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Does Hypothesis-Instruction Improve Learning?

Regina Vollmeyer
Institut fiir Psychologie
Universitit Potsdam
14415 Potsdam, Germany
vollmeye@rz.uni-potsdam.de

Abstract

Dual space models of problem solving (e.g., Simon & Lea,
1974; Klabr & Dunbar, 1988) assume that the problem space
for a task consists of two spaces: an hypothesis space and an
experiment space. In hypothesis space, hypotheses about
rules governing the task are generated, which can then be
tested in experiment space. However, experiment space can
be searched by applying the operators even without
knowledge about the task. We predicted that people
searching hypothesis space would learn more about the task.
To test this claim, two experiments were performed in which
subjects had to learn to control a system consisting of three
input variables that had unknown links to three output
variables. Subjects first explored the task, then they had to
reach goal states for the output variables. In both
experiments subjects were presented with an hypothesis
about one of the links, which should foster search of
hypothesis space. In Experiment 1, hypothesis instruction
improved performance and we showed that it had a similar
effect to a manipulation of goal specificity, suggesting that
both factors improve learning by encouraging search in
hypothesis space. In Experiment 2 subjects were given a
correct hypothesis or an incorrect hypothesis. Both groups
performed better than an appropriate control.  Thus
instructions that encourage hypothesis testing appear to
improve learning in problem solving.

Introduction

Mayer's (1989) analysis of problem solving claimed that a
problem solver applies representational processes to form a
representation of a problem, then solution processes are
applied to find the solution. However, Mayer notes that, as
Duncker (1945) argued, representations may not be static
and that the interaction of representational and solution
processes may be the key to problem solving. But what
processes form the most appropriate representations?

Dual Space Theory and Learning

One explanation for why some problem solvers learn more
about a problem task than others is given in Klahr and
Dunbar's (1988) theory of Scientific Discovery as Dual
Search (SDDS). They propose that the problem space is
separated into two spaces: an hypothesis space and an
experiment space. Searching the hypothesis space requires
formulating explicit hypotheses about the task, thus, the
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rules governing the task can be discovered. Searching the
experiment space only requires applying the legal operators
of the task to generate new problem states. According to
SDDS theory a good representation of the task is gained if
the problem solver searches both spaces interactively. Such
problem solvers induce rules explicitly by searching the
hypothesis space and they then test them through search of
the experiment space. While search of experiment space is
necessary for generating and testing hypotheses, a poor
knowledge is gained if search of experiment space
dominates. (However, such problem solvers may be the
most successful if the rules are very hard to discover) The
claim that problem solvers who formulate and test
hypotheses have a better representation has found some
support (Klahr & Dunbar, 1988; Recker, Govindaraj, &
Vasandani, 1994). In particular, Klahr, Fay, and Dunbar
(1993) found that subjects who generated hypotheses, even
if incorrect, were more successful at solving a complex
problem.  However, these studies used a post-hoc
classification of which problem space was searched.
Therefore, to clearly show that using hypotheses improves
learning, it is necessary to directly manipulate the
likelihood of subjects generating and testing hypotheses.
Further support for the SDDS theory can be found in our
own work (Vollmeyer, Burns, & Holyoak, in press). In
these studies we used the theoretical framework of Simon
and Lea (1974) to which Klahr and Dunbar (1988) also
refer.  Simon and Lea proposed that instance space
(comparable with experiment space) is searched if problem
solvers are focused on finding a solution for a specific goal,
whereas rule space and instance space (rule space is
comparable with hypothesis space) are searched if problem
solvers are focused on learning the rules of the task.
Therefore, we varied goal specificity by giving one group a
non-specific goal, to learn as much as possible while
exploring the problem task, then we tested their learning by
giving them a goal state to reach; whereas another group
explored the task with the same instruction, however in
addition they were told at the start of the task the specific
goal that they had to reach after the exploration phase.
Consistent with the predictions, problem solvers with the
non-specific goal had more knowledge about the rules
governing the task and could apply the learned knowledge
equally to two different goal states. Problem solvers with a
specific goal learned less about the rules governing the
task, but they could reach the specific goal they had been
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given at the start as well as the non-specific goal group.
However, their performance declined when they were given
a new goal to which such a solution path could not be
readily transferred Rather than learn the rules, they may
have learned a solution path while exploring the task.
These results can be interpreted as supporting the claim
that the non-specific goal group were more likely to search
both spaces, whereas the specific goal group were more
likely to only search the experiment space.

