
UC Irvine
ICS Technical Reports

Title
Optimal register allocation and assignment for loops

Permalink
https://escholarship.org/uc/item/81k8c2ws

Authors
Kolson, David J.
Nicolau, Alexandru
Dutt, Nikil

Publication Date
1995-04-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/81k8c2ws
https://escholarship.org
http://www.cdlib.org/

Notics: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Optimal Register Allocation and Assignment for
Loops*

David J. Kolson Alexandru Nicolau Nikil Dutt

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425

Technical Report #95-18

1 April 1995

Abstract

This paper presents a new technique for the problem of allocating and as
signing registers to variables in loops. Traditionally, cyclic variables (variables
written in the current iteration and read in subsequent iterations) are split
at the loop boundary and treated as separate variables during register alloca
tion and assignment. When these split variables are not assigned to the same
register, register copy operations are necessary to match the register usages
at the beginning and end of a loop iteration. Register copy operations, which
are inherently overhead operations, have an adverse impact on the quality of
the final design both in area (extra hardware—registers, busses—may be nec
essary) and in performance (register copy operations lengthen the schedule).
Therefore, it is desirable to eliminate these spurious copy operations. In this
paper, we describe a novel technique that incorporates loop unrolling into an
assignment algorithm so that cyclic variables are used directly in subsequent
iterations without requiring additional register copy operations, and also with
out requiring more registers than that used by the left-edge algorithm. We
conducted experiments on some core numerical and image silgorithms and
observed optimal allocation.

•This work supported in part by NSF grant CCR8704367 and ONR grant N0001486K0215.

iG'neiBiVI Rir!''" :nnito!/!
boiosivia 9C: ?Krr:

WEJ tfionxqaO ad
(.O.g.UarsiiiT)

1 Introduction

Allocation of hardware elements and the mapping or binding of these elements to behavioral objects are basic

tasks in High-Level Synthesis [4, 5, 24], Typically, a desired characteristic of the design solution is the minimum

amount of hardware that will achieve given performance constraints. One problem in allocation and binding is

to determine the minimal number of registers which are necessary to store values across states eis well as the

mapping of variables (or values^) to those registers.

The cyclic nature of loops considerably complicates this mapping process when a loop creates values in the

current iteration that are used in future or subsequent iterations. The fundamental problem in handling loops

with these cyclic (or loop-carried) variables is the matching of the variable-to-register mappings at the beginning

and end of a loop. That is, the assignment of variables to registers at the beginning of the loop and at the

end must match so that it is correct to iterate over the schedule. The traditional approach to overcoming this

problem is to (arbitrarily) split any cyclic variable at the loop iteration boundary into two new variables which

are then subjected to the mapping process.

If these two variables are not mapped to the same register, then register copy operations are necessary to

make the register usages at the beginning and end of an iteration match. Various strategies exist (as discussed

in the next section) to reduce the number of copy operations, but, in doing so, typically increase the number of

registers (and connections) in the design and thus increase the area cost.

Reducing (or, ideally,completelyeliminating) these register copyoperations is important since they represent

adversely impact the resulting design. To implement the copy operations, extra hardware (e.g., busses and/or

temporary registers) may be necessary to provide the needed connections between the registers under considers^

tion, thus increasing the area cost. Even if the necessary connections are present (i.e., existingdata-paths can be

utilized), copy operations lengthen the schedule, and thus, impact performance, especially since these overhead

operations are contained within a looping construct.

In this paper we present a technique which maps variables to registers for behaviors with loops, such that no

register copy operations are necessary to match register usages at loop beginning and end and no more registers

than the maximum number of overlapping lifetimes are used (i.e., the same number of registers used by the

left-edge algorithm). Our technique accomplishes this by incorporating loop unrolling into a register assignment

algorithm. In contrast to other approaches, our algorithm produces an assignment of variables to registers which

may possibly span multiple iterations of the original loop. Register copy operations are then unnecessary to

match usages in subsequent iterations since those iterations have taken the previous iteration's assignment into

account (i.e., values produced earlier are being used directly from their previously assigned registers).

