency

(average of 26×) Table 4.4. Compared to EzPC [CGR+17], our framework is 34× faster.

XONN achieves 37.5×, 1859×, 60.4×, and 14× better latency compared to SecureML [MZ17b],

CryptoNets [DGBL+16b], DeepSecure [RRK18], and Chameleon [RWT+18a], respectively.

Table 4.4: Comparison of XONN with the state-of-the-art for the MNIST network architectures.
Arch. Framework Runtime (s) Comm. (MB) Acc. (%) s

BM1

SecureML 4.88 - 93.1 -
MiniONN 1.04 15.8 97.6 -

EzPC 0.7 76 97.6 -
Gazelle 0.09 0.5 97.6 -
XONN 0.13 4.29 97.6 1.75

BM2

CryptoNets 297.5 372.2 98.95 -
DeepSecure 9.67 791 98.95 -
MiniONN 1.28 47.6 98.95 -
Chameleon 2.24 10.5 99.0 -

EzPC 0.6 70 99.0 -
Gazelle 0.29 8.0 99.0 -
XONN 0.16 38.28 98.64 4.00

BM3

MiniONN 9.32 657.5 99.0 -
EzPC 5.1 501 99.0 -

Gazelle 1.16 70 99.0 -
XONN 0.15 32.13 99.0 2.00

4.7.2 Evaluation on CIFAR-10

In Tables A.2- A.6, we summarize the network architectures that we use for the CIFAR-10

dataset. In this table, BC1 is the binarized version of the architecture proposed by MiniONN. To

evaluate the scalability of our framework to larger networks, we also binarize the Fitnet [RBK+14]
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architectures, which are denoted as BC2-BC5. We also evaluate XONN on the popular VGG16

network architecture (BC6). Detailed architecture descriptions are available in Section 4.7.5,

Table A.6.

Table 4.5: Summary of the trained binary network architectures evaluated on the CIFAR-10
dataset.

Arch. Previous Papers Description

BC1
MiniONN [LJLA17b], Chameleon [RWT+18a],

EzPC [CGR+17], Gazelle [JVC18] 7 CONV, 2 MP, 1 FC

BC2 Fitnet [RBK+14] 9 CONV, 3 MP, 1 FC
BC3 Fitnet [RBK+14] 9 CONV, 3 MP, 1 FC
BC4 Fitnet [RBK+14] 11 CONV, 3 MP, 1 FC
BC5 Fitnet [RBK+14] 17 CONV, 3 MP, 1 FC
BC6 VGG16 [SZ14] 13 CONV, 5 MP, 3 FC

Analysis of Network Scaling: Similar to the analysis on the MNIST dataset, we show

that the accuracy of our binary models for CIFAR-10 can be tuned based on the scaling factor

that determines the number of neurons in each layer. Figure 4.11a depicts the accuracy of the

BNNs with different scaling factors. As can be seen, increasing the scaling factor enhances the

classification accuracy of the BNN. The runtime also increases with the scaling factor as shown

in Figure 4.11b (more details in Table 4.12, Section 4.7.5).

(a) (b)
Figure 4.11: (a) Effect of scaling factor on accuracy for CIFAR-10 networks. (b) Effect of
scaling factor on runtime. No pruning was applied in this evaluation.
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Comparison to Prior Art: We scale the BC2 network with a factor of s = 3, then prune

it using Algorithm 3. Details of pruning steps are available in Table 4.10 in Section 4.7.4. The

resulting network is compared against prior art in Table 4.6. As can be seen, our solution achieves

2.7×, 45.8×, 9.1×, and 93.1× lower latency compared to Gazelle, EzPC, Chameleon, and

MiniONN, respectively.

Table 4.6: Comparison of XONN with prior art on CIFAR-10.
Framework Runtime (s) Comm. (MB) Acc. (%) s
MiniONN 544 9272 81.61 -
Chameleon 52.67 2650 81.61 -

EzPC 265.6 40683 81.61 -
Gazelle 15.48 1236 81.61 -
XONN 5.79 2599 81.85 3.00

4.7.3 Evaluation on Medical Datasets

One of the most important applications of oblivious inference is medical data analysis.

Recent advances in deep learning greatly benefit many complex diagnosis tasks that require

exhaustive manual inspection by human experts [ERR+19, EKN+17, ADWF15, ROC+18]. To

showcase the applicability of oblivious inference in real-world medical applications, we provide

several benchmarks for publicly available healthcare datasets summarized in Table 4.7. We split

the datasets into validation and training portions as indicated in the last two columns of Table 4.7.

All datasets except Malaria Infection are normalized to have 0 mean and standard deviation

of 1 per feature. The images of Malaria Infection dataset are resized to 32×32 pictures. The

normalized datasets are quantized up to 3 decimal digits. Detailed architectures are available

in Appendix A, Table A.7 We report the validation accuracy along with inference time and

message size in Table 4.8.
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Table 4.7: Summary of medical application benchmarks.

Task Arch. Description # of Samples
Tr. Val.

Breast Cancer [bre] BH1 3 FC 453 113
Diabetes [dia] BH2 3 FC 615 153

Liver Disease [liv] BH3 3 FC 467 116

Malaria Infection [mal] BH4
2 CONV,

2 MP, 2 FC
24804 2756

Table 4.8: Runtime, communication cost (Comm.), and accuracy (Acc.) for medical bench-
marks.

Arch. Runtime (ms) Comm. (MB) Acc. (%)
BH1 82 0.35 97.35
BH2 75 0.16 80.39
BH3 81 0.3 80.17
BH4 482 120.75 95.03

4.7.4 Network Trimming Examples

Table 4.9 and 4.10 summarize the trimming steps for the MNIST and CIFAR-10 bench-

marks, respectively.

Table 4.9: Trimming MNIST architectures.

Network Property
Trimming Step

Change
initial step 1 step 2 step 3

BM1
(s=1.75)

Acc. (%) 97.63 97.59 97.28 97.02 -0.61%
Comm. (MB) 4.95 4.29 3.81 3.32 1.49× less

Lat. (ms) 158 131 114 102 1.54× faster

BM2
(s=4)

Acc. (%) 98.64 98.44 98.37 98.13 -0.51%
Comm. (MB) 38.28 28.63 24.33 15.76 2.42× less

Lat. (ms) 158 144 134 104 1.51× faster

BM3
(s=2)

Acc. (%) 99.22 99.11 98.96 99.00 -0.22%
Comm. (MB) 56.08 42.51 37.34 32.13 1.75× less

Lat. (ms) 190 165 157 146 1.3× faster
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Table 4.10: Trimming the BC2 network for CIFAR-10.

Property
Trimming Step

Change
initial step 1 step 2 step 3

Acc. (%) 82.40 82.39 82.41 81.85 -0.55%
Com. (GB) 3.38 3.05 2.76 2.60 1.30× less

Lat. (s) 7.59 6.87 6.23 5.79 1.31× faster

4.7.5 Accuracy, Runtime, and Communication

Runtime and communication reports are available in Table 4.11 and Table 4.12 for MNIST

and CIFAR-10 benchmarks, respectively. The corresponding neural network architectures are

provided in Table A.1. Entries corresponding to a communication of more than 40GB are

estimated using numerical runtime models.

Table 4.11: Accuracy (Acc.), communication (Comm.), and latency (Lat.) for MNIST dataset.
Channel/neuron trimming is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BM1

1 97.10 2.57 0.12
1.5 97.56 4.09 0.13
2 97.82 5.87 0.13
3 98.10 10.22 0.14
4 98.34 15.62 0.15

BM2

1 97.25 2.90 0.10
1.50 97.93 5.55 0.12

2 98.28 10.09 0.14
3 98.56 21.90 0.18
4 98.64 38.30 0.23

BM3

1 98.54 17.59 0.17
1.5 98.93 36.72 0.22
2 99.13 62.77 0.3
3 99.26 135.88 0.52
4 99.35 236.78 0.81

91



Table 4.12: Accuracy (Acc.), communication (Comm.), and latency (Lat.) for CIFAR-10 dataset.
Channel/neuron trimming is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BC1

1 0.72 1.26 3.96
1.5 0.77 2.82 8.59
2 0.80 4.98 15.07
3 0.83 11.15 33.49

BC2

1 0.67 0.39 1.37
1.5 0.73 0.86 2.78
2 0.78 1.53 4.75
3 0.82 3.40 10.35

BC3

1 0.77 1.35 4.23
1.5 0.81 3.00 9.17
2 0.83 5.32 16.09
3 0.86 11.89 35.77

BC4

1 0.82 4.66 14.12
1.5 0.85 10.41 31.33
2 0.87 18.45 55.38
3 0.88 41.37 123.94

BC5

1 0.81 5.54 16.78
1.5 0.85 12.40 37.29
2 0.86 21.98 65.94
3 0.88 49.30 147.66

BC6

1 0.67 0.65 2.15
1.5 0.74 1.46 4.55
2 0.78 2.58 7.91
3 0.80 5.77 17.44

4.8 Summary

The XONN framework was introduced in this chapter which is a novel approach to

automatically train and use deep neural networks for the task of oblivious inference. XONN

utilizes Yao’s Garbled Circuits (GC) protocol and relies on binarizing the DL models in order

to translate costly matrix multiplications to XNOR operations that are free in the GC protocol.

Compared to Gazelle [JVC18], prior best solution, XONN achieves 7× lower latency. Moreover,

in contrast to Gazelle that requires one round of interaction for each layer, our solution needs a
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constant round of interactions regardless of the number of layers. Maintaining constant round

complexity is an important requirement in Internet settings as a typical network latency can

significantly degrade the performance of oblivious inference. Moreover, since our solution relies

on the GC protocol, it can provide much stronger security guarantees such as security against

malicious adversaries using standard cut-and-choose protocols. XONN high-level API enables

clients to utilize the framework with a minimal number of lines of code. To further facilitate the

adaptation of our framework, we design a compiler to translate the neural network description in

Keras format to that of XONN.
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Chapter 5

HEAX: High-Performance Hardware

Architecture for Computing on Encrypted

Data

With the rapid increase in cloud computing, concerns surrounding data privacy, security,

and confidentiality also have been increased significantly. Not only cloud providers are suscepti-

ble to internal and external hacks, but also in some scenarios, data owners cannot outsource the

computation due to privacy laws such as GDPR, HIPAA, or CCPA. Fully Homomorphic Encryp-

tion (FHE) is a groundbreaking invention in cryptography that, unlike traditional cryptosystems,

enables computation on encrypted data without ever decrypting it. However, the most critical

obstacle in deploying FHE at large-scale is the enormous computation overhead.

In this chapter, we present HEAX, a novel hardware architecture for FHE that achieves

unprecedented performance improvements. HEAX leverages multiple levels of parallelism,

ranging from ciphertext-level to fine-grained modular arithmetic level. Our first contribution

is a new highly-parallelizable architecture for number-theoretic transform (NTT) which can be

of independent interest as NTT is frequently used in many lattice-based cryptography systems.
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Building on top of NTT engine, we design a novel architecture for computation on homomorphi-

cally encrypted data. Our implementation on reconfigurable hardware demonstrates 164–268×

performance improvement for a wide range of FHE parameters.

5.1 Introduction

Cloud computing has fundamentally changed the economics of computing in a short

time. To mitigate security and privacy concerns of cloud computing, cloud providers should keep

customers’ data encrypted at all times. Symmetric-key encryption schemes, such as Advanced

Encryption Standard (AES) [DR13], allow private data to be stored securely in a public cloud

indefinitely. However, unless the customers share their secret keys with the cloud, the cloud

becomes merely a storage provider.

In 2009, a new class of cryptosystems, called Fully Homomorphic Encryption

(FHE) [Gen09], was introduced that allows arbitrary computation on encrypted data. This

groundbreaking invention enables clients to encrypt data and send ciphertexts to a cloud that can

evaluate functions on ciphertexts. Final and intermediate results are encrypted, and only the data

owner who possesses the secret key can decrypt data, providing end-to-end encryption for the

client.

Encode Encrypt

Decode Decrypt

Result

Se
tu

p

Secret Key
Public Key

Evaluation Keys

Client's
Private Data

Private Output

Server's Input Data

Computation on 
Encrypted Data

 Addition
 Multiplication
 KeySwitching
 Relinearization
 Rotation

Server-SideClient-Side

Figure 5.1: The data flow of an end-to-end encrypted computation based on homomorphic
encryption.

Most FHE schemes, i.e., BGV [BGV12], BFV [FV12b], and TFHE [CGGI16] schemes,

perform exact computation on encrypted data. A recently proposed FHE scheme called CKKS
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[CKKS17] performs approximate computation of real numbers and supports efficient truncation

of encrypted values. Several works [KSK+18, JKLS18b] have shown the benefits of choosing

the CKKS scheme over other schemes when an approximate computation is required, e.g., in

Machine Learning applications. Therefore, we focus on the CKKS scheme in this chapter, even

though our core modules are applicable to most of the FHE schemes.

In this chapter, we introduce HEAX (stands for Homomorphic Encryption Acceleration):

a novel high-performance architecture for computing on (homomorphically) encrypted data. We

design several optimized core computation blocks for fast modular arithmetic and introduce a

new architecture for high-throughput Number-Theoretic Transform (NTT). Building on top of

the NTT module we design modules to perform high-level operations supported by FHE, thus

accelerating any FHE-based privacy-preserving system.

Prior Art and Challenges. The ciphertext in FHE schemes is a set (usually a pair) of

polynomials with degree n− 1 (vectors of n integers) modulo a big integer. One of the main

challenges of designing an architecture for FHE is that homomorphic operations on ciphertexts

involve computationally intensive modular arithmetic on big integers (with several hundred bits).

These operations have convoluted data dependency among different parts of the computation,

making it challenging to design a high-throughput architecture. Moreover, the degree of the

underlying polynomials is enormous (in the order of several thousand). Storing the entire

intermediate results on FPGA chip is prohibitive.

Prior work that propose customized hardware for non-CKKS schemes have taken one

of these approaches: (i) Designing co-processors that only accelerate certain low-level ring

operations [CRS16, CGRS14, WH13, CMO+14, DÖS14b, JGCM+15]; high-level operations are

performed on the CPU-side, which makes the co-processors of limited practical use. (ii) Storing

intermediate results on off-chip memory, which significantly degrades the performance [PNPM15]

to the extent that it can be worse than naive software execution [RJV+18]. (iii) Designing a

hardware for a fixed modest-sized parameter, e.g., n = 212 [RTJ+19]. However, encryption
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parameters determine the security-level and the maximum number of consecutive multiplications

that one can perform on ciphertext, both of which are application-dependent. One of our primary

design goals in HEAX is to have an architecture that can be readily used for a wide range of

encryption parameters. In addition, we propose several techniques to efficiently store and access

data from on-chip memory and minimize (or eliminate for some parameter sets) off-chip memory

accesses.

Client-Side and Server-Side Computation. Figure 5.1 illustrates the data flow and

the operations involved in a typical application based on FHE. The client encrypts her data

and sends the resulting ciphertext to the cloud. The cloud server performs the computation on

encrypted data and sends the result back to the client. In order to perform SIMD-style operations,

an encoding step is performed by the client to embed many numbers in a single ciphertext.

Note that encoding/decoding and encryption/decryption are performed on the client-side. These

operations are not computationally expensive; thus, we do not implement customized hardware

for these operations. The operations that are performed by the server for evaluating a function on

ciphertexts are computationally intensive and are the focus of this work.

Contributions. In what follows, we elaborate on our major contributions in more detail:

• We design a novel architecture for number-theoretic transform which is a fundamental

building block – and usually the computation bottleneck – for many lattice-based cryptosys-

tems including all FHE schemes. Our design can process arbitrary-sized polynomials with

an adjustable throughput. We develop several techniques to overcome the challenges due to

the complex data-dependency and convoluted access patterns within NTT.

• We introduce the first architecture for CKKS homomorphic encryption. We leverage multi-

layer parallelism design starting from ciphertext-level to fine-grained optimized modular

arithmetic engines. In contrast to the prior art for other FHE schemes, our architecture

can be scaled for different FPGA chips due to its modularity. Moreover, HEAX is not
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custom-designed for specific FHE parameter set and can be used for a broad range of

parameters.

• We provide a proof-of-concept implementation on two Intel FPGAs that represent two

different classes of FPGAs in terms of available resources. We implement all high-level

operations supported by CKKS and evaluate our design for three sets of FHE parameters.

Our experimental results demonstrate more than two orders of magnitude performance

improvement compared to heavily-optimized Microsoft SEAL library running on CPU.

5.2 MULT Module

In this section, we describe our proposed architectures for homomorphic multiplication.

5.2.1 Homomorphic Multiplication Algorithm

This operation is performed in RNS and NTT form. Although in general ciphertexts can

have more than two polynomial components, in practice, ciphertexts are usually relinearized and

the multiplication is carried out on two components as discussed next. Nevertheless, our proposed

architecture is generic and supports any number of components.

• CKKS.Mul(ct0, ct1): Given ciphertexts ct0, ct1 ∈ R2
q` encrypting pt0, pt0 ∈ R, generate

ct′ ∈ R3
q` according to Algorithm 4 which encrypts pt0 ·pt1 ∈ R.

Algorithm 4 Homomorphic Mult. | CKKS.Mul(ct0, ct1)

Input: ct0 = (Ã0, Ã1), ct1 = (B̃0, B̃1) ∈ (∏`
i=0 Rpi)

2

Output: ct= (C̃0, C̃1, C̃2) ∈ (∏`
i=0 Rpi)

3

1: for (i = 0; i≤ `; i = i+1) do
2: c̃0,i← Mod(ã0,i� b̃0,i, pi) . Dyadic Core
3: c̃1,i← Mod(ã0,i� b̃1,i + ã1,i� b̃0,i, pi)
4: c̃2,i← Mod(ã1,i� b̃1,i, pi)
5: end for
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5.2.2 HEAX Word Size and Native Operations

Microsoft SEAL library [SEA19] is developed for x86 architectures with 64-bit native

operations. However, on FPGAs, the bit-width of Digital Signal Processing (DSP) units that

perform multiplication may vary, hence, it is more efficient to have a flexible bit-width for native

operations. For example, the two FPGA chips that we have implemented our architecture on have

27-bit DSP units. Choosing 27-bit or 54-bit words enables us to use fewer DSPs to do the same

computation. Naive construction of a 64-bit multiplier requires nine 27-bit DSPs. Whereas, a

54-bit multiplier requires only four. However, by reducing the bit-width of the RNS bases, one

may need to increase the number of RNS bases; roughly speaking, by a factor of 64
54 ≈ 1.2. In

practice, small ciphertext moduli are usually less than 54 bits and thus, we do not need to increase

the number of moduli.

It is worth-mentioning that leveraging more sophisticated multi-word multiplication algo-

rithms such as Toom-Cook, one can implement 64-bit multiplication using five 27-bit multipliers

together with more bit-level and Addition operations. Overall, by switching from 64-bit native

operations to 54-bit, we observe between 1.4–2.25× reduction in the number of DSP units needed

(depending on the HE parameters). However, to support 54-bit word size, we need to make

sure that all of the ciphertext moduli (pi) are (i) less than 52-bit to ensure the correctness of

Algorithm 1 and (ii) congruent to 1 mod 2n to support NTT as described in Section 5.3. We

have modified the SEAL library accordingly and precomputed all of such moduli for different

parameter sets.

5.2.3 MULT Architecture

The MULT module can process both ciphertext-ciphertext (C-C) as well as ciphertext-

plaintext (C-P) homomorphic multiplications. We describe the architecture for C-C multiplication

as C-P is a special case of C-C. Since ciphertexts are in NTT form by default, homomorphic
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Figure 5.2: Architecture of MULT module.

multiplication is simply a series of dyadic products on different components.

The MULT module, as depicted in Figure 5.2, encompasses ncDYD-many Dyadic Cores; thus,

it can compute ncDYD dyadic multiplication at each clock cycle (nc stands for number of cores).

Each Dyadic core takes as input two polynomial coefficients (Op1 and Op2), two precomputed

constant values (R1 and R2), and one-word prime p and outputs the result.

Let us denote the number of components in ct0 and ct1 by α and β, respectively. The

outcome of homomorphic multiplication is a ciphertext with α + β− 1 components. Each

ciphertext component is represented in a RNS form. Recall that in homomorphic multiplication

(Algorithm 4), the computation can be carried out independently on each RNS basis. We leverage

this property to reduce BRAM utilization. Minimum BRAM utilization is achieved by storing

only one residue of one ciphertext component on FPGA chip. However, this approach significantly

increases data transfer from CPU to FPGA from (α+β) ·n words to (α ·β+min(α, β)) ·n words

because we need to compute all pairwise combinations of ct0 and ct1 components. Thus, we

allocate α-many memories of size n for ct0 and β-many memories for ct1 to hold one residue

of all ciphertext components. As a result, we achieve O
(
(α+β) ·n

)
data transfer and BRAM

consumption.

In order to fully utilize all ncDYD Dyadic cores – regardless of the values of α and β – we
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read ncDYD coefficients from one of the polynomials of ct0 and ct1 at every clock cycle. However,

each unit of on-chip memory, i.e., Block RAMs (BRAM), only supports one read and one write

at each clock cycle. In order to read many coefficients from one polynomial at each cycle, we

store each polynomial across ncDYD-many parallel memory blocks that share common read/write

address signals as depicted in Figure 5.2. Let us call the aggregation of one row among different

BRAMs as a memory element (ME). Therefore, at every cycle, one memory element (ME1/ME2)

is read from ct0/ct1 memory banks and the result (ME3) is written to a separate output memory.

5.3 NTT Module

NTT calculation as well as its inverse (INTT) are the most computationally intensive

low-level operations. Polynomial multiplication is more efficiently performed by transforming

polynomials and using the convolution theorem. In what follows, we provide an overview on

NTT algorithm followed by our proposed architecture.

5.3.1 Algorithms

Computing c = a ·b ∈ Rp is equivalent to computing the negacyclic convolution of their

coefficient vectors in Zn
p: c j = ∑

j
i=0 aib j−i−∑

n−1
i− j+1 aib j−i+n (mod p), j = 0, 1, . . . , n−1. For

a large n it is asymptotically better to use the convolution theorem and perform a specific form of

fast Fourier transform, i.e., NTT, over a finite field. Polynomials are kept in NTT form to reduce

the number of NTT/INTT conversions. Fast NTT algorithms are well studied in lattice-based

cryptography. We adapt the algorithms in [LN16] which analyzes fast NTT algorithms and

introduces specific optimizations for negacyclic convolution. For a ring degree n, we choose

a prime number p = 1 mod 2n such that there exists a 2n-th primitive root of unity ψ, i.e.,

ψn =−1 mod p.

• NTTp(a): Given a ∈ Zn
p, compute ã ∈ Zn

p such that ã j = ∑
n−1
i=0 aiψ

(2i+1) j, according to Algo-
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rithm 5.

An important operation that is used during key switching and rescaling is called flooring

which can be formalized as: • Floor(C̃, p): Given C̃, the RNS and NTT form of c ∈ Rq`p,

generate C̃′, the RNS and NTT form of c′ =
⌊

p−1 · c
⌋
∈ Rq` according to Algorithm 6.

5.3.2 NTT Architecture

In what follows, we use the term NTT to refer to both NTT and INTT operations/modules

for simplicity. At the end of this section, we discuss the differences between these two modules.

As can be seen from Algorithm 7, in KeySwitch, NTT is frequently used in different parts of this

algorithm. However, the number of required transformations is not consistent in different parts of

the Algorithm. In order to have a fully-pipelined architecture, we allocate one NTT module per

each NTT operation in Algorithm 7. However, the relative throughput-rate among different NTT

instances depends on the chosen FHE parameters, which is application-dependent. As a result,

we need to have a generic architecture such that the throughput can be adjusted as needed. This,

in turn, is translated to the number of NTT cores that is dedicated to a given NTT module.

NTT Core. Figure 5.3 shows the internal architecture of an NTT core. Each core accepts

two coefficients (cin.a and cin.b), one twiddle factor (w), one precomputed value (wp), and a prime

number (p) as inputs and computes two transformed coefficients as the outputs (cout.a and cout.b).

The modular arithmetic operations within NTT core are all pipelined to maximize the throughput

of the overall NTT module.

Figure 5.3 illustrates the full architecture of NTT module. From the functionality perspec-

tive, the architecture follows Algorithm 5. At a high-level, the NTT module computes NTT of a

polynomial of size n in log n stages. In each stage, the module computes the transformed result

of 2ncNTT coefficients, thus, requiring n
2ncNTT

steps to finish one stage.

On the three corners of the NTT architecture exist data memory, twiddle factor memories,

and the output memory. At every cycle, one ME is fetched from data memory and is stored in
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Algorithm 5 Number-Theoretic Transform (NTT) | NTTp(a)

Input: a ∈ Zn
p, p ≡ 1 mod 2n, Y ∈ Zn

p storing powers of ψ in bit-reverse order, and Y′ =
bY ·2w/pc.

