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Abstract

Sensorimotor adaptation tasks have been used to characterize processes responsible for calibrating 

the mapping between desired outcomes and motor commands. Research has focused on how this 

form of error-based learning occurs in an implicit and automatic manner. However, recent work 

has revealed the operation of multiple learning processes, even in this simple form of learning. 

This review focuses on the contribution of cognitive strategies and heuristics to sensorimotor 

learning, and how these processes enable humans to rapidly explore and evaluate novel solutions 

to enable flexible, goal-oriented behavior. This new work points to limitations in current 

computational models, and how these must be updated to describe the conjoint impact of multiple 

processes in sensorimotor learning.

The Versatility of Human Motor Control

Flexible use of the upper limbs is fundamental to our species. The ability to manipulate 

objects with our hands, coupled with an expanding capacity to plan future states, was critical 

to our ancestors’ survival [1]. Dexterous arm movements confer a tremendous advantage for 

efficiently harvesting foods in varied environments, as well as for manufacturing and 

manipulating tools. Indeed, Darwin argued that humans’ use of thrown projectiles may have 

been an adaptation brought about by the pressure to hunt, and suggested that this distinctive 

behavior may be linked to the emergence of bipedalism [2,3]. Though other primates have 

occasionally been shown to perform analogous upper limb behaviors, these actions are rarely 

observed and lack much of the precision of human throwing [4–6].

Many classic studies of sensorimotor learning have been based on reaching and throwing 

movements, with the results helping us gain fundamental insights into foundational ideas 

such as the trade-off of speed and accuracy [7–10] and the representation of sensorimotor 
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dynamics [11]. One important subfield of motor learning research employs adaptation tasks 

to ask how an internal model, a representation of body-environment interactions, is 

calibrated to support feedback and feedforward control [12]. The internal model concept has 

provided a useful theoretical tool to understand how people adjust their behavior when 

moving in atypical force fields or when the visuomotor mapping is altered. These paradigms 

capture computational problems that enable us to skillfully manipulate objects when 

dynamics fluctuate (e.g., the changing weight of a bottle as we consume its contents) or 

when environmental factors require that we adjust our movements (e.g., throwing a frisbee 

on a windy day). Building on a rich body of neurophysiological and neuropsychological 

evidence, [13–17] and articulated in sophisticated computational models [18–22], this form 

of incremental motor learning has provided a fundamental characterization of one important 

function of the cerebellum.

Models of error-based learning have provided a reasonable approximation of behavior. For 

example, a simple state space model [18] in which an error signal is used to recalibrate an 

internal model from trial to trial, captures the general shape of the learning function, one in 

which performance changes follow a negatively accelerating exponential (or linear in log-log 

coordinates, [23]). However, these models fail to capture certain features of performance 

such as spontaneous recovery and savings [20,24]. The inadequacy of these models reflects 

the complexity of human motor performance: We are flexible, generalist problem-solvers, 

and, as shown in studies of learning across diverse task domains [25–27], readily employ 

multiple learning systems to solve the problem at hand. In studies of sensorimotor 

adaptation, this means that the learner, when presented with an unexpected and salient 

perturbation, is likely to generate a compensatory strategy or heuristic. Much as the spear 

fisher adjusts his aim to account for the refraction of light in water, a participant might opt to 

aim to the side of a target if an opposing force unexpectedly displaces the limb or a 

visuomotor perturbation results in a large reaching error.

Until recently, strategy use has been considered a nuisance [13] in studies of sensorimotor 

adaptation, with the experimental instructions often designed to actively discourage this 

behavior [14,28]. Moreover, the use of heuristics, such as an explicit change in aiming, has 

been ignored in computational models of the learning process. However, the flexibility of the 

human motor system allows us to supplement the calibration process. Strategies can allow us 

to use our planning abilities to rapidly find “good-enough” solutions, ones that might get 

performance in the right ballpark as the calibration process slowly and subtly homes in on 

the precise dynamics. In this paper, we review recent developments in studies of 

sensorimotor adaptation, highlighting work that has provided a richer picture of the 

operation of multiple learning processes and new insights into how these processes support 

skilled motor behaviors.