This paper is organized as follows. In Section 2 we discuss previous work. In Section 3 we demonstrate the

' Without loss of generality,we use the terms variable and valvesynonymouslyin this paper.

deficiency of previous techniques in adequately removing spurious register transfers. In Section 4 we present

our technique and in Section 5 we relate experiments that we conducted and our observed results. Finally in

Section 6 we conclude.

2 Related Work

In High-Level Synthesis the problem of register assignment traditionally refers to determining the number of

registers necessary to save values between time-steps. In the REAL project [II], the left-edge algorithm used
in channel routing is adapted to the allocation ofvariable lifetimes and results in an optimal register allocation

for basic blocks. Other approaches similar to REAL are used in SPLICER [14] and other synthesis systems

[3, 17]. Another approach is based upon modelling non-overlapping variable lifetimes cis cliques and applying a
clique partitioning algorithm to the resulting graph [16, 23]. In the CADDY system [9], the allocation problem
is formulated as a graph coloring problem. Also, in [7] a bipartite graph formulation is used.

In order to reduce the interconnect and multiplexer cost ofscattered registers, some researchers have focused

on grouping registers into memory modules [1, 2, 8, 13]. Also, [19] considers the allocation of array variables to

memory modules.

However, these previous techniques do not satisfactorily handle register assignment when cyclic or loop-
carried variables are present. Some work [6, 15, 20] has been done to improve these techniques for loops. These

approaches (arbitrarily) break a cyclic variable's lifetime at loop boundaries, creating two "coupled" variables

which the assignment process tries to assign to the same register. If the coupled variables are not assigned to
the same register, register copy operations are necessarily inserted at the end ofthe loop to correctly set-up the
next iteration.

In [6], aheuristic is used totry and fill the gap between the coupled variables and then the left-edge algorithm is
applied. In [21], an initial assignment produced by the left-edge algorithm is iteratively improved by "permuting"
the variables in registers at the end ofthe loop to obtain an allocation where register usages match at loop top
and bottom. Ifit is impossible topermute the values, then registers are added tothe design. In [15], an algorithm
is presented which tries to keep coupled variables in the same register by modelling the assignment process by

maximizing the overlapping of sets of intervals.

With all of these approaches, there exist situations in which it is impossible to assign registers without

additional copy operations for a given connectivity, or that only permit removal of additional copy operations

at the expense of extra hardware (i.e., more registers and connections). Section 3 presents such a case for

illustration.

Our approach differs from previous work in that we incorporate loop unrolling into the register assignment
algorithm. With our approach, registers are assigned tovariables for a given iteration. Then, rather than adding

A B C D E

a) Scheduled flowgraph b) Lifetime graph

Figure 1: An example flowgraph and its corresponding variable lifetime graph.

copy operations to match usages, the loop is unrolled an iteration and assignment to the new iteration begins

with the usages found at the end of the previous iteration. This process continues until a match is found in the

register usages at the beginning and end of the unrolled loop. Thus, the register usages naturally match at the

beginning and end of the loop since the assignment algorithm has produced a mapping which spans multiple

iterations. Also, our assignment does not use more registers than that produced with the left-edge algorithm,

since variables are not "forced" into particular register assignments.

3 A Motivating Example

In this section we present an example of a loop body where we assign registers by the traditionad approach

of splitting the cyclic variables at the loop boundary and apply the left-edge algorithm to allocate registers.

Next, we demonstrate application of previous techniques on the example which results in additional register

copy operations. Finally, we show the assignment using our technique that eliminates these copy operations.

3.1 An example

Figure 1 shows the loop body of a sample behavior represented as a dataflow graph and is scheduled into four

cycles with the resource constraints of one adder and one multiplier, each with unit cycle latency. Also pictured

is the corresponding variable lifetime graph. The execution model used here assumes that the target design has

disjoint register read and write times. Therefore, for clarity in the lifetime graph, if a variable has its last use

in a cycle, it dies at the cycle's mid-point. Conversely, if a variable is newly defined, it is created at the cycle's

mid-point. This makes cases where variables may share registers readily apparent. For instance, it is clear that

variables B and E may share a register in Figure 1(b).

