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Abstract

Multiphysics inversion exploits different types of geophysical data that often complement each other 

and aims to improve overall imaging resolution and reduce uncertainties in geophysical interpretation. 

Despite the advantages, traditional multiphysics inversion is challenging because it requires a large 

amount of computational time and intensive human interactions for preprocessing data and finding trade-

off parameters. These issues make it nearly impossible for traditional multiphysics inversion to be applied

as a real-time monitoring tool for geological carbon storage. In this paper, we present a deep-learning 

(DL) multiphysics network for imaging CO2 saturation in real time. The multiphysics network consists of 

three encoders for analyzing seismic, electromagnetic, and gravity data, and shares one decoder for 

combining imaging capabilities of the different geophysical data for better predicting CO2 saturation. The 

network is trained on pairs of CO2 label models and multiphysics data so that it can directly image CO2 

saturation. We use the bootstrap aggregating method to enhance the imaging accuracy and estimate 

uncertainties associated with CO2 saturation images. Using realistic CO2 label models and multiphysics 

data derived from the Kimberlina CO2 storage model, we evaluate the performance of the DL 

multiphysics network and compare their imaging results to those from the DL single-physics networks. 

Our modeling experiments show that the DL multiphysics network for seismic, electromagnetic, and 

gravity data not only improves the imaging accuracy but also reduces uncertainties associated with CO2 

saturation images. Our results also suggest that the DL multiphysics network for the non-seismic data 

(i.e., electromagnetic and gravity) can be used as an effective low-cost monitoring tool in between regular

seismic monitoring.

Keywords: Full waveform, Electromagnetics, Gravity, Inversion and Monitoring 
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Introduction

Geological carbon storage (GCS) is a viable option for reducing CO2 emission into the atmosphere 

(Metz et al., 2005; Benson and Cole, 2008; Davis et al., 2019; Ringrose, 2020). A large amount of CO2 is 

captured from fossil-fuel power stations and other major industrial CO2 sources and is injected into 

depleted reservoirs or saline aquifers. The injection of CO2 into a reservoir changes geomechanical, 

geochemical, hydrological states inside and around the reservoir and can threaten the seal integrity of 

GCS (e.g., Rutqvist, 2012; Zoback and Gorelick, 2012; Jenkins et al., 2015; Harbert et al., 2016). For safe

and efficient GCS operations, it is important to accurately track the movement of CO2 plumes inside and 

detect CO2 leak from a reservoir in real time. 

Geophysical methods provide the possibility of cost-effective long-term monitoring for GCS. Various 

types of geophysical data are often acquired and interpreted together as they are sensitive to different 

geophysical properties, and the methods also exhibit different scales of resolving power. For example, the 

seismic method can provide high-resolution subsurface images and is highly sensitive to changes in CO2 

saturations when the saturation is relatively low (Vasco et al., 2014). Thus, seismic imaging serves as a 

great tool for delineating the boundaries of CO2 plumes in detail (e.g., Lazaratos and Marion, 1997; Arts 

et al., 2003; Chadwick et al., 2010; Ajo-Franklin et al., 2013; Queißer and Singh, 2013; Li et al., 2021). In

contrast, electromagnetic measurements are sensitive to changes in saturation at relatively higher 

concentrations of CO2 (Gasperikova and Hoversten, 2006). Therefore, the electromagnetic method is 

better suited to characterizing higher concentration portions of CO2 plumes as well as recovering higher 

saturation values. Gravity data are sensitive to the full range of CO2 saturation and can also be used for 

estimating the overall distribution of density changes caused by CO2 injection (e.g., Eiken et al., 2008; 

Alnes et al., 2011; Gasperikova and Li, 2021; Yang et al., 2022). By using several geophysical data types 

together, a multiphysics inversion approach aims to improve the overall resolution of GCS imaging and 

decreases uncertainties in geophysical interpretation.     
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Traditional multiphysics inversion is not trivial and tends to be quite challenging from multiple 

standpoints. First and foremost, multiphysics inversion needs a significant amount of computer resources 

and time to repeatedly complete the forward modelling that is required for each of the geophysical data 

types (Commer and Newman, 2008; Shin and Cha, 2009; Virieux and Operto, 2009; Fichtner, 2010; Um 

et al., 2014). Multiphysics inversion can also be highly non-linear, and thus its success often relies on 

multiple trial and error as the nonlinearity can lead the inversion algorithm to get ‘stuck’ at local minima. 

Finding proper data weighting and trade-off parameters inside a multiphysics objective function also 

heavily relies on intensive human interactions. Even without these aspects of computational complexity 

and non-linearity related difficulties, the reservoir properties we are interested in for monitoring in a GCS 

project (e.g., CO2 saturation) are empirically rather than theoretically related to the geophysical properties

that the measurements are sensing. Thus, the conversion from one to the other tends to pose additional 

levels of uncertainty to the problem. Because of these issues, traditional multiphysics inversion is nearly 

impossible to be applied as a real-time monitoring tool for GCS.  