In the following two experiments we gave subjects an
hypothesis about the structure of the task. With this
manipulation we wanted to foster search of the hypothesis
space. Under this condition they should gain more
knowledge and consequently reach the goal state of the task
more accurately. As the hypothesis also provided more
information about the task to the subjects, in the second
experiment we attempted to clearly establish that improved
performance was due to search in hypothesis space and not
just because more information was given.

Biology Lab: A Complex Problem Task

Vollmeyer, Burns, and Holyoak (in press) used a computer-
driven problem task we called biology lab which was
constructed using the shell DYNAMIS (Funke, 1991).
This task was again used in the current experiments. In
Vollmeyer et al. subjects had to control four output
variables by varying four input variables, but in the first
experiment we used a system with only three input and
output variables. Subjects were presented with a cover
story telling them that they were in a biology lab in which
there were three species of sea animals in a tank (crabs, sea
bass, lobster) and that their population could be
manipulated by three factors (temperature, oxygen,
current). The structure of the task (see Figure 1) was
complex as one output (sea bass) was influenced by two
inputs, and dynamic, as one output (lobster) had a decay
(marked with a circle), resulting in the population decaying
by 10 % each trial even if nothing was manipulated. As the
decay was hard to understand we omitted this characteristic
in the second experiment, which helps generalize our
results to simpler systems.

temperature crabs
pe +2
+6
oxygen =5 sea bass
+4
current lobster

Figure 1: Biology lab system

To explore the task, subjects in Vollmeyer et al. (in
press) were given a learning phase (three rounds of six
trials on which numbers were entered for the inputs) and a
solution round (six trials) at the end of which subjects had
to reach a certain target amount for each output variable.
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Vollmeyer et al. showed that a good strategy for learning
about the task was to vary only one input variable at a time.
This strategy was given to all subjects in the current
experiments in order to reduce their variance.

Experiment 1

In the first experiment we tested whether subjects given an
hypothesis to test about a difficult relation in the problem
task would learn more about the structure of the task and
reach the goal state for the output variables more accurately
than subjects given no hypothesis. We also manipulated
goal specificity and predicted on the basis of Vollmeyer et
al. (in press), that giving subjects a specific goal would
produce similar effects to hypothesis instruction.

Method

Subjects. Sixty undergraduate students at the University of
California, Los Angeles, participated for course credit.

Design. A 2x2 design was used with two levels of
hypothesis-instruction (hypothesis-instructed VS.
uninstructed) and goal specificity (specific vs. non-
specific). Fifteen subjects were in each condition.

Procedure. The biology lab problem was presented with
the underlying structure shown in Figure 1. Subjects had to
learn about the problem in three rounds, each round with
six trials and in the fourth round they were asked to reach a
specific goal state (namely, 50 crabs, 900 lobsters, and 700
sea bass). Subjects in the specific goal condition were
presented with these goal states right from the beginning,
whereas the non-specific goal group saw these goal states at
the beginning of the solution round for the first time.

Before starting, all subjects were instructed that the best
strategy for exploring the task was to vary only one input
variable at a time. In addition, the hypothesis-instructed
group was told that a researcher believed that lobsters had a
decay of 10% and that current had an influence in that each
input to current is multiplied by four and then added to the
lobster-population.  Hypothesis-instructed subjects were
told to test the hypothesis in order to determine if it was
correct. Uninstructed groups received no hypothesis.

After each round of the learning phase (rounds 1-3)
subjects completed a "structure diagram”, which consisted
of a diagram similar to the one in Figure 1, but with all
links omitted. Subjects were instructed to draw links
between variables that they believed affected each other,
and to also assign directions (positive or negative) and
weights indicating how strong they thought each influence
was. After each input trial subjects had to predict the new
values for each output variable that they thought would
result from their inputs.

The entire experiment took an hour to complete.