Output: : ã← NTTp(a) in bit-reverse ordering.
1: for (m = 1; m < n; m = 2m) do
2: for (i = 0; i < m; i++) do
3: for ( j = i·n

m ; j < (2i+1)n
2m ; j++) do

4: v = MulRed(a j+ n
m
, ym+i, y′m+i, p)

5: a j+ n
m
= a j− v (mod p)

6: a j = a j + v (mod p) . NTT Core
7: end for
8: end for
9: end for

10: ã← a

Algorithm 6 RNS Flooring | Floor(C̃, p)

Input: C̃ = (c̃0, . . . , c̃`+1) ∈ Zn
p0
×·· ·×Zn

p`×Zn
p.

Output: C̃′ = (c̃′0, . . . , c̃′`) ∈ Zn
p0
×·· ·×Zn

p` .
1: a← INTTp(c̃`+1) . INTT Module
2: for (i = 0; i≤ `; i = i+1) do
3: r← Mod(a, pi)
4: r̃← NTTpi(r) . NTT Module
5: c̃′i← c̃i− r̃ (mod pi)

6: c̃′i← Mod
([

p−1]
pi
· c̃′i, pi

)
. MS Module

7: end for
MEe and MEo registers every other cycles, respectively. For each input coefficient of NTT cores,

i.e., c`in.a or c`in.b, a set of multiplexers select the correct coefficient from MEe and MEo (depicted

as light blue boxes in Figure 5.3).

The throughput is proportional to the number of NTT cores. We denote the number of

NTT cores as ncNTT. Ideally at each clock cycle, and given full utilization of NTT cores, 2ncNTT

coefficients are transformed. In order to read and write 2ncNTT coefficients at each clock cycle, we

store each polynomial across many parallel BRAMs that share common read/write address signals

as depicted in Figure 5.3 (similar to the MULT module). This is possible thanks to the aligned

access pattern in NTT: while access pattern changes during NTT, the number of consecutive

accesses to the polynomial is always a power of two. Next, we discuss the details of the access
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patterns in NTT followed by our proposed solution to select each coefficient efficiently.
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Figure 5.3: Architecture of NTT module.

5.3.3 Access Pattern

One of the main challenges in realizing the proposed NTT architecture is that the access

pattern of the coefficients changes from one stage to another. We categorize the access patterns

into two groups as illustrated in Figure 5.4. During the first (log n− logncNTT−1) stages, each

pair of coefficients for each NTT core are stored in different MEs. Let us call these Type 1

stages. For instance, consider n = 4096 and ncNTT = 8, during the first step of the first stage

of NTT, x[0] (in ME0) and x[2048] (in ME256) should be passed to the first NTT core. More

precisely, polynomial coefficient x[ j] ( j = 0, 1, ... , n
2 − 1) is passed together with x[ j+ n

2 ] to a

given NTT core. In general, during ith stage, x[ j+m] ( j = 0, 1, ... , n
21+i −1) is passed along with

x[ j+m+ n
21+i ] where m ∈ { h·n

2i |h = 0, 1, ..., i}. The address of the ME that is fetched in Type 1

stages is computed in Address Logic. As soon as n
2i = 2ncNTT, the inter-ME data dependency no

longer exists, and pairs of coefficients are selected from within each ME independently, i.e., Type

2 stages.

In Type 1 stages, coefficients within two fetched MEs are always accessed in the same

order. For example, the second coefficient in each ME is always passed to the second NTT core.
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However, in Type 2 stages, a coefficient at specific location of ME is passed to a different NTT

core or even different inputs of an NTT core. Therefore, coefficients have to be reordered to be

passed to NTT cores. Later in this section, we discuss an efficient method for this task.

The access pattern for twiddle factors, i.e., Y and Y′ in Algorithm 5, is different. At stage

i, only 2i unique values of twiddle factors, starting at index 2i of twiddle polynomial, are used.

Since in the worst-case scenario, ncNTT unique twiddle factors are used in a single step of NTT,

we store twiddle factors in batches of size ncNTT in parallel.

5.3.4 Reordering Coefficients and Optimal MUXs

During Type 1 stages, once the ME is fetched, passing each coefficient within ME to the

right NTT core (and right input wire) is straightforward and it can be summarized as follows:


c`in.a = MEe[`+( j mod 2) ·ncNTT]

c`in.b = MEo[`+( j mod 2) ·ncNTT]

where c`in.a (respectively c`in.b) is the input coefficient a (respectively b) of `th NTT core, MEe

(resp. MEo) is the memory element at “even” (“odd”) read cycles, i.e., j mod 2 = 0 ( j mod 2 = 1)

where j is the step number. In other words, c`in.a (resp. c`in.b) is selected from one of the two

positions from MEe (resp. MEo) using multiplexer #3 (MUX3).

In Type 2 stages, first one of the MEe or MEo is selected using 2ncNTT-many two-to-one

multiplexers (MUX1) and is stored in MEs registers. Next, c`in.a (or c`in.b) receive data from one

of the coefficients in MEs depending on the value of ` and i. The naive approach is to use one

multiplexer per each coefficient input of every NTT core that selects one number from 2ncNTT

fetched numbers. We denote such multiplexer as MUX2ncNTT . As a result, we need 2ncNTT-many

MUX2ncNTT to pass coefficients to NTT cores and the same number of MUXs to reorder them to

be written back to the memory.
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ME0
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Figure 5.4: Access pattern of Type 1 and Type 2 stages in NTT.

These MUXs not only make the placement and route process more challenging but also

consume enormous number of registers and logic blocks. Moreover, scaling the NTT module

to higher number of cores (> 32) is inefficient due to super-linear resource consumption with

respect to ncNTT. In our case, synthesis tools failed to place and route the required resources to

realize these MUXs. In contrast, we take advantage of the observation that NTT cores’ inputs

have a different number of possibilities from which they select the correct coefficient at a given

stage. For example, during Type 2 stages, c0
in.a only receives coefficients from the first word of

the fetched ME, regardless of the stage or step number.

In the worst-case scenario, there are logncNTT different indices from which a coefficient

should be accessed from MEs for a particular NTT core input. Therefore, instead of using

(4 ·ncNTT)-many MUX2ncNTT , we instantiate (4 ·ncNTT)-many MUXs of size at most MUXlog2ncNTT .
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These optimal multiplexers are shows as MUX2 in Figure 5.3. The selection signal of these MUXs

is set to s = log n−1− i (i being the stage number). The corresponding inputs (MUX{c`in.a}(α)

and MUX{c`in.b}(α)) from which a coefficient should be selected are assigned based on the

following formula:

=


MEs[(`&(2s−1))+((i >> s)<< (s+ `))]

MEs[(`&(2s−1))+((i >> s)<< (s+ `))+2s]

where MUX{c`in.a}(α) is the α-th input wire of the MUX that selects the corresponding input

coefficient from MEs for the `-th core, thus, 0≤ α < logncNTT. Finally, depending on the stage

type, MUX4 selects the output of MUX2 or MUX3.

A similar set of MUXs (MUX6 and MUX7) are used to reorder the data back before storage.

Final results (ME4 and ME5) will be stored in the data memory during two consecutive clock

cycles; except for the the last stage where they will be stored in output memory. The optimized

multiplexers for twiddle factors is designed in a similar manner. The optimal multiplexers are an

integral part of the design of NTT module. For instance, this optimization reduces the number

of registers used for a 8-core NTT module from 224,000 to 97,000. Note that to synthesize the

NTT module, register is the most limited resource (see Section 5.6), thus, without the proposed

optimal multiplexers, one cannot scale the design properly.

5.3.5 NTT High-Level Pipeline

Storing polynomial coefficients across parallel memory blocks enables simultaneous

access to multiple coefficients. However, the NTT cores cannot be fully utilized due to the

following reason. During Type 1 stages, coefficients that should be passed to each NTT core are

not located in the same ME. Therefore, two different MEs should be read before the computation

can start which introduces 50% bubble in the NTT core pipeline. More precisely, first log n−
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logncNTT− 1 stages face this problem. Given that NTT modules consume most of the FPGA

resources, this issue reduces the throughput of the entire design to (log n− logncNTT−1)/ log n.

To address this problem, we propose to double the size of MEs and store 2ncNTT consecu-

tive coefficients in each memory element. Meanwhile, we reduce the depth of the memories that

store the polynomial by half. Even though it is still necessary to read two MEs before starting

the computation, we can now transform two MEs in the next two cycles and store them back

in the memory. This modification results in the full utilization of NTT core. In order to have

minimal BRAM usage, all of the reads and writes during different NTT stages are inplace, and

no additional BRAM is used to store intermediate values.

5.3.6 Memory Utilization and Word-Packing

Storing multiple polynomial coefficients in multiple parallel memory units (M20K) causes

memory block under-utilization both depth-size and width-size. Consider a general scenario

where β-many numbers are stored in parallel:

Depth-wise: Each M20K memory unit holds 512-many 40-bit wide words and at any cycle, one

word can be read from or written into the memory. When fewer than 512 words are stored in the

memory, the rest of the memory rows cannot be used to store a secondary polynomial since at any

point in time we are reading/writing one word associated with the first polynomial. As long as

n
β
≥ 512, M20K is fully utilized. This inequality generally holds in our architecture except when

n = 212 (smallest polynomial size) and ncNTT = 16 which makes M20K half utilized. However,

this is not an issue since our design is not BRAM-constrained when n = 212.

Width-wise: As the polynomial-size (n) grows, our design becomes more and more BRAM-

constrained to the extent that at n = 214, there is not enough BRAM on the chip; thus, we

have to use DRAM as well (we will discuss this in more detail in Section 5.5). Therefore, it

is essential that the polynomials are efficiently stored in memory. By storing each coefficient

in a separate physical BRAM, we will only reach 54
2·40 = 68% utilization. In contrast, we pack
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multiple coefficients and store them in fewer M20K units as shown in Figure 5.3 reaching memory

utilization of β ·54/(dβ ·54/40e ·40). For β = 8, BRAM utilization will reach more than 98%.

Performance. Computing the NTT of a polynomial requires log n stages and each stage

takes n
2ncNTT

cycles. Hence, it takes n log n
2ncNTT

cycles to compute one NTT.

INTT Module. This module is identical to the NTT module except: (i) the NTT core is

replaced by the INTT core, (ii) the control unit operates in the reverse order of stage numbers,

and (iii) twiddle factors correspond to the INTT calculations.

5.4 KeySwitch Module

In this section, we discuss the KeySwitch algorithm followed by our proposed architecture

and the design details.

5.4.1 Algorithm

Key switching is a technique to make a ciphertext decryptable with a different secret key

homomorphically. Various gadget decomposition methods can be adopted to balance noise growth

and execution time. Given qd−1, the product of coprime integers p0, . . . , pd−1, and q` divides

qd−1, define gadget decomposition Rq` 7→ Rd as g−1(a) =
(
[a]pi

)
0≤i≤d−1

, and gadget vector as

g =

(
πi

[
π
−1
i

]
pi

)
0≤i≤d−1

where πi =
qd−1

pi
. This choice of gadget decomposition contributes to a

fast key switching and high noise growth. With the special modulus p and a rescaling at the end

of key switching, explained in [CDKS19], key switching is almost noise-free.

• KeySwitch(ct, ksk): Given a ciphertext ct= (c0,c1) ∈ R2
q` decryptable with secret key s and

a key switching key ksk= (D0 | D1) ∈ R(L+2)×2
q`p , where | appends one column vector to another,

generate a new ciphertext ct′ = (c′0, c′1) ∈ R2
q` decryptable with secret key s′. (see Algorithm 7).
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Figure 5.5: Architecture of KeySwitch module.

5.4.2 KeySwitch Architecture

KeySwitch is the most computationally intensive high-level operation in CKKS. It has

several important roles, including relinearization and ciphertext rotation. Figure 5.5 illustrates the

KeySwitch architecture, which from the functionality perspective corresponds to Algorithm 7.

To reduce on-chip memory usage, our design takes one polynomial (one RNS component) at a

time and outputs two polynomials. Recall that in CKKS, all polynomials are in NTT form by

default. Thus, once the input polynomial is written into the input memory, it has to be converted

back to the original domain. This process is performed using the first INTT module (INTT0).

Next, the polynomial is transformed to the NTT form for all other primes (including the special

modulus).

Since per each INTT computation, we have to perform k NTT, the throughput of the NTT

module(s) has to be k-times the throughput of INTT0. Here, k is the number of RNS components

of ciphertext modulus, i.e., L+ 1. This requirement can be realized in two different ways: (i)

having one NTT module with k-many more cores than INTT0 or (ii) having multiple NTT module

with fewer cores per each module. We denote this NTT module (or a set of them) as NTT0. We

will discuss the trade-offs later in this section. In Figure 5.5, the second approach (using more

than one NTT module) is chosen for n = 213 and k = 4 parameter set.
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Algorithm 7 Key Switching | KeySwitch(ct, ksk)

Input: ct = (C̃0, C̃1) ∈ (∏`
i=0 Rpi)

2, and ksk =
((

D̃i,0
)

0≤i≤L+1

∣∣ (D̃i,1
)

0≤i≤L+1

)
∈

(p∏
L
i=0 Rpi)

(L+2)×2

Output: ct′ = (C̃′0, C̃′1) ∈ (∏`
i=0 Rpi)

2

1: for (i = 0; i≤ `; i = i+1) do
2: a← INTTpi(c̃1,i) . INTT Module
3: for ( j = 0; j ≤ `; j = j+1) do
4: if i 6= j then
5: b← Mod(a, p j)
6: b̃← NTTp j(b) . NTT Module
7: else
8: b̃← ã
9: end if

10: c̃′′0, j← c̃′′0, j + b̃� d̃i,0, j (mod p j)

11: c̃′′1, j← c̃′′1, j + b̃� d̃i,1, j (mod p j) . Dyadic Mod.
12: end for
13: b← Mod(a, p)
14: b̃← NTTp(b) . NTT Module
15: c̃′′0,`+1← c̃′′0,`+1 + b̃� d̃0,i,L+1 (mod p j)

16: c̃′′1,`+1← c̃′′1,`+1 + b̃� d̃1,i,L+1 (mod p j) . Dyd. M.
17: end for
18: ct′← (Floor(C̃′′0, p), Floor(C̃′′1, p)) . INTT/NTT/MS
19: ct′← CKKS.Add(ct, ct′)

Once the NTT computations are finished, the DyadMult module computes the dyadic

product between the output of NTT modules and the relinearization/Galois keys according

to Algorithm 7. Recall that a dyadic product on the original input polynomial is also needed in

KeySwitch; thus, a separate Dyadic module is used. After dyadic product computation, the result

is stored in the corresponding memory banks. There are two sets of BRAM banks, each bank

containing the RNS components of one polynomial.

The computation flow described above repeats for k-many times (one per each RNS

component). The result is accumulated in the BRAM banks. After k iterations, the second

part of the computation – usually referred to as Modulus Switching (developed in [BV11]) –

is performed. In Modulus Switching which executes Floor, the polynomial corresponding to

the special modulus has to be transformed back to the time domain (by INTT1) and then be

111



transformed using every other k primes (by NTT1). The aforementioned process is independently

performed for both sets of banks. Next, the polynomial is multiplied by the inverse value of the

associated prime and subtracted from the result of the first half of KeySwitch computation. The

MS module embeds multiplication and subtraction operations. The output of KeySwitch is stored

as two sets of k polynomials referred to as “Output Poly 0/1”.

5.4.3 Balancing Throughput

Our primary goal in designing KeySwitch architecture is to have a fully end-to-end

pipelined module that can process many key switching operations simultaneously without ex-

cessive FIFOs between different components. Thus, we have to tune the throughput of each

component carefully. As we discussed in Section 5.3, this is one of the reasons to design a flexible

architecture for NTT, the throughput of which can be adjusted. According to Algorithm 7, per

each initial INTT, we have to compute k NTTs. In general, let’s denote the number of NTT0 as m0

(assuming a power of two number). Thus, we have: ncNTT0 = k ·ncINTT0/m0.

Next, we compute the number of cores needed for DyadMult. Recall that it takes

(n log n)/(2ncNTT0) cycles for NTT module to finish the computation. The DyadMult mod-

ule has to compute the product of NTT output with two different sets of keys (ksk= D0 | D1). It

takes (2n)/ncDYD cycles to perform dyadic multiplication on the output of the NTT module. Since

in general, log n is not a power of two, the throughputs do not perfectly match. We make sure

that the throughput of Dyadic module is greater than that of (or equal to) the NTT module by

satisfying the following inequality:

2n
ncDYD

6
n log n
2ncNTT0

⇒ ncDYD =

⌈
4ncNTT0

log n

⌉
The throughput of INTT1 modules can be adjusted by assigning ncINTT1 = dncINTT0/ke. One

can also determine ncNTT1 = ncINTT0 and ncMS = d(2ncNTT1)/ log ne. For two FPGA chips that we
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have implemented HEAX on, the optimal architecture parameters are computed and summarized

in Table 5.5.

5.4.4 KeySwitch Ops. and Synchronization

Figure 5.6 shows the high-level pipeline of KeySwitch module for n = 213 (third row of

Table 5.5). All of the modules – and their internal components – are pipelined, and the throughput

is balanced. As can be seen, multiple key switching operations are computed simultaneously

in different pipeline stages (in lighter colors). The fifth Dyadic module that operates on input

polynomial BRAM is synchronized with the rest of the Dyadic modules even though the com-

putation can be started as soon as the input poly is available. The reason is that during each

of the k iterations of Dyadic product, each module computes and accumulates the results by

reading/writing from/to a separate BRAM bank. This enables us to avoid any memory replication

considering that these memory banks are prohibitively large. However, this delayed computation

introduces a dependency problem in the pipeline referred to as “Data Dependency 1”. By the time

the k-th Dyadic module starts the computation, the content of input poly is overridden by the next

key switching operation. As a result, we allocate enough BRAM to hold f1-many polynomials

where f1 =
⌈

3+
ncINTT0
ncNTT0

⌉
. Similarly, MS module receives inputs from DyadMult modules. This is

marked as “Data Dependency 2” in Figure 5.6. Thus, we need to allocate more memory to store

the output of the DyadMult modules in f2 different buffers. The value of f2 can be computed as:

f2 =
⌈

1+m0 ·
ncINTT1
ncNTT1

+
ncINTT1 ·log n

ncMS

⌉
.

113



First INTT 
Module

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

INTT INTTINTT

First Layer of 
NTT Modules

First Layer of 
DyadMult Modules

Second Layer of 
INTT Modules

Second Layer of 
NTT Modules

DyadMult Module
for Input Poly

Final Multiplication 
and Subtraction

k iterations within a 
single KeySwitch

next 
KeySwitch

previous 
KeySwitch

...

D

Data Dependency 1

Data Dependency 2

Time

O
p

er
at

io
n

s

I INTT

N NTT

D Dyadic Mult

M Mult & Sub

Figure 5.6: High-level pipeline of KeySwitch module.

5.5 System View and Data Flow

In this section, we discuss a higher-level view of the computation and elaborate on the

data flow. Figure 5.7 shows a system-view comprising host CPU and FPGA Board which are

connected via Peripheral Component Interconnect express (PCIe) bus. On FPGA board, exist the

FPGA chip as well as off-chip DRAM memory connected via DDR interface.

5.5.1 On-Chip vs. Off-Chip Memory Accesses

There are two main ways to store data on FPGA board: (i) off-chip DRAM with several

Gigabytes of capacity but high response delay and (ii) on-chip BRAM with few megabits
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Figure 5.7: System-view of HEAX.

of capacity but very fast response time and high throughput. As has been shown by prior

art [RJV+18, RTJ+19], leveraging off-chip memory to store intermediate results significantly

reduces the overall performance due to high delays between subsequent reads and writes. One

of our primary design goals is to avoid off-chip memory access as much as possible. We have

introduced several techniques to use minimal on-chip memory, re-use many BRAM units, together

with data compaction (see Section 5.3 and Section 5.4). As a result, no off-chip memory access is

performed for n = 212 parameter set on both Arria 10 and Stratix 10 FPGAs; which is one of the

main reasons for our unprecedented performance improvements.

For n = 213 parameter set, there is sufficient on-chip memory on Stratix 10 chip. Unfortu-

nately, for n = 214, there is not enough BRAM available for our design, and as a result, we have

to move some part of the data to off-chip memory. In order to minimize the effect of off-chip

memory accesses, we choose to put key switching keys (ksk) in DRAM because of two main

reasons: (i) the size of these keys grow very rapidly with HE parameters. In general, the size of

ksk grows as O
(
nk2), and roughly speaking, k grows linearly with n which results in (almost)

O
(
n3). This is the highest growth rate compared to all other memory components, including

twiddle factors which grow as O
(
nk
)
. (ii) ksk is only read once per each KeySwitch. Note that

each unique element of twiddle factors is read k times during one KeySwitch operation; thus,

twiddle factors are less suitable candidates.

115



We distribute the ksk among four different DRAM banks such that at any point in time,

the full capacity of off-chip memory bandwidth is used. In order to further mask the effect of

DRAM accesses, we leverage the burst mode in which a long sequence of data is read at the same

time on each channel. The entire process of reading ksk from DRAM is pipelined to minimize the

drop in throughput of KeySwitch. It is worth-mentioning that DRAM bandwidth is sufficient to

match the throughput of KeySwitch. Per each KeySwitch, two sets of ksk have to be streamed to

FPGA chip. Each of these sets, hold k ·(k+1)-many vectors of size n. Substituting n = 214, k = 8,

and 64-bit per each word results in approximately 151 megabits. We have to stream this volume

of data in 383 microseconds (please see Table 5.8). Therefore, DRAM bandwidth should be

higher than 49.28 GBps, which is indeed lower than the measured bandwidth of all four channels

combined.

In addition to storing ksk, we use DRAM for one more purpose. In some applications, it

is more efficient to store the result of computation in DRAM instead of sending them back to

CPU (in case these results are going to be used soon). The address at which the result is stored is

held on the CPU side and is shown as “Memory Map”. The memory map is used to point to the

ciphertext(s) that are stored in DRAM to be used later on without involving PCIe.

5.5.2 Data Transfer on PCIe

In order to maximize the utilization of computation blocks on FPGA, we need to interleave

computation and data transfer between FPGA and CPU. We divide this design process into two

parts: CPU-side and FPGA-side. On the CPU-side, we need to sequence and batch multiple

operations in the program (that uses SEAL) and start the data transfer process on PCIe using

multiple threads. On the FPGA-side, we need to allocate the necessary buffers to store the

received data. In what follows, we explain these two parts in more detail.

Sequencing and Batching. Transferring data on PCIe involves three main steps: (i)

a memcpy is issued to copy the content of the polynomial to pinned memory pages, (ii) CPU
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signals FPGA that the data is ready, and (iii) FPGA reads the data from PCIe. In order to

reduce the data copy time, Direct Memory Access (DMA) is used. However, even by relying

on DMA, the maximum throughput that PCIe can provide depends on the message size and

the number of simultaneous data transfer requests. Therefore, we transfer (at least) a complete

polynomial (215−217 Bytes) in each request. Moreover, we implement a multi-threaded data

transfer mechanism that uses eight threads to interleave eight separate polynomials at a time to

maximize the PCIe throughput and avoid unnecessary bubbles in the computation pipeline.

Double and Quadruple Buffering. For the MULT module, it suffices to double-buffer

the input such that CPU writes to one of these buffers and FPGA reads from the other one. For

KeySwitch module, however, we need to perform quadruple buffering due to the data dependency

on input polynomial as discussed in Section 5.4. In order to make sure buffers are not overridden

before they are read, we stop the writing process if the buffer has not been read yet.

5.6 Implementation and Experiments

5.6.1 Experimental Setup

In this section, we discuss the resource consumption of HEAX components as well as

the performance comparison with CPUs and GPUs. To illustrate the adaptability of HEAX,

we implement HEAX on two FPGAs which represent two different classes of computational

resources. Table 5.1 summarizes the breakdown of resources of each FPGA chip. There are three

major types of resources that are available:

• Digital Signal Processing (DSP) units that are able to perform one 27-bit or two 18-bit multipli-

cations.

• Adaptive Logic Modules (ALM) are core logic units with two combinational adaptive look-up

tables, a two-bit full adder, and four 1-bit Registers (REG).

• Block RAM (BRAM) units that are on-chip memories. Each M20K unit of BRAM holds
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512-many 40-bit values.

Table 5.1: Summary of FPGA boards’ specifications.