Recently, deep learning (DL) imaging has drawn attention in computational geophysics as it overcomes

some of the main drawbacks that traditional inversion exhibits (Araya-Polo et al., 2018; Yang and Ma, 

2019; Wu and Lin, 2019; Zhang and Alkhalifah, 2019; Puzyrev, 2019; Colombo et al., 2020; Zhang and 

Lin, 2020, Kaur et al., 2021; Li and Yang, 2021; Um et al., 2022; Yang et al., 2022). A deep neural 

network is trained such that it can learn complex non-linear correlations between earth models and 

corresponding geophysical data. Therefore, once fully trained, the network can instantaneously predict an 

earth model from newly acquired geophysical monitoring data. The prediction can be completed in real or

near-real time. 

Nonetheless, using DL imaging does not remove the computational challenges of the multiphysics CO2 

monitoring problem. For example, in order to generate a realistic set of DL training models and data, one 

needs to simulate a number of CO2 flow models and their geophysical counterparts by solving their 
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governing partial differential equations (Zeng et al., 2021; Um et al., 2022). The flow simulation cost may

be reduced by simply inserting many different shapes of CO2 bodies into a background model (Puzyrev, 

2019; Yang et al., 2022). In either case, a large number of geophysical forward modeling tasks should be 

completed. However, the flow models and associated synthetic geophysical data required for training the 

neural network can be generated prior to the geophysical monitoring data being acquired. This opens a 

possibility that DL multiphysics imaging can monitor GCS processes in near-real time with little human 

interaction and bias.  

Based on the successful numerical modeling studies of DL imaging on single geophysical data as listed 

above, it is natural to extend DL from single to multiphysics data. In recent years, DL multiphysics 

imaging has been applied to onshore and offshore geophysics problems. For example, Oh et al. (2020) 

demonstrate a cooperative DL imaging network for marine controlled-source electromagnetic data and 

seismic information (i.e., seismic salt-top boundaries) for enhancing salt delineation. Sun et al. (2020) 

proposes a set of deep neural network architectures for marine seismic and electromagnetic data for salt 

reconstruction. Hu et al. (2021) present a DL enhanced joint imaging framework for crosswell seismic 

and DC resistivity data. Guo et al. (2020) use deep residual convolutional neural networks to assist 

multiphysics inversion of seismic and magnetotelluric data and demonstrate that the DL-assisted 

multiphysics inversion can predict an earth model with lower data misfit than single-physics inversions. 

In this paper, we present DL multiphysics networks for imaging CO2 plumes and estimating image 

uncertainty. The network architectures are designed to exploit seismic, electromagnetic, and gravity data 

separately as well as together. To directly image CO2 saturation rather than geophysical proxy properties 

(e.g., P wave velocity, electrical resistivity, or density), the network is trained on pairs of CO2 saturation 

label models and associated geophysical monitoring data (Um et al., 2022). The CO2 saturation label 

models are generated by simulating CO2 injection and flow over a 3D CO2 storage model that was 

constructed based on real geologic and hydrogeologic data. The training multiphysics data are generated 
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by solving various governing partial differential equations with geophysical earth models derived from 

rock-physics conversion of the CO2 flow models. We utilize the imaging networks in an ensemble 

learning framework for further improving overall CO2 imaging accuracy and estimating uncertainties 

associated with CO2 images. In order to evaluate the performance of the DL multiphysics networks for 

CO2 monitoring, we perform both DL single-physics and multiphysics imaging and systematically 

compare imaging results and uncertainty estimates.  

Deep-Learning Multiphysics Imaging Network

Figure 1 shows a DL multiphysics imaging network architecture that we have assembled for estimating 

CO2 saturation. This neural network can be considered a modified version of the U-Net (Ronneberger et 

al., 2015) that was originally developed for medical imaging segmentation. While the original U-Net has 

one encoder and one decoder, our multiphysics network consists of three encoders and one decoder. Each 

encoder takes one type of geophysical data and repeatedly applies convolution operation, batch 

normalization, rectified linear activation and max-pooling operations. The convolution operation has 

multiple convolution filters and produces feature maps that highlight regions of the input layer that 

resembles each filter. Using the convolution operations, the network analyzes spatial hierarchies of data. 