Results

Dependent variables. Three dependent variables were
analyzed which measured both knowledge and accuracy in



reaching the goal states. (1) Structure score. The structure
diagram was given after each of the three rounds of the
learning phase. However, as the structure diagram after
round 3 was most informative about subjects’ knowledge at
the end of the learning phase, only the structure score lor
this round is reported here. The knowledge indicated in
this diagram was measured as the sum of the number of
comrect specifications of links, directions, and weights,
adjusted with a correction for guessing (see Woodworth &
Schlosberg, 1954, p. 700). (2) Prediction error. After each
input trial during the learning phase subjects had to predict
the population for each output variable. The absolute
difference between the predicted number and the actual
number for each of the three output variables was
computed. As this measure produced a skewed
distribution, the distribution was corrected by applying a
logarithmic transformation. (3) Solution error. Solution
error in reaching the goal state during round 4 was
computed as the sum of the absolute differences between
the new goal and the obtained number for each of the three
output variables. Again, a logarithmic transformation had
to be applied. Solution error was computed for each of the
six trials that comprised round 4.

Preliminary analyses. The structure score and the sum of
prediction errors (over three rounds) were measures of
knowledge and should correlate, which was the case, r = -
.62, p <.001. Having more knowledge should lead to lower
solution errors. This was confirmed by the correlations for
structure score and solution error, r = -.48, p < .001, and
for prediction error and solution error, r = .57, p < .001.

Instructing subjects to test an hypothesis should help
them gain more knowledge as measured by their structure
diagram scores. In particular, if our manipulation was
effective in getting subjects to test the given hypothesis then
hypothesis-instructed subjects should be more likely to
correctly report the links that were part of their hypothesis.
We found this, as 18 out of 30 in the hypothesis-instructed
groups correctly reported the decay factor for lobster
compared to 4 out of 30 for uninstructed groups, X?(1) =
12.12, p < .001. Hypothesis instruction also led more
subjects to correctly specify the weight for the relation
between current and lobster (also part of the hypothesis), 13
out of 30 compared to 1 out of 30 for uninstructed groups,
X3(1)=11.27, p < .001.

Influence of hypothesis-instruction and goal specificity
on learning. The hypothesis-instructed groups (M = 1.55)
should have a higher structure score than the uninstructed
groups (M = 1.07), which was the case, F(1,56) = 4.58, p <
.05. Also, as predicted, the mean structure score for the
non-specific goal groups are higher (M = 1.56) than that for
the specific goal groups (M = 1.06), F(1,56) = 5.13, p <
.05. There was no interaction between the factors F < 1.0.
Surprisingly, over all rounds of the learning phase there
was no statistically significant effect of goal-specificity on
prediction error, F(1,56) = 1.69, p > .05. However, there
was an effect of hypothesis-instruction on prediction error,
F(1,56) = 8.92, p < .05, and the interaction of output
variable and hypothesis-instruction was significant,

F(2,112) = 9.31, p < .001. Therefore we analyzed each
output variable separately. For lobster, which was part of
the hypothesis, a strong effect of hypothesis on predictions
scores was found (see Table 1), F(1,56) = 29.1, p < .0S.
Although, for crabs and sea bass the difference was not
significant, the means were in the expected direction (see
Table 1).

For solution error, an effect of hypothesis-instruction was
found, F(1,56) = 8.20, p < .01, but there was no interaction
with output variable, F < 1.0. For our theory it is important
to show that hypothesis-instruction helped performance on
all output variables, not only the one the given hypothesis
refers to, thus we analyzed each output variable further. As
can be seen in Table 1, there was an effect on lobster,
F(1,56) = 14.35, p < .05, and on crabs, F(1,56) = 5.36, p <
.05. (Note that crabs were not referred to by the hypothesis)
The hypothesis effect did not reach significance for sea
bass, F(1,56) = 2.36, p> .05. As Vollmeyer et al. (in press)
found there was no effect of goal specificity on solution
error, F < 1.0.

Table 1. Means for hypothesis-instructed (H-I) vs.
uninstructed (H-UT) subjects on prediction error and
solution error, separated by output variable
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output prediction solution
variables error error
lobster H-I 3.31 3.36

H-UI 4.67 4.05
sea bass H-I 3.25 3.94

H-UI 3.61 4.49
crabs H-I 1.55 1.83

H-UI 1.88 2.86
Summary
Experiment 1 showed that having subjects test an

hypothesis had an effect on learning. Hypothesis-instructed
subjects learned more about the structure of the task and
could predict the outcomes better than the uninstructed
groups. All output variables were reached more accurately,
not just the one referred to by the hypothesis, suggesting
that having an hypothesis helps subjects learn about
unrelated variables, perhaps through encouraging further
hypothesis testing.