Using Multiple Learning Processes in Response to Sensorimotor 

Perturbations

The physics of the body and environment are in a continuous state of flux: Not only do long-

term changes arise from growth, development, and injury, but, in the short-term, muscles 
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fatigue and sensory conditions fluctuate. The motor system must rapidly adjust to these 

variable conditions, and the ease with which we maintain calibration belies its computational 

complexity [29].

To study this calibration process, researchers have employed a variety of learning tasks — 

including prism adaptation [14,28,30,31], visuomotor rotations [32,33], and force field 

learning [11] — in which a perturbation is introduced to alter the relationship between a 

movement and the resulting sensory feedback. Across a range of contexts, performance 

typically follows a stereotypical learning function (Fig 1A) driven by a gradient descent 

process in which the error is reduced in a continuous, monotonic manner. When the 

perturbation is removed a persistent “aftereffect” is observed, taken as the signature of a 

recalibrated sensorimotor mapping. Over time, the aftereffect diminishes at roughly the 

same rate as that observed during the initial acquisition phase, eventually returning to the 

baseline, non-adapted state.

However, this formulation misses a common-sense approach to the problem participants face 

in such experiments. While throwing darts one evening, imagine, after donning a pair of 

prism glasses, that you see a dart land far to the right of the target. It would be reasonable to 

suppose that an intelligent agent would take steps to volitionally compensate for the 

perturbation. For example, you might aim to the left of the target on the next trial. Indeed, 

such compensatory strategies are essential on windy days for golfers and placekickers.

In one oft-cited prism adaptation example, several individuals displayed extremely rapid 

learning, completely reducing their error on a throwing task after a single trial [28] (Fig. 

1B). When queried, these individuals reported using an explicit strategy, estimating the error 

induced by the glasses and purposively aiming in the opposite direction to negate the 

perturbation. Interestingly, this strategy proved to be unstable, with successive movements 

increasingly overcompensating for the prismatic distortion. When instructed to throw “where 

the target appeared,” their performance again took the form of the stereotypical learning 

function, indicating that performance may reflect the combined effects of strategy use and an 

implicit form of recalibration.

One clever way to directly examine this hypothesis involved a variant on the standard 

visuomotor rotation task, one in which participants were given explicit information about the 

perturbation and instructed to use a compensatory strategy [34]. Vision of the hand was 

occluded and feedback was limited to the display of a circle that indicated the position of the 

hand at the end of the movement. After an initial block of trials with veridical feedback, a 

45° counterclockwise perturbation was imposed. Critically, after two reaches in this altered 

environment the experimenter intervened, describing the perturbation and instructing the 

participants to aim in the clockwise direction. To facilitate the use of this strategy, landmarks 

were positioned at 45° intervals around the target. Thus, by aiming to the landmark 45° 

clockwise from the target, the perturbation could be fully negated.

As would be expected, participants performed perfectly on the subsequent trial: Using an 

aiming strategy enabled one-trial learning (Fig. 1C). However, over the next 80 trials, the 

participants’ movements began to “drift” in the direction opposite the perturbation. This 
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paradoxical behavior — where performance worsened with practice — suggests that the 

motor system continued to calibrate the motor commands based on the mismatch between 

the intended reach location (the aiming landmark) and visual feedback, while ignoring 

feedback about task accuracy (the difference between the target location and observed 

feedback). In a subsequent experiment, it was shown that the drift reversed with extended 

training, an effect attributed to an adjustment in the aiming strategy (Fig. 1D, [35]). This 

non-monotonicity, together with evidence using various other methods, has made clear that 

strategy use and implicit recalibration constitute dissociable and relatively independent 

learning processes, with their dynamic integration resulting in the observed task 

performance [24,34–45].