The batch normalization subtracts the mean from the data and divides it by its standard deviation. This 

operation helps the gradient propagate effectively through the deep neural network. We use rectified 

linear activation (ReLU), which allows a better gradient propagation. Dropout layers randomly set some 

input values to zero, preventing the network from overfitting the training data. The max pooling operation

down-samples the feature maps by taking the maximum input value in each kernel and reduces large 

feature maps to smaller summary maps. Note that we do not implement any low-pass filter before the max

pooling operation because a network like the U-Net using multiple convolution layers is known to learn 

an anti-aliasing filter (Ribeiro and Schon, 2021). Each decoder repeats the series of the operations 
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described above four times. In order to constrain an output CO2 saturation between 0 and 1, a sigmoid 

activation function is used in the final layer.

The three encoders share one decoder such that the network can combine imaging capabilities of three 

different types of geophysical data for better predicting CO2 saturation. To share the common decoder, the

outputs from the three different encoders are concatenated before they are fed into the next convolution 

layer. Similar to the encoders, the decoder consists of four repetitions. Inverse convolution is followed by 

the convolution, the batch normalization and the activation operation. To improve information flow 

through the deep neural network architecture, the decoder concatenates its feature maps with those from 

the encoders. For details on the operations mentioned above, the reader is referred to Goodfellow et al. 

(2016), Chollet (2017), and James et al. (2021). 

As a default, the DL multiphysics network is designed to support three different types of input data (i.e.,

seismic, electromagnetic and gravity data) but can easily incorporate different available types of data. For 

example, when only one type of geophysical data is available, the encoder for that type of data is built but

the other two encoders are not. In this case (Figure 2), the DL network reduces to the classic U-Net 

architecture (Ronneberger et al., 2015) and can be used as a DL single-physics network for imaging CO2 

saturation (Um et al., 2022). The details about their implementation will be described later.  

To improve the overall accuracy of CO2 images, we use the DL multiphysics network in an ensemble 

learning framework called the bootstrap aggregating or bagging method (Friedman et al., 2006; James et 

al., 2021). The bagging method uses bootstrapping as a sampling method and create many unique ‘sub-

data sets’ out of the original multiphysics data sets. Then, the method independently trains a number of 

DL networks using the bootstrapped training data sets. Although the bagging method requires large 

computational cost for training many networks, all training tasks are independent from each other. Thus, 

multiple networks can be trained simultaneously on a modern graphic processing unit (GPU) cluster. For 
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imaging CO2, all networks make a prediction. The bagging method calculates an average value and 

standard deviation of CO2 saturation within each cell in the imaging domain. By using the average of all 

predictions, the bagging method can yield more accurate estimates than a single strong predictor, reduce 

variance in noisy data and mitigate the chance of overfitting. The standard deviation also provides a 

measure of the uncertainty associated with the DL multiphysics network. In this work, we use both DL 

single- and multi-physics imaging networks and systematically compare their results in terms of accuracy 

and uncertainty. 

CO2 Models and Multiphysics Data 

Traditional inversion repeatedly solves geophysical governing equations (e.g., seismic wave equation, 

electromagnetic diffusion equations and gravity potential equation) and updates a geophysical earth model

such that the differences between measured and predicted geophysical data can be reduced during the 

inversion. Accordingly, the governing physics is directly embedded into the inversion. In contrast, the DL

imaging networks (Figures 1 and 2) do not involve solving the geophysical governing equations. To 

embed the governing physics into the DL multiphysics networks, we generate CO2 label models and their 

associated geophysical data using 3D flow and 2D and 3D geophysical forward modeling algorithms 

along with rock-physics relationships to convert reservoir properties to geophysical models. Then, the 

multiphysics imaging networks are trained on these models and data to learn the governing physics. 

 To train and evaluate our imaging networks for CO2 monitoring, we generate a set of seismic, 

electromagnetic and gravity modeling data for the Kimberlina 1.2 CO2 storage and flow model (Zhou and 

Birkholzer, 2011, Wainwright et al., 2013). The Kimberlina model was developed for understanding a 

commercial-scale CO2 storage candidate site in the Southern San Joaquin Basin of California, 30 km 

northwest of Bakersfield, CA, USA. For realistic evaluation of various geophysical techniques for 

monitoring CO2 plumes, the Kimberlina model was created based on geological and hydrological data 

acquired from a number of wells in the region. CO2 injection and flow are simulated using TOUGH2 
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(Pruess, 1999), a modeling software for nonisothermal flows of multicomponent, multiphase fluids in 

porous and fractured media. 