The results for goal-specificity replicated our previous
experiment and showed goal specificity effects are
generalizable to a different system. Subjects learned more
about the structure if they had a non-specific goal, but they
reached the goal states as well as the specific goal group,
which already had experience in reaching the goal states.
One surprising effect was that the goal groups did not differ
on prediction error, which was another method for
measuring knowledge. Perhaps this is because the specific
goal groups were already focused on bringing about a
specific state, which improved prediction, whereas the non-
specific goal groups had more knowledge, but did not focus
on reaching specific states. The lack of any interaction



between goal specificity and hypothesis-instruction is
interesting as it suggests that they may have their effects for
similar reasons, that is, by encouraging search of
hypothesis space.

Experiment 2

While Experiment 1 clearly showed that giving subjects an
hypothesis improved both their knowledge and their
performance, an alternative explanation is possible other
than our claim that giving an hypothesis promotes search of
hypothesis space. Because we gave subjects a correct
hypothesis it is possible that they simply interpreted it as
extra information and used it to help them control the
system. Arguing against this possibility is the lack of an
interaction on error-scores between output variable and
hypothesis-instruction. However, if this alternative
explanation is valid then giving subjects an hypothesis that
is incorrect should eliminate the hypothesis effect. Klahr et
al. (1993) found that subjects who generated incorrect
hypotheses also performed better than those with no
hypotheses, but they did not directly manipulate whether
people generated hypotheses. Thus in Experiment 2 we
tested whether giving subjects an incorrect hypothesis
would help them to learn more about the biology lab task,
as it would encourage search of hypothesis space. To do
this we had three groups: correct-hypothesis, incorrect-
hypothesis, and link-only. The correct-hypothesis group
was instructed to test a correct hypothesis about a link and
its weight. To reduce the usefulness of the information (but
not the benefit of testing it) this hypothesis was about the
simplest link, that between the input and output variable
whose only link was to each other. Most subjects in
previous experiments learned this particular link, so even if
subjects assumed that this hypothesis was correct it would
be of little use to them. The incorrect-hypothesis group was
given a hypothesis about the same link, but they were told
the wrong weight. The link-only group received the correct
information that this same link existed, but no weight was
suggested. Thus the link-only group had the same amount
of correct information as the incorrect hypothesis group,
but lacked the erroneous link information that made the
incorrect-hypothesis group's hypothesis a complete one.
We predicted that both the correct and incorrect hypothesis
groups would perform better than the link-only group.

Other changes from Experiment 1 were that we changed
the variable names and used a simpler biology lab system,
as we dropped the decay link. Otherwise, the system was
the same as that in Figure 1. These changes helped us
generalize our results.

Method

Subjects. Two hundred and thirty-six students at the
University of California, Los Angeles, participated.

Design. The experiment had three conditions, that is
hypothesis-instruction was varied on three levels: correct-
hypothesis; incorrect-hypothesis; and, link-only.
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Procedure. The biology lab task was presented with the
underlying structure shown in Figure 1, except that the
decay link was omitted and the variable names were
changed. The inputs, temperature, current and oxygen,
became salt, carbon and lime, respectively. The outputs,
crabs, sea bass and lobster, became oxygenation, chlorine
concentration and temperature, respectively. As the task
was easier subjects had only two rounds in the learning
phase, during which they already knew the goal states for
the learning round. From the beginning, all groups were
given the goal state (namely, an oxygenation of 50, a
chloride concentration of 700, and a temperature of 900).
They had to reach this goal state in the third round. In the
fourth round, the transfer round, a new goal state was given
(namely, an oxygenation of 400, a chloride concentration of
700, and a temperature of 1000).

All subjects read the instructions explaining the task, and
the same good strategy with which to explore the task as
was given in Experiment 1. We had three levels of
hypothesis-instruction: correct hypothesis, incorrect-
hypothesis, and link-only information. In the correct-
hypothesis group subjects were verbally and graphically
presented with the hypothesis that lime could have an effect
on oxygenation, that is, each input to carbon is multiplied
by the weight 2.0 and then added to the oxygenation value.
The incorrect-hypothesis group was told to test the same
link, but the given weight (-5.0) was incorrect. Both
hypothesis groups were instructed to test their hypothesis.
The link-only group subjects were told that there could be a
link between lime and oxygenation, but told no weight. In
a previous experiment (Vollmeyer & Burns, under
submission), we had found that giving links without
direction or weights did not improve performance, thus this
manipulation should be similar to giving subjects no
hypothesis.