Board Chip
Chip Resources DRAM

DSP REG ALM
BRAM

#chnl.
BW

bits #M20K (GBps)

Board-A Arria 10 GX 1150 1518 1.71M 427K 53Mb 2.7K 2 34
Board-B Stratix 10 GX 2800 5760 3.73M 933K 229Mb 11.7K 4 64

5.6.2 FHE Parameters and Security Guarantees

The security guarantees of HEAX directly derives from the CKKS scheme [CKKS17]

since the functionality of the scheme is not altered. The security parameters for which we have

instantiated HEAX are borrowed from the HE security standards [ACC+18] for 128-bit classical

security. Changing the underlying word-size in HEAX reduces the number of DSPs used but does

not affect the security since the total bitwidth of the ciphertext modulus is preserved [ACC+18].

Similarly, we leveraged the RNS-level parallelism which is proven to be secure [CHK+19].

We evaluate our design on a wide range of FHE parameters: from ciphertext polynomial

size (n) of 212 and 109-bit ciphertext modulus (blogqpc+ 1) to 214 with 438-bit ciphertext

modulus. We refer to these parameter sets as Set-A, Set-B, and Set-C, respectively (summarized

in Table 5.2). Recall that k is the number of small RNS components of ciphertext modulus.

Parameters with 128-bit post-quantum security require slightly smaller ciphertext moduli. We

select as few prime moduli for RNS as possible for superior performance [HPS19]. Note that

parameter sets corresponding to 211 (or lower) are almost never used in practice due to the

multiplication depth of 1 (or zero). Choosing 215 (or higher) results in enormous computation

blow-up and are also rarely used in practice.
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Table 5.2: The HE parameter sets used in this work. n is the ciphertext polynomial size, qp is
the ciphertext modulus, and k is the number of RNS components of q.

HE Param. Set n blogqpc+1 k

Set-A 212 109 2
Set-B 213 218 4
Set-C 214 438 8

5.6.3 Resource Consumption

Computation Cores. Table 5.3 provides a detailed resource consumption of Dyadic,

NTT, and INTT computation cores as well as the number of pipeline stages (delay) for each core.

Table 5.3: Resource consumption of each computation core.

Core Name DSP REG ALM #Stages

Dyadic 22 4526 1663 23
NTT 10 6297 2066 50
INTT 10 5449 2119 49

Basic Modules. Table 5.4 provides a detailed resource consumption of different modules

(with various number of cores). The BRAM utilization is reported for Set-B parameters (n = 213).

The BRAM bits usage in each module does not depend on the number of cores but the number of

M20K units does. The reason is that more coefficients are stored in parallel M20K units. In the

last column, the number of cycles that takes for each module to process a polynomial (or pair of

polynomials in case of MULT module) is reported.
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Table 5.5: KeySwitch architecture for different HE parameter sets.
FPGA Device HE Param. Set KeySwitch Architecture Parameter Set

Arria10 n = 212 (Set-A) 1× INTT(8)→ 2×NTT(8)→ 3×Dyad(4)→ 2× INTT(4)→ 2×NTT(8)→ 2×MS(2)

Stratix10
n = 212 (Set-A) 1× INTT(16)→ 2×NTT(16)→ 3×Dyad(8)→ 2× INTT(8)→ 2×NTT(16)→ 2×MS(4)

n = 213 (Set-B) 1× INTT(16)→ 4×NTT(16)→ 5×Dyad(8)→ 2× INTT(4)→ 2×NTT(16)→ 2×MS(4)

n = 214 (Set-C) 1× INTT(8)→ 4×NTT(16)→ 5×Dyad(8)→ 2× INTT(1)→ 2×NTT(8)→ 2×MS(4)

Table 5.6: Resource consumption of HEAX for different HE parameter sets.
FPGA Device HE Param. Set DSP (%) REG (%) ALM (%) BRAM bits (%) BRAM #M20K (%) Freq. (MHz)

Arria10 Set-A 1185 (78) 723188 (42) 246323 (58) 26596320 (48) 1731 (64) 275

Stratix10
Set-A 2018 (35) 1554005 (42) 582148 (62) 26907592 (11) 3986 (34) 300
Set-B 2610 (45) 1976162 (53) 698884 (75) 201332624 (84) 10340 (88) 300
Set-C 2370 (41) 1746384 (47) 599715 (64) 182847524 (76) 9329 (80) 300

Table 5.7: Performance comparison of HEAX with CPU. Number of operations per second for
CKKS low-level operations.

FPGA Device HE Param. Set NTT INTT Dyadic MULT
CPU HEAX Speed-up CPU HEAX Speed-up CPU HEAX Speed-up

Arria10 Set-A 7222 89518 12.4 7568 89518 11.8 36931 1074219 29.1

Stratix10
Set-A 7222 195313 27.0 7568 195313 25.8 36931 1171875 31.7
Set-B 3437 90144 26.2 3539 90144 25.5 18362 585938 31.9
Set-C 1631 41853 25.7 1659 41853 25.2 9117 292969 32.1

Table 5.4: Resource consumption of basic modules.

Module #Cores DSP REG ALM BRAM Cycles
#bits #M20K

A10 Shell - 1 79203 39222 886496 144 -
S10 Shell - 2 86984 45612 1201096 173 -

MULT
4 88 42817 15795

11
04

38
4 65 1024

8 176 61878 22160 65 512
16 352 93594 35257 164 128
32 704 181503 62157 293 64

NTT
4 40 61670 22316

15
14

49
6 86 6144

8 80 96919 36336 185 3072
16 160 196205 67865 380 1536
32 320 387357 142300 725 768

INTT
4 40 63917 22700

15
14

49
6 86 6144

8 80 104575 37331 185 3072
16 160 182478 68645 380 1536
32 320 384267 144957 724 768

Complete Design. Table 5.6 provides a breakdown of FPGA resource consumption for
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Table 5.8: Performance comparison of HEAX with CPU. Number of operations per second for
CKKS high-level operations.

FPGA Device HE Param. Set KeySwitch MULT+ReLin
CPU HEAX Speed-up CPU HEAX Speed-up

Arria10 Set-A 488 44759 91.7 420 44759 106.6

Stratix10
Set-A 488 97656 200.5 420 97656 232.5
Set-B 97 22536 232.3 84 22536 268.3
Set-C 16 2616 163.5 15 2616 174.4

different HE parameter sets. The complete design encompasses the KeySwitch module along with

the MULT module. For standalone NTT requests from CPU, the NTT modules within KeySwitch

is used.

5.6.4 Performance

Critical Paths and Maximum Clock Frequency. We have analyzed the critical paths of

our design and have eliminated such paths during many design iterations reaching the maximum

clock frequency of 275 MHz and 300 MHz for Arria 10 and Stratix 10 FPGA chips, respectively.

Scalability. One of design principles of HEAX is that it can automatically be instantiated

at different scales with no manual tuning, enabling cloud providers to seamlessly use HEAX

based on the underlying hardware resource. To illustrate this, we have instantiated HEAX for the

same HE parameters (Set-A) but at two different scales (see Table 5.5). The up-scaled version on

Stratix 10 consumes (close to) twice the resources (Table 5.6) and provides twice the throughput

compared to Arria 10 instantiation (see Table 5.8).

Performance Comparison with GPUs. To the best of our knowledge, there does not

exist any work based on FPGAs or GPUs for CKKS scheme. In Table 5.9, we compare the

performance of our “NTT architecture” on Stratix10 (which holds ten 16-core NTT modules)

with two NVIDIA GPUs [ABVMA18]. Not only HEAX consumes significanlty less power but it

is 36–81× faster compared to data-center GPUs.
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Table 5.9: Performance comparison (operations per second) of HEAX with NVIDIA GPUs for
NTT computation.

Polynomial
Size

HEAX
(10×16-cores)

Tesla-K80
(2496-cores)

Tesla-P100
(3584-cores)

Performance
Comparison

212 1953130 25641 27777 70–76×
213 901440 20833 25000 36–43×
214 418530 5181 11494 36–81×

Performance Comparison with CPUs. We compare the performance of HEAX with

Microsoft SEAL V3.3 [SEA19], which is an FHE library for BFV and CKKS schemes that has

undergone several years of performance optimizations. We measure the performance of SEAL on

a single-threaded Intel Xeon(R) Silver 4108 running at 1.80 GHz; which is a similar CPU used in

prior art [RTJ+19]. The single-thread baseline is used by prior art for measuring the performance

(non-CKKS schemes) [RTJ+19]. In addition, SEAL is thread-safe but not multithreaded due

to the complex data dependencies, hence, we cannot compare to a multi-threaded execution. In

general, CKKS evaluation functions do not have a balanced parallelizable computation flow and

many parts are not parallelizable at all. For instance, the “Modulus Switching” is not parallelizable

leading to the Data-Dependency 2 (Figure 5.6). This is the reason why we cannot allocate a single

NTT/INTT module in KeySwitch and use it over time for different steps. Instead, we design an

end-to-end pipelined design and use the chip-area proportional to the computation overhead.

Table 5.7 shows the performance results (number of operations per second) of HEAX

for low-level operations and its comparison with SEAL. Results are reported for processing

a single polynomial (in case of NTT/INTT) or pair of polynomials (MULT). On Stratix 10, 16-

core modules are instantiated. On Arria 10, a 16-core MULT and 8-core NTT/INTT modules

are used (see Table 5.5). Note that we report the performance results for low-level operation

merely for completeness. These operations are rarely used in isolation and are instead used

as part of high-level operations. For high-level operations, i.e., Rotation and Relinearization

(using KeySwitch) and a complete ciphertext multiplication (using MULT and KeySwitch), the
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performance improvements are more pronounced as shown in Table 5.8. As can be seen, HEAX

achieves close to two orders of magnitude performance improvement using Arria 10 compared to

CPU (first row of Table 5.8). On a more powerful FPGA, i.e., Intel Stratix 10 (Board-B), HEAX

achieves 164–268× performance improvements among various HE parameter sets (second to

fourth rows of Table 5.8).

5.7 Related Work

The CKKS scheme is one of the most recently proposed FHE schemes that allows

homomorphic operations on fixed-point numbers; making it the prime candidate for machine

learning applications. To the best of our knowledge, no hardware architecture has been proposed

for the CKKS scheme, and in this paper, we propose the first of its kind. As a result, it is not fair

to compare the performance of HEAX with previous designs that focus on non-CKKS schemes.

In what follows, we briefly review the research effort related to FPGA, ASIC, and GPU-based

acceleration for non-CKKS schemes.

Hardware Acceleration for non-CKKS Schemes. In [RJV+18], a system based on

FPGA is proposed for BFV scheme to process ciphertext polynomial sizes of 215. However, due

to the massive off-chip data transfer, their design does not yield superior performance compared

to CPU execution.

Perhaps, the closest work to ours is by Roy et al. [RTJ+19] in which authors propose an

architecture for BFV scheme and implement their design on Xilinx Zynq UltraScale+ MPSoC

ZCU102. In order to avoid off-chip memory accesses, authors focus on n = 212 ciphertext sizes

and report 13× speed-up (using two instances of their proposed processors) compared to the

FV-NFLlib [FV-] executing on an Intel i5 processor running at 1.8 GHz. However, compared

to a more optimized Microsoft SEAL library [SEA], FV-NFLlib is 1.2× slower [BVMA18]. In

addition, our design is significantly more modular and scalable. We have instantiated HEAX for
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three different set of HE parameters with no manual tuning (polynomial sizes of 212, 213, and 214).

Moreover, HEAX has a multi-layer pipelined design and is drastically more efficient, offering

more than two orders of magnitude performance improvement compared to Microsoft SEAL

running on Intel Xeon Silver 4108 at 1.8 GHz (note that similar processor is used compared

with [RTJ+19] running at identical frequency).

FPGA-based Co-Processors. Designing co-processors has also been studied in the liter-

ature. These co-processors work in conjunction with CPUs and accelerate one or more of the

homomorphic operations [JGCM+15, MSR+17, CRS16, HB18, MOHO14, KG19]. In [MSR+17]

and [HB18,MOHO14], authors focus on designing hardware architecture for the encryption opera-

tion only, by leveraging Karatsuba and Comba multiplication algorithms, respectively. In [CRS16],

a Homomorphic Encryption Processing Unit (HEPU) is proposed for LTV scheme [LTV12]. Au-

thors focus on accelerating the Chinese Remainder Transform (CRT) for power-of-2 cyclotomic

rings and report 3.2–4.4× performance improvements for homomorphic multiplication using

Xilinx Virtex-7.

Large-Integer Multiplication Hardware Acceleration. A line of research focuses on

designing very large integer multipliers (768K-bit to 1.18M-bit multiplications) – based on

FPGAs or ASICs – that can be used to accelerate homomorphic operations [WH13, WHEW13,

DÖS13, DÖS14a, CMO+13]. In [CMO+14], a large-integer multiplier and a Barrett modular

reduction are proposed that can accelerate HE operations by 11×.

GPU-based Acceleration. GPU is an alternative computing platform to accelerate evalu-

ation functions [DS16, cuF, nuFer, BPA+19, KGV16, WHC+12]. Wang et al. [WHC+12] have

proposed the first GPU acceleration of FHE that targets Gentry-Halevi [GH11] scheme. Sub-

sequent improvements are reported in [WHC+13]. In [WCH14], a GPU-based implementation

of BGV scheme [BGV12] is introduced. In [BPA+19], a comprehensive study is reported for

multithreaded CPU execution as well as GPU for the BFV scheme. To the best of our knowledge,

there is no GPU-accelerated implementation of the CKKS scheme. GPUs normally offer less
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performance per watt of power than FPGAs by design. Therefore, FPGAs are more suitable

candidates for high-performance and low-power secure computation.

Acceleration of YASHE and LTV Schemes. Several works [ÖDSS16,DDS14,DÖSS15,

ÖDSS15, CGRS14, CRS16] focus on improving the performance of YASHE [BLLN13] and

LTV [LTV12] schemes or their variants. These constructions – based on an overstretched

NTRU assumption – are subject to a subfield lattice attack [ABD16] and are no longer secure.

In [RJV+15], an architecture for YASHE scheme is proposed that provides 25× performance

improvement over CPU. However, authors assume unlimited memory bandwidth which ren-

ders off-chip memory accesses free of cost and is not a realistic assumption. Pöppelmann et

al. [PNPM15] have also proposed an architecture for YASHE scheme. Since ciphertexts are

prohibitively large to be stored on on-chip memory, authors propose to leverage the idea of

Cached-NTT [Baa99, Baa05] to reduce off-chip memory accesses. In contrast, HEAX relies on

the ring isomorphism property and perform independent computation on RNS components. This,

in turn, allows us to avoid off-chip memory accesses for small HE parameters and minimize such

accesses for large parameters.

Hardware Acceleration of Secure Computation Protocols. Secure Multi-Party Com-

putation (SMPC) protocols can also be used for the task of privacy-preserving MLaaS. The

Garbled Circuits protocol [Yao86a] is one of the secure two-party computation protocols for

which FPGA-based accelerators have been proposed [HK19, FIL17, HRGK18]. However, com-

pared to HE, the communication between parties is significantly higher, making the end-to-end

protocol mostly bandwidth constrained. Thus, accelerating the computation portion of SMPC

protocols does not necessarily reduce the execution time of the protocol in general. In contrast,

the main bottleneck of HE is the computation overhead and reducing the homomorphic evaluation

time directly increases the practicality of HE-based computations.
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5.8 Summary

In this chapter, we introduced a novel set of architectures for Fully Homomorphic Encryp-

tion (FHE). To the best of our knowledge, HEAX is the first architecture and fully-implemented

hardware acceleration for the CKKS FHE scheme. CKKS is the prime candidate for machine

learning on encrypted data due to floating-point support of this scheme. The components designed

in HEAX can also be used for other lattice-based cryptosystems and other FHE/HE schemes.

The proposed architecture provides a unique degree of flexibility that can be readily adjusted

for various FPGA chips. As a proof-of-concept, we have implemented HEAX on two different

FPGAs with contrasting hardware resources. Moreover, unlike prior FPGA-based acceleration

for BFV scheme, our design is not tied to a specific FHE parameter set. We evaluate HEAX on a

wide range of FHE parameters demonstrating more than two orders of magnitude performance im-

provements. We hope that HEAX paves the way for large-scale deployment of privacy-preserving

computation in clouds.
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Chapter 6

MPCircuits: Compact Boolean Circuits for

Secure Multiparty Computation

Secure Multi-party Computation (MPC) is one of the most influential achievements of

modern cryptography: it allows evaluation of an arbitrary function on private inputs from multiple

parties without revealing the inputs. A crucial step of utilizing contemporary MPC protocols is to

describe the function as a Boolean circuit. While efficient solutions have been proposed for special

case of two-party secure computation, the general case of more than two-party is not addressed.

This chapter proposes MPCircuits, the first automated solution to devise the optimized Boolean

circuit representation for any MPC function using hardware synthesis tools with new customized

libraries that are scalable to multiple parties. MPCircuits creates a new end-to-end tool-chain

to facilitate practical scalable MPC realization. To illustrate the practicality of MPCircuits,

we design and implement a set of five circuits that represent real-world MPC problems. Our

benchmarks inherently have different computational and communication complexities and are

good candidates to evaluate MPC protocols. We also formalize the metrics by which a given

protocol can be analyzed. We provide extensive experimental evaluations for these benchmarks;

two of which are the first reported solutions in multi-party settings. As our experimental results
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indicate, MPCircuits reduces the computation time of MPC protocols by up to 4.2×.

6.1 Introduction

Secure multi-party computation (MPC a.k.a., SMC) provides a provably-secure method

for multiple parties to jointly evaluate a function on their private inputs without disclosing the

input values to each other. MPC protocols can be categorized into two main groups: protocols

based on (i) the GMW (Goldreich-Micali-Wigderson) paradigm [GMW87] and (ii) the Garbled-

Circuit (GC) paradigm [Yao86b]. The original idea of two-party GC is later generalized for

multi-party setting in the Beaver-Micali-Rogaway (BMR) protocol [BMR90]. Both paradigms

require the underlying function to be represented as a Boolean circuit. The tools and methods

for Boolean computations of two-party protocols are available, but they are not readily scalable

or available for multiple parties. Present ad-hoc realization of secure multi-party tasks do not

provide a holistic tool usable for a variety of other MPC applications.

Two standing challenges that users face while utilizing MPC protocols are: (i) generating

optimized Boolean circuits for the pertinent task, and (ii) the necessity of knowing the details of

the protocol. The first complication often results in a high inefficiency in the protocol execution.

The latter is even more critical, triggering possible security breaches if the exact protocol is not

followed. Protocols that interpret a multi-party computation as multiple invocations of two-party

secure computation are not just impractical, but also specifically susceptible to such breaches.

Therefore, there is a need for an end-to-end solution that bridges the gap between usability and

secure realization of MPC protocols.

During the past two decades, a number of practical realizations for the special case of

two-party secure computation have been presented, reducing the execution time by several orders

of magnitude [MGC+16, LWN+15, ZE15, BHKR13, SHS+15, RWT+18b, RSK17b, RDGK16a].

However, less focus has been on the general problem of secure multi-party (more than two)
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computation, even though many practical problems (e.g., auction and voting) are inherently

multi-party and cannot be reduced to two-party settings.

To the best of our knowledge, there have only been three MPC realizations that support

more than two parties [BELO16, CHK+12, BDNP08]. Among them, only [BDNP08] supports

circuit generation: the crucial first step of MPC. However, this framework precedes one of the most

crucial MPC optimizations: free-XOR [KS08b], which allows XOR, XNOR, and NOT gates to be

evaluated without any communication or encryption. The two more recent frameworks [BELO16,

CHK+12] support free-XOR but only focus on the specific (ad-hoc) protocol execution with no

systematic solution for the circuit generation step.

In this chapter, we present the first automated methodology to generate Boolean cir-

cuits, customized for MPC protocols with state-of-the-art optimizations. Inspired by TinyGar-

ble [SHS+15], the most efficient Boolean circuit generator for the two-party setting, we leverage

standard logic synthesis tools for this purpose. Note that two-party libraries such as TinyGarble

cannot be used for the MPC problem since the synthesis technology libraries are not compatible

with the MPC protocols. In addition, the order of logic computation (determined by the API and

the Boolean netlist sorter) is radically different for two-party protocols. MPCircuits relies on

designing new technology libraries for the logic synthesis tools customized for MPC protocols.

Our solution can be integrated with any cryptographic back-end engine for the MPC protocol, e.g.,

the realizations in [BELO16, CHK+12], to allow users to perform a holistic secure multi-party

computation.

This work also aims to facilitate future research on MPC. One of the key enablers in

analyzing different protocols is to have a comprehensive set of benchmarks representing different

applications/tasks. To do so, we compile a set of benchmarks that represent critical real-world

MPC problems. Our benchmark set includes practical problems of auction, voting, and set inter-

section that have been evaluated in prior MPC literature. However, the methodologies presented

in this chapter for auction and voting do not need the presence of any trusted third parties as in the
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existing work [BDJ+06,CCM08]. We also design circuits for two new benchmarks, namely, stable

matching and nearest-neighbor search. Our circuits for stable matching and nearest-neighbor

search are the first solutions in the multi-party setting. Each proposed benchmark captures a

different set of requirements and domains, which ensures the applicability of MPCircuits to

diverse scenarios.

We use a set of metrics to quantify the performance of MPCircuits on each of the

benchmarks. These metrics encompass different characteristics of the MPC protocol, analyzing

the performance of the solution for settings with varying computation power and communication

bandwidth. We prototype our solution and perform extensive evaluations on our benchmarks for

a range of parameter sizes. In brief, our three main contributions are as follows:

• Introducing the first holistic solution to automatically create optimized Boolean circuits

for MPC. We provide a new technology library for hardware synthesis tools to generate

circuits compatible with MPC. Our approach is modular and can produce efficient circuits

for various functionalities.

• Designing and implementing circuits for five compelling secure multi-party computation

tasks. These tasks represent five key MPC problems that cover most of the applications

suggested in literature, namely, auction, voting, set intersection, stable matching, and

nearest neighbor search. We further introduce metrics by which each benchmark could be

analyzed for efficiency and scalability.

• Creating automated tools for end-to-end MPC realization, i.e., a simple-to-use API and

interpreter programs to convert the generated netlist to formats usable by MPC back-

end engines. Extensive experimental results are provided for the different parameter

configurations confirming the efficiency and scalability of MPCircuits.

Code Availability: https://github.com/sadeghriazi/MPCircuits
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6.2 Automated Circuit Generation

The first, and one of the most critical, step in practical secure realization of a function

through MPC protocols is generation of the Boolean circuit that describes the pertinent func-

tionality. We now elaborate on our methodology for automatically creating the Boolean circuit

such that it is optimized for MPC as well as making it compatible with any given realization of

the protocol. The corresponding steps of the circuit generation in MPCircuits are illustrated in

Figure 6.1.
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Figure 6.1: Global flow of MPCircuits circuit generation.

In the first step, the user writes the function description in a Hardware Description

Language (HDL), e.g., Verilog. With recent progress in High-Level Synthesis (HLS) tools, it is

also possible to develop the function in C and convert it to HDL using these tools. Inspired by

TinyGarble [SHS+15], we employ logic synthesis tools to compile the HDL source code using

our customized libraries. Thus, we generalize the idea of TinyGarble for multi-party (more than

two-party) secure execution. Recall that in contrast to non-XOR gates, XOR gates do not require

communication or encryption during garbling/evaluation due to the free-XOR technique [KS08b].

As illustrated in [BELO16], the number of non-XOR gates determines the computation and

communication cost. Therefore, MPCircuits objective function is to minimize the total number

of non-XOR gates (nnon−XOR) in the circuit description.
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We re-define the problem of minimizing nnon−XOR as a special case of logic optimization

to be performed by the synthesis tools. These tools have been subject to more than two decades

of improvement leading to sophisticated algorithms to minimize a given constraint, e.g., power

consumption, circuit area, or critical path. We develop new synthesis and cell libraries to be

utilized by such logic synthesis tools. Our synthesis libraries incorporate the realization of

basic arithmetic and logic operations (add, subtract, multiplication, division, if-else, etc.) using

minimum number of non-XOR gates. The cell library in MPCircuits, which is used for ASIC

mapping, contains Boolean logic gates AND, shifted AND, XOR, and XNOR. The area of the XOR and

XNOR gates are set to zero and that of the other gates to one and the constraint is set to minimizing

the total area of the circuit. As a result, the synthesis process minimizes the total number of

non-XOR gates in the final netlist. This process automatically generates an optimized Boolean

circuit for the BMR protocol. Note that the output of the TinyGarble framework cannot be used

for the MPC protocols since the produced netlist contains logic gates that are not supported by

MPC realizations [BELO16].