The instructed-strategy procedure [34] has provided important insights into the 

computational constraints on these two processes. However, it doesn't address how or 

whether people develop and modify strategies in a more spontaneous manner; that is, when 

the experimenter does not intervene and provide explicit instructions. To address this issue, 

we developed a task that provides a trial-by-trial measure of the contributions of explicit 

aiming and implicit recalibration [24,37–39,45]. To assay strategic aiming, participants 

verbally report their aim direction prior to each reach, providing these reports both before 

the perturbation and over the course of learning (Figs. 2A,B). Using a simple subtractive 

procedure (reach angle minus aiming angle), we can estimate the precise state of implicit 

recalibration in a continuous manner. Interestingly, the lion's share of early learning, 

especially with large perturbations, is associated with aiming and not recalibration [38]. 

Furthermore, and perhaps more surprising, aiming remains prevalent even in the late stages 

of learning, a result that challenges the standard belief that asymptotic performance only 

reflects the state of a recalibrated sensorimotor mapping [37–39]. Various control conditions 

indicate that these results are not an artifact of the aiming report task [37,39]. The learning 

curves and aftereffects in this task are similar to that observed in standard visuomotor 

rotation tasks, suggesting that strategic processes operate even when the task context (e.g., 

instructions, landmarks) does not prime their use.

Implications for Computational Models of Sensorimotor Learning

The field of sensorimotor learning has benefitted from the development of rigorous 

computational models that not only account for observed behavioral results in healthy and 

neurologically impaired populations, but also generate many testable predictions 

[18,20,46,47]. As noted in the introductory section, prevailing models of the canonical 

learning curve use algorithms that capture a gradient descent reduction of error. The most 

prominent of such models is the two-parameter “state-space” model [18], where a 

Markovian learning rule is used to update the motor state and account for performance errors 

on a trial-by-trial basis. One parameter describes a fixed learning rate, the other corresponds 

to a retention, or memory term.

An important extension of this model was motivated by the idea that performance changes 

may reflect the operation of multiple learning processes that operate at different time scales 

[20]; for example, one process might learn quickly with a short retention constant, whereas a 

second learns more slowly with longer retention. Various puzzling phenomena observed in 
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motor adaptation tasks, including spontaneous recovery [20,48] and savings [24,49–51] can 

be explained by this multiple-rate model. Moreover, this work inspired new ways of placing 

constraints on computational and neural mechanisms of sensorimotor learning. For example, 

whereas different environments may demand rapid changes (e.g., walking on granite or 

walking on sand), the body is generally stable. It would be advantageous to use error signals 

that operate at different rates depending on the nature of the representations [52]. In terms of 

neural systems, it has been proposed that fast cerebellar learning allows for the rapid 

reduction of error when learning a new skill or mapping, whereas slower learning within the 

motor cortex is essential for retention [53].

However, it is not clear how processes such as strategic planning fit into the picture, 

especially in the case of one-trial learning. One solution is to associate explicit processes 

with the fast process of the two-rate model, and implicit recalibration with the slow process 

[39] (Figure 2C). This framing is in accord with results showing that explicit, fast learning is 

more flexible than sensorimotor recalibration, enabling generalization to new target 

locations, perturbation sizes, and other variations in task demands [38]. Indeed, many 

markers of human sensorimotor learning, including savings [24] and structural learning [54], 

are likely products of our flexible ability to quickly select an appropriate movement plan.

A second major issue concerns the nature of the error signals used for learning. Current 

versions of multi-rate models assume that different learning mechanisms operate on the 

same error signal. However, it is increasingly clear that implicit and explicit forms of 

learning respond to distinct error signals (Figure 3A): Implicit recalibration is driven by the 

difference between the expected and observed outcome, what is referred to as sensory 

prediction error [29]. In contrast, strategy learning is sensitive to the difference between the 

goal and observed outcome, or what is refer to as performance error [35]. Note that in most 

experimental contexts, and in the natural world, these two types of errors are confounded: 

We usually aim at the target of our movements, so the expected outcome is the same as the 

goal. However, experimental manipulations such as the instructed-strategy task [34] or 

aiming report task [24,37–39,45] decouple these error signals. Thus, in the strategy task, the 

drift phenomenon described above occurs because the recalibration system is presented with 

a large error signal — the difference between the aiming location and the rotated cursor, 

even when performance error is negligible (as in the first aiming trials). Indeed, when these 

error signals are decoupled, it appears that implicit recalibration is completely insensitive to 

task success [34,35]. The non-monotonic shape of the performance curve in the strategy task 

reflects the fact that participants have to “re-aim” to offset the consequences of a modular 

implicit learning process driven by sensory prediction errors [24,35] (Figure 3A).