Because the system was simpler than that used in
Experiment 1, only two rounds were given for the learning
phase.  After each round during this phase subjects
completed the structure diagram, for which they were given
detailed instructions for how to calculate weights. They
again had to predict the outcomes for each output variable
after each input trial. In order to encourage the hypothesis
groups to test the hypothesis, these subjects were asked to
indicate if they thought the hypothesis was correct by
circling "Yes", "No", or "Don't know" after the end of each
of the first two rounds. This question also measured if
subjects given an hypothesis were able to determined it's
validity.

The goal state for the solution round was presented to all
subjects right from the beginning, however, they only had
to reach that state in the third round. Therefore, subjects
could decide, whether or not to focus on the specific goal.
The results of Vollmeyer et al. (in press) suggested that
giving subjects a specific goal from the start discourages
them from testing hypotheses, thus giving a specific goal
should decrease the a priori probability of subjects testing
hypotheses. Inround 4, subjects were presented with a new
goal state which had to be reached. The entire experiment
took an hour to complete.



Results

Dependent variables. The same three dependent variables
as calculated in Experiment 1 were used, that is, structure
score, prediction error, and solution error. Structure score
and prediction error were measures of the knowledge
subjects had of the rules governing the task. The solution
error indicated whether subjects could apply their
knowledge. As there was a transfer round in which a new
goal state had to be obtained, a transfer error was calculated
similar to the solution error. Transfer error measured how
effectively the knowledge gained through trying to reach
one goal state can be transferred to a new goal state.

Preliminary analyses. Again we checked whether our
measures for learning were related, and whether our
manipulation of hypothesis-instruction was effective. The
sum of the prediction errors over three rounds and structure
score on round 2 should be correlated as they both measure
knowledge about the task, which was the case, r = -.26, p <
.001, though this correlation was much lower than it was in
Experiment 1. Having more knowledge should lead to
lower solution and transfer errors, thus these measures
should correlate, as we found; structure score and solution
error: r = -.61, p < .001; prediction error and solution error:
r=.57, p < .001; structure score and transfer error: r = -
46, p < .001; prediction error and transfer error: r = 47, p
< .001. Transfer error and solution error were also
correlated, r = .81, p < .001.

When asked if the given hypothesis was true, sixty-nine
percent of responding subjects with the incorrect hypothesis
believed it to be wrong, eight percent indicated it was
correct, the rest were not sure. Eighty-one percent of
responding subjects with the correct hypothesis believed it
to be correct, twelve percent indicated incorrect, the rest
were not sure. Thus most subjects appear to correctly test
the hypothesis. As in Experiment 1 we analyzed subjects’
success at finding the link that each group was given (lime
to oxygenation), The difference between the three groups
was significant, X? (2) = 6.38, p < .05. The correct
hypothesis group indicated more often the correct weight
(68 of 80) than the incorrect hypothesis group (58 of 78)
and the link-only group (54 of 78).

Influence of hypothesis-instruction on learning. The
correct- and incorrect-hypothesis groups should learn more
about the structure of the task. However, they do not differ
on the structure score, F < 1.0. Together with the low
correlation between prediction error and structure scores,
this suggest that structure score may not be a good measure
of knowledge for a system as simple as this.

As predicted though, the prediction error over the three
rounds showed an effect of hypothesis condition, F(2,233)
= 5.36, p < .01 (see Table 2). Link-only prediction errors
are higher than either those of the incorrect hypothesis,
F(1,154) = 7.14, p < .01, or correct hypothesis groups,
F(1,156) = 8.21, p <. 01. Thus it appears that it is more
important that a hypothesis be given, rather than whether
the hypothesis is correct.

If subjects perform better just because of the amount of
correct information they are given then the predictions for
the output variable oxygenation should have been best for
the correct hypothesis group, while there should have been
litle effect on other variables. According to our theory, all
output variables should be better predicted, if a hypothesis
was given, no matter whether the hypothesis is correct or
incorrect. A significant interaction between hypothesis-
instruction and output variable allowed us to analyze each
single output variable, F(4,466) = 4.73, p < .001. Table 3
shows the means for the three experimental groups. For
the crucial comparison, that is link-only vs. incorrect
hypothesis, we found significant differences for the
prediction error of chloride concentration, F(1,154) = 7.96,
p < .01, and for the prediction error of temperature,
F(1,154) = 9.30, p < .01, however not for the prediction
error of oxygenation, F(1,154) = 2.53, p > .05, the output
variable for which the hypothesis was given.  All
differences between correct and incorrect hypothesis groups
were not significant.