Examining the variable lifetime graph, the minimal number of registers necessary to carry values across states

A1 B1 D1

TTJc

a) Lifetimes sorted

Left-edge Assigoment:
Rl: Al, C, D2
R2; Bl, A2
R3: Dl, E, B2

Resultmg Data Tiaosfers:

Rl = Rl + R2
R3 = R3 + 7 ; R2 = R3 • R2
Rl = R2 + Rl
R3 = R3 + Rl

*R1 = R2 ; R2 = R3 ; R3 = Rl

b) Assignments and transfers

Figure 2: An assignment of variables to registers.

is three, since no more than three distinct variable edges cross a state boundary in Figure 1(a). Also, there are
three cyclic variables: A, B and D. Existing techniques for allocating variables to registers would break these
variables at the iteration boundary. This forms the variables Al, A2, Bl, B2, Dl, and D2, where a T' denotes
the loop entry segment of a variable's lifetime and a '2' denotes the loop exit segment. Figure 2(a) depicts
the split variables sorted by birth times. Applying the left-edge algorithm to these variables gives the register
assignment and the resulting loop body show in Figure 2(b) (transfers separated by semi-colons are executed

concurrently). Note that the last step of the loop body in Figure 2(b) requires three additional register copy
(move) operations; the variables in the registers must be completely permuted to correctly set-up those variables
for the next iteration (i.e., move D2 to R3, A2 to Rl and B2 to R2). This represents an overhead which cannot
be eliminated without exploiting loop unrolling or additional registers.

3.2 Stok's Approach

Stok's approach [21] to removing register copy operations at the end of loops is to start with an initial assignment
(produced by the left-edge algorithm) and then to iterate over a "permute" phaise (which is formulated as amulti-
commodity flow problem) and an allocate phase (which increases the number ofregisters by one each time the
permute phase fails) until no transfers are necessary.

Figure 3(a) graphically indicates the overlapping of variable lifetimes across cycles from the initial left-edge
assignment found in Figure 2. The original flowgraph is scheduled into four cycles, therefore the line labelled

"t5" represents the first cycle of the next iteration.

Recall that three register copy operations are required to correctly set-up the values for the next iteration.

After applying Stok's algorithm to the initial assignment the values are re-arranged in the registers so that one
less register copy operation is necessary. This resulting assignment is shown in Figure 3(b) and requires two
register copy operations to swap the values in Rl and R3. However, since it is not possible to further reduce
the number of required copy operations (i.e., the variables cannot be permuted around to obtain an assignment
which contains no copy operations), the next iteration of Stok's algorithm adds a fourth register to the design

tl t2 t3 t4 t5

tl t2 t3 t4 t5

tl t2 t3 t4 t5

(b)

Figure 3: Applying Stok's algorithm to example flowgraph.

and the permute phase is repeated. The addition of the fourth register results in a mapping of variables to

registers with no copy operations as depicted in Figure 3(c). Thus, using Stok's approach, extra hardware (i.e.,

another register Jind its associated connections) is necessary to remove all copy operations.

3.3 Our Solution to the Example

As we have noted, it is not possible to derive an assignment of the variables to registers for this example such

that the cyclic vjiriables are in the same registers at the loop beginning and end. Rather than adding register

copy operations at the loop end or adding a register to the design, we unroll the loop for another iteration and

assign registers to the new iteration based upon the assignment found at the end of the previous iteration.

Figure 4 shows the example unrolled for another iteration (i.e., one execution of the new loop corresponds

to two iterations of the original loop). At the beginning of the loop the variables A, B and D are in registers

Rl, R2 and R3, respectively. At the end of the first iteration, the variables A, B and D have been mapped to

registers R3, R2 and Rl, respectively. This is the assignment that is used as the starting point for assigning

registers in the next iteration. At the end of the second iteration, the variables A, B and D have been mapped

to Rl, R2 and R3, respectively, which naturally (i.e., as a result of the dataflow and register assignment, and

without copy operations) matches the assignment found at the beginning of the first iteration. (In Section 4, we

show exactly how this solution is obtained.) Therefore, it is possible to iterate over this new assignment without

introducing register copy operations and without adding more registers.