The Kimberlina 1.2 model consists of 300 different CO2 injection and flow realizations. Each realization

is based on a unique set of reservoir and flow modeling parameters created stochastically. For detailed 

description about the 3D Kimberlina 1.2 model, the reader is referred to Mansoor et al. (2018). In this 

study, we choose a single case from them. The single 3D realization consists of 35 snapshots of 3D 

simulated hydrological properties from 0 to 200 years. CO2 is injected into a sandstone reservoir at 2750m

in depth. The 3D simulation starts with CO2 injection at a constant rate of 5 million tons per year for the 

first 50 years and covers a post-injection period of the remaining 150 years. Note that in the first 100 

years, the 3D snapshots are taken at fine time intervals (Year 0, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, 

60, 65, 70, 75, 80, 85, 90, 95, 100) because CO2 plumes are rapidly formed and move. After the first 100 

years, the CO2 plumes move slowly. Thus, the snapshot interval gradually increases (i.e., 110, 120, 130, 

140, 150, 175, 200 years). The first column of Figure 3 shows cross-sectional views of CO2 saturation 

models at selected time intervals.

There are three layers of CO2 that represent the three different high porosity zones inside the reservoir. 

The hydrogeological and reservoir properties (e.g., dissolved solids, temperature, formation porosity, fluid

saturation, bulk modulus, shear modulus, density and others) that the Kimberlina model includes are 

converted to seismic velocity, resistivity and density models using a conversion workflow described in 

Wang et al. (2018), Yang et al. (2019) and Alumbaugh et al. (2021). Figure 3 shows P-wave velocity, 

electrical resistivity, and density difference models at selected time intervals. For more details on the 

conversion steps involved in generating the geophysical models, the reader is referred to the references 

mentioned above.  

Here, we briefly describe the numerical simulation of multiphysics data over the Kimberlina 

geophysical models. The synthetic surface seismic data are generated by solving the acoustic wave 
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equation (Alford et al., 1974; Moczo et al., 2007). To make the computational cost tractable, we slice a 

3D Kimberlina velocity model at intervals of 100m and create 53 2D velocity models (Figure 4a). As a 

result, the 35 3D Kimberlina velocity models produce 1855 (=53 2D velocity models × 35 snapshots) 2D 

velocity models. Each 2D model has six pointwise surface pressure sources at an interval of 1 km (i.e., 

y=0, 1, 2, 3, 4, 5 km, and z=0 km). We use a Ricker wavelet with a peak frequency of 25 Hz as a source 

waveform. Seismic full waveform data are sampled using 601 surface geophones ranging from y=-2 km 

to 4 km at an interval of 10 m. The data that share a common source are gathered together (i.e., a common

shot gather) and used as an input for the DL imaging network. 

For electromagnetic (EM) monitoring of CO2 plumes, we utilize a borehole-to-surface EM 

configuration where a vertical electric dipole source is placed near the injection depth below the two 

observation wells (Figure 4b) and operate at a frequency range from 0.1 to 8 Hz (i.e., 0.1, 0.3, 0.6, 0.8, 

1.0, 3.0, 6.0, and 8.0 Hz) and the electric fields are measured on the surface. Note we have chosen to 

simulate this borehole-to-surface EM data acquisition configuration as it was noted by Gasperikova et al. 

(2022) to provide high sensitivity to injected CO2 at depth. For simplicity, the effects of steel-cased 

injection and observation wells on EM measurements are ignored here. Note that diffusive EM modeling 

is computationally lighter than seismic wave modeling because EM modeling meshes can be coarser than 

in the seismic case. Here we use a 3D finite-difference EM diffusion algorithm (Commer and Newman, 

2008) for simulating 2D inline borehole-to-surface EM responses over the 3D resistivity models (i.e., 

pseudo-2D data, Figure 4b) rather than slicing the 3D models. Horizontal surface electric fields are 

recorded using 31 receiver stations from -2 to 4 km in the y direction at an interval of 200 m. A common 

shot gather configuration is used to collect and prepare EM data for the DL network.

Gravity data are also simulated along the same surface survey lines used for the EM as well as within 

the two observation wells from 1500 m to 2500 m in depth. In practice, gravity data contain a significant 

component of time-invariant signals. The signals include the background rock density and the topography
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effects. Therefore, CO2 monitoring uses the time-lapse difference gravity data because they are only 

sensitive to the density changes associated with CO2 plumes. The three orthogonal components of the 

time-lapse gravity anomaly data are simulated using the 3D gravity modeling algorithm developed by 

Rim and Li (2015). Figure 5 shows some samples of the multiphysics data used for this paper. 

The three synthetic geophysical data sets have different sampling densities. Hence, using down-

sampling and linear interpolation, we map the data on a common data array, (x, 512, 256) where x is the 

number of sources and/or data components. For example, due to the memory and computational cost 

issues, each seismic shot-gather (e.g., Figure 5a) is down-sampled to an array of (512, 256) where the row

and column are time and geophone positions. Because one velocity model has six source positions as 

described earlier, six down-sampled shot gathers are combined together, form an array of (6, 512, 256) 

and are fed into the DL imaging networks. EM data are linearly interpolated and mapped onto an array of 

(512, 256) where the row and column are frequency and sensor positions, respectively. As one 

conductivity model has two borehole source positions, EM sensors measure three data components (two 

horizontal electric fields and one horizontal magnetic field), and each EM data consists of real and 

imaginary components, EM data for one conductivity model are packed into (12, 512, 256). The time-

lapse gravity data are also linearly interpolated and mapped onto an array of (512, 256) where the row and

column are depth and sensor positions. As done in the other two data, the three components of the gravity 

data are combined together and packed into (3, 512, 256).  