The logic synthesis tool outputs a standard Verilog netlist containing cells that are included

in the cell library. In order to use the netlist in a MPC protocol, one has to perform certain post-

synthesis steps. This translation involves three steps: (i) a parser reads the Verilog netlist and

converts it to an array of structures defining the logic operation of a particular gate and its

input/output connections, (ii) a scheduler reads the connection information of the gates and

topologically sorts them based on the dependencies, (iii) the sorted array of gates is written to a

file in a specific format. This file is public and is sent to all the parties participating in the secure

protocol. Note that, only the last step is specific to one particular MPC realization (BMR protocol

in our implementation). Therefore, our methodologies can be applied to a large variety of secure

protocols that are based on a Boolean netlist (e.g., the framework in [CHK+12]) with a simple

modification to the last step.

Our proof-of-concept implementation is based on the BMR realization presented
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in [BELO16]. To the best of our knowledge, this is one of the only two MPC frameworks

that supports the free-XOR [KS08b] optimization. Moreover, authors have optimized the BMR

protocol to have a constant number of rounds which is strongly preferred in Internet settings

where the communication delay is significant. In [BELO16], most of the computation can be

shifted to the offline phase and precomputed in advance. We utilize the SCAPI [SCA17] library

(source code of [BELO16]) in our implementation. This library supports only five types of

Boolean logic. Therefore, our cell library contains only those five gates. However, this constraint

does not increase the number of non-XOR gates and only increases the number of XOR gates.

Incorporating the other gates in the cell library is straightforward, in case they are supported by

another realization of an MPC protocol.

Security Model. The BMR protocol in [BELO16] is provably secure in the Honest-but-

Curious (HbC) security model. In this model, all participating parties follow the protocol but they

can attempt to extract more about the other parties’ input from the information they send and

receive. There are two variants of HbC adversary model: honest-majority and dishonest-majority.

In the former model, the protocol is secure as long as the majority of the parties are not corrupted.

In the latter model, any number of corrupted parties cannot infer information other than what

can be inferred from the outcome of the computation. For example, the FairplayMP [BDNP08]

framework is secure for an honest majority. In addition, protocols in HbC model are generally

orders of magnitude faster than the ones in malicious model [BELO16] in which parties can

deviate from the protocol anytime. HbC model is the building block for stronger security models

such as security against malicious adversaries. MPCircuits can automatically generate optimized

Boolean circuits for both security models. Note that the methodologies presented in this work do

not change the security or correctness of the MPC protocol. MPCircuits provides an automated

solution to generate Boolean circuit representations that have minimal number of non-XOR gates,

thus, improving the efficiency of the MPC protocol.
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6.3 Methodology

We design and implement a set of Boolean circuits for five compelling MPC tasks and

report the experimental results for all of them using our circuit synthesis approach. Three of

these applications, i.e., Auction, Voting, and PSI have been studied in the prior literature and

we compare MPCircuits with state-of-the-art solutions. In MPCircuits, we have provided the

first secure solution for K-nearest neighbor search (K-NNS) and Stable Matching. Not only do

these two benchmarks address real-world needs, but each of them captures an important criteria:

(i) in K-NNS (unlike other benchmarks) only one party receives the result of the protocol and

therefore makes the process of Oblivious Transfer (OT) asymmetric since only one party evaluates

the garbled circuit and only (n− 1) OTs are performed (compare to (n− 1)2); this is the first

reported instance of an asymmetric OT. (ii) In Stable Matching, the size of the circuit grows with

O
(
n4). In all other benchmarks the point-to-point communication rapidly becomes the bottleneck.

Therefore, they cannot be used to validate other properties such as the scalability of the circuit

generation. Evaluating an MPC framework on the Stable Matching benchmark illustrates the

scalability of the framework in terms of circuit generation since the number of gates rapidly

increases with the increase in the number of parties and soon becomes the bottleneck.

6.4 Auction

We design a Boolean circuit for auction in which the highest bidder is selected and pays

the bid value. In traditional mechanisms, the auction is processed by a third party and all of the

bid values are revealed to the third party. This raises many privacy concerns such as the possibility

of information leakage or collusion between one of the bidders and the executing party. Here, we

implement and analyze both types of auctions and illustrate the practicality and scalability of our

solution.
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Input: Each party Pi holds a bidi, i = 1...n.

Output: The index (ID) of the highest bidder imax and the highest bid value xpay =

max(x1, ...,xn).

Parameter(s): Number of bits b to represent a bid.

6.4.1 Circuit Design

Figure 6.2 shows the internal architecture of the Boolean circuit for auction. The inputs

to the circuit are the bids (upper side) and the output is the maximum bid value and the index

(ID) of the winner. The darker blocks correspond to inputs and outputs of the circuit. Bids are

compared in pairs using the comparison (CMP) blocks. The maximum value is then passed on to

the next layer and so forth. A simple solution to compute the winner ID (WID) is to pass along

the index of the higher bid at each stage. However, this solution requires O
(
n lg(n)

)
AND gates

where lg(.) is the base-2 logarithm.

We propose a more optimized approach that requires O
(
n
)

number of AND gates. While

the complexity does not change significantly, in practice, the number of AND gates is reduced by a

factor of lg(n). Our method is based on re-using the output of the CMP blocks. Consider the last

CMP block at the bottom right corner. Depending on the output of this block, one can identify the

most significant bit (MSB) of the WID. For example, if the output is 1, it shows that the winner

is from the second half of the bidders and hence, the WID starts with one. We can recursively

continue this approach and depending on the already computed WID digits, the next digit is

selected. More precisely, if we denote the output of the jth CMP block at layer l by CMP[l][ j], we

have

WID[α] = CMP[α−1][WID[α−1 : 0]]

At the end, WID holds the ID of the winner in reversed order (from least significant bit to
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Figure 6.2: Boolean circuit for auction.

most). The complexity of the total number of AND gates in the circuit is O
(
n b
)
.

6.5 Voting

A secure voting mechanism can preserve the privacy of all voters in an election. This, in

turn, can replace old solutions based on anonymization and law-enforcement. The aforementioned

solutions are all centralized and have a single point of failure. A modern secure voting mechanism

can ensure the correctness of the election and privacy of voters even in the presence of any set of

corrupted parties.

Input: Each party Pi holds the index of the candidate to whom she wants to vote

(votei).

Output: The index of the candidate, nh, with the highest vote.

Parameter(s): Number of candidates nc.
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6.5.1 Circuit Design

The internal design of the Boolean circuit for voting is illustrated in Figure 6.3. The

inputs to the circuit are n votes, each representing the index of a candidate (lg(nc)-bit). Each

vote is an input to a “lg(nc) to nc” Decoder (DEC) module. Therefore, based on the vote value,

only one of the output lines of the DEC is set to one. These output wires are then connected to

a COUNT module to count the number of votes. The COUNT module is implemented as a binary

tree of ADD blocks. At each level of the binary tree, the operands’ bit-length of the ADD blocks are

set to the minimal value that can accumulate the result. Hence, the COUNT module results in an

efficient realization that only requires x−1 non-XOR gates for counting the number of ones in a

binary array of size x. The final step is to find the maximum number of votes. This task can be

implemented using the auction module (Section 6.4), where the bids are vote-counts. Finally, the

output of the circuit is the ID of the winner candidate (WID).
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Figure 6.3: Boolean circuit for voting.

In case of a tie in the vote-counts, our circuit outputs the first candidate as the winner. If

another tie-breaking mechanism is needed, our solution can easily be modified due to its modular

structure. The complexity of the total number of AND gates in each of the circuit components are

O
(
n lg(nc)

)
(decoders), O

(
n
)

(COUNT modules), and O
(
nc lg(n)

)
(auction circuit). The overall

circuit complexity is O
(
n lg(nc)+nc lg(n)

)
which scales linearithmicly with n and nc.
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6.6 Set Intersection

Private Set Intersection (PSI) allows two or multiple parties to obtain the elements at

the intersection of their sets without revealing the other elements that are not in common. For

example, multiple people can identify their mutual contact profiles/friends by inputting their

contact list to the PSI protocol without revealing the rest of their contact lists. At the end of the

protocol, only the mutual list of all parties is revealed.

In E-commerce, an online advertisement agency and a company can participate in the PSI

protocol where the advertisement agency inputs its list of all the people who have been shown the

ads of the company. The second set of inputs to the protocol is the list of the people who have

bought the products provided by the company. At the end of the PSI protocol, both entities know

how many people have bought the product as a result of seeing the advertisement. This provides

a way to understand the effectiveness of the advertisement for the company. Note that the same

process could not be realized in plaintext due to various privacy/security reasons. Revealing such

information is privacy invasive and can damage the reputation of both the companies. In addition,

disclosing customer’s data might be against the law in some situations.

Input: Party Pi holds a set Si ⊂Ω where Ω is the universal set.

Output: The intersection set S = ∩n
i=1Si.

Parameter(s): The size of the universal set Ω or equivalently the number of bits

required to describe an element in the universal set b = lg |Ω|. Maximum number of

elements in each party’s set m.

6.6.1 Circuit Design

Two different implementations are provided for PSI: a Bitwise-AND based circuit and a

Sort-Merge-Compare-Shuffle (SMCS) based circuit. The first one is more efficient for scenarios

in which Ω is small whereas the second approach is more suitable when m is small and Ω can be
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very large. Note that sets are represented differently in the two implementations as we explain in

each section.

Bitwise-AND. In this implementation, each set is equivalent to a binary vector. The binary

value at index j denotes the presence of the j-th element in a given set. Therefore, each set is

represented as a |Ω|-bit binary vector. The intersection set S is computed as bit-wise AND between

all of the sets provided by all parties. As a result, the complexity of the circuit is O
(
n |Ω|

)
, linear

in both the number of parties and the size of the universal set; but independent from the number

of elements in each parties’ set m.
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Figure 6.4: High-level circuit description of the Sort-Merge-Compare-Shuffle for Private Set
Intersection. Three operations are performed at each stage: merge, compare, and sort.

Sort-Merge-Compare-Shuffle (SMCS). In scenarios where m << |Ω|, more efficient solu-

tions than Bitwise-AND can be devised. Here, we present one of the most complicated circuits in

our benchmarks which is the generalization of the approach presented in [HEK12] from two-party
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setting to any n-party case. As the input to this circuit, each set is represented as a vector of m

integers where each integer is b-bit. We will first explain the solution for two sets only. The

intersection of two sets can efficiently be computed using three operations: sort, merge, and

compare. First, each of these two sets should be sorted. Then by merging the two sorted sets,

all elements in common will be brought together. Finally, by comparing adjacent elements, one

can find the common elements in both sets. Since the set intersection is an associative operation,

one can express the set intersection of n sets as a consecutive set intersection of two sets until

reaching the final result. Therefore, the SMCS circuit has a binary tree structure where at each

node, the intersection of two sets are computed. The final node computes the final intersection

of all sets. Note that the first sort operation can locally be computed by each participant since

it is independent of the other parties’ private data. A final shuffle operation is needed in order

to eliminate the information leakage which we describe later in this section. Without loosing

any generality, assume that the number of sets (participants) is a power of two. If this is not the

case, dummy nodes can be avoided in the tree structure. Please see Figure 6.4 for a high-level

description of the SMCS circuit.

We now elaborate on each part of the SMCS circuit. The challenge is that the merger and

sorter circuits should have a fixed structure and non-random access to the intermediate values

since random access is a very costly operation in the MPC protocols. We rely on the bitonic

merger and sorter circuits that satisfy this condition. Bitonic sort is one of the sorting networks

that is an efficient circuit-based realization of a sorting algorithm. Input numbers are given to

the circuit and after series of conditional swap operations, a sorted list is given as the output of

the circuit. The only operation used in the circuit is conditional swap: given two input numbers,

swap them if they are not sorted and do not swap them otherwise. The bitonic sort has a recursive

structure. It first sorts each half of the input and then merges the two sorted lists. The base case

is a circuit that sorts only two numbers which is equivalent to a conditional swap module. Our

implementation of the bitonic sort circuit is also a recursive hardware description code.
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The second half of the bitonic sorter represents the bitonic merger circuit. The input to

the bitonic merger must be a bitonic sequence. A sequence xi of numbers is called bitonic if for

some k (0≤ k < m):

x0 ≤ x1 ≤ ...≤ xk ≥ ...≥ xm−1 ≥ xm

or a circular shift of such sequence. Therefore, before merging the two sorted lists, one needs to

reverse order the second list such that the concatenation of two lists be a bitonic sequence. This

reverse-ordering should take place for input sets as well as for intermediate sets. Note that the

reversing the order of a set does not incur any computation or communication cost and is realized

as changing the order of wires in the circuit.

The second layer in the SMCS circuit is the comparison layer. After the merger layer, all

identical elements in both sets are now beside each other. An intuitive solution is to have a series

of comparison blocks that compare every two adjacent elements. However, it has been shown

that having a 3-input comparison block as follows is more efficient [HEK12]:

CMP3 (x1,x2,x3) =


x2 i f x1 = x2 | x2 = x3

0b otherwise

Given an array of 2m elements, we only need m−1 CMP3 blocks and one CMP block

(compared to 2m CMP blocks).

The output of the comparison layer is an array of m numbers consisting of 0b and the

elements in the intersection of two sets. Before proceeding to the next stage (and similar to the

first stage), the array has to be sorted. Note that the intermediate sets should not be revealed to

any party since some information about the private input sets will be learned by other parties.

Therefore, in contrast to the first stage, the sets should be sorted inside the MPC protocol.

At the end of all stages, the final set should be shuffled prior to be revealed in plaintext to

all parties. This step is necessary because the final set potentially has a sequence of 0b between
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two common elements. The position of zeros (0b) reveal the distribution of elements that were

not in the intersection and belong to one (or multiple parties) only.

The shuffling layer can be realized using Waksman permutation network [Wak68] which

takes as input an array and shuffles them based on the control bits. One of the parties is required

to provide these control bits as well. However, this task makes one of the parties to have more

control in the secure computation. For example, a dishonest party that is selected to provide the

control bits can simply put all of them as zero which makes the shuffle layer ineffective and he

can learn some information. As a result, we devise another solution that is secure but does not

require more input from any party. The solution is to simply sort the final list before revealing

it in plaintext. This approach is secure since all of the 0b elements are brought together. More

precisely, in all of the scenarios that the common elements are fixed, the final sorted set remains

the same and an adversary cannot distinguish different scenarios. The overall complexity of the

SMCS circuit is O
(
nm lg2 mb

)
= O

(
nm lg2 m lg |Ω|

)
(compare with Bitwise-AND circuit with

complexity O
(
n |Ω|

)
).

Modular Structure. One of the advantages of using a generic secure multi-party computa-

tion protocols such as BMR is its modular nature and flexibility. Unlike customized protocols,

additional functionalities and computations can be augmented to the circuit seamlessly. For

example, and auditing step can be added before releasing the final result: the intersection set is

revealed if and only if the number of elements in common is less than a threshold. Such auditing

steps are favorable especially when Ω is small and an adversary can easily put his input set as

the universal set in which case, he clearly learns the intersection of all other sets. As another

example, it is very straightforward to build other variants of PSI such as PSI-Cardinality which

only outputs the size of the intersection and not the elements.

142



L0

L1

Ln/2

... 

MUX

Lg

MUX

f

Ln/2+1

Ln/2+2

Ln

... 

MUX

Lf

M
U

X

is
_f

re
e_

g
ro

u
p

2

Update
Logic

M
U

X

m
at

ch
_l

is
t

is
_f

re
e_

g
ro

u
p

1

P
ri

o
ri

ty
 E

n
co

d
er

g
M

U
X

C
 [

.]

++

h

update

Stable Matching Circuit at Round r j

is
_f

re
e_

g
ro

u
p

1
C

 [
.]

is
_f

re
e_

g
ro

u
p

2
m

at
ch

_l
is

t

is
_f

re
e_

g
ro

u
p

1
C

 [
.]

is
_f

re
e_

g
ro

u
p

2
m

at
ch

_l
is

t

... In
p

u
t 

fr
o

m
 c

ir
cu

it
 a

t 
ro

u
n

d
 r

j-
1

In
p

u
t 

to
 c

ir
cu

it
 a

t 
ro

u
n

d
 r

j+
1

... 

n
ex

t 
u

n
as

si
g

n
ed

p
er

so
n

preference lists from group 1 preference lists from group 2

more preferred (g or h)?

C[g]

Figure 6.5: The circuit for stable matching unrolled for round r j. The circuit takes as input
the intermediate values from previous round r j−1, processes the current round based on the
preference lists, and outputs the updated values.

6.7 Stable Matching

Stable matching is the process of assigning the members of two groups to each other

(one-to-one) where each person has a preference list. This assignment should satisfy the stability

condition after the assignment: no two individuals should prefer to be matched with each other

compared to their already assigned partners. In other words, the assignment is stable in a sense

that no rematching will occur even if individuals are free to do so. Stable matching is one of

the most complicated task in secure computation because of the complex and data-dependent

memory accesses during the computation [RSS+17, DES16]. Accessing the memory when the

address is a secret value is a very costly operation in secure computation since the actual value

of the address should remain private. In order to realize this constraint, random access to the

memory is implemented using multiplexers inside the garbled circuit. Hence, the address as well

as the accessed data remain private since they are processed inside the garbled circuit.

In secure stable matching, the match list is computed while keeping the preference lists

private to their respective owners. This problem has been studied in the recent literature [RSS+17,

DES16] where the secure stable matching problem is reduced to a two-party secure computation
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scenario. Each individual XOR-shares her preference list and sends it to two non-colluding

servers who perform the secure computation. However, stable matching is inherently a multi-

party problem and the assumption of two non-colluding servers may not be feasible in practice.

To the best of our knowledge, we provide the first solution for multi-party secure stable matching.

Input: Party Pi holds a preference list Li with size of m. Each list is an array of

lg(n
2)-bit numbers (IDs of the other group’s members) sorted from the most preferred

to the least.

Output: The match list: an array of size n
2 where each number is lg(n

2)-bit.

Parameter(s): The size of the preference list m.

6.7.1 Circuit Design

Gale and Shapley [GS62] were first to formalize the stable matching problem and proposed

an algorithm that can find the matching list. During the computation, the matching list stores the

temporary assignment of individuals. The algorithm works as multiple rounds. In each round r j,

an unassigned individual from group 1, say g, is selected. The circuit identifies if this individual

can be assigned to the most preferred person given the preference list of g. Note that in this

algorithm, each element of the preference list is accessed only once. If the match is not accepted,

next preferred ID is selected in future rounds. The number of attempts for each individual from

group 1 is stored as an array of counters C, i.e., C[i] denotes the number of attempts for individual

i.

Assume that at round r j, unassigned individual g from group 1 is selected. The circuit

first accesses the C array and finds the next preferred individual that is not already processed, let’s

call that ID f , f = Lg[C[g]]. The circuit increases the number of attempts for g by incrementing

C[g]. If f is unassigned, the circuit assigns f from group 2 to g from group 1. Otherwise, it

is necessary to determine whether f prefers g or his already assigned person h from group 1.
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The decision can be made by comparing the index of h and g in the preference list of f . That

is, comparing index o f (h) and index o f (g) in L f . If index o f (g) is less than index o f (h) in L f ,

it means f prefers g over h. In this case, f is assigned to g and h gets unassigned and nothing

happens otherwise.

In the next round, another unassigned individual from group 1 is selected and the same

computation is performed. The process continues until all elements in the preference lists are

processed. Note that this algorithm can be realized using a sequential circuit [RSS+17] but since

there is currently no methodology for making the BMR protocol compatible with sequential

circuits, we need to unroll the circuit as depicted in Figure 6.5. The overall complexity of the

combinational circuit for secure stable matching is O
(
n3 m lg(n)

)
.

6.8 Nearest-Neighbor Search (NNS)

In this benchmark, each party holds an attribute value vi and one of the parties (P∗) is

interested to learn which party (or parties) has the most similar (closest) attribute to her, given a

certain similarity metric. NNS has many applications in classification, data mining, recommender

systems, and proximity search. A privacy-preserving solution enables a client to find the most

similar profiles without revealing her attribute. For example, consider an online dating website

where each person creates a profile containing sensitive information about his/her age, personal

preferences, and the zipcode of where she/he lives. Today, a centralized server knows all of

the clients’ information and provides the match result to each party. This computation model

is also prone to internal and external attacks where clients’ sensitive information is revealed to

the attacker. In contrast, we propose a privacy-preserving method that is decentralized and is

provably secure even if all other parties collude. Our methodology is modular and can be realized

for any similarity metric since only the comparison module has to be modified.
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Input: Party Pi holds an attribute value vi.

Output: The set of kn closest (most similar) attributes to party P∗ input (v∗) given a

similarity function sim(., .).

Parameter(s): Number of bits b required to represent each attribute. Number of

nearest neighbors to be found (kn).

6.8.1 Circuit Design

Our implementation for NNS is the generalization of the combinational circuit

in [SHSK15] that computes 1-nearest neighbor search. We generalize the combinational circuit

for any value of kn. The core block of the design is a module that takes as input kn distance values

along with a new distance value and outputs the corresponding kn minimum distances from the

total kn +1 inputs. This module is instantiated n times where each instance processes the input

from one party. Please note that in contrast to the two-party garbled circuit protocol, there is

no known solution to use the sequential circuit in the general multi-party variant. Therefore,

sequential circuits provided for k-nearest neighbors cannot be used. The overall complexity of

the combinational circuit for NNS is O
(
n kn b

)
. MPCircuits supports the distance computation

module to be any distance metric, e.g., the Hamming distance, euclidean distance, edit distance, or

taxicab distance. In the following, the reported experimental results correspond to the Hamming

distance.
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Figure 6.6: The circuit of the Nearest-Neighbors Search (NNS) that finds the kn most similar
attributes to v∗. In the experimental results, the circuit is unrolled for n times.

6.9 Experimental Results and Related Work

We first discuss the metrics by which we characterize each application. We outline the

metrics and the reason for their importance in practical realization of the MPC protocols.

• Execution time (T ): The total execution time of the protocol comprises the time required

for garbling/evaluating the circuit (TGE) as well as time spent on the communication TC. In

a general case, these two can overlap in time depending on whether the implementation

is pipelined/multi-threaded or not and hence, T ≤ TGE +TC. The distinction between the

two timing parameters is important since TGE mostly depends on the computational power,

whereas, TC depends on the network quality (delay and bandwidth).
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• Communication (Comm): Maximum number of bytes exchanged between any two parties.

The “maximum” is required for protocols in which communication between parties are

asymmetric. In the BMR protocol, the communication between each two parties can be

computed as the multiplication of number of non-XOR gates, a constant factor (=9), number

of parties minus one (n−1), and the bit-length of each wire label (usually 128).

• Memory footprint and scalability (Mem): One of the important characteristics for each

MPC protocol is the amount of memory allocated in the end-to-end execution. Protocol-

s/frameworks that consume a high volume of memory have limited scalability in real-world

scenarios where the input size from each party is large.

6.9.1 Experimental Setup

The experiments are performed on a server equipped with 24 core Intel(R) Xeon(R)

E5-2650 v4 @2.20GHz CPU with 256GB of RAM. We run all n parties in the same LAN network

with 20ms round-trip latency and 10Gbps bandwidth. Synopsys Design Compiler 2015.06-SP2

is used to synthesize the Boolean circuits. RC is constant in all of our benchmarks for different

values of parameters since our prototype implementation is based on [BELO16] which has a

constant round complexity. The SCAPI library utilizes Advanced Encryption Standard (AES)

encryption and naturally benefits from the AES-NI which is supported by our machine. In our

experimental results, we have used built-in Ubuntu time tool with -f ’%M’ flag to determine the

memory footprint.

6.9.2 Auction

We perform experiments for different numbers of participants (n) in the auction for

two values of b. Table 6.1 shows the results. As can be seen, the optimized Boolean circuits

using MPCircuits technology libraries reduce the number of AND gates by 3.3×. Bogetoft et
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al. [BDJ+06] have proposed a solution for secure auction. Their solution is based on multiple

“Trusted Third Parties (TTPs)”. TTPs compute the true outcome of the auction on behalf of

the bidders. In this computation model, if all TTPs collude, the real input of all parties are

revealed, whereas, in our approach, all parties securely process the auction and even if all other

parties collude, nothing is revealed. The approach of [Hua16] also requires a separate party

called “Auction Issuer”. The methodology in [MNPS04] additionally requires outsourcing the

computation to two TTPs. Larson et al. [LHL+15] design a method based on a verifiable secret

sharing scheme. The drawback of their approach is that not all participants in the auction are

involved in the secure computation protocol and the security relies on the evaluators. Therefore,

our solution is the only solution that (i) has constant round complexity and (ii) guarantees security

even for cases where all other parties are corrupted.

Table 6.1: Secure Auction.