a) Variable lifetimes

Our Assignment:

Rl: Al, Cl, D2, A3
R2: Bl, El, B2, E2, B3
R3: Dl, A2, C2, D3

Resulting Data Transfers:

Rl = Rl + R2
R2 = R3 + 7 ; R3 = R3 • R2
Rl = R3 + Rl
R2 = R2 + Rl
R3 = R2 + R3
R2 = Rl + 7 ; Rl = R2 • Rl
R3 = Rl + R3
R2 = R2 + R3

b) Assigmnents and transfers

Figure 4: An assignment with no register copy operations.

3.4 Unrolling and the Left-edge Algorithm

It is important to note that the solution shown above isnot derived simply from unrolling the loop one iteration

and applying the left-edge algorithm. In Figure 5, the example has been unrolled one iteration and the corre

sponding variable lifetimes are sorted by birth times (with the cyclic variables split at the final loop boundary).
Applying the left-edge algorithm to the sorted lifetimes gives the assignment also pictured. Although this strat
egy has eliminated one register copy operation (by matching the variable Ain register Rl at the loop beginning
and end), it did not result in an allocation without register copy operations—the variables in R2 and R3 must

be swapped.

As a matter offact, this is not a matter ofunrolling for "enough" iterations. In Figure 6, the example has

been unrolled for three iterations and the variables lifetimes are sorted by birth times (again, with the cyclic
variables split at the loop boundaries). After applying the left-edge algorithm to these variables, the resulting
assignment requires three register copy operations. This mismatching is due to the fundamental problem with

the approach of (arbitrarily) splitting variables at the loop boundary. It creates two variables that must be

matched to avoid register copy operations, rather than modifying the register transfers to used the variables

from their new locations.

4 Our Technique

In the preceding example, it is not obvious why only two iterations suffice to produce a mapping ofvariables to

registers such that no register copy operations are necessary. In general, it may be necessary to unroll the loop
for more iterations to produce such a mapping.

In this section we present our algorithm for assigning registers to variables in loops. First, we discuss our

model for variable accesses and present variable tracking which is a simple method of assigning variables to

Vanable lifetimes:

A B C D E

Left-edge Assignment:

Rl: AL Cl, D2, A3
R2: Bl. A2. C2, D3
R3: Dl, El. B2. E2, B3

Sorted Lifetimes:

Al Bl D1

Resulting Data Transfers:

A3 E2

D3

Rl = Rl + R2
R3 R3 + 7 : R2 = R3 * R2
Rl R2 + Rl
R3 = R3 + Rl
R2 = R2 + R3
R3 Rl + 7 : Rl = R3 ♦ Rl
R2 = Rl + R2
R3 - R2 + R3

»R2 = R3 : R3 = R2

Figure 5: Unrolling and applying the left-edge algorithm.

registers. Then, we present an optimal, but exponential, algorithm and a heuristic modification that achieves

equally good results on benchmarks.

4.1 Variable Access Model

We model the accessing of variables in each state with a variable access stream. This stream indicates which

variables are read, which are written and which become dead. A read of a variable is simply denoted by the

variable (e.g., A), a write is denoted by an asterisk following a variable (e.g.. A*) and the last use of a variable

is denoted by a minus sign following a variable (e.g.. A—). Also, because we assume that the register read and

write times in a cycle are disjoint, all reads in a cycle are found before any of the writes in the variable access

stream. Parenthesis are used to group all variable reads and writes occuring in a particular state.

As an example, the variableaccess streams for each state of the earlier example (found in Figure 1) are shown

in Figure 7. In the first state, the variables A and B are read (with A having its last use) and the variable C

is defined^. Therefore, the variable access stream is "{A - EC*)". Once all of the streams for each state are

derived, they are concatenated to form the variable access stream for the loop which is also shown in Figure 7.

4.2 Variable Tracking

Variable tracking is a simple mechanism for keeping track of which register contains particular variable and

denotes the mapping of variables to registers found at state boundaries. A variable tracking graph is a graph

'A definition of a variable is synonymouswith a write to a variable and updates the value of that variable.