Implementing and Training Deep Neural Network 

The multiphysics imaging networks have been implemented in Python using TensorFlow (Abadi et al., 

2015) and Keras libraries (Chollet, 2018). These libraries include a range of DL functions and 

optimization tools and allow us to rapidly implement and evaluate the imaging capability of the proposed 

networks. In this work, we implement three network architectures having a different number of encoders 

ranging from one to three. The network with one encoder is used for inverting a single type of 
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geophysical data (i.e., either seismic, EM or gravity data), whereas the network with multiple encoders is 

used for simultaneously inverting multiple types of data. Despites the differences in the number of 

encoders, the three networks share common building blocks as shown in Figures 1 and 2. Thus, their 

implementations are also similar to each other, facilitating the development of the single and multiphysics

imaging networks. For example, Figure 6 compares the core implementation between single physics and 

multiphysics imaging networks. Both shares the same encoder function. Their decoder functions are 

slightly different from each other to concatenate a different number of encoder outputs. 

Once the DL networks are implemented, the CO2 label models and multiphysics data are split into three

different sets: test, training and validation sets. As shown in Figure 3, the CO2 plumes are rapidly formed

in the early time (e.g., 0-50 years) but change little in the late time (e.g., 100-200 years). We select the 

data and model for year 20 for the test sets because we observe a sufficient amount of CO2 inside the 

reservoir after 20 years of CO2 injection. Because we slice the 3D test CO2 model (i.e., year 20) at 

intervals of 100m and create 53 2D label models as mentioned earlier, the test dataset has 53 different 2D 

label models. The 53 models can be thought of as results from 2D CO2 flow simulation at different times. 

The test data are used only for evaluating the prediction accuracy of the DL imaging networks after the 

training phase is completed. During the evaluation phase, the test data are contaminated with Gaussian 

noise with zero mean and standard deviation of 10%. In short, our test dataset consists of 53 CO2 label 

models and multiphysics data, and the remaining 1802 pairs of multiphysics data and CO2 label models 

are used as the training and validation dataset as will be discussed below.

The bootstrap aggregating (bagging) method (Friedman et al., 2006; James et al., 2021) is an ensemble 

learning method and utilizes the bootstrap method for generating a number of training data sets. During 

the bootstrapping phase, new training data are randomly sampled from the original training set assuming 

a uniform distribution. Because of the nature of the replacement process, some data can be drawn more 

than once and some are never employed. On average, each bootstrapped training data set includes about 
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two-thirds of the original training data that are employed. The remaining one-third of the data not drawn 

from the original data set are used as a validation set. As a result, using this bagging method each DL 

imaging network is trained with its own unique training and validation data. These two data sets are used 

differently during the training phase. The training data set is directly fed to the network. In contrast, the 

validation set is not directly fed to the network for training but instead used for estimating a prediction 

error when a new data set is used during the prediction phase. Loss values (i.e., misfits) on the training 

and validation data sets are called the training loss and the validation loss, respectively. The training 

phase ends when the validation loss no longer decreases. 

Training individual networks for the bagging method is an embarrassingly parallel problem. In our 

work, we use eight NVIDIA Tesla P100-PCIE GPUs and simultaneously train eight networks for each 

bagging method (i.e., three DL single-physics imaging networks for seismic, EM and gravity and four DL

multiphysics imaging networks for seismic-EM, seismic-EM-gravity, EM-gravity, and seismic-gravity). 

On average, it took about 2 hours to complete training one multiphysics imaging network. In contrast, the 

single-physics imaging network was trained in about 1 hour due to its relatively small size. Once fully 

trained, both single-physics and multiphysics imaging network can predict CO2 saturation and its 

uncertainty in a few seconds on the GPUs, enabling us to monitoring GCS in real time. Based on our 

experience, it would take a few weeks or months to invert this kind of multiphysics data through 

conventional joint inversion experiments. Nonetheless, it does not mean that the computational cost of the

DL inversion is significantly lower than the conventional inversion as discussed earlier in this paper. In 

contrast to the conventional conversion, the DL inversion requires preparing a large set of realistic label 

models and geophysical data before field data are acquired. In other words, the DL inversion pays most of

the computational cost up front, whereas the conventional inversion performs its major computation after 

field data are measured.  
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We chose a mean squared error (MSE) as a loss function for our training. Figure 7 shows some 

examples of training history of the seven DL imaging networks. The Adam optimizer (Kingma and Ba, 