Non-optimized Optimized

b n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

16
4 69 324 261 97 0.74 0.62 2.39 0.04 10.25
8 140 761 600 228 1.69 1.91 6.62 0.22 10.29
16 281 1638 1281 492 3.51 4.48 15.06 1.01 18.14

32
4 133 660 534 194 0.74 0.66 3.41 0.08 10.31
8 269 1547 1229 454 1.66 1.83 6.50 0.44 10.36
16 539 3324 2621 975 3.48 4.34 16.85 2.01 30.65

6.9.3 Voting

Table 6.2 shows the experimental results for different number of parties (voters) and

candidates. As can be seen, MPCircuits is between 1.4-2.7× more efficient compared to

standard utilization of logic synthesis tools. Civitas [CCM08] is a secure voting system which

is verifiable and coercion-resistant but requires five different type of agents for its execution.

Fujioka et al. [FOO92] also propose a solution for secure auctions but it requires two additional
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entities called administrator and the counter conspire. In contrast, our solution does not involve

any additional agents or entities.

Table 6.2: Secure Voting.

Non-optimized Optimized

nc n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

2
8 7 17 18 8 1.57 1.77 9.35 3.3 KB 10.09
16 19 43 45 16 3.29 4.29 13.76 0.02 10.09

4
4 17 50 23 37 0.71 0.54 3.25 0.02 10.09
8 49 128 105 79 1.64 1.80 6.46 0.08 10.08
16 123 294 249 147 2.99 4.11 14.23 0.30 10.08

8 16 250 739 545 388 3.40 4.01 15.40 0.80 15.30

6.9.4 Private Set Intersection

Table 6.3 shows the experimental results of Bitwise-AND circuit for different sizes of

the universal set and different numbers of parties. For all PSI experiments, parameter m is set

to 16. The corresponding results for the SMCS circuit are shown in Table 6.4. As can be seen,

the optimized Boolean circuits using MPCircuits technology libraries reduce the number of AND

gates by 4.2×.

There has been an extensive research focus on the Private Set Intersection (PSI) problem

for a two-party situation [DCT10, PSSZ15, HEK12]. In [HEK12], authors propose a method for

two-party PSI based on garbled-circuit approach. To the best of our knowledge, the only solution

that is proposed for secure multi-party private set intersection is a recent work by Kolesnikov et

al. [KMP+17]. Their approach is a customized solution that is optimized only to perform PSI in

an identical security model as this work. Their computation platform is comparable but more

powerful than ours. In the LAN setting, for a set size of 216 and 10 parties, their total running time

is 12 seconds with 23MB of communication. Whereas, for a universal set of size 105 (∼ 217) and
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8 number of parties, our running time is 24 seconds with 314MB of communication. Although

our solution is less optimized, we want to emphasize that we have proposed a generic solution to

create any functionality, whereas, their solution is specially optimized for PSI. In addition, our

solution has a very modular structure and can easily be modified to support other variants of the

PSI, e.g., PSI cardinality in which only the number of mutual elements is revealed. Moreover,

in Bitwise-AND circuit, the actual size of each party’s set is not revealed since the inputs are

fixed-length binary vectors.

Table 6.3: Private set intersection (Bitwise-AND variant).

Non-optimized Optimized

|Ω| n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

104
4 0 3.00E+04 0 3.00E+04 0.94 0.69 3.89 12.36 65.24
8 0 7.00E+04 0 7.00E+04 2.73 1.99 9.46 67.29 403.94
16 0 1.50E+05 0 1.50E+05 12.61 4.74 30.46 308.99 2835.59

105 4 0 3.00E+05 0 3.00E+05 1.99 0.88 6.80 123.60 584.44
8 0 7.00E+05 0 7.00E+05 11.82 2.89 24.05 672.91 3892.61

Table 6.4: Private set intersection (SMCS variant).

Non-optimized Optimized

b n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

16
4 1.05E+04 7.77E+04 5.02E+04 1.86E+04 0.82 0.56 3.52 7.66 52.57
8 2.42E+04 1.81E+05 1.16E+05 4.30E+04 2.42 1.76 6.59 41.37 280.42
16 5.15E+04 3.88E+05 2.48E+05 9.19E+04 9.65 4.40 41.50 189.34 1843.72

6.9.5 Stable Matching

Table 6.5 shows the circuit size as well as the experimental results for different group

sizes and preference list lengths. As can be seen, the optimized Boolean circuits generated by

MPCircuits technology libraries have 1.6-2.4× lower number of AND gates. To the best of our

knowledge, there has been no prior solution for multi-party secure stable matching. State-of-the-
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art solutions reduce the task to two-party secure computation problem [RSS+17, DES16]. All

parties outsource the computation to two servers which are assumed to not collude. While these

solutions can scale to bigger set sizes, they rely on additional servers to find the match list on

their behalf. If two servers collude, they can learn the preference list of all individuals in plaintext.

In contrast, our security model is much stronger where any number of corrupted parties cannot

learn the preference list of other individuals and the solution does not require additional servers

for the computation.

Table 6.5: Secure stable matching.

Non-optimized Optimized

m n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

2
8

1.83E+02 1.11E+03 7.28E+02 5.35E+02 1.35 1.54 6.96 0.51 10.42
4 7.51E+02 4.55E+03 2.95E+03 2.24E+03 1.45 1.54 7.05 2.16 21.39

3
12

1.69E+03 9.61E+03 5.21E+03 6.03E+03 2.35 2.52 10.94 9.11 84.50
6 5.48E+03 3.10E+04 1.74E+04 1.90E+04 2.94 2.57 11.83 28.63 230.88

4
16

4.22E+03 3.70E+04 2.38E+04 1.67E+04 4.13 3.74 15.35 34.32 341.76
8 1.18E+04 1.11E+05 7.32E+04 4.66E+04 5.97 4.04 18.23 95.95 920.10

6.9.6 Nearest-Neighbor Search

Due to the space limitation, we report the results for b = 32 in Table 6.6. The distance

function is Hamming Distance (HD). However, the circuit can be instantiated for any value of

b. As can be seen, MPCircuits customized libraries result in 3-3.2× performance improvement

compared to standard utilization of logic synthesis tools. Songhori et al. [SHSK15] propose a

solution based on Garbled Circuits [Yao86b]. However, their approach is limited to the two-party

setting only. Similarly, Chen et al. propose a methodology based on homomorphic encryption,

garbled circuits, oblivious RAM for the two-party scenario [CCD+19,CCD+18]. Qi et al. [QA08]

create a scheme based on Homomorphic encryption for two-party settings. Perhaps the most

similar work to ours is [SKK09] where they support a multi-party setting. Nevertheless, they

152



have not implemented their scheme.

Table 6.6: Secure k-nearest neighbor search.

Non-optimized Optimized

kn n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

1
8 7.64E+02 1.77E+03 1.79E+03 5.56E+02 1.61 1.77 7.40 0.53 10.75
16 1.50E+03 3.68E+03 3.73E+03 1.16E+03 3.26 3.76 16.07 2.39 38.27

2
8 8.66E+02 3.31E+03 2.73E+03 1.08E+03 3.26 1.78 7.40 1.04 16.06
16 1.67E+03 7.25E+03 5.82E+03 2.37E+03 3.48 1.79 16.32 4.88 66.54

3
8 9.77E+02 4.64E+03 3.62E+03 1.52E+03 1.59 1.70 9.26 1.46 20.42
16 1.85E+03 1.06E+04 8.20E+03 3.50E+03 3.52 4.01 14.85 7.21 98.21

6.9.7 Scaling Up Circuit Generation

In our experiments, we observe that the main bottleneck for running the BMR protocol

for any number of parties higher than 16, is scaling the number of communication ports as

well as the number of physical machines. In BMR, each party needs to communicate with

all other parties using a secure communication channel, resulting in a total of n (n−1)
2 point-to-

point communication. Nevertheless, we want to emphasize that our approach for generating the

optimized circuits can scale up to considerably higher sizes. For example, Table 6.7 and Table 6.8

show the number of Boolean gates for higher parameter sizes in secure auction and secure NNS,

respectively. As can be seen, the circuit generation can easily scale up to 512 and 1024 number of

parties.

Table 6.7: Circuit generation for higher number of participants in secure auction.

b n #XOR #AND b n #XOR #AND

16
256 2.08E+04 8.42E+03

32
256 4.25E+04 1.66E+04

512 4.18E+04 1.69E+04 512 8.51E+04 3.33E+04
1024 8.36E+04 3.38E+04 1024 1.70E+05 6.67E+04
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Table 6.8: Circuit generation for higher number of participants in the secure kn-NNS search
when b = 32.

kn n #XOR #AND kn n #XOR #AND

2
128 2.04E+04 4.88E+04

3
128 3.13E+04 7.20E+04

256 4.10E+04 9.82E+04 256 6.30E+04 1.45E+05
512 8.22E+04 1.95E+05 512 1.27E+05 2.89E+05

6.10 Summary

We present MPCircuits, the first automated methodology to generate optimized Boolean

circuits for secure multi-party computation (MPC). The Boolean circuit generation is a key step

to employing the MPC protocols. We leverage industrial logic synthesis tools and transform the

problem of generating optimized circuits for MPC to a logic synthesis problem. Our solution

is modular and generic and can be adopted by different MPC protocols and implementations.

To illustrate the practicality of our approach, we design and implement Boolean circuits for five

compelling tasks in MPC. Namely, we consider auction, voting, private set intersection, stable

matching, and nearest neighbor search. We perform extensive experimental evaluation of all five

benchmarks based on the Beaver-Micali-Rogaway (BMR) protocol and show that MPCircuits

automatically generates optimized circuits that require up to 4.2× less garbled gates.
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Chapter 7

PriSearch: Privacy-Preserving Text Search

We propose PriSearch, a provably secure methodology for two-party string search. The

scenario involves two parties, Alice (holding a query string) and Bob (holding a text), who

wish to perform a string search while keeping both the query and the text private without

relying on any third party. Such privacy-preserving string search avoids any data leakage when

handling sensitive information, e.g., genomic data. PriSearch provides an efficient solution

where two parties only need to interact for a constant number of rounds independent of the

query and text size. Our approach is based on the provably secure Yao’s Garbled Circuit (GC)

protocol that requires the string search algorithm to be described as a Boolean circuit. We

leverage logic synthesis tools to generate an optimized Boolean circuit for PriSearch such that

it incurs the minimum communication/computation cost. We achieve approximately 2× and

140× performance improvements compared to the best prior non-GC and GC-based solutions,

respectively.

7.1 Introduction

Privacy-preserving string search allows one party, i.e., the query holder, to learn whether

her text query is present in a text document held by another party while keeping both the text and
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the query private to their respective owners. The prior work on string search typically aims to

reduce execution time or memory usage, and less focus has given to security and data privacy. A

number of obfuscation and anonymization approaches have been proposed, but it has been shown

that they have serious pitfalls [GMG+13, HSR+08]. The ultimate solution is to keep the query

and the text private to their respective owners. Such privacy-preserving string search allows two

parties, Alice holding the query and Bob holding the text, to perform string search while keeping

both the query and text private.

There have been a few attempts to solve the privacy-preserving string search [BEDM+12,

Ver11, Fri09]. The shortcomings of the previous work can be categorized as follows: (i) Lack

of solid security proofs for heuristic and custom designed protocols [GMG+13, HSR+08]. (ii)

The number of communication rounds increases as the sizes of text and query increase [WCS15].

(iii) Prohibitive computation overhead, e.g., solutions based on Homomorphic Encryption (HE)

require several expensive asymmetric encryptions [DCFT13]. (iv) Extension to support other

variants of the string search, e.g., providing the number of matches and longest prefix match is

not trivial [Ver11].

PriSearch provides an efficient solution for privacy-preserving string search based on

Yao’s Garbled Circuit (GC) protocol. GC is a provably secure protocol that allows two parties to

evaluate a function on their private inputs. A challenging step in the GC protocol is to convert the

underlying function (here the string search algorithm) into a Boolean circuit such that it incurs

minimum communication/computation cost. Utilizing the GC protocol guarantees the privacy

requirements, however, a naive implementation of string search as a Boolean circuit results in a

huge cost because it requires multiple random accesses to the text (see Section 7.2.2). Here, the

address of a random access depends on the query and the text, thus, it has to be hidden from both

parties, a costly operation in GC which is called oblivious access. A single oblivious access to

the text has linear computation and communication complexity O
(
n
)

with respect to the text size

(n). The cost of oblivious access can be improved using Oblivious RAM (ORAM) inside GC to
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achieve polylogarithmic complexity O
(
polylog n

)
per access. Sadly, the ORAM scheme with the

best asymptotic complexity [WCS15] needs at least O
(
logn

)
sequentially dependent rounds of

communication per access, making the overall execution prohibitively slow.

We introduce PriSearch, a novel privacy-preserving string search which does not need

random access to the text and it has constant round complexity (O
(
1
)
). The computations required

in PriSearch are mainly based on symmetric key encryption and are far less expensive compared

to HE. We also design new synthesis libraries and leverage logic synthesis tools to generate an

optimized sequential circuit for PriSearch automatically to achieve minimal cost in GC. Moreover,

PriSearch is designed such that it can be easily extended to support multiple variants of string

search. In brief, our contributions are as follows:

• Analyzing five major string search algorithms and their performance in the GC protocol

and providing their respective complexity.

• Developing a string search algorithm (based on the Knuth-Morris-Pratt algorithm) that does

not require random access to the text.

• Automatically generating the optimized Boolean circuit for string search by leveraging

logic synthesis tool and new synthesis libraries.

• Performing extensive experiments on six different benchmarks and achieving approximately

2× and 140× performance improvements compared to the best prior non-GC and GC-based

solutions, respectively.

7.2 PriSearch

In the GC protocol, the underlying function that is evaluated securely has to be described

as a Boolean circuit. In PriSearch, the function is string search and the inputs are the text and

the query. There are several algorithms for string search and each one incurs a different cost if
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described as a Boolean circuit for the GC protocol. In the following, we explore these algorithms

and in Section 7.2.2, their computation/communication costs in GC are discussed.

7.2.1 String Search Algorithms

We briefly describe and compare brute-force and four most efficient string search algo-

rithms [SW11].

• Brute-force: The simplest algorithm is to start from the beginning of the text and compare

it with the query. If the first characters match, proceed to the next ones. If all characters

have been matched, then the algorithm returns true. Upon a mismatch, the starting pointer

of the text is incremented by one and the search is continued until the end of the text. This

algorithm has O
(
mn
)

computational complexity.

• Rabin-Karp: This algorithm compares the hash value of the query against the hash value

of each part of text of size m. The elementary implementation incurs complexity of O
(
mn
)

but using a more efficient hash computation, called Horner’s method, the complexity can

be reduced to O
(
n
)
.

• KMP: Knuth-Morris-Pratt algorithm is similar to brute-force algorithm. However, upon

a mismatch, the pointer on the text is not incremented by one and instead, it jumps for a

certain value based on a precomputed information. The complexity of KMP is O
(
n
)
.

• Boyer-Moore: This algorithm starts the comparison from the end of the query. If it matches,

it compares the second to the last character and so on. If a mismatch happens, it chooses the

next character for comparison in the text based on the mismatched character. On average, it

takes O
(
n/m

)
to finish and is considered one of the best algorithms in the literature but in

the worst-case scenario, it takes O
(
nm
)
.
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• FSM-based: The core idea is to create a Finite State Machine (FSM) based on the query

and feed the FSM with one character of the text at a time. Based on the current state of the

FSM (number of matches so far) and the new input character of the text, the next state is

chosen. If it reaches the final state, a match is found. Its computational complexity is O
(
n
)
.

Precomputed information. Beside the computational complexity, the other difference

between these algorithms is the size of the precomputed information that they need. In the GC

protocol, precomputed data has to be accessed without revealing any information about the text or

query. This access cost increases with the size of the precomputed information. Here, we analyze

the size of precomputed information for all of the algorithms.

Brute-force algorithm does not require any precomputed data. Rabin-Karp requires O
(
1
)

precomputed information, only a hash value is computed and stored. In KMP algorithm, once

a mismatch is identified, the size of the jump on the text is determined based on the mismatch

location in the query (m possible locations), whereas, in the Booyer-Moore algorithm, it is based

on the mismatched character in the text (R possible characters). Therefore, KMP needs to store

O
(
m
)

precomputed information while Booyer-Moore needs to store O
(
R
)
.

FSM-based algorithm makes the decision based on the current state (m possible states)

and the input character of the text (R possible characters). Thus, it must store mR possible

combinations (O
(
mR
)

precomputed information).

7.2.2 String Search in GC

We have identified three main requirements for efficient realization of string search in the

GC protocol.

1. Non-random access to the text. In Booyer-Moore and KMP algorithms, the access

sequence of the text depends on the content of the text and the query. Therefore, the access pattern

should be hidden in order to keep the text and the query private. This can be done in the GC
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Table 7.1: Summary of characteristics for different string search algorithms.

Algorithm
Non-random

access to
the text

Low-cost
operations

Linear-size
pre-computed
information

Rabin-Karp X - X
KMP - X X
Booyer-Moore - X X
FSM-based X X -
PriSearch X X X

protocol using a random access memory (multiplexers and flip-flops) in the Boolean circuit. The

computation/communication cost of naive implementation of random access memory inside GC

is O
(
n
)

per access. Therefore, complexities of Booyer-Moore and KMP algorithms in GC are

O
(
n2m

)
and O

(
n2), respectively.

A better solution for random access memory in GC is by utilizing Oblivious Random

Access Memory (ORAM). The ORAM scheme with the best asymptotic complexity incurs

O
(

polylog(n)
)

access cost [WCS15]. However, each access to ORAM requires O
(
logn

)
se-

quentially dependent rounds of communication between two parties. Considering the network

latency, ORAM makes the overall private search extremely slow and limits its scalability for large

n. In contrast, the access sequence to the text in Rabin-Karp and FSM-based algorithms do not

depend on the content of the text nor the query. In these algorithms, each character of the text

is accessed strictly in order and only once. As such, the costly random access memory is not

required. Therefore, the most efficient string search algorithm for GC has to have a non-random

access pattern to the text.

2. Low-cost operations. The big O notation expresses how the private search protocol

scales as n and m grow. However, the constant coefficient hidden in the Big O notation plays an

important role in the overall performance. The constant coefficient corresponds to the computation

that needs to be performed for processing one character of the text. In the sequential GC, the

constant coefficient is proportional to the size of the Boolean circuit implemented for the string
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search algorithm. Rabin-Karp algorithm includes modular exponentiations and multiplications

that result in a very large circuit size. In contrast, Our objective is to construct the smallest

possible circuit.

3. Linear-size precomputed information. The FSM-based algorithm meets the first two

requirements. However, a precomputed information of size O
(
mR
)

has to be accessed once for

processing each character of the text, yielding the O
(
nmR

)
complexity. Our goal is to have the

minimum precomputed data possible to reduce the overall complexity. Rabin-Karp is the only

algorithm that needs O
(
1
)

precomputed information. In the Rabin-Karp algorithm, once the hash

value of a part of the text becomes equal to the hash value of the query, a final check should take

place to verify a true match between the two strings. In GC, one cannot distinguish whether a

hash match occurred or not, hence, the final check has to be performed in every iteration. This

makes Rabin-Karp algorithm’s performance in GC even worse than the brute-force algorithm.

None of the above algorithms has O
(
1
)

precomputed information that also satisfies the

first two requirements. Thus, our goal is to have an algorithm with linear size precomputed

information in terms of m (or R). Table 7.1 summarizes the characteristics of different string

search algorithms.

Table 7.2: Summary of different algorithms for string search and their complexity; R = |Σ|, n is
the number of characters in the text, and m is the number of characters in the query. The missing
complexities in the fifth column means utilizing ORAM does not improve the performance.

Algorithm
Plaintext
Average-case
Complexity

Plaintext
Worst-case
Complexity

GC Complexity
(O
(
1
)

Round Complexity)
GC + ORAM Complexity
(O
(
n logn

)
Round Complexity)

Size of
Precomputed
Information

Brute-force O
(
nm
)

O
(
nm
)

O
(
nm logR

)
- -

Rabin-Karp O
(
n
)

O
(
nm
)

O
(
nm logR

)
- O

(
1
)

KMP O
(
n
)

O
(
n
)

O
(
n(n+m+ logR)

)
O
(
n(log3 n+ log3 m+ logR)

)
O
(
m
)

Booyer-Moore O
(
n/m

)
O
(
nm
)

O
(
nm(n+m+R+ logR)

)
O
(
nm(log3 n+ log3 m+ log3 R+ logR)

)
O
(
R
)

FSM-based O
(
n
)

O
(
n
)

O
(
nmR

)
O
(
n(log3 mR)

)
O
(
mR
)

PriSearch O
(
n
)

O
(
n
)

O
(
nm logR

)
- O

(
m
)
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7.2.3 PriSearch Algorithm

We design PriSearch, a string search algorithm, based on KMP that satisfies the three

aforementioned requirements for efficient privacy-preserving string search. Algorithm 8 shows

the pseudocode of the PriSearch algorithm. The algorithm is implemented as a sequential Boolean

circuit in order to be evaluated in the GC protocol. Each iteration of the algorithm is computed

in one clock cycle of the sequential circuit. As shown in the Algorithm 8, at each clock cycle, a

certain character of the text (T [l]) is accessed. The index of this character, l, increases by one

regardless of the content of the query and the state of the matching process at each iteration

(Requirement 1). The index i shows which character of the query Q is compared against T [l]

at each iteration. PriSearch algorithm starts by comparing the first character of the text (l = 0)

with the first character of the query (i = 0). If they match, i is incremented by one. If they do not

match, similar to KMP algorithm, the algorithm uses a precomputed array P in order to update i

for the next iteration. The algorithm finishes when l reaches the n.

Figure 7.1 shows an example to illustrate the steps in PriSearch. The final position of the

matched substring is shown with a solid green line. After the first four characters (shown in blue

color) are matched, a mismatch happens (shown in red). At this moment, it is not possible to reset

i to zero and l to one, similar to the brute-force algorithm, because l is automatically increased by

one. This means that one cannot access T [1 : 3] to restart the search process. However, one can

leverage the knowledge that T [0 : 3] is equal to Q[0 : 3] to properly update i.

Array P stores the index of the next character to compare (new i) based on the current

mismatch position (i). Since the mismatch occurs at i = 4 and given that P[4] = 2, T [l] has to

be compared against Q[2], i.e., updating i to 2. Thereby, T [l] = T [4] =‘A’ is compared with

Q[P[4]] = Q[2] =‘A’. This comparison has to be done in the current iteration because T [4] cannot

be accessed in the next iteration (unlike KMP algorithm). Since T [4] and Q[2] are equal, in the

next iteration T [5] is compared with Q[3] (i = P[i]+1 = 3). Q[3 : 4] also match in the following

iterations and the output o becomes 1. The only operations used in PriSearch algorithm are
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Algorithm 8 PriSearch.
Inputs: Bob’s text T, Alice’s precomputed array P and query Q.
Output: Output o indicating match has been found or not.

1: i = 0
2: o = 0
3: // processing one character of the text per clock cycle
4: for l = 0 to n−1 do
5: c = T [l]
6: if Q[i] == c then
7: // next character match
8: i = i+1
9: if i == m then

10: // complete string match is found
11: o = 1
12: end if
13: else if Q[P[i]] == c then
14: // mismatch, check the array P to see where
15: // to check next
16: i = P[i]+1
17: else
18: // total mismatch, restart from beginning of Q
19: i = 0
20: end if
21: end for
the comparison of two characters and addition by one which are far less expensive operations

than modular exponentiations and multiplications (Requirement 2). We design a new synthesis

libraries that include optimized implementations of these operations (i.e., addition, comparison,

and selection) for the GC protocol.

Array P is precomputed based on query Q using Algorithm 9, also used in KMP. P[i] is

used when query has been matched for the first i characters but not for the (i+ 1)th character.

Upon a mismatch, the search needs to be restarted from T [l − i+ 1]. However, instead of

T [l− i+1 : l−1], one can use Q[1 : i−1] to search against the query itself since Q[0 : i−1] is

equal to T [l− i : l−1]. The content of array P is independent of the text and only depends on

whether or not any prefix of the query is repeated within itself. In PriSearch, Algorithm 9 is done

offline and locally by Alice, the owner of the query. Therefore, precomputation is performed
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Figure 7.1: Illustration of steps in PriSearch algorithm.

without engaging in the GC protocol and it takes several orders of magnitude less time than the

main string search. Along with the query Q, Alice provides the precomputed array P of size m

(Requirement 3) as her secret inputs to the GC protocol.

Table 7.2 summarizes the complexity of different string search algorithms in plaintext

(average-case and worst-case) and in GC. Plaintext complexity is the computational complexity

of the algorithm when it runs locally without the GC protocol. GC complexity provides com-

putation/communication complexity when an algorithm is described as a Boolean circuit and

garbled/evaluated in the GC protocol. The difference between plaintext and GC complexities

arises from two reasons: (i) In plaintext, for a given conditional (if) statement in the algorithm,

only the taken branch of the statement is evaluated. In contrast, in the GC protocol, both branches

should be garbled/evaluated in order to avoid information leakage. (ii) Random access to an array

of size n has an O
(
1
)

complexity in plaintext, whereas in the GC protocol, as mentioned before,

it has O
(
n
)

when using naive memory (GC complexity column) and O
(

polylog(n)
)

when using

state-of-the-art ORAM [WCS15] (GC + ORAM complexity column). However, ORAM needs

O
(
logn

)
rounds of communication for a single memory access. This means the overall round

complexity using ORAM is O
(
n logn

)
, which considering the network latency, makes the overall

string search prohibitively slow. On the contrary, the GC protocol without ORAM has a constant

round complexity of O
(
1
)
. As can be seen, our algorithm achieves the best GC complexity with

a constant round complexity.