Variable Lifetimes:

A B c D E

Sorted Lifetimes:

Left-edge Assignment

Rl: Al, Cl, D2, A3, C3, D4
R2: Bl, A2, C2, D3, A4
R3: Dl, El, B2, E2, B3, E3, B4

Resulting Data Transfers:

R2 = R3 * R2

Rl = R3 ♦ Rl

Rl + R2
R3 + 7 ;
R2 + Rl
R3 + Rl
R2 + R3

Rl + 7 ;
R2 + Rl

R3 + R2
Rl + R3
R2 + 7

Rl + R2
Rl + R3
R2 : R2

; R2 = R2 ♦ R3

Figure 6: Unrolling the example three iterations.

Variable Access Streams: Scheduled Flowgraph: Variable Tracking:

A B D
A B C D E

[rMli^SSIS^HFini

B-D-A»E*

Variable access stream for the loop:

(A-BC*)(B-D-A»E»XC-AD»)(DE-B*)

Figure 7: The example and its variable access streams.

where each node corresponds to a particular mapping of variables to registers and the edges between nodes

represent the variable access streams which were executed in that state. To derive the mapping for the next

state given the mapping for the current state and its variable access stream, the registers belonging to variables

that die (if any) are de-allocated and then registers are (re-)assigned to those variables which are defined.

Figure 7 shows the variable maps and the tracking mechanism for the example presented earlier. The initial

mapping to the loop is: { A Rl, B —• R2, D —* R3 }. This is the mapping found at the beginning of state

1. To derive the next mapping, the variable access stream, A —BC*, is considered. Since the variable A dies,

the register Rl is de-allocated and then subsequently re-assigned to the variable C giving the mapping found at

the boundary between states 1 and 2.

Notice that in state 2, two variables (B and D) have their last use and two variables (^4 and E) are created.

In this case, to derive an optimal solution, we explore all possibilities. That is, since B and D die and A and E

are created, two possible mappings—assigning B's register to A and D's register to E or assigning B's register

to E and D's register to A—are generated. Register assignment then continues with both of these mappings.

4.3 An Optimal Algorithm

Our approach is to iteratively unroll the loop for one iteration and to track (assign) variables over that new

iteration, based upon the mappings found at the end of the previous iteration. Then, the variable mappings

found at the end of the loop cire checked against the variable mappings found at previous iteration beginnings

to detect if there is a match. If so, then an assignment of variables to registers has been found which requires

no register copy operations. If no matches are found, then the process of unrolling and assignment is repeated.

In order to ensure optimality (i.e., an assignment which spans the minimal number of iterations), whenever

variablesare defined, multiple nodes are constructed in the tracking graph. These nodes correspond to assigning

each free register to a defined variable. Once the variables have been tracked, assignment continues with each

Procedure Optimal-Assign (Init : Initial register assignment;
VA : Variable access pattern;
N : number of registers)

Begin
Set allocation^ound to false

Forany registers ^ Init
Add registers to freejregs

Loop
Foreach state in VA

Foreach map in curr-maps
Add all last-use registers to freejregs
Generate all permutations of defined vars. in free.regs
Foreach permutation

Add variables in map which are live
If (state is the loop end)

Foreach map in varunaps
If (current mapping matches map)

Set assignment-found to true
Set assignment to map

Endif

End

If (assignment-found is false)
Unroll the loop one iteration

Else

Add current mapping to var-maps
Endif

Endif

Until assignment-found
Return assignment

End Heuristic-Assign

Figure 8: An optimal register assignment algorithm.

ofthe nodes generated for that state. This leads to an exponential, but optimal, algorithm since all possibilities
for assigning variables to registers have been tried.

Our algorithm for optimally assigning variables to registers is shown in Figure 8. The algorithm takes as
input the variable access stream for the loop, an initial mapping of variables to registers and the number of

registers (both of which can be found by applying the left-edge algorithm tothe loop). After some initialization,
our algorithm iterates over an assignment phase, where the variables are tracked, and an unrolling phase (if an
assignment to the loop is not found).