2015) is used with a batch size of 32 and a learning rate of 10-4. Note that once training is completed, the 

multiphysics networks (Figure 7b) show smaller final validation loss values than the single-physics 

networks (Figure 7a), indicating that the use of multiphysics data can improve the prediction accuracy. In

general, using a large number of networks for the bagging method does not result in overfitting (James et 

el., 2021). In practice, however, the number of networks used for the bagging method is limited due to 

computational costs, and needs to be determined based on the characteristics of the data and the estimator 

(i.e., the DL imaging network). After trial and error using different numbers of the networks varying from

10 to 400, we have found that mean and standard deviation values of the recovered CO2 images change 

little and settle down when more or less 70-80 predictions are made and used together.

In this work, we want to tweak the number of the networks so that the method can predict CO2 

saturation with the smallest possible variance without critically increasing the computational cost. To 

safely ensure the convergence of mean and standard deviation values, we use 100 independent networks 

in the bagging method and predict 100 CO2 saturation models. After the prediction phase is done, we have

a distribution of CO2 saturation at each cell, and calculate a mean CO2 saturation and its standard 

deviation. The mean CO2 saturation model is used as a final image and the standard deviation as a 

measure of uncertainty. Once the training phase is completed, the DL imaging and statistical analysis are 

completed in real time without human interactions. 

DL Multiphysics Imaging Experiments

Before we evaluate the performance of the DL multiphysics networks, we first perform the DL single-

physics imaging (i.e., seismic, EM and gravity), and compare the imaging results for the single data types 

(the 2nd to 4th columns of Figure 8) to the true CO2 saturation test models (the 1st column of Figure 8). 

The DL seismic network recovers the CO2 plumes fairly well. For example, the network clearly recovers 
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the three layers of CO2 plumes that represent three high porosity sand layers, and the lateral extent of the 

recovered plumes is close to that of the true model. This DL seismic imaging also recovers a high 

concentration of CO2 saturation near the injection point as shown in Figure 8f. Note that a rock physics 

model used for converting the Kimberlina model into the P-wave velocity model is based on the average 

of the upper and lower Hashin-Shtrikman bounds (Yang et al., 2019; Mavko et al., 2020), Thus, the 

seismic training data are sensitive to a broader range of CO2 saturation even at high CO2 saturation levels.

However, in practice, if a rock physical relationship between P-wave velocity and CO2 saturation is close 

to the lower Hashin-Shtrikman bound, the sensitivity of the seismic imaging to the high concentration of 

CO2 saturation would diminish (Kim et al., 2010; Davis et al., 2019, Gasperikova and Li, 2021). The non-

seismic methods such as EM and gravity methods can help to fill the gap. 

The 3rd column of Figure 8 shows the DL EM imaging results. EM also delineates the CO2 plumes 

very well. The high CO2 saturation near the injection is recovered as expected, and the three layers of 

high saturation of CO2 are clearly recovered. The lateral extent of the recovered CO2 plume is recovered 

reasonably well but less accurately compared to the seismic images due to the fact that borehole-to-

surface EM mainly illuminates a triangular region defined by the borehole sources and the surface 

receiver array. The reader is referred to Um et al. (2020) for a discussion of the region of sensitivity of the

borehole-to-surface EM measurement configuration. 

The DL gravity imaging also clearly detects the presence of the top CO2 plume layer and recovers its 

lateral extent fairly well. However, it does not recover the lower two layers. This relatively poor result 

can be inferred from the training history plots (Figure 7a) where the final validation loss of the DL 

gravity network is an order of magnitude larger than that of the other two single-physics imaging 

networks. This is mainly due to the fact that the gravity data are all recorded above the top CO2 layer and 

are not sensitive enough to the fine structures that the CO2 label models have, so the DL imaging network 

cannot be trained for fully recovering such details and yields relatively high validation loss values. The 
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overall imaging sensitivity and resolution of the gravity-generated images presented here are comparable 

to those found in DL geophysics literature (e.g., Yang et al., 2022). Note that the gravity imaging does not

compete against seismic or EM in terms of resolution when used in a multiphysics interpretation on 

imaging mode. Instead, it provides unique sensitivity to the density change due to fluid substitution and 

complements the other two methods. 