The Boolean circuit of PriSearch is automatically generated using a standard synthesis
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Algorithm 9 Precomputing array P, done by Alice.
Input: Query Q.
Output: Array P.

1: P[0] = 0
2: if length(Q)> 1 then
3: P[1] = 0
4: end if
5: pos = 2 //current position filling in P
6: ind = 0 //zero-based index in Q
7: while pos < length(Q) do
8: if Q[pos−1] == Q[ind] then
9: //case 1: substring continues

10: P[pos] = ind +1
11: ind = ind +1
12: pos = pos+1
13: else if ind > 0 then
14: //case 2: it doesn’t match, fall back
15: ind = P[ind]
16: P[pos] = 0
17: else
18: //case 3: run out of candidates, ind = 0
19: P[pos] = 0
20: pos = pos+1
21: end if
22: end while
tool. The synthesizing constraints are set such that the number of AND gates in the circuit

becomes minimum because according to the Free XOR optimization [KS08b], XOR gates do not

incur any cost.

7.2.4 Different Variants of PriSearch

Up to this point, we have focused on the simplest form of the protocol, which is string

search with 1-bit output, indicating whether the query is present in the text or not. We now show

how PriSearch can be readily adapted to yield other variants of privacy-preserving string search.

We briefly mention two of these variants together with the required changes to the main algorithm:
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• Providing the total number of matches: One can keep track of the total number of

matches using a counter. To do this, counter needs to be initialized and the following line

has to be inserted after Line 10 in Algorithm 8:

11: counter = counter + 1

• Size of longest prefix match: A very important and useful information in the string search

is the length of the longest prefix of query matched in the text. For example, having “ABCD”

as query and text as “ABCEFG”, the algorithm should output 3. Although an exact match

is not found, a prefix of size 3 (“ABC”) is present in the text. The change required for this

is to have another value, say prefix, and insert the following lines after Line 8:

09: if i ¿ prefix then

10: prefix = i

11: end if

7.2.5 Security of PriSearch

The GC protocol is proven to be secure against honest-but-curious adversaries for any

function f (a,b) [BHKR13]. In our setting, the function is the PriSearch algorithm, a is Alice’s

input which is composed of precomputed array P and query Q, and b is Bob’s input which is the

text T . Thus, the security of PriSearch immediately follows from the security of the GC protocol.

7.3 Results

We perform our experiments using two Intel Core i7-2600 CPU @ 3.4GHz processors,

12GB RAM and 64-bit Ubuntu 14 operating system. The security parameter in our setup is 128-bit

(k = 128). We describe the PriSearch algorithm in Verilog, a hardware description language. We

then use Synopsys Design Compiler 2010 along with our constraints and synthesis libraries to

generate its Boolean circuit.
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Table 7.3 shows the results for different string search benchmarks and their comparison

with previous work whenever applicable. PriSearch achieves 2× improvement compared to the

best prior privacy-preserving string search [BEDM+12] that is secure against the same adversary

model. They report DNA pattern matching with a query of size 100 characters against a text with

100k characters takes 64 seconds [BEDM+12] while PriSearch finishes the same task under 34

seconds. PriSearch can be used for real-time processing stream of characters. It can securely

process up to 15k characters per second when searching for a query of size 10. Comparing our

solution with the best GC implementations (utilizing KMP algorithm and state-of-the-art ORAM

implementation [WCS15]), we observe more than 140× faster execution when m = 100, n = 64k,

and R = 256.

Table 7.3: Timing and communication results for different benchmarks.
Benchmark n m log2(R) Precomp.(ms) Online Comp.(s) Comm. Exec.(s) Prior Art(s) Improv.

DNA Matching 1 [Fri09] 10† 10k 2 bit 1.38 0.15 55.34MB 0.53 8 15×
DNA Matching 2 [BEDM+12] 100k 100 2 bit 0.03 9.30 3.50GB 33.84 64 1.9×
Document Search 64k 100 8 bit 0.03 12.51 4.74GB 45.49 6424‡ 141×

Longest Prefix Search 100k 10 32 bit 0.01 6.26 2.41GB 23.16 - -
1MB ASCII Document Search 1M 10 8 bit 0.01 18.72 7.21GB 69.37 - -
1% Human Genome Search†† 30M 50 2 bit 0.02 21.65min 49.39GB 1.32h - -

†Per each 10 characters of the text as reported in [Fri09]. ‡ State-of-the-art GC+ORAM Impl. [WCS15]. ††In
practice, processing properly chosen 1% of human genome yields comparable accuracy to processing the entire

genome (3B letters) [GS06].

7.4 Related Work and Comparison

There are several studies addressing secure string search (or pattern matching) due to

its significance. A number of earlier work consider securing against malicious and covert

adversaries [HL08, HT10]. They incur a significantly larger overhead compared to PriSearch.

Such a comparison is not always straightforward or fair due to the difference in the adversary

models. Thus, we report the comparison of PriSearch to protocols that are secure against the

honest-but-curious adversary model.

De Cristofaro et al. introduced a secure pattern matching protocol based on Additively
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Homomorphic Encryption (AHE) for genomic applications [DCFT13]. They have implemented

their protocol based on two different AHE libraries, namely AH-ElGamal and EC-ElGamal. The

most expensive part of their approach is initial encryption of the genome data which as they

have reported takes 115 and 2,580 hours using AH-ElGamal and EC-ElGamal respectively for

genome data with 3 billion letters. An additional 2.7 hours and 8.7 hours of data transmission

are required given a 1Gbps link. In contrast, our approach takes almost 80 hours for finding

a pattern considering the same text size and communication bandwidth. Besides, they (and

also [RDGK16b]) consider searching in a particular predetermined part of the genome, whereas,

we search the entire genome.

Baron et al., propose to reduce the problem of substring search to a series of linear

operations (e.g., inner products and matrix multiplication) such that the operations can be

efficiently computed using AHE [BEDM+12]. As shown in Table 7.3, PriSearch is 2× faster

compared to their approach.

A number of studies [Ver11, HT10] rely on oblivious polynomial evaluations to perform

binary substring search. However, they cannot search on non-binary alphabet like genomic data.

Similarly, the method proposed in [YSK+13] can only find patterns in binary vectors and is based

on somewhat homomorphic encryption.

Another approach is to construct an automaton based on the query and then obliviously

evaluate it on the text as proposed in [TPKC07, Fri09]. The method in [Fri09] is two to three

orders of magnitude faster than the one proposed in [TPKC07] and as shown in Table 7.3, our

method is 15× more efficient than [Fri09].

Please note that we cannot utilize the “Early Termination” technique [RSS+17] since the

runtime of the protocol would reveal the index of the match which as a result reveals the query.
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7.5 Summary

We introduce PriSearch, an efficient approach for secure string search where both query

and text from two parties are kept private. Our approach is based on the provably secure Garbled

Circuit protocol. We report 2× performance improvement compared to the state-of-the-art

solution [BEDM+12]. We design a new string search algorithm that makes the access pattern

to the text strictly in order, enabling us to search large texts without using expensive Oblivious

RAM. The experimental results demonstrate the efficiency of PriSearch and its applicability to

real-world problems.
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Chapter 8

CAMsure: Secure Content-Addressable

Memory

We introduce CAMsure, the first realization of secure Content Addressable Memory

(CAM) in the context of approximate search using near-neighbor algorithms. CAMsure provides

a lightweight solution for practical secure (approximate) search with a minimal drop in the

accuracy of the search results. CAM has traditionally been used as a hardware search engine that

explores the entire memory in a single clock cycle. However, there has been little attention to the

security of the data stored in CAM. Our approach stores distance-preserving hash embeddings

within CAM to ensure data privacy. The hashing method provides data confidentiality while

preserving similarity in the sense that a high resemblance in the data domain is translated to a

small Hamming distance in the hash domain. Consequently, the objective of near-neighbor search

is converted to approximate lookup table search which is compatible with the realizations of

emerging content addressable memories. Our methodology delivers on average two orders of

magnitude faster response time compared to RAM-based solutions that preserve the privacy of

data owners.
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8.1 Introduction

The ongoing development of technology has led to the generation of a massive volume

of data. Today’s cloud servers contain a database of information that belongs to users (clients)

across the world. Such central storage of information enables clients to search for their content of

interest in the database. This user-cloud search model appears in a broad variety of applications

such as online recommender systems [EBVL11], face recognition [SSW09], secure biometric

authentication [BBC+10], to name a few. For example, in online dating websites, the server

maintains a database of all clients’ profiles. The search algorithm aims to find the most similar

profile in the database that best matches a specific query. The output of the search is the ID of

the most similar profile. In this context, the search algorithm is approximate by nature since the

similarity metric is defined heuristically.

The database might contain private and sensitive information, hence, the data has to be

handled securely. For instance, in the case of online dating websites, users may prefer not to

disclose their private attributes to the cloud server. As another example, consider biometric

authentication where the fingerprint of a user is captured and matched against the valid profiles

on the server. If an attacker can hack the server and get access to the database, the security of the

system and the privacy of users are both diminished. It is worth mentioning that, once the sensitive

data is compromised, the attacker can use this information to fool any other fingerprint-based

authentication system. Recent data breaches of giant Internet companies such as Yahoo [yah17]

and Google [goo17] have demonstrated that cloud servers are vulnerable to internal and external

attacks. Therefore, scalable methodologies should be developed, both in software and hardware,

to guarantee the security of the query, search result(s), and the data stored on the server.

The existing solutions for secure approximate search mostly involve computationally

expensive cryptographic operations. The underlying cryptographic protocols of these schemes

are either Homomorphic Encryption [QA08] or Yao’s Garbled Circuits [SHSK15]. The high
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computation and communication burden of these methods hinder their practical implementation

for data-intensive applications. Order-Preserving Encryption (OPE) [BCLO09] allows comparison

over encrypted. However, NNS solutions based on OPE and Deterministic Encryption (DTE)

are proven to be inseucre by Naveed et al. [NKW15]. Protocols based on Asymmetric Scalar-

Product-preserving Encryption (ASPE) [WCKM09] have also been proven to be insecure against

the Chosen Plaintext Attack introduced by Yao et al. [YLX13]. Another line of research focuses

on encryption-free lightweight randomized embeddings that provide security at the cost of low

search quality [BR11]. This solution adds specific noise to the raw data in order to reduce

the information leakage. Although this approach is computationally less intensive, the added

randomness significantly reduces the search accuracy.

This chapter proposes CAMsure, a lightweight solution for securing emerging CAMs

in the context of approximate search. Instead of writing the raw data on CAM, our approach

stores distance-preserving hash embeddings to provide data privacy. The hashing scheme that is

utilized in CAMsure is called Locality Sensitive Hashing (LSH) [IM98a]. This family of hashing

methods creates a randomized embedding of data while preserving the pairwise similarity. LSH

was initially proposed to reduce the computational complexity of search by converting high-

dimensional data into a compact binary string (hash value). However, it is shown that original

LSH schemes are vulnerable to certain attacks as a malicious party can infer some information

about the secret data based on its hash value [RCS+16]. The vulnerability originates from the

fact that LSH schemes preserve the pairwise similarity of any two input values. Recently, a new

secure LSH has been proposed to mitigate the information leakage [RCS+16]. The hash values

generated from this new LSH have a low Hamming distance only if the original elements are very

similar (more than a specific threshold TS). As a result, they are secure against known attacks.

LSH translates the problem of approximate search to finding a hash within the database

that has the smallest Hamming Distance (HD) to the query. The theory of LSH guarantees that

similar elements in the data domain will have a small Hamming distance in their corresponding
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hash embeddings (with a high probability). The approximate lookup nature of emerging CAM

technologies can enable approximate search on the hash values. As a result, CAMsure can be

realized with a minimal alterations in CAM [RGC+15], i.e., voltage overscaling. Our explicit

contributions are as follows:

• Introducing CAMsure, the first realization of secure in-memory computation using CAM in

the context of approximate search. Our proposed secure CAM supports dynamic insertion

and deletion of records without compromising system efficiency and privacy of data owners.

CAMsure ensures data confidentiality even if the database is compromised.

• Proposing an end-to-end system that connects state-of-the-art hashing schemes to content-

based memory architectures. Our methodology avoids costly computations of previously

proposed secure search solutions by leveraging in-memory computation techniques. An-

other feature of this approach is that it allows lightweight deployment of secure search over

distributed networks.

• Providing comprehensive analysis on search latency, power consumption, precision, and

privacy guarantees of CAMsure and illustrating the practicality of our approach on a real-

world dataset. As opposed to conventional RAM-based solutions, CAMsure has single cycle

search latency, resulting in up to two orders of magnitude faster search while preserving

the privacy of data owners.

8.2 Methodology

8.2.1 Scenario and Privacy Concerns

We assume that the CAM architecture is employed in a cloud server to store the database.

This database holds secret data from certain parties that we call data owners. We refer to each

record of the database as a word. A user wants to search the database for words that are most
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similar to her query. Traditionally, the client’s query and the words are revealed to any party that

has access to the database. Storing the raw sensitive data on CAM memories in a centralized

fashion makes users susceptible to internal attacks (i.e. server acting as a malicious party) or

external threats (i.e. server compromised by a hacker).

In our computational model, the sensitive data is stored in the secure CAM (database)

while the meta-data and user’s ID are stored in plaintext by the cloud server in a regular memory.

For example, in an online dating application, the sensitive data includes user’s age, ZIP code,

physical attributes, and personal preferences of the person that he/she prefers to be matched to.

The metadata includes the username, hash of the user’s password, and user’s ID in the database.

The metadata is used to connect two persons whose profiles are matched. Note that this kind

of metadata is the least possible information that has to be kept by the cloud server in order to

operate such centralized web-based applications. The focus of this work is to create the first of its

kind secure CAM.

Threat model: This chapter assumes that the owner of the CAM (the server) is untrusted.

More precisely, CAMsure is secure against honest-but-curious (semi-honest) server. In this attack

model, server may attempt to infer information about the data that she stores, sends, and receives

but it is assumed that the server will follow the protocol. This threat model strongly satisfies

today’s privacy concerns where users wish to hide the content of their query from the cloud server.

Since we do not trust the server, the privacy of CAM words, the query, and also the search result

should be preserved. This threat model also covers the situation where the entire database is

compromised by an attacker.

To provide security for the CAM architecture, the users employ a hashing technique that

hides the content of their data. The hashing method preserves similarity, meaning that data points

that are close in the data domain are also similar in the hash domain, and those that are not close

in the data domain are dissimilar in the hash domain. Section 8.2.2 describes, in high-level, the

methodology of CAMsure for preserving the confidentiality of CAM data.
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8.2.2 CAMsure Overview

CAMsure delivers scalable and lightweight privacy-preserving approximate search. As

depicted in Figure 8.1, the scenario of CAMsure comprises two main ingredients: (i) a hashing

scheme called LSH and (ii) a database consisting of one (or several) CAM blocks.

Figure 8.1: Overview of the secure approximate search scenario using CAMsure.

On the client side, the input is hashed using LSH to create a query which hides the actual

content of the input vector. LSH takes as input a vector of real-valued elements and maps it into

a binary string. The amount of information that the hash reveals about the actual input can be

controlled as we discuss in section 8.3.5.

On the server side, the hash values provided by data owners are stored in the database.

The database is realized by a certain number of CAMs. Due to the resemblance-preserving

property of LSH, server can search for similar hash words within the database without actually

knowing what the query or the words correspond to; therefore, CAMsure provides the security

of CAM contents against malicious parties. In addition to providing security, CAMsure reduces

the computational complexity of approximate search by converting high-dimensional vectors

into hash values. It supports dynamic insertion and deletion of database words since the hash

embeddings are generated independently. To the best of our knowledge, CAMsure provides the

first secure CAM for the purpose of approximate search. We elaborate on the concept of LSH

175



in section 8.2.3. In Section 8.2.6, we discuss the additional modifications required to support

approximate search in CAMs.

8.2.3 Hashing Methodology

In this section, we illustrate the hashing method that is utilized in CAMsure. Figure 8.2

depicts the concept of LSH for secure approximate search. The left-hand side belongs to the

data domain where each input is represented as a feature vector of real values, e.g., features

extracted from an image of the person’s face. The right-hand side represents the hash domain

where each word is a binary string computed from the original data. The two hash strings in

Figure 8.2 are different since the original feature vectors (the faces) are dissimilar. Any LSH

scheme guarantees that the probability of two LSH bits colliding (being equal) is a monotonic

function of the similarity in the original domain. For example, assume that LSH guarantees a

collision probability of 95% in the hash domain for a similarity threshold of TS = 0.9 in the data

domain. This implies that, on average, 0.95× l bits should match for l-bit LSH embeddings

of two inputs with a similarity of t = 0.9. Therefore, utilizing LSH enables us to translate

the near-neighbor search to finding the words in the database that have Hamming Distance of

(1− 0.95)× l or less. Although this approach introduces a certain degree of inaccuracy, the

added error rate is negligible in practice [IM98b]. We elaborate on the accuracy of CAMsure in

Section 8.3.4 comprehensively.

The key achievement of using LSH is that the server no longer needs to compute pairwise

similarities using a processor. The near-neighbor search is performed by just checking if the

incoming query has small Hamming distance (given certain threshold) to any of the database

words. This check can be efficiently done in only one clock cycle by minimal modification in the

CAM [RGC+15].

As we discussed, MinHash and SimHash require a set of randomly generated numbers, i.e.

MinHash requires random permutation and SimHash requires random projection vector, which
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Figure 8.2: Relationship between the data and hash domains. The hashing scheme preserves
the proximity of inputs only for similar data.

we refer to as random seeds. Although these seeds are generated randomly for each LSH bit,

they have to be consistent for generating the hash of all the data in the database and also for the

incoming query. To satisfy this requirement, the server generates these seeds and announces

them publicly. Whenever a new user wants to search the database, she needs to download these

seeds, compute the hash of her input, and send the hash to the server. The size of these seeds

is very small, usually in the order of KB and is especially suited for Internet settings. This is

in contrast to secure multiparty computation methods which require very high communication

bandwidth (in the order of MB or GB) [SHSK15]. It is worth mentioning that these seeds have to

be downloaded only once at the time when the user registers to the cloud server.

8.2.4 Data Leakage of Traditional LSH Schemes

The amount of information that one can infer from a single LSH embedding and the

publicly available random seeds is limited and is discussed in Section 8.3.5. However, an attacker

can generate multiple fake input vectors and perform the triangulation attack as introduced

in [RCS+16, Ria16]. The susceptibility comes from the fact that traditional LSH schemes allow

an estimation of the similarity between original vectors corresponding to any pair of hash values.

Assume that an attacker wants to reconstruct the original vector v hashed into hash(v). He can
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create random vectors vi, compute their hashes hash(vi), and compare them to hash(v). Since

traditional LSH methods preserve the pairwise similarity for any two input vectors, the attacker

can identify vectors vi to which v is most similar according to the Hamming distances of hash(v)

and hash(vi). Consequently, the attacker reduces the subspace in which v can reside and estimates

the elements of v up to a certain precision. Performing the same procedure iteratively results in a

very good estimation of v. Therefore, if the server is malicious or an attacker can get access to the

database, the privacy of all users is compromised.

Recently, a novel hashing technique is proposed to mitigate the triangulation at-

tack [RCS+16]. The idea behind their method is to make sure that the collision probability

of LSH bits is high only when the two inputs are very similar and is as low as 50% for non-

neighbors (same as collision probability of two completely random bits). As a result, if an

attacker repeats the same triangulation attack, he cannot estimate the original attributes by brute-

forcing the possible input space. In the following section, we illustrate how the hashing method

of [RCS+16] works and how it achieves security against the triangulation attack.

8.2.5 LSH Transformation

Authors of [RCS+16, Ria16] have proposed an LSH transformation that eliminates

unnecessary information leakage of traditional LSH methods. To perform this task, they suggest

that the transformed hashing scheme should have the following property: for any two input

vectors that have similarity lower than a threshold (TS), their corresponding hashes must have very

high Hamming distance. As a direct consequence of this condition, for any two dissimilar inputs,

the collision probability of any single LSH bit must be close to 0.5, making them indistinguishable

from two randomly generated bits. In other words, the correlation between two hashes must be

very close to zero in order to avoid information leakage.
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The proposed transformation which satisfies this condition is

h1−bit
secure(x) = huniv(h1(x),h2(x), ...,hk(x)), (8.1)

where hi, i ∈ {1, 2, ..., k} are k independent hash functions (with independent initial random

seeds) and huniv(.) is defined as

huniv(α1, α2, ..., αk) = (rk+1 +
k

∑
i=1

riαi) mod p, mod 2, (8.2)

where ri, i ∈ {1, 2, ..., k} are randomly generated integers and p is a prime number. Note that

ri should remain fixed for all of the hash computations once they have been derived. Parameter

k is called the security parameter. hi can be implemented as any traditional LSH function, e.g.,

MinHash or SimHash.

The effect of this transformation is that the collision probability of two 1-bit hashes,

h1−bit
secure(x) and h1−bit

secure(y), drops rapidly as the similarity of x and y decreases. For instance, the

collision probability of secure MinHash is

Probability {h1−bit
secure(x) = h1−bit

secure(y)} =
R k +1

2
(8.3)

where R is the Jaccard similarity between x and y. Similarly, the collision probability of secure

SimHash is

Probability {h1−bit
secure(x) = h1−bit

secure(y)} =
(1− cos−1(C )

π
)k +1

2
(8.4)

where C denotes the Cosine similarity of x and y. The formal proofs of Equations 8.3 and 8.4 are

provided in [RCS+16].

We have depicted the collision probability of secure MinHash and SimHash for different

security parameters, k ∈ {1,5,10}, in Figure 8.3. Note that k = 1 is identical to traditional LSH

functions (please see Equation 8.1) and represents the baseline for comparison with traditional
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LSH schemes.
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Figure 8.3: Collision probability vs. similarity for MinHash and SimHash functions for three
different security parameters k ∈ {1,5,10}. k = 1 represents traditional LSH methods.

As mentioned in Section 8.2.4, the triangulation attack is possible for traditional LSH

schemes since they allow a similarity estimation for any two input vectors whose similarity ranges

from 0 to 1. This is shown as the curves corresponding to k = 1 in Figure 8.3. As can be seen,

an attacker can estimate how similar vectors vi are to the secret vector v by comparing the HD

between hash(vi) and hash(v). v is most similar to the vector v j whose Hamming distance to

hash(v) is minimum. However, the same property does not hold for k = 5 or k = 10 since the

collision probability drops drastically as the similarity goes to zero. For example, assume v j

has a similarity of 0.8 to v, therefore, the collision probabilities for 1-bit secure SimHashes are

0.9, 0.66, and 0.55 for k = 1,5,10, respectively (see Figure 8.3). Please note that the collision

probability of any two random bits chosen from the Uniform distribution is 0.5. The collision

probability of hash bits directly translates to the expected number of bit-matches of the hashes.

Assuming l-bit hash embeddings, the number of bit matches between hash(v j) and

hash(v) are on average 0.9l, 0.66l, and 0.55l for k = 1,5,10, respectively. Since 0.9l is an outlier,

the attacker gets to know that v j must be very similar to v and he can iteratively continue his

search in a smaller subspace. However, when the secure hashing function with parameter k = 10

is used, the attacker observers 0.55l bit matches (with a high probability). Since this number is
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very close to the number of bit matches between any two random l-bit strings, the attacker cannot

infer any information. In CAMsure, the privacy of data owners and data users is preserved since

the server does not have access to the plaintext of users’ data and the query. This means that even

if the entire database is compromised or the server is malicious, users’ data is not revealed. The

comprehensive security analysis is provided in Section 8.3.5.

As we have illustrated in this section, in order to find near-neighbors of the query, one

needs to find database words whose Hamming distance to the query is lower than a certain

threshold. For example, if the threshold is 2, any word in the database with Hamming distance of

0, 1, or 2 to the query should be reported as a near-neighbor. In Section 8.2.6, we explain how

one can perform the approximate search with HD tolerance in CAMs.

8.2.6 Approximate Search in CAMs

The probabilistic nature of LSH implies that even the most similar raw records might

have some Hamming distance in their hash embeddings. Consequently, the lookup table search

is no longer a search with exact matching. Any stored word whose Hamming distance to the

input query is below some pre-defined threshold is considered a match (near-neighbor) and its

corresponding match-line should trigger a high voltage. Therefore, the proposed CAM should be

capable of performing search with certain HD tolerance.