Figure 9 demonstrates how our algorithm operates on the example presented earlier. The initial assignment

of variables to registers is {A R.1, B —R,2 and D —> R3 }. As illustrated before, in state 2, two variables,
Aand E are defined and two possible mappings result. Continuing assignment with both of these mapping, at
the end of the first iteration the mappings {A US, B —<• R2, D —>R1} and {A —• R2, fl -+ R3,

A B C D E

lR3l iRll lR2l

ABCDE

lR3lR2l iRll I

A B C D E

ABCDE

lR2l iRll IR3]

ABCDE

R2lR3l lRll~]

Iteration Boundary

Figure 9: Applying the optimal algorithm to the example.

D —»• R1 } result. Since neither of these mappings match any previous mapping found at the beginning of an

iteration (which is one in this case), the loop is unrolled for an iteration and variables are assigned to the new

iteration.

Each of the mappings from iteration one is used in assigning registers to the second iteration. Again, when

registers are assigned in state 2, all possibilities are tried. At the end of iteration two, the resulting mappings are

checked against the (three) previous mappings occuring at an iteration beginning. Since a match is found which

produces a cycle (i.e., it is possible to iterate over that assignment), the process terminates and the resulting

assignment spans two iterations.

4.4 A Heuristic Algorithm

The complexity of the optimal algorithm arises from trying all possibilities of variables in registers when a

variable is defined. To reduce the search space, we employ a heuristic which simply keeps track of the last register

assigned to each variable. Then, when newly defined variables are assigned to registers, we check to see if that

variable's last assigned register is free. If so, then it is assigned, otherwise another register is assigned and the

register information is updated^. Figure 10 contains a heuristic version of our algorithm that implements this

strategy.

Our heuristic version of the optimal algorithm still retains the property that the final solution has no register

copy operations. However, the solution derived by our heuristic may span more iterations than the minimal

^To avoid ordering problems, the heuristic is consulted for each variable before any registers are assigned.

Procedure Heuristic-Assign (Init : Initial register assignment;
VA : Variable access stream;
N ; number of registers)

Begin
Set cLilocation-found to false

Foreach register Init
Add register to freejregs

Foreach variable

Set last_reg(variable) to {^}
Loop

Foreach state in VA

Foreach last use variable in state
Add variable's register to freejregs

End

Foreach defined variable in state
If (lasl_rey(variable) € freejregs)

Assign variable to lasl_re5(variable)
Remove hom freejregs

Endif

End

Foreach unassigned definition variable in state
Assign a free register to variable
Remove from free^egs
Update last_re5(variable)

End

If (state is the loop end)
Foreach map in var_maps

If (current mapping matches map)
Set assignment-found to true
Set assignment to map

Else

Add current map to var_maps
Endif

End

If (assignment-found is false)
Unroll the loop one iteration

Endif

Endif

Until assignment-found
Return <issignment

End Heuristic-Assign

Figure 10: A heuristic version of the assignment algorithm.

Variable Tracking Information;

A B C D E

lR2lRllR3l

B-D-A*E*

^3^ mi

lASTJiEG

A B C D E

A B C D E

Figure 11: Applying our heuristic to the example.

number produced by the previous algorithm.

As an example, Figure 11 shows the assignment process for our example using the heuristic version of our

algorithm. At this point, we are considering assigning registers to variables A and E. Also, the two registers

assigned to B and D become free. In the optimal algorithm, we would generate two mappings: one where {

A —> R2, E ^ R3 } and vice versa. However, for the heuristic version only one mapping is generated by

consulting the LAST-REGS of A and E. The Isist register assigned to A (Rl) is not free, but the last register

assigned to E (R2) is. Therefore, R2 is assigned to E and R3 is assigned to A and the last assigned register

information for A is updated.

5 Experiments and Results

In this section we describe the experiments that we conducted with our algorithm and the results that we

observed. We have implemented both optimal and heuristic versions of our algorithm and have applied them

to a suite of benchmarks consisting of six numerical and image processing behaviors. The two-dimensional

hydrodynamics benchmark is adapted from [22] and the inner product benchmark is adapted from [10]. The

wavelet and predictor-corrector image compression benchmarks are adapted from [18] and the Laplace and low-

pass filters are adapted from [12].