This new conceptualization will require revisiting our computational models. Not only is it 

necessary to incorporate distinct error terms for explicit and implicit processes, but it may 

also be necessary to reconsider whether these processes utilize different learning algorithms. 

Recent work suggests that the gradient descent algorithm may be an inappropriate 

characterization of implicit learning: The learning function and asymptotic state of 

recalibration does not appear to be proportional to error size [38,55–57], and when isolated 

from task performance, recalibration appears to proceed in fixed, discrete-like steps [57]. 

Likewise, explicit learning appears to be highly non-monotonic, producing behaviors more 
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consistent with active exploration and/or hypothesis testing [37]. Thus, the stereotypical 

learning curve may not reliably reflect individual learning curves, but may instead be an 

artifact that arises from the averaging of data across individuals [58]. A more accurate 

account of the performance function will require models that reflect the combined operation 

of explicit and implicit learning processes and their respective error signals (Figure 3B).

Neural Systems for Explicit Aiming and Implicit Recalibration

The notion that learning reflects the conjoint operation of multiple learning systems is 

prevalent in many cognitive domains such as category learning, recognition memory, and 

reinforcement learning [25,26,59]. The work of Milner and colleagues with amnesic patient 

HM was, of course, highly influential in the development of memory taxonomies, and in 

particular, the striking distinction between explicit, or declarative memory and implicit, 

procedural memory [60,61]. Although the initial demonstration of spared implicit learning in 

HM came from motor tasks such as mirror drawing, subsequent work revealed varying 

capacities for implicit learning on a range of perceptual tasks [60]. This work has inspired a 

half-century of research on the neural correlates of different memory processes, with the 

insight that learning, even within a taxonomic branch, is likely to be highly distributed.

Neuroimaging studies have shown that areas including, but not limited to, prefrontal cortex, 

premotor and primary motor cortices, parietal cortex, basal ganglia, and cerebellum are 

recruited during sensorimotor adaptation tasks [62–69]. Of particular interest here has been 

the cerebellum. Dating back to the 19th century, this structure has been recognized as 

essential for motor coordination and learning [70]. Inspired by its unique anatomy and 

physiology, detailed models of cerebellar learning [71–74] have been developed and refined, 

using tasks that involve adaptation of eye movement reflexes [51,75]. In terms of reaching 

studies, patients with cerebellar degeneration consistently show attenuated adaptation in 

response to sensory perturbations [14,15,36,47,76]. Furthermore, cerebellar activity is 

correlated with sensory prediction errors, the putative signal for sensorimotor recalibration 

[77]. Taken together, there is general consensus that the cerebellum is essential for keeping 

the motor and sensory systems calibrated across a range of contexts.

What are the putative neural substrates for the more cognitive contributions to motor 

learning? In terms of explicit processes such as strategy use, it is noteworthy that frontal 

lobe regions, including lateral and medial aspects of prefrontal cortex, as well as premotor 

cortex, often exhibit increased activity during the early phases of sensorimotor learning 

[62,64,78]. Although the functional role of the prefrontal activations have typically been 

described in terms of meta-cognitive control processes such as planning, working memory, 

or monitoring [67,68,78], it would also be reasonable to suppose that these regions are 

essential for strategic changes in aiming, consistent with a more general view of the frontal 

lobes being essential for action selection when the sensory-motor mapping is novel or 

arbitrary [79]. Aiming, at least when invoked to hasten learning in response to a 

perturbation, requires an indirect mapping with the direction of the action displaced from the 

target, similar to the spear fisher accounting for the refraction of light in water.
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The instructed-strategy task [34] has revealed intriguing differences between the effects of 

cerebellar and frontal lobe damage: Patients with cerebellar degeneration actually perform 

more accurately than matched controls on this task, showing attenuated drift after 

implementing an aiming strategy [36]. Their impaired sensitivity to sensory prediction errors 

confers a form of “immunity" to maladaptive recalibration in this task. In contrast, patients 

with prefrontal lesions from stroke tend to show greater drift than their matched controls 