Figure 9 shows the calculated uncertainty estimates in terms of the standard deviation. In all three 

cases, non-zero uncertainty values are found inside and around the recovered plumes. The EM images 

shows a slightly higher magnitude and greater lateral spread of the non-zero standard deviation values 

compared to the seismic generated images of CO2. In contrast, the uncertainty estimates of the gravity-

generated images look counterintuitive. The absence of the 2nd and 3rd CO2 layer in the gravity images is 

not correlated with abnormally high standard deviation values (Figures 9c, 9f and 9i). This is because all 

100 gravity-generated images used for the bagging method equally fail to recover the 2nd and 3rd layers 

and thus the standard deviation does not reflect imaging errors associated with the absence of the two 

layers. Rather, the standard deviation merely measures dispersion of the 100 recovered CO2 images at 

each cell. In other words, the ensemble method neither indicates nor overcomes the limitations of the 

gravity method. Instead, based on geophysical principles and sensitivity studies, one must carefully 

choose one or multiple geophysical methods for monitoring a given GCS site. Despite the limitation of 

the gravity method as a single geophysical imaging tool, we demonstrate that the DL multiphysics 

imaging network including the gravity component can best improve prediction accuracy and reduce 

uncertainty as shown below.  

Figure 10 compares four multiphysics imaging results (i.e., seismic-EM-gravity, seismic-EM, EM-

gravity, and seismic-gravity). For this particular synthetic data set based on the Kimberlina reservoir 

model and associated rock-physics conversions to geophysical properties, the DL multiphysics imaging 

does not significantly improve the overall imaging accuracy compared with the DL seismic imaging 
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because the seismic rock physics transform that was used both for the test and training data are sensitive 

to a broad range of CO2 saturations as discussed earlier. Thus, the DL seismic imaging alone can predict 

CO2 saturation fairly well. For example, at x=0 km, the DL seismic-EM-gravity image (Figure 10f) is 

nearly identical to the image from the DL seismic network (Figure 8f). However, at the edge of the 

plume (i.e., x=1 km), the DL multiphysics image (Figure 10j) better recovers the lateral extent of the 

plumes than the DL seismic image (Figure 8j). The DL seismic-gravity image (Figure 10l) also shows 

the improved lateral resolution. Accordingly, it is reasonable to infer that this improvement results from 

the gravity data because the DL seismic-EM-generated CO2 image (Figure 10i) does not show such 

enhanced lateral resolution. It is also worth mentioning that the EM-gravity-generated images (Figures 

10c, 10g and 10k) are nearly comparable to those from the DL seismic network (Figures 8b, 8f and 8j), 

suggesting that the DL multiphysics imaging network for the non-seismic data can serve as a cost-

effective tool for long-term monitoring of a GCS site.   

Last, we compare the uncertainties associated with the DL multiphysics images (Figure 11) to those 

from the DL single-physics imaging networks (Figure 9). In general, the multiphysics imaging networks 

clearly reduce the magnitude of standard deviation values as well as their lateral spread. For example, the 

DL seismic-EM-gravity images show the smallest magnitude and lateral spread of the non-zero standard 

deviation values than any single-physics-generated image. The DL seismic-gravity images also approach 

a similar level of uncertainty. The DL EM-gravity images show slightly higher magnitude but smaller 

lateral spread of the non-zero standard deviation values compared with the seismic-generated images, 

demonstrating that the DL multiphysics network for inexpensive non-seismic data could effectively 

complement the seismic inversion.  

Conclusions

We have developed a novel DL multiphysics network for imaging CO2 plumes and estimating image 

uncertainty in real time. The DL multiphysics network consists of three encoders and one decoder. The 
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three encoders separately analyze three different geophysical data (i.e., seismic, EM, gravity) but share 

one decoder to combine imaging capabilities of the different geophysical data for improving the 

prediction accuracy. The network is trained on pairs of CO2 label models and multiphysics data so that 

CO2 saturation is directly imaged. Using a bootstrap aggregating method, we train a number of the DL 

imaging networks simultaneously and use these results to calculate a mean CO2 saturation as well as a 

standard deviation. 

Using CO2 label models and multiphysics data that are based on the realistic Kimberlina GCS flow 

models, we systematically compare the DL multiphysics imaging results with DL single physics imaging 

results. We demonstrated that the DL multiphysics network for seismic, EM, and gravity data not only 

improves the prediction accuracy but also reduces uncertainties associated with CO2 saturation images. 

Our numerical modeling studies also showed that the DL multiphysics network for EM and gravity data 

produces CO2 images nearly comparable to those from the DL seismic imaging network, suggesting that 

the DL imaging network for the non-seismic data would be an effective low-cost monitoring tool in 

between regular seismic monitoring. 

In this work, we have evaluated the imaging and uncertainty analysis capabilities of the DL inversion 

network using numerical modeling data contaminated with Gaussian noise. However, real field data 

always include a range of unknown noise and measurement errors that cannot be easily duplicated in 

numerical modeling experiments such as those we have demonstrated here. We have also assumed that 

rock-physics relationships between reservoir properties and geophysical models are exactly known to us. 

However, in real field data, the relationships may neither be exactly known nor fully understood. 