Schedules for each benchmark were generated with the resource constraints of one adder with one-cycle

latency and one multiplier with one-cycle latency. The variable lifetimes were derived from these schedules and

used to conduct a series of experiments.

The first experiment was designed to study the number of register copy operations necessary at the loop

Benchmark

2D-Hydrodynamics

Inner Product

Wavelet

Predictor-Corrector

Laplace

Low Pass

Left-edge Our technique

Optimal I Heuristic

Table 1: Number of register copy operations in schedules.

Benchmark Optimal Heuristic

2D-Hydrodynamics 2 2

Inner Product 3 4

Wavelet 2 2

Predictor-Corrector 2 2

Laplace 3 3

Low Pass 3 4

Table 2: Number ofloop iterations spanned by register assignment.

end when using the traditional approach where cyclic variable lifetimes are split at the loop boundary. For this
experiment we took the variable lifetimes, split them at the loop boundaries and applied the left-edge algorithm.
The resulting assignment was examined and the number of register copy operations necessary at the end of the
loop was noted. These results are found in column one of Table 1which is labelled "Left-edge."

The variable assignments at loop end as well as the number of registers found in the mapping produced
by the left-edge algorithm was used as input to our algorithm. The variable access streams were derived from
the schedules and also input to our algorithm. Table 1contains the number of register copy operations found
in the assignments produced by the optimal and heuristic algorithms. In all cases, the results are zero, that
is, no register copy operations are necessary since our assignments naturally match the register usages at loop
beginning and end.

Two concerns follow from this: How many Ueraiions did our solutions span? and What is the difference in
performance between schedules with copy operations and schedules without?. Experiments two and three were
designed to answer these questions, respectively.

In experiment two, we noted the number of iterations that the variable eissignments produced by our algorithm

Benchmark Left-edge Our technique % Improvement

2D-Hydrodynamics 15 13 13%

Inner Product 13 10 23%

Wavelet 20 17 15%

Predictor-Corrector 14 12 14%

Laplace 23 19 17%

Low Pass 15 12 20%

Table 3: Number of cycles in schedules.

spanned. These results are found in Table 2. In most cases, our heuristic version derived a solution that spanned

the same number of iterations as the optimal. For all of the solutions, the number of iterations spanned by the

optimal and heuristic assignments is small enough so as not to be prohibitive in terms of the resulting code size.

In experiment three, we studied the effects of register copy operations on performance. Using the assignments

produced by the left-edge algorithm and by our algorithms, registers were assigned to the schedules. Then, for

those schedules which were assigned by the left-edge algorithm, necessary register copy operations were added.

For the purposes of scheduling, it is assumed that the existing connectivities were used to perform the register

copy operations (i.e., the adder and multiplier were used, incurring a one-cycle latency for executing the copy

operations). The number of cycles in those schedules was counted and these results appear in Table 3.

Because both our optimal and heuristic versions derive assignments which do not contain register copy

operations, only one column is used for these results in Table 3. Also, the results for our assignments are

normalized to one iteration. That is, since our assignments span multiple iterations, the total number of cycles

in the schedules was divided by the number of iterations spanned by the register assignment.

In the column labelled "% Improvement" we note the percentage improvement of the schedules produced

by our technique over those produced by the traditional approach. For the scientific benchmarks, we observed

improvements of 13% and 23% and, for the image benchmarks, we observed improvements in performance

between 15% and 20%. This significant performance improvement clearly demonstrates the utility of our register

assignment technique.

6 Conclusion

In this paper we have presented a novel algorithm which assigns variables to registers in the presence of loops.

Traditional techniques arbitrarily break variables whose lifetimes cross iteration boundaries at those boundaries.

Then, those "de-coupled" variables are assigned to registers. When the de-coupled variables are not assigned

to the same register, register copy operations are necessary to correctly set-up the variables for subsequent

loop Iterations. However, those register copy operations have an impact on the design, both on the area—new
connections and/or hardware may be necessary—and on the performance-the copy operations increase the
length of the schedule.