The earliest implementation of CAM can only perform exact matching. Ternary CAMs

(TCAMs) provide the additional functionality of having “don’t care” bits in the seach key [MF93].

These bits are masked during the search, i.e., the masked CAM cells output a high voltage

regardless of the corresponding bits in the input query. The “don’t care” bits in TCAMs are not

permuted, i.e. their location in the input string is fixed; thus, TCAMs cannot be readily used

for evaluating the Hamming distance. Therefore, throughout this chapter, we do not focus on

TCAMs.

Authors of [RGC+15] present a modified CAM that allows approximate search based
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on Hamming distance. Figure 8.4 illustrates the idea behind their methodology for approximate

matching. The solid red line corresponds to the match-line’s transient voltage when the query

matches the stored word with zero Hamming distance. The dashed lines correspond to match-lines

with different Hamming distances. The HD tolerance can be tuned using two techniques:

• Changing the sampling time: It can be observed that, as the number of mismatched cells

is increased, the output voltage drops more abruptly. This change in the decay time allows

us to infer a partially mismatched data as a match by simply changing the sampling time;

the earlier the output is sampled, the more Hamming distance is tolerated.

• Voltage over-scaling: Another method to tune the Hamming distance tolerance is to fix the

sampling time and change the supply voltage applied over the cells. Note that decreasing

the supply voltage also reduces the power consumption of the CAM.

Authors of [RGC+15] mention two downsides for the proposed approximate CAM: (i)

possibility of false match and (ii) having multiple matches. Possibility of mismatch simply refers

to having approximate matches, which in fact, is a design goal for CAMsure. Having multiple

matches is also desired as the goal of near-neighbor search is not to identify a single record but to

find all data points that are similar to the query. In addition to the aforementioned issues, their

design is not capable of distinguishing Hamming distances that are higher than 2. This issue

might be partially mitigated by increasing the capacitance of the CAM cells which can make

higher Hamming distances distinguishable.

8.3 Analyses

In this section, we first demonstrate the superiority of CAM over RAM for the purpose of

near-neighbor search. Next, we analyze the accuracy and security aspects of CAMsure.

182



0 0.5 1 1.5
Time(ns)

0

0.2

0.4

0.6

0.8

1

V
m

at
ch

-l
in

e

Exact Match
HD = 1
HD = 2
HD = 3

Figure 8.4: CAM match-line transient output voltage for exact and approximate matching.

8.3.1 Delay and Energy Analysis

We compare the proposed search method over hash embeddings stored in Static RAM

(SRAM) and CAM architectures. Specifically, we compare the two architectures for different

hash embedding widths (i.e. 32-bit and 64-bit) denoted by l and different sizes of the lookup table

which we denote by N. For the SRAM architecture, we simulate a cache using the CACTI 5.3

tool [TMAJ] which is an open-source software from HP Co. to estimate the read-energy and

search delay of different cache designs. Table 8.1 outlines the cache used in our reports. For

the CAM-based implementation, we incorporate the energy and delay reports of [RGC+15] to

analyze the proposed methodology for memristive CAMs that are capable of approximate search.

Specifically, we assume that multiple CAM blocks from [RGC+15] with the corresponding

bit-width are instantiated to accommodate the database; the search delay would be the same

as reported in [RGC+15], while the energy consumption increases linearly with respect to the

number of instantiated blocks. We also compare commercialized CMOS-based CAMs from the

LANCAM family [com17b, com17a]. Table 8.2 outlines the specifications of the CAM blocks.

Table 8.1: Cache design for the RAM baseline.
Cache Size Line Size (bytes) Associativity No. Banks Technology

Variable (based on
lookup table size) 32 4 1 45 nm

Note that both SRAM and CAM are used to implement the same search algorithm,

therefore, their search accuracy is the same; the only difference between SRAM and CAM is
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Table 8.2: Specifications of CAM baselines.
Search Energy (pJ)

CAM Architecture Delay (ns) No. Words Technology (nm) Exact HD = 1 HD = 2
32-bit resistive [RGC+15]

1.5 64 45
3.901 1.738 1.332

64-bit resistive [RGC+15] 4.568 1.953 1.479
32-bit CMOS [com17b] 70 4096 NA 1617 - -
64-bit CMOS [com17a] 50 4096 NA 2475 - -

in the way they perform the search. The following sections compare the delay and energy of a

single search for SRAM and CAM.

8.3.2 Delay Analysis

We compare the search delay of different architectures in Figure 8.5. For the cache-based

implementation, we change the cache size of the CACTI memory to accommodate the number

of words within the table. We give an advantage to the baseline SRAM by assuming that the

processing unit is fully pipelined and the memory can operate in maximum throughput. For this

purpose, we use the “interleave cycle time” metric reported by the CACTI tool which we denote

by T . We also assume that the cache hit rate is 100%. The number of sequential read operations

to perform a single search is N
m where N is the number of words within the database and m is the

number of words fetched by a single read operation. More specifically, m is the number of words

within one line of the cache

m =
line size

bytes per embedding
.

A 64-bit (32-bit) embedding requires 8 bytes (4 bytes) to be stored and assuming a line

size of 32 bytes in Table 8.1, each interleaved access provides m = 32
8 = 4 (m = 32

4 = 8) words.

The search delay reported in Figure 8.5 is then computed as

Delay = T
N
m
.

For the CAM-based table, we assume that multiple banks of the memristive and the

CMOS-based blocks (Table 8.2) are instantiated to perform the search in parallel, thus, the CAM
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search time is fixed for different database sizes. In contrast, the SRAM search time is increased

for a higher number of words in the lookup table since the words are processed sequentially. The

results show that, compared to SRAMs, CAM architectures reduce the search delay by two orders

of magnitude.
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Figure 8.5: Delay analysis for hash embeddings of size 32 and 64-bit. CAMmem and CAMcom

denote memristive and commercial CMOS-based CAMs, respectively. The dotted line for
CAMcom shows interpolated data.

8.3.3 Energy Analysis

Figure 8.6 compares the energy consumption of different memory architectures. We take

the “dynamic energy per read port” metric provided by the CACTI tool and multiply it by the

number of sequential read operations to compute the search energy for SRAM. For CAMs, we

assume that the search energy is linearly increased with respect to the number of CAM blocks. It

is observed that the search energy of CAM is significantly lower than that of SRAM. Memristive

CAMs offer a smaller energy consumption than CMOS-based CAMs. It is noteworthy that the

power consumption is decreased as we increase the Hamming distance. A high HD tolerance can

be achieved by lowering the supply voltage which in-turn reduces the search energy.
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Figure 8.6: Energy consumption analysis for hash embeddings of size 32 and 64-bit and different
Hamming distances. CAMmem and CAMcom denote memristive and commercial CMOS-based
CAMs, respectively. The dotted line for CAMcom shows interpolated data.

8.3.4 Accuracy Analysis

The performance and power analyses in Section 8.3.1 are general and account for any

dataset regardless of the application. However, the search accuracy analysis which we discuss

in this section is inherently dependent on the underlying dataset. For this purpose, we focus on

the Speed-Dating [FIKS06] dataset which contains 8378 text survey samples (profiles). Each

profile is represented as a 190-dimensional vector. Each element of the vector is a feature that

contains sensitive information about the individuals, e.g., gender, race, age, the field of study,

zipcode, income, etc. We report the search accuracy by comparing the result from CAMsure with

the most similar elements in the original domain (before hashing) that pass similarity threshold of

0.95. Therefore, both the ideal search result and the result from CAMsure can be viewed as a bag

of indices (of the database) which are claimed to be similar. CAMsure outputs the index of any

word in the database that passes the Hamming Distance Threshold (HDT). In other words, any

word that has Hamming distance of HDT or less to the query is reported as a near-neighbor.

We report the accuracy results based on two metrics: precision and recall. Precision is

defined as nc
nr

, where nr denotes the number of total near-neighbor indices reported by CAMsure

and nc denotes the number of indices reported by CAMsure that are correct (truly similar). Here,

we consider two points with similarity measure of 0.95 or higher to be called near-neighbors.
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Recall is defined as nc
nt

where nt is the total number of words within the database that are considered

as near-neighbors of the query. An ideal system should report all and only all of the true near-

neighbors which means both precision and recall should ideally be equal to one. A trivial solution

that outputs all entries in the database has high recall (=1) but unacceptable precision (∼0). We

generate 32-bit and 64-bit LSH embeddings for each profile in the dataset. We randomly select

the query as one of the profiles from the dataset and repeated the experiment for 100 different

queries for each set of parameters.

Figure 8.7 illustrates the precision results as a function of the HDT for different security

levels (k), where two plots are depicted for 32-bit and 64-bit LSH embeddings, respectively. The

number of bits in the LSH embedding is equal to the bit-width of each word stored in CAM.

The search precision is higher for low values of HDT. This is persistent with our intuition since

the HDT defines the measure of search accuracy: by choosing higher values for the HDT, more

words are selected from the database that may not correspond to a true near-neighbor, reducing

the overall precision.
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Figure 8.7: Precision analysis for hash embeddings of size 32 and 64-bit for different security
parameters (k).

Figure 8.8 provides the recall results as a function of the HDT for different security

levels (k) and different LSH embeddings (32-bit and 64-bit). In contrast to the precision reports,

increasing the HDT results in a higher recall. Higher values of HDT allow for more database
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words to be selected. Therefore, there is a trade-off between precision and recall which is a known

concept in near-neighbor search algorithms.

It is beneficial to plot the precision as a function of the recall in order to illustrate the

trade-off (Figure 8.9). As the analysis suggests, the hashing scheme utilized in CAMsure achieves

a reasonably high precision and recall while providing data confidentiality.

Two observations are worth mentioning: first, 64-bit LSH embeddings deliver better

precision/recall trade-off with the cost of higher computational complexity (see Figure 8.9).

Second, increasing the security parameter k comes with the cost of lower precision and recall.

Therefore, the number of bits in the hash embedding (l) and the security parameter (k) are the

two factors that should be tuned to utilize CAMsure for different datasets.
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Figure 8.8: Recall analysis for hash embeddings of size 32 and 64-bit for different security
parameters (k).

8.3.5 Security Analysis

We provide a comprehensive security analysis of CAMsure in the event where the cloud

server is malicious or the database is compromised by an attacker. We analyze, both theoretically

and experimentally, the scenario where an attacker wants to infer as much information as possible

about one or multiple words in the database. Assuming that the attacker has complete access to

the database, we are interested in knowing what information can be inferred from the original
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Figure 8.9: Precision vs. Recall analysis of 32 and 64-bit hash embeddings for different security
parameters (k).

data given the hash embeddings. In Section 8.3.6, we explain the state-of-the-art method, called

compressed sensing, that aims to reconstruct the original data given its hash. In the second

analysis, we consider the idea of the brute-force attack on CAMsure. We provide theoretical and

experimental analysis for this attack. The third analysis focuses on validating the theory of LSH

transformation. Finally, we focus on a more sophisticated attack, called Triangulation [RCS+16],

which aims to extract information by leveraging the correlation between hash embeddings of

multiple data points scattered in different spans of the space.

8.3.6 Compressed Sensing

The theory of compressed sensing aims to extract information from randomized embed-

dings. However, there is currently no practical approach that can extract meaningful information

from the LSH embeddings utilized in this chapter. In general, compressed sensing requires

more than θ(s log2 D) measurements to provide reasonable accuracy [CW08] where s and D

are the number of non-zero elements and the dimensionality of the input vector, respectively.

However, in CAMsure, the bit-width of the hash embedding (32 or 64) is far smaller than the

aforementioned lower bound which is at least 190× log2(190) = 1438 bits for the Speed-Dating

dataset. Compressed sensing algorithms are similar to the idea of triangulation attack which we

discuss in Section 8.3.9.
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8.3.7 Brute-force Attack

The attacker might attempt to guess the original value of a vector and validate his choice

by comparing the hash value of his guess with the database entries. If he finds a hash value

identical to what he has computed, the original data vector is revealed to him. However, this

attack is computationally impossible as we describe next. If we represent each real number as a

fixed point 32-bit, a D dimensional vector input has

Npossible = (232)D

possible different values. According to NIST standard [nis17], any brute-force attack that requires

2128 or higher operations is considered infeasible. Since Npossible grows exponentially with D,

even for small dimensionality (D = 4 or higher), the attack is infeasible.

8.3.8 Validating the LSH Transformation

The theory behind the LSH transformation of [RCS+16] suggests that mutual information

between the bits of two hashes drops rapidly as the similarity of the original vectors is decreased.

For example, in the case of SimHash,

I(h1−bit
secure(x);h1−bit

secure(y)|θ)< (1− θ

π
)klog(

1+(1− θ

π
)k

1− (1− θ

π
)k
), (8.5)

where I(.) denotes the mutual information [CT12] between two SimHash bits and θ = cos−1(C )

with C being the Cosine similarity, defined in Equation 2.5. In this section, we validate this theory

experimentally. We choose a random profile from the Speed-Dating dataset as our query and

consider its similarity to all other profiles in the database. In particular, we compute the true

similarity measure in the data domain soriginal and the number of matched bits in the hash domain

shashed using a security parameter of k = 5 for 32-bit and 64-bit embeddings. Figure 8.10 depicts
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shashed as a function of soriginal between the chosen profile and all other profiles in the database.

(a) 32-bit hash embeddings (b) 64-bit hash embeddings
Figure 8.10: Validating LSH transformation in practice on Speed-Dating dataset for security
parameter k = 5.

The vertical yellow lines in Figure 8.10 show the similarity of 0.95. The horizontal red

lines depict 27 and 53 number of bit matches for 32 and 64-bit LSH embeddings, respectively.

As our experiments show, the results closely follow Equation 8.5. If two profiles are not similar

in the original vector representation (x-axis), the corresponding tuple (soriginal, shashed) resides

on the left-hand side of the yellow line. It can be seen that the corresponding hashes have a

random number of bit matches anywhere between zero to HDT = 27 (HDT = 53) for such

profiles. Meanwhile, two profiles with a similarity of 0.95 or higher reside on the right-hand

side of the yellow line and the corresponding number of bit matches is higher than the threshold

HDT = 27 (HDT = 53). This is consistent with our expectation from the characteristic of the

LSH transformation.

8.3.9 Triangulation Attack

A more sophisticated attack is to create multiple random vectors, compute their hashes, and

triangulate the secret vector by comparing the HD of the corresponding hashes (see Section 8.2.4).

However, the attack is not effective for the LSH transformation that we have utilized as we explain

here.

Each D-dimensional vector can be viewed as a point in the D-dimensional space. As
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the dimensionality increases, the volume of space grows exponentially. This phenomenon is

known as curse of dimensionality [KM11]. The distance of two randomly chosen points in a

high-dimensional space is much higher than that of a low-dimensional space. To Illustrate this

phenomenon in practice, we randomly choose a point p in the 190-dimensional space (the same

dimensionality as the Speed-Dating dataset). After that, 107 random points have been created and

the mutual Cosine similarities between each one of these and p have been computed. Figure 8.11

shows the statistical distribution of mutual similarities. We have repeated the experiment for

10 different random choices of p. Based on experimental results on 107 different points, the

values for similarities range from -0.37 to 0.38 and not even one point has a similarity higher

than 0.4. Please note that the attacker needs to obtain the mutual similarity of 0.9 or higher (see

Section 8.2.5) to successfully estimate the true vector corresponding to a given hash. However, as

is illustrated in Figure 8.11, an attacker simply cannot find the starting vectors and as a result, the

attack is not effective.
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Figure 8.11: Histogram of pairwise similarities between p and 107 randomly selected points in
190-dimensional space.

8.4 Related Work

To the best of our knowledge, there has been no attempt to secure the search operation

in content addressable memories. Here, we briefly describe previous solutions to secure near-

neighbor search problem that use the convectional Von Neumann processing architecture. All
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of these methods require a processing unit at the server side and incur high computation and

communication while CAMsure can process the query in real time. We categorize previous works

into three main groups:

Differential Privacy (DP): This line of research provides certain privacy guarantees by

adding specific kind of noise to the data that is stored on the server. The noise is added such that

the statistical properties (e.g. average, variance, etc.) of the whole database are preserved while

individual words are altered [Dwo08]. This privacy enhancing approach is useful in scenarios

where the clients are interested in statistical properties of the database not the individual records

within the database. In addition, the security model of DP is different; the assumption is that

the server which holds all users’ data is trusted and an attacker only has the ability to query

the database and infer as much information as possible based on the results that he receives. In

contrast, our assumption is that the server is not trusted. Therefore, CAMsure provides stronger

security and privacy guarantees.

Property-Preserving Encryptions: As we discussed in Section 8.1, secure NNS solu-

tions based on Order-Preserving Encryption (OPE) [BCLO09], Deterministic Encryption (DTE),

and Asymmetric Scalar-Product-preserving Encryption (ASPE) [WCKM09] are proven to be in-

secure by [NKW15] and [YLX13], respectively. While Order Revealing Encryption (ORE), Inner

Product Encryption (IPE), and Hidden Vector Encryption (HVE) are appropriate candidates for

securing conventional RAM-based databases, they are not compatible with the CAM architecture.

Another line of research is based on the searchable encryption [PKV+14]. However, this type of

solutions can only answer exact query matches and not the near neighbors.

Noise-Addition Techniques: Another idea is to add noise to the query before sending it

to the server in order to protect the privacy of data owners [MMSK18, MML+19, GMGM13].

Authors in [BR11] have looked into the possibility of such idea. They observe that adding noise

introduces a privacy/utility trade-off. In other words, if the user adds stronger noise, an attacker

will infer less information about the original data but as a consequence, the precision of search
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is sacrificed. This approach has very limited practical usage as a reasonable privacy guarantee

results in a very poor precision for the near-neighbor search and sabotages one of the main goals

which is the search quality. In contrast, we have shown in Section 8.3.4 that our approach delivers

high precision/recall for secure approximate search.

Secure Function Evaluation (SFE) protocols: SFE protocols allow two or multiple

parties to evaluate any function on their private inputs. There are two possible ways to deploy

SFE protocols for secure search: (i) the server possess the entire database in plaintext and acts as

the first party and the user who wants to query the database acts as the second party [RSK17b,

RDGK16a, HRK18]. In this scenario, the server and the user engage in a secure two-party

computation where the database and the user’s query remain private. However, it is assumed that

the server already knows all the data in plaintext which is in contrast to our security model. (ii)

All of the data is not centralized and it is kept by the data owners only. To process each query, all

parties need to engage in a secure multiparty computation. In this case, the privacy of all data

owners is guaranteed but it is necessary for all data owners to be online and have a peer-to-peer

pre-established communication channel which is not a realistic assumption.

SFE protocols preserve the privacy of engaging parties completely and they do not leak any

information about the inputs. Unfortunately, all of these protocols require massive computation

time, communication bandwidth, and several rounds of communication between the engaging

parties. The aforementioned drawbacks make SFE protocols to have very limited practical usage.

Recently, authors of [SHSK15] have proposed to deploy Yao’s Garbled Circuits protocol

(one of the most efficient SFE protocols) for the privacy-preserving k-nearest neighbors problem.

They consider the two-party computation model (scenario i). They report 2.54 GB communication

between two parties and the execution time of 6.7s for 1 Gbps communication bandwidth when

the database contains 128,000 records. CAMsure only requires the user to locally compute the

hash of her data (negligible time) and send this data to the cloud server (transmitting less than a

KB of data) while the query can be answered in one clock cycle on the server.
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8.5 Summary

This chapter proposed CAMsure, the first realization of secure content addressable mem-

ory in the context of approximate near-neighbor search. CAMsure utilizes state-of-the-art hashing

methods to translate the near-neighbor search algorithm to approximate table lookup. Our com-

prehensive security analysis shows that CAMsure preserves the confidentiality of data even when

the memory is compromised by a malicious party. The proposed methodology is compatible with

emerging CAM technologies. The security of content addressable memory is critically important

since CAMs are tightly coupled with the main processing units for in-memory computing, aiming

to enhance the efficiency of modern computers. Our analysis shows that CAMsure can improve

the runtime of RAM-based implementations by up to two orders of magnitude while providing

data security. Expansion of the proposed method for applications other than near-neighbor search

is another direction to follow in future.
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Chapter 9

SynFi: Synthetic Human Fingerprints

Authentication and identification methods based on human fingerprints are ubiquitous in

several systems ranging from government organizations to consumer products. The performance

and reliability of such systems directly rely on the volume of data on which they have been

verified. Unfortunately, a large volume of fingerprint databases is not publicly available due to

many privacy and security concerns.

In this chapter, we introduce a new approach to automatically generate high-fidelity

synthetic fingerprints at scale. Our approach relies on (i) Generative Adversarial Networks to

estimate the probability distribution of human fingerprints and (ii) Super-Resolution methods to

synthesize fine-grained textures. We rigorously test our system and show that our methodology is

the first to generate fingerprints that are computationally indistinguishable from real ones, a task

that prior art could not accomplish.

9.1 Introduction

Evaluating the performance and reliability of identification and verification fingerprint-

based systems requires access to a large fingerprint database. However, in practice, obtaining a

massive corpus of fingerprint images incurs a high cost. In many cases, the research groups that
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are developing fingerprint-based authentication systems, do not have access to a large publicly-

available database. The performance of these systems is directly dependent on the quality and

quantity of the available data.

In addition to the above obstacles, gathering fingerprint impressions of a large population

of people raises severe privacy and security concerns. In case of a breach, the fingerprint of many

users will be directly exposed to attackers and can be used to fool any other authentication systems

that accept fingerprints. To this end, we study the task of generating synthetic fingerprints which

can solve the challenges mentioned above. Synthetic fingerprints solve the availability concern as

they can be generated for virtually any number of samples. Moreover, synthetic fingerprints are

artificially generated; hence, they do not leak any information about real identities.

Synthetic fingerprints also play essential roles in other tasks as well. For example, they

can be used to analyze the robustness of a verification system against Trojan attacks [MMJP09].

To perform this analysis, a large number of fingerprints are needed where their fine-grained

features can be varied while fixing other characteristics such as image orientation.

Fingerprints can be categorized based on their global structure and curvatures. Some of

these categories are drastically rarer, and their synthetic counterparts can be used to compensate

for the imbalance. One can generate a specific type of fingerprints that are rarer in the real-

world. Moreover, the security of several biometric storage mechanisms that protect fingerprints

in case of a breach relies on the assumption that the size of a database is bigger than a specific

threshold [CRC+19]. In these scenarios, synthetic fingerprints can be used as a means to populate

small databases.

Prior synthetic fingerprint generation solutions were able to either create synthetic tem-

plates of fingerprint’s micro-features or synthetic image of actual fingerprints but at a low

resolution. Solutions based on mathematical models of fingerprints suffer from lack of entropy

and generalization to accurate probability distribution of real fingerprints [CMM04]. Prior solu-

tions based on Deep Learning (DL) models also cannot produce high-quality images due to the

197



small volume of the available real fingerprints to train these models [BRT+18].

In this chapter, we present SynFi, a new comprehensive framework to automatically

generate high-quality synthetic fingerprints at scale. Our solution formulates the process of

generating synthetic fingerprints as two parallel deep learning tasks based on Generative Adver-

sarial Network (GAN) and Super-Resolution (SR) paradigm. In particular, SynFi formalizes and

satisfies the following design goals to meet real-world expectations: (i) the generated samples

should preserve the minutiae characteristics of fingerprints used for authentication systems, e.g.,

ridge structure, bifurcations, and ridge endings. (ii) An ideal system should be able to generate

full-finger impressions as opposed to partial fingerprints. (iii) Synthetic fingerprints should be

computationally indistinguishable from real impressions to be used as a means to extend the

security of biometric storage systems. (iv) The system should be fully automated, requiring no

manual feature engineering to have high scalability. As we show in the rest of this chapter, SynFi

satisfies all of the above requirements.

Contributions. Our concrete contributions are as follows.

• We propose a new framework to generate robust full-finger synthetic fingerprints. We ex-

plore several deep learning-based solutions to generate high-quality samples. We formulate

this task based on generative adversarial network and super-resolution methodologies.

• We perform qualitative as well as quantitative analysis on distinguishability of synthetic

fingerprints from real ones using six different machine learning models.

• We provide the proof-of-concept implementation of our proposed methodology in Pytorch.

We open-sourced our framework to facilitate progress, improvements, and verification

process of fingerprint-based systems.
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9.2 Prior Art

The prior work on generating synthetic fingerprints can be categorized into two broad

groups. The first group is based on formulating mathematical models to generate artificial

fingerprints. The second group leverages various classes of deep learning models. Generally

speaking, the first group involves more feature engineering and manual tuning, whereas the

second group inherits a more automated nature of feature extraction of the DL models.