[80]. We assume this pattern reflects a deficit in being able to adjust their aiming strategy, 

even when intact recalibration has led to a gradual increase in performance error. In line with 

this hypothesis, older adults, assumed to have mild forms of frontal lobe dysfunction, show 

intact implicit learning but reduced explicit learning in visuomotor adaptation tasks [44].

We speculate that these results suggest a key role for the frontal lobe in aiming. However, 

there are reasonable alternative hypotheses to consider. For example, the excessive drift in 

our study with PFC patients [80] could reflect an insensitivity to performance error, 

perseveration, or even a “hyper-sensitive” calibration system (e.g., a cerebellum unchecked 

by the cortex). Future work that directly manipulates and measures different markers of 

implicit and explicit processes will be required to advance our understanding of the 

functional contributions of different neural systems to sensorimotor learning.

Beyond Adaptation: Towards a Broader View of Motor Learning

Tools from statistical decision theory and Bayesian statistics may prove useful in developing 

descriptive models, as well as offering new ways to characterize mechanisms of motor 

learning [81,82]. Aiming locations could be thought of as (indirect) spatial goals, cached 

motor commands as action options, and the planning and execution of a specific command 

as an enacted decision. The honing of a true motor skill, as opposed to adaptation to an 

external perturbation, has been theorized to entail a model-free reinforcement learning 

process [83]. Thus, learning in a reaching task can be characterized by a trade-off between 

exploration and exploitation [84], where strategic processes initially explore the manifold of 

actions that may yield task success, and, once a solution is found, the rewarded movement is 

reinforced over time. This approach helps shed light on the relationship between motor 

variability and learning [85]: The operation of cognitive strategies, especially prominent 

during early learning, may confer rapid dimensionality reduction (i.e., reducing the space of 

possible solutions).

Insights gained from the study of strategy use point to other aspects of cognition that are 

likely to be relevant for the study of sensorimotor learning. For example, there can be costs 

in motor performance from cognitive control [86], an idea captured by the folk psychology 

notion that experts are wise to not “think”, but just “do,” and reflected in the venerable 

model of Fitts and Posner on the stages of skill acquisition [87]. However, we cannot assume 

that the reduction in cognitive contributions to performance implies that all learning has 

shifted to the implicit calibration system. There appear to be multiple forms of implicit 

learning: In addition to error-based remapping, the evidence suggests that changes in 

performance also reflect contributions from associative processes such as use-dependent 

learning and operant conditioning [50,88,89].
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Moreover, it is unclear if this explicit component ever really “disappears.” For instance, 

professional riflemen adeptly use “Kentucky Windage” to adjust their aim to correct for the 

direction of the wind. In this and other cases, cognitive strategizing is the mark of an expert, 

not an amateur. Indeed, the kinds of cognitive strategies discussed here are not limited to 

motor tasks: A generalized capability for one-trial learning has obvious implications for 

learning writ large.

Ultimately, it is critical to incorporate the influence of cognitive planning into any realistic 

and comprehensive model of human sensorimotor learning. High-level motor planning is not 

just relevant to spearfishing, darts, or shooting: The ability to execute aimed movements — 

to rapidly, accurately, and flexibly perform planned, multi-joint movements to interact with 

the environment — is a hallmark of human behavior.
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Outstanding Questions

How should aiming strategies be modeled and integrated into standard models of 

sensorimotor learning? How can such models be modified to include ideas from work on 

decision making and reinforcement learning to provide a comprehensive picture of motor 

performance and learning?

What are the putative neural substrates contributing to the cognitive processes underlying 

motor strategies and heuristics, like aiming? How much do these substrates overlap with 

the known neural architecture involved in planning and decision-making?