Our technique incorporates loop unrolling into an assignment algorithm so that cyclic variables assigned to
a particular register are subsequently used directly from that register. In this way, no register copy operations
are necessary to move variables around—the schedule already has been modified to use variables directly from
the register previously assigned. Also, our algorithm uses no more registers than that used by the left-edge
algorithm. That is, only enough registers as the maximal simultaneously live variables is necessary with our
approach. We have conducted experiments on some core numerical and image algorithms and have observed
improvements of between 13% to 23% on these benchmarks.

References

[1] I. Ahmed and C. Y. R. Chen. Post-processor for Datapath Synthesis Using Multiport Memories. IEEE
International Conference on Computer-Aided Design '91, 1991.

[2] M. Balakrishnan, A. K. Majumdar, D. K. Banerji, J. G. binders, and J. C. Majithia. Allocation of Multiport
Memories in Data Path Synthesis. IEEE Transactions on Computer-Aided Design, 7(4), April 1988.

[3] R. A. Bergamaschi, R. Camposano, and M. Payer. Allocation Algorithms Based on Path Analysis. Integra
tion, the VLSI journal, 13, 1992.

[4] R. Camposano and W. Wolf. High Level VLSI Synthesis. Kluwer Academic Publishers. Norwell, MA., 1991.
[5] D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction to Chip and System Design

Kluwer Academic Publishers. Norwell, MA., 1992.

[6] G. Goossens. Optimization Techniques for Automated Synthesis of Application-specific Signal Processing
Architectures. PhD thesis, KU Leuven, 1989.

[7] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu. Data Path Allocation Based on Bipartite Weighted
Matching. 27th DAC, 1990.

[8] T. Kim and C. L. Liu. Utilization of Multiport Memories in Data Path Synthesis. 30th DAC, 1993.
[9] H. Kramer and W. Rosenstiel. System Synthesis Using Behavioural Descriptions. 1st EDAC, 1990.

[10] D. J. Kuck. The Structure of Computers and Computations, volume 1. Wiley k Sons, 1978.
[11] F. J. Kurdahi and A. C. Parker. REAL; AProgram for Register Allocation. 24th ACM/IEEE Design

Automation Conference, 1987.

[12] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall Signal Processing Series, 1990.

MIMOLA Design System: Tools for the Design of Digital Processors. DAC-84, June

[14] B. M. Pangrle. Splicer: AHeuristic Approach to Connectivity Binding. 25th DAC, 1988.
[15] C. Park, T. Kim, and C. L. Liu. Register Allocation for Data Flow Graphs with Conditional Branches and

Loops. Euro-DAC '93, 1993.

[16] P. Paulin. Scheduling and Binding Algorithms for High-Level Synthesis. 26ih DAC, 1989.

[17] P. G. Paulin and J. P. Knight. Force-Directed Scheduling for the Behavioral Synthesis of ASIC's. IEEE
Transactions on the Computer-Aided Design of Integrated Circuits and Systems, 8(6), June 1989.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes tn C: The Art of
Scientific Computing. Cambridge University Press, second edition, 1992.

[19] L. Ramachandran, D. D. Cajski, and V. Chaiyakul. An Algorithm for Array Variable Clustering. EDAC
'94, 1994.

[20] L. Stok. Interconnect Optimisation During Data Path Allocation. European Design Automation Conference
(EDAC), 1990.

[21] L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD thesis, Eindhoven University of
Technology, 1991.

[22] Y. Tanaka, K. Iwasawa,Y. Umetani, and S. Cotou. Compiling Techniques for First-Order Linear Recurrences
on a Vector Computer. Journal of Supercomputing, 4(1), March 1990.

[23] C. J. Tseng and D. P. Siewiorek. Facet: A Procedure for the Automated Synthesis of Digital Systems. 20th
DAC, 1983.

[24] J. Vanhoof, K. Van Rompaey, I. Bolsens, C. Coossens, and H. De Man. High Level Synthesis for Real Time
Digital Signal Processing. Kluwer Academic Publishers. Norwell, MA., 1993.