Mathematical Models. One of the systems based on mathematical models is called

SFinGe [CMM04]. In this system, generating a synthetic fingerprint involves four main phases:

(i) a fingerprint shape is randomly generated via specific geometric models, (ii) a directional map

is produced, (iii) a density map is created, and (iv) the first three maps are combined to generate a

fingerprint pattern using a ridge-flow model. Finally, noise is added to make the generated image

more realistic.

Unfortunately, solutions based on the mathematical models suffer from the low level of

entropy due to the rigorous structure of the generation process. In contrast, SynFi generates each

fingerprint starting from a completely random noise.

Deep Learning Models. Deep learning has demonstrated a breakthrough in several

applications and domains. There are several categories of DL models. Two of which that are

explored for the task of synthetic fingerprint generation are (i) Fully Visible Belief Networks

(FVBN) such as PixelRNN [OKK16] that can produce one pixel at a time. Similar to Recurrent

Neural Networks (RNN) that generate text, FVBNs can be used to create pixels of a fingerprint

image. One drawback of these networks is that the final output can often be noisy. (ii) The second

group is based on Variational Autoencoders (VAE). Compared to FVBN, VAE usually produces

smoother images. Another line of work focuses on MasterPrints, which are real or synthetic

fingerprint templates at feature-level [RMTR18] that can fool fingerprint-based authentication

systems and authenticate the attacker as a legitimate user. The idea was later generalized to
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DeepMasterPrints, which are synthetic fingerprints at image-level [BRT+18].

However, state-of-the-art DL-based methods can only generate low-quality partial fin-

gerprints [EMB17, EB18, JEB18]. In contrast, as we compare in Section 9.4, SynFi generates

full-finger fingerprints with significantly higher resolution due to a novel DL formulation.

9.3 Methodology

The main challenge in producing high-quality synthetic fingerprints is estimating the

probability distribution of real fingerprints. Given the probability distribution, one can sample

from this distribution to generate new fingerprints. However, obtaining such distribution is a very

non-trivial task.

In SynFi, we rely on GANs to estimate the probability distribution of real fingerprints.

Unfortunately, due to the small volume of the publicly available datasets, the GAN model cannot

generalize well and produce realistic-looking samples. The prior art explores this approach. We

also validate this idea and show that the generated samples by this approach are not acceptable

(see Figure 9.1). As can be seen, these samples have deficient quality. They can easily be

distinguished even without relying on sophisticated Machine Learning (ML) models. Therefore,

in SynFi, we capture the problem of generating synthetic fingerprints as a two-phase process.

In the first phase, we rely on a GAN model to estimate the probability distribution of real

fingerprints and create a low-quality image out of a randomly generated vector representing the

latent variable. In the second phase, we train and use a Super-Resolution (SR) model to transform

the low-quality image into a realistic, high-quality sample. In this phase, the details and texture

of ridge endings and bifurcations within the fingerprints are embedded into the image.

In order to train both GAN and SR models, we need a dataset of real fingerprints. In

practice, however, these datasets comprise fingerprint images that are not centered and have

unnecessary auxiliary information around the fingerprint image. Therefore, we need to preprocess
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Figure 9.1: The result of generating 256×256 pixel images using GAN.

the dataset to enhance the quality of the images produced by both models. Figure 9.2 illustrates

the overall design of SynFi and the relationship between different components. In what follows,

we describe each of these components in more detail.

9.3.1 Pre-processing Phase: Fingerprint Segmentation

As can be seen in Figure 9.2, images in our dataset of real fingerprints contain some

artifacts such as codes and numbers in the image. Besides, fingerprints are not centered. NIST

biometric image software (NBIS) provides specific tools for processing fingerprint images. In

this phase, we have to detect the boundary of each fingerprint within each image, crop, and scale
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Figure 9.2: Overall design of SynFi for training (building the system) and execution (generating
synthetic samples).

them accordingly. We observe that after this process, which we call segmentation in this work,

the majority of the fingerprints have a resolution of 256×256 pixels. However, the GAN training

procedure relies on much lower resolution images. Therefore, we create a Low-Quality Database

(LQD) of 64×64 images, which can be used to train GAN. The SR model, on the other hand,

needs a High-Quality Database (HQD) of 256×256 images in addition to LQD.

9.3.2 Phase 1: Generating Synthetic Fingerprints using GAN

After creating LQD, we train a GAN to generate (low-quality) synthetic fingerprints out

of an input noise vector. There are dozen of different options for structures to use as our GAN

network, in terms of the number and size of the layers and also the optimization loss and method

used. However, due to the small volume of the real fingerprints that are publicly-available, there

are two main obstacles for the GAN model to converge: vanishing gradients and mode collapse.

In this work, we choose Wasserstein GAN (WGAN) [ACB17] due to the following

reasons. WGAN uses Earth-Mover distance as its loss function for comparing the target and real

distributions. Unlike the traditional Minimax loss function, the Earth-Mover distance is a true
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metric to measure distances in the space of probability distributions. This loss function helps

the stabilization of the training process of GANs and reduces the possibility of several problems,

including vanishing gradients and mode collapse.

The vanishing gradients problem arises because at the beginning of the training process,

fake samples are easily distinguishable from the real samples; thus, the gradients computed

during backpropagation are not helpful to tune the generative model. In WGAN, however, the

discriminator model outputs a number instead of a probability estimation. The discriminator’s

job is to maximize the difference between the output number of real and fake samples (and not

discriminate), thus, it is usually referred to as critic. This enables the gradients to be informative,

even at the beginning of the training process.

The mode collapse problem is due to the fact that the generator can converge to a state that

only produces a few plausible samples that can fool the discriminator. This problem is particularly

important for us because our system has to have high entropy: generating many samples that are

significantly different. Otherwise, SynFi cannot scale to generating millions or billions of unique

samples. Relying on WGAN helps us to avoid the mode collapse problem since the discriminator

can separately be trained to optimality and quickly detect fake samples, forcing the generator to

search for new samples.

Even after incorporating the above optimizations and testing various configurations and

different parameters, we observe that the trained GAN model is not capable of generating

fingerprints with high quality for image sizes larger than 64×64 pixels. For instance, Figure 9.1

shows the output of GAN for 256×256 pixel samples. In order to produce high-quality images

similar to publicly available datasets (256×256 pixel images), we need a second phase which we

describe next.
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9.3.3 Phase 2: Generalization to High-Quality Images

In the second phase of SynFi, the low-quality image is transformed into a high-resolution

image with a more detailed texture. Improving the resolution and quality of images is one

of the challenging and interesting problems in the Computer Vision community. Traditional

super-resolution mechanisms improve the quality of the input image using many but lower-quality

images. However, in our case, the low-quality image is generated from an initial noise, and we

cannot produce multiple low-quality images of the same concept finger in Phase 1. Therefore,

we have to explore single-image super-resolution solutions that take as input only a single

low-resolution image and produce a higher-quality image. Single-image super-resolution is a

significantly more challenging task. Fortunately, GANs help in this regard too. Recent advances

in this area include but are not limited to [LTH+17, WYDL18, WYW+18].

After exploring several solutions in this area, we choose ESRGAN architecture with

Residual-in-Residual Dense Blocks (RRDB). Details of our chosen architecture is provided in

Figure 9.2 and Section 9.4. At a high-level, the architecture consists of a series of RRDBs

surrounded by convolutional (Conv) layers. There exist upsampling layers after RRDBs and

before the convolution layers. In contrast to Phase 1, we remove Batch Normalization (BN)

layers, which is shown to enhance the quality of the produced images [LSK+17]. Adding

BN layers increases the possibility of artifacts being added to the image. Relying on RRDB

basic block enabled us to incorporate a higher number of hidden layers. We also leverage

residual scaling [WYW+18]: residuals (the output of basic blocks) is scaled down by a constant

(0 < β 6 1) before being added to the main path. Additionally, we initialize the weights with

small-variance random numbers to improve convergence.

In our SR model, the discriminator differs from Phase 1 in which it is a Relativistic

average Discriminator (RaD) [JM18]. In Phase 1, the discriminator estimates the probability

that a sample is real. In Phase 2, the discriminator estimates the probability that a real image is
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(relatively) more realistic than a fake one. More precisely, RaD is formulated as:

D(xr,x f ) = σ(C(xr))−Ex f [C(x f )]

where D(,) is the output of discriminator, xr is the real sample, x f is the fake sample, C(.) is the

non-transformed discriminator output, σ(.) is the Sigmoid function, and Ex f [.] represents taking

an average over all fake samples in the batch. The discriminator’s and generator’s loss are:

LD =−Exr [log(D(xr,x f ))]−Ex f [log(1−D(x f ,xr))]

LG =−Exr [log(1−D(xr,x f ))]−Ex f [log(D(x f ,xr))]

After training the SR model using the above loss functions, the model is used to generate the final

synthetic fingerprints, as depicted in Figure 9.2. The hyperparameters of the training process are

described in Section 9.4.

9.4 Experimental Results

In this section, we first provide the details of our Computational setup, our dataset of real

fingerprints, the training procedure, followed by comparison with the prior art. In the end, we

provide extensive analysis of the indistinguishability of the SynFi’s synthetic fingerprints from

real ones.

9.4.1 Computational Environment

The experimental setup in which we train different components of SynFi as well as

synthetic fingerprint generation phases is a server equipped with 128 GB of memory, two Intel

Xeon E7 CPUs (12 core each), and four Nvidia Titan Xp GPUs (each with 12 GB of memory).
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We develop the DL components in Pytorch1.
R

eal Fingerprints
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Figure 9.3: Quality comparison between real and synthetic fingerprint samples. Top row: NIST
dataset real fingerprint samples. Middle row: Synthetic fingerprints generated by DeepMaster-
Print [BRT+18]. Bottom row: Synthetic fingerprints generated by SynFi (this work).

Dataset. Our dataset of real fingerprints is the one provided by National Institute of

Standards and Technology (NIST) in 2009, named Special Dataset (SD09)2. We have used

this dataset to train both major components of SynFi: generative adversarial network and our

super-resolution model. The NIST-SD09 dataset consists of 2700 subjects with all 10 fingerprint

images. There are two impressions of each finger, resulting in 54000 fingerprint images overall.

The data format is 8-bit gray-scale png images. There are additional metadata associated with

each fingerprint, including the subject gender and the NCIC class [Kom05]: arch (A), left-loop

(L), right-loop (R), tented-arch (T), whorl (W), and scar or mutilation (S). Most of the fingerprints

belong to W, L, or R classes.

1Starting from the publicly available implementations at
https://github.com/xinntao/BasicSR and
https://github.com/martinarjovsky/WassersteinGAN

2https://www.nist.gov/srd/nist-special-database-9
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9.4.2 Pre-processing Dataset

We use the nfseq tool provided by the NIST Biometric Image Software (NBIS) package

to pre-process the real fingerprint dataset. As illustrated in Figure 9.2, this tool enables us to detect

the precise boundary of the fingerprint and remove the unnecessary parts around the fingerprint

itself. This step is crucial to enhance the quality of the images that are produced in both Phase 1

and Phase 2.

9.4.3 Architectures

The generator and critic components of Phase 1 have similar architecture but in a reversed

order. The generator starts with a noise vector of size 100. Then the vector goes through a series

of fractionally-strided convolutions in which the number of channels is reduced while the image

size is increased, both by a factor of two. In the critic model, the intermediate layers are regular

convolution layers.

The SR model has a more complex architecture. In the beginning, there is a convolutional

layer followed by a series of 23 basic blocks. In the end, there are two upsampling and two

convolution layers. Each basic block consists of three residual sub-blocks where each sub-block

has five convolutional layers. The convolutional layers have 64 channels with a kernel size of 3.

The activation function in RRDB is a leaky ReLU with a slope of 0.2 in the negative part. The

output of the SR model is a 256×256 image with one channel (a gray-scale image).

9.4.4 Synthetic Samples and Qualitative Comparison

Figure 9.3 shows a set of samples of (i) real fingerprints in the NIST dataset, (ii) synthetic

fingerprints generated by DeepMasterPrints [BRT+18], state-of-the-art DL-based method, and

(iii) synthetic samples generated by our system. As can be seen from this figure, the output

of SynFi is significantly more realistic compared to the prior art. Moreover, our methodology
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can generate a full impression of fingerprints as opposed to the partial fingerprints generated

by DeepMasterPrints. The rightmost column shows a magnified view of the details of the

impressions, which shows the quality of the produced samples in SynFi. Next, we provide

extensive experimental results to quantitatively compare SynFi samples with real fingerprints.

9.4.5 Indistinguishability and Quantitative Comparison

As we briefly discussed before, one of the most important characteristics of synthetic

fingerprints is their indistinguishability from the real samples. Otherwise, not only synthetic sam-

ples cannot improve the quality and performance of authentication systems during development

time, but also they cannot improve the security of storage systems for fingerprints as they can

easily be distinguished and separated.

Figure 9.3 shows that the synthetic fingerprints generated by our system are visually very

similar to the baseline NIST dataset of real fingerprints. However, to quantify how distinguishable

synthetic fingerprints are from real ones, we perform the following analysis. We partition the

subjects in the NIST dataset into training and test samples with 2200 and 500 subjects, respectively.

Similarly, we create two disjoint sets of synthetic fingerprints, one for the training phase and one

for the test phase. In order to minimize the classifier’s bias, we put an equal number of real and

synthetic fingerprints in the test dataset.

We train six different machine learning models: a Logistic Regression (LR) model, a

Support Vector Machine (SVM) with linear kernel, a Random Forest with 10 estimators, and

three different Deep Neural Network (DNN) models with four, five, and eight layers. The training

process is formalized as a binary classification problem in which real fingerprints are labeled as

zero, and synthetic samples are labeled as one. After training the six ML models, we evaluate

them on an unseen test set consisting of real and synthetic samples.

The performance of these binary classifiers are reported in Table 9.1 using three standard

metrics: Accuracy (ACC) which reflects the percentage of correct answers by the classifier, False
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Positive Rate (FPR) which is defined as the ratio of wrongly classified samples as positive over

all negative samples (both truly negative and incorrectly classified samples as positive). The third

metric False Negative Rate (FNR) is the ratio of the number of samples falsely labeled as negative

over all positive samples (both true positives and misclassified samples as negative). During the

training process, these ML models were trained to learn the underlying pattern of fingerprints

and reached the training accuracy of up to 99.76%. However, when evaluating these models on a

set of unseen samples, the best performing classifier was the four-layer DNN with 100 and 20

neurons in the hidden layers and classification accuracy of 50.43%. In other words, the best

classifier could distinguish synthetic fingerprints from real ones only 0.43% better than a

random guess.

Table 9.1: Analyzing indistinguishability of synthetic fingerprints against the real ones using
various machine learning models.

Model Type Model Description ACC(%) FPR(%) FNR(%)

Logistic Regression L2 regularization 49.99 0.01 99.99
Linear SVM L2 regularization, C=1 50.01 0.06 99.91

Random Forest Using 10 estimators 49.47 13.08 87.96
4-Layer DNN Hidden Layers: 100, 20 50.43 19.78 79.35
5-Layer DNN Hidden Layers: 100, 50, 10 50.35 11.36 87.93

8-Layer DNN
Hidden Layers:
800, 400, 200, 100, 50, 20 49.85 23.25 77.03

One can also analyze the effectiveness of the classifiers using a Receiver Operating

Characteristic (ROC) curve. The ROC diagaram depicts True Positive Rate (TPR) against FPR.

TPR is defined as TPR = 1−FNR. Figure 9.4 shows the ROC curve of five ML models (ROC

curve is not well-defined for SVMs). Relying on a purely random guess results in the black

diagonal dashed line, which is the baseline for indistinguishability. Conceptually, ROC visualizes

the fact that the classifiers’ threshold for classifying an image as real or fake results in a trade-off

between FPR and FNR (or TPR). Choosing a very low threshold leads to marking many real

images as fake, hence, high FPR. Choosing a very high threshold results in outputting many fake
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images as real, thus, high FNR. However, as can be seen, regardless of the chosen value for the

threshold, none of the classifiers can perform reasonably better than a purely random guess.

Figure 9.4: The ROC curve of five different machine learning models in distinguishing real
fingerprints from synthetic ones generated by SynFi.

9.5 Summary

We present SynFi, an automated framework to generate large volume of high-quality

synthetic fingerprints. We formulate this task as two disjoint and parallel learning problems

to cope with the limited availability of real fingerprint samples. Our fingerprint generation

data flow involves two phases: one based on generative adversarial network and one based on

super-resolution methodologies. We perform extensive experiments and empirically show that

our synthetic fingerprints inherit fine-grained texture of real samples such as ridge endings and

bifurcations. Finally, we verify that the best performing machine learning model that we identified

could distinguish synthetic fingerprints from real ones only 0.43% better than a random guess,
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illustrating the effectiveness of SynFi to enhance the security of fingerprint storage systems.
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Chapter 10

Future Research Directions

Secure computation is a promising technology that enables mutually distrusting parties

to collaborate and creates a new platform for trust-free computations. This technology can, in

turn, influence many industries and create new markets for data monetization while preserving

the privacy of data owners. However, secure computation inherently has radically different

computational cost models compared to plaintext computations. Basic operations such as random

access or arithmetic operation have different computation costs in secure computation than

in traditional plaintext executions. Several well-known algorithms that provide efficient (or

even optimal) solutions for a given task do not necessarily keep their advantages in the secure

computation realm. As a result, a new set of algorithms are needed for a variety of security and

privacy-sensitive applications that are customized and designed for secure computation protocols.

In addition to algorithm-level research opportunities, different secure computation pro-

tocols and techniques can be customized and combined to yield more efficient computations.

In general and in an ideal scenario, for a given task, the algorithm and the protocol can be

co-designed to provide maximum efficiency at the cost of the longer design process. In the past

few years and as has been shown in this thesis, mixed-protocol solutions can be a promising

research direction for several tasks, including machine learning applications. Careful integration
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of distinct secure computation protocols allows one to benefit from unique characteristics of each

protocol.

Last but not least, new hardware platforms are increasingly needed to reduce the computa-

tional overhead of secure computation and bridge the gap between the plaintext executions and

secure counterparts. Current ubiquitous hardware platforms, including CPUs and GPUs, are not

explicitly designed for cryptographic operations and secure computation protocols. Thus, they are

not necessarily well-suited for such tasks. In contrast, new hardware architecture and computation

platforms can significantly increase the adoption of new secure computation technologies.
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Appendix A

Network Network Architectures in XONN

Table A.1- A.7 present the network architectures for MNIST and CIFAR1-10 datasets, re-

spectively. The notation of layer names is as follows: convolution→ CONV, batch normalization

→ BN, binary activation→ BA, max pooling→MP, and fully-connected→ FC.

Table A.1: Evaluated neural network architectures on MNIST dataset.
BM1

1 FC [input: 784, output: 128s] + BN + BA
2 FC [input: 128s, output: 128s] + BN + BA
3 FC [input: 128s, output: 10] + BN + Softmax

BM2
1 CONV [input: 28×28×1, window: 5×5, stride: 2, kernels: 5s,

output: 12×12×5s] + BN + BA
2 FC [input: 720s, output: 100s] + BN + BA
3 FC [input: 100s, output: 10] + BN + Softmax

BM3
1 CONV [input: 28×28×1, window: 5×5, stride: 1, kernels: 16s,

output: 24×24×16s] + BN + BA
2 MP [input: 24×24×16s, window: 2×2, output: 12×12×16s]
3 CONV [input: 12×12×16s, window: 5×5, stride: 1, kernels: 16s,

output: 8×8×16s] + BN + BA
4 MP [input: 8×8×16s, window: 2×2, output: 4×4×16s]
5 FC [input: 256s, output: 100s] + BN + BA
6 FC [input: 100s, output: 10] + BN + Softmax
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Table A.2: Evaluated neural network architectures for CIFAR-10 dataset.
BC1

1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 64s,
output: 30×30×64s] + BN + BA

2 CONV [input: 30×30×64s, window: 3×3, stride: 1, kernels: 64s,
output: 28×28×64s] + BN + BA

3 MP [input: 28×28×64s, window: 2×2, output: 14×14×64s]
4 CONV [input: 14×14×64s, window: 3×3, stride: 1, kernels: 64s,

output: 12×12×64s] + BN + BA
5 CONV [input: 12×12×64s, window: 3×3, stride: 1, kernels: 64s,

output: 10×10×64s] + BN + BA
6 MP [input: 10×10×64s, window: 2×2, output: 5×5×64s]
7 CONV [input: 5×5×64s, window: 3×3, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
8 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
9 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 16s,

output: 3×3×16s] + BN + BA
10 FC [input: 144s, output: 10] + BN + Softmax

BC2
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
3 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
4 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
5 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
7 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
8 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
9 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 48s,

output: 6×6×48s] + BN + BA
10 CONV [input: 6×6×48s, window: 3×3, stride: 1, kernels: 48s,

output: 4×4×48s] + BN + BA
11 CONV [input: 4×4×48s, window: 3×3, stride: 1, kernels: 64s,

output: 2×2×64s] + BN + BA
12 MP [input: 2×2×64s, window: 2×2, output: 1×1×64s]
13 FC [input: 64s, output: 10] + BN + Softmax
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Table A.3: Evaluated neural network architectures for CIFAR-10 dataset (BC3 and BC4 net-
works).

BC3
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
4 MP [input: 32×32×32s, window: 2×2, output: 16×16×32s]
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 48s,

output: 16×16×48s] + BN + BA
6 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 64s,

output: 16×16×64s] + BN + BA
7 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
9 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 96s,

output: 6×6×96s] + BN + BA
10 CONV [input: 6×6×96s, window: 3×3, stride: 1, kernels: 96s,

output: 4×4×96s] + BN + BA
11 CONV [input: 4×4×96s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
12 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
13 FC [input: 128s, output: 10] + BN + Softmax
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Table A.4: Evaluated neural network architectures for CIFAR-10 dataset (BC4 network).
BC4

1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,
output: 32×32×32s] + BN + BA

2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,
output: 32×32×48s] + BN + BA

3 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 64s,
output: 32×32×64s] + BN + BA

4 CONV [input: 32×32×64s, window: 3×3, stride: 1, kernels: 64s,
output: 32×32×64s] + BN + BA

5 MP [input: 32×32×64s, window: 2×2, output: 16×16×64s]
6 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
7 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
10 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
11 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
12 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
14 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
15 FC [input: 128s, output: 10] + BN + Softmax
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Table A.5: Evaluated neural network architectures for CIFAR-10 dataset (BC5 network).
BC5

1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,
output: 32×32×32s] + BN + BA

2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,
output: 32×32×32s] + BN + BA

3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,
output: 32×32×32s] + BN + BA

4 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,
output: 32×32×48s] + BN + BA

5 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 48s,
output: 32×32×48s] + BN + BA

6 MP [input: 32×32×48s, window: 2×2, output: 16×16×48s]
7 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
10 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
11 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
12 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
13 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
14 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
15 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
16 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
17 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
18 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
19 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
20 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
21 FC [input: 128s, output: 10] + BN + Softmax
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Table A.6: Evaluated neural network architectures for CIFAR-10 dataset (BC6 network).
BC6

1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,
output: 32×32×16s] + BN + BA

2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,
output: 32×32×16s] + BN + BA

3 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
4 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
7 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
8 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
9 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
10 MP [input: 8×8×64s, window: 2×2, output: 4×4×64s]
11 CONV [input: 4×4×64s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
12 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
14 MP [input: 4×4×128s, window: 2×2, output: 2×2×128s]
15 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
16 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
17 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
18 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
19 FC [input: 128s, output: 512s] + BN + BA
20 FC [input: 512s, output: 512s] + BN + BA
21 FC [input: 512s, output: 10] + BN + Softmax
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Table A.7: Evaluated neural network architectures for medical datasets.
BH1

1 FC [input: 30, output: 16] + BN + BA
2 FC [input: 16, output: 16] + BN + BA
3 FC [input: 16, output: 2] + BN + Softmax

BH2
1 FC [input: 8, output: 20] + BN + BA
2 FC [input: 20, output: 20] + BN + BA
3 FC [input: 20, output: 2] + BN + Softmax

BH3
1 FC [input: 10, output: 32] + BN + BA
2 FC [input: 32, output: 32] + BN + BA
3 FC [input: 32, output: 2] + BN + Softmax

BH4
1 CONV [input: 32×32×3, window: 5×5, stride: 1, kernels: 36,

output: 28×28×36] + BN + BA
2 MP [input: 28×28×36, window: 2×2, output: 14×14×36]
3 CONV [input: 14×14×36, window: 5×5, stride: 1, kernels: 36,

output: 10×10×36] + BN + BA
4 MP [input: 10×10×36, window: 2×2, output: 5×5×36]
5 FC [input: 900, output: 72] + BN + BA
6 FC [input: 72, output: 2] + BN + Softmax
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