Do strategic processes and recalibration processes directly interact, or are the systems 

psychologically and neurally “quarantined” from each other?

Do explicit strategies become proceduralized over time as a true skill is acquired?

What aspects of “cognitive” mechanisms for motor learning are shared with other species 

and which, if any, are unique to humans?
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TRENDS Box

Behavioral, computational, and neuropsychological studies have provided a detailed 

picture of the processes involved in sensorimotor adaptation tasks. This work has been 

based on laboratory studies in which sensorimotor feedback is perturbed, using tools such 

as prism glasses, force fields, and visuomotor rotations. Performance changes have been 

attributed to learning mechanisms that modify a sensorimotor mapping based on sensory 

prediction errors, the difference between predicted and observed feedback. However, a 

growing body of research points to the operation of additional learning processes, 

including the use of cognitive strategies and heuristics. In adaptation experiments, such 

strategies can be characterized as “aiming”, one form of a flexible, goal-oriented motor 

plan.

Theoretical models are being revised to address the interaction of multiple learning 

processes, specifying computational constraints concerning the teaching signals used by 

different learning mechanisms. Furthermore, the search for the neural substrates of motor 

learning has cast a wider net, going beyond the role of the cerebellum and motor cortex, 

to include, for example, frontoparietal areas involved in planning and decision making.
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Figure 1. Explicit processes in motor learning
(A) The canonical human motor learning curve, with the preliminary baseline period (region 

1), the learning block where a sensorimotor perturbation is applied (region 2), and a 

“washout” period where the motor system is re-calibrated back to baseline (region 3). (B) 

Data from a subset of participants who “cheated” in a prism adaptation study — that is, 

using an aiming strategy to adjust their behavior after the first perturbed trial (black X). 

Although this immediately eliminated the error, performance became worse over subsequent 

trials (red line). When instructed to stop aiming, the error became larger and reversed sign. 

Simulated data is modeled after reference [28]. (C) After the first perturbation trial in the 

strategy task (black X), participants are instructed to counter the rotation by aiming towards 

a landmark displaced from the target. This results in immediate task success. However, 

performance subsequently deteriorates (“drifts”) due to the operation of an implicit learning 

process. Simulated data is modeled after reference [34]. (D) If the training period is 

extended, the error arising from implicit drift is eventually negated by an adjustment in the 

strategy. An aftereffect, indicative of recalibration, is evident when the rotation is turned off 

and the participants are told to reach directly to the target. Simulated data is modeled after 

reference [35].
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Figure 2. Measuring strategy use in a sensorimotor adaptation task
(A) To obtain a direct assay on aiming strategy, participants are required to explicitly report 

their aim location prior to each trial. The magnitude of implicit learning can be estimated by 

subtracting the aiming angle from the measured movement angle. (B) There is a large 

contribution from explicit re-aiming right after the perturbation, which decreases over time. 

In contrast, implicit learning is slower and monotonic. Note that the estimated state of 

remapping matches precisely the magnitude of the aftereffect at the start of the washout 

phase. Data adapted from reference [37]. (C) The fast and slow components of the two-rate 

state-space model [20] closely resemble, respectively, explicit and implicit learning [39].
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Figure 3. Multiple error signals in sensorimotor adaptation tasks
(A) Dissociated error signals for recalibration (sensory prediction error) and strategizing 

(performance error). (B) A simplified schematic of the primary processes thought to be 

involved in voluntary movement. Cognitive processes (green box) provide input to implicit 

motor execution processes (red box). As part of the planning process, an aim is selected 

based on the task goal. The control policy constitutes the precise movement plan(s) that 

correspond to the selected goal and results in a motor command to the limb. The motor 

command not only drives the movement, but is fed into a forward model to generate a 

sensory prediction. This prediction is compared to the feedback to define the sensory 

prediction error, a signal that is used to update the forward model and control policy. 

Performance error feedback influences the planning process, allowing for strategic 
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adjustment. The majority of research in motor learning has focused on details of the forward 

model and limb dynamics (red box). Further work should also address the computations 

occurring at the planning stages (green box).
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