Table 2. Means of hypothesis-instruction on the dependent

variables
prediction solution transfer

error error error
link-only 2.82 2.61 2.61
incorrect 2.18 2.23 2.19
hypothesis
correct 2.11 1.87 1.83
hypothesis

Table 3. Means of hypothesis instruction on the prediction
error of the output variables

chloride temperature | oxygenation
concentration
link-only 3.51 2.90 2.06
incorrect 2.83 1.99 1.73
hypothesis
correct 2.82 2.02 1.49
hypothesis

We analyzed whether hypothesis-instruction had an
influence on solution and transfer error. Across both errors
there was an effect of hypothesis-instruction, F(2,233) =
397, p < .05. As can be seen in Table 2, there was a
difference between the link-only group and the correct
hypothesis group. However, the expected differences
between the link-only group and the incorrect hypothesis
group are not significant (solution error: F(1,154) = 1.86, p
> .05; transfer error: F(1,154) = 1.93, p > .05). As in
Experiment 1 there is no significant interaction between
errors and output variables, F(2,466) = .49, which is
important for our point that giving an hypothesis does not
only assist performance on the output variable on which the
information was given.
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Summary

Experiment 2 showed that even hypothesis-instruction
with an incorrect hypothesis can improve performance,
even when compared t0 a group given the same valid
information but without as extensive an hypothesis to test.
This is consistent with the claim that hypothesis-instruction
not only provides information, but also leads to another
type of processing, that is search in hypothesis space
through the generation of hypotheses.

Discussion

Our aim was to find empirical evidence addressing why
some people form a good representation during learning of
a problem task, while other people have difficulties in
finding a solution. Our theoretical explanation was based
on dual space models, such as SDDS, that assumes that
searching the hypothesis space by generating hypotheses
helps learning. Goal specificity (Experiment 1) as well as
hypothesis-instruction (both experiments) seem to be
factors that have an influence on the choice of how to
represent the task.

The results of the two experiments are not always
statistically significant on all of the dependent variables,
but the pattern on these measures is always as expected.
Even if we changed the task from a dynamic (Experiment
1) to a simpler task (Experiment 2), or gave an hypothesis
about a simple or complex link, the influence of hypothesis-
instruction was consistent. However, changing the task to a
simpler system had consequences on the performance. One
consequence was that subjects on average learned more
about the structure of the simpler task (M = 2.13) than
about a dynamic task (M = 1.32). As most of the people
seem to learn the simple task, the structure score does not
differentiate anymore. This explains why hypothesis-
instruction had an effect on structure score in the first, but
not in the second experiment. Predicting the outcome of a
manipulation of the input variables demonstrated clear
effects of hypothesis-instruction in both experiments. With
a better representation of the task subjects generating
hypotheses are able to reach given goal states more
accurately. Therefore, we regard the results as encouraging
evidence that problem-solving can be most effective when
the problem space is represented as a dual space. Such a
representation appears to be encouraged if subjects are
given an hypothesis, even an incorrect one.

Other recent studies can be also be interpreted as
evidence that search in hypothesis space improves
performance. Chi, de Leeuw, Chui, and LaVancher (1994)
found that instructing subjects to generate explanations of a
text while they read it improved learning of its content,
despite a fourth of these self-explanation being incorrect.
Self-explanations may be like hypotheses and assist search
of hypothesis space.

Klahr (1994) argues that cognitive psychology and
machine learning approaches to scientific discovery have
converged towards dual-space theories. Machine learning
has generally taken a highly data driven approach, which is
more akin to search of experiment space. But this space

needs to be limited in order to make such search tractable,
and domain knowledge provided by testing hypothesis may
provide these constraints. Case-based reasoning would
seem (o be an extreme form of search of the experiment
space. But if cases constitute experiment space (past
experiments), domain knowledge provides the hypothesis
space. That case-based reasoning needs to consider more
than just cases has been argued by Kolodner (1994).

Our results demonstrate the importance of finding
general rules for a problem instead of simply using a
already learned solution path, thus they support a dual-
space search approach to reasoning
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