Accordingly, these aspects will increase the level of uncertainty beyond those demonstrated in this work. 

Our future plans involve applying the DL imaging network on GCS field data and evaluating its 

robustness and limitations in real-world situations.
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Figure Captions

Figure 1. The DL multiphysics network architecture for imaging CO2 saturation. The size of the feature

maps is shown at the top of the layers. The number of channels is shown at the bottom of the layers.

Figure 2. The single-physics network for imaging CO2 saturation. (Um et al., 2022).

Figure 3. Cross-sectional (y-z plane) views of the Kimberlina CO2 saturation models (the 1st column) 

and their corresponding P-wave velocity models (the 2nd column), the electrical resistivity models (the 3rd 

column) and the density difference models (the 4th column).  

Figure 4. The geophysical survey configurations for monitoring CO2 plumes. (a) The surface seismic 

configuration. The 53 red lines indicate surface seismic survey lines. (b) the borehole-to-surface EM 

configuration. On the cross-sectional view (y=0 km), the two vertical red arrows indicate borehole electric

dipole sources. On the map view (z=2.9 km), the red lines indicate the surface electric field survey lines. 

The same surface lines and boreholes are used for the gravity data generation.

Figure 5. Examples of Kimberlina multiphysics data for training the DL single-physics and 

multiphysics networks. (a) Surface seismic modeling data. (b) Borehole-to-surface EM modeling data. (c)

Surface and borehole gravity data.

Figure 6. Comparison of the core implementation between (a) the single-physics imaging network and 

(b) the multiphysics imaging network. Both shares the same encoder function.  

Figure 7. Training and validation loss plots for (a) the DL single-physics imaging networks and (b) the 

DL multiphysics imaging networks. Seis, EM and GRV stand for seismic, electromagnetic and gravity, 

respectively. TL and VL stand for training loss and validation loss, respectively. 
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Figure 8. Comparison of the true Kimberlina CO2 saturation model (the 1st column) and the mean 

values of CO2 saturation images recovered from the three different DL single-physics imaging 

methodologies (the 2nd to 4th columns).

Figure 9. Cross-sectional views of uncertainties associated with the CO2 saturation images from the 

three DL single-physics networks.

Figure 10. Cross-sectional views of the mean values of CO2 saturation images recovered from the four 

different DL multiphysics networks.

Figure 11. Cross-sectional views of uncertainties associated with the CO2 saturation images from the 

four DL multiphysics networks.
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Figures

Figure 1. The DL multiphysics network architecture for imaging CO2 saturation. The size of the feature maps is shown at the top of the layers. 
The number of channels is shown at the bottom of the layers.
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Figure 2. The single-physics network for imaging CO2 saturation. (Um et al., 2022).
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Figure 3. Cross-sectional (y-z plane) views of the Kimberlina CO2 saturation models (the 1st column) and their corresponding P-wave velocity 
models (the 2nd column), the electrical resistivity models (the 3rd column) and the density difference models (the 4th column).  
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Figure 3. Continued.
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(a)

(b)

Figure 4. The geophysical survey configurations for monitoring CO2 plumes. (a) The surface seismic 
configuration. The 53 red lines indicate surface seismic survey lines. (b) the borehole-to-surface EM 
configuration. On the cross-sectional view (y=0 km), the two vertical red arrows indicate borehole electric
dipole sources. On the map view (z=2.9 km), the red lines indicate the surface electric field survey lines. 
The same surface lines and boreholes are used for the gravity data generation.
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Figure 5. Examples of Kimberlina multiphysics data for training the DL single-physics and multiphysics 
networks. (a) Surface seismic modeling data. (b) Borehole-to-surface EM modeling data. (c) Surface and 
borehole gravity data.
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(a)

(b)

Figure 6. Comparison of the core implementation between (a) the single-physics imaging network and 
(b) the multiphysics imaging network. Both shares the same encoder function.  
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                                            (a)                                                                                  (b)

Figure 7. Training and validation loss plots for (a) the DL single-physics imaging networks and (b) the 
DL multiphysics imaging networks. Seis, EM and GRV stand for seismic, electromagnetic and gravity, 
respectively. TL and VL stand for training loss and validation loss, respectively. 
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Figure 8. Comparison of the true Kimberlina CO2 saturation model (the 1st column) and the mean values of CO2 saturation images recovered from
the three different DL single-physics imaging methodologies (the 2nd to 4th columns). 
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Figure 9. Cross-sectional views of uncertainties associated with the CO2 saturation images from the three DL single-physics networks.
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Figure 10. Cross-sectional views of the mean values of CO2 saturation images recovered from the four DL multiphysics networks.
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Figure 11. Cross-sectional views of uncertainties associated with the CO2 saturation images from the four DL multiphysics networks.
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