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SPINDLY mediates O-fucosylation of hundreds of 
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Abstract
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocyto-
plasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physio-
logical processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by 
SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thali-
ana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrom-
etry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy 
mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated 
proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic 
functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by 
phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling path-
ways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study 
identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, en-
abling future dissection of the signaling network that mediates sugar regulation of plant growth and development.
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reproduction in any medium, provided the original work is properly cited. 

Open Access

Br
ea

kt
hr

ou
gh

 R
ep

or
t 

Introduction
Nutrient sensing and signaling are critical for homeostasis, 
growth, and development in all organisms. Extensive studies 
in animals have established that posttranslational modifica-
tion (PTM) of nucleocytoplasmic proteins by O-linked 

N-acetylglucosamine (O-GlcNAc), catalyzed by O-GlcNAc 
transferase (OGT), is an essential nutrient-sensing mechan-
ism that regulates protein functions and cellular homeostasis 
according to nutrient and energy status (Yang and Qian 
2017; Ong et al. 2018; Ma et al. 2021). Animals have only 
one OGT, but Arabidopsis thaliana has two OGT homologs 
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named SPINDLY (SPY) and SECRET AGENT (SEC). SPY and 
SEC represent two distinct evolutionary clades present in 
all plants and red algae, whereas the animal and fungi king-
doms contain only homologs of SEC but not SPY 
(Olszewski et al. 2010; Sun 2021). While SEC appears to be 
a canonical O-GlcNAc transferase, SPY was recently shown 
to be a protein O-fucose transferase (POFUT) (Zentella et al. 
2016, 2017; Sun 2021). This study uncovers protein 
O-fucosylation as a novel signaling mechanism and, together 
with genetic studies, suggests that SPY regulates diverse devel-
opmental processes through O-fucosylation of many nucleo-
cytoplasmic proteins that have yet to be identified.

Genetic studies have indicated that SPY and SEC play re-
dundant essential roles in plant viability and have complex 
interactions in various signaling and developmental path-
ways (Hartweck et al. 2002). The spy single mutants display 
a range of developmental defects including slim and small 
seedlings, pale leaves, early flowering, reduced fertility, and 
constitutive responses to gibberellic acid (GA) (Jacobsen 
and Olszewski 1993). Further detailed analyses have provided 
evidence for prominent functions of SPY in diverse processes, 
which include GA and cytokinin signaling, circadian clock, 
flowering, root development, light responses, abscisic acid 
(ABA) responses, abiotic stresses, and pathogen responses 
(Tseng et al. 2004; Qin et al. 2011; Steiner et al. 2012; Cui 
et al. 2014; Zentella et al. 2017; Zhang et al. 2019; 
Mutanwad et al. 2020; Wang et al. 2020; Sun 2021). On the 
other hand, the sec single mutants display only subtle pheno-
types such as short hypocotyls and early flowering (Zentella 
et al. 2016). The spy sec double mutant, however, is embryo 
lethal (Hartweck et al. 2002), suggesting additive effects on 
certain cellular functions. These observations suggest that 
SPY and SEC play redundant essential roles in growth and 
viability, while SPY plays prominent roles in broad develop-
mental and physiological processes.

The functions of O-fucosylation have been characterized 
for only a handful of proteins in plants. The first identified 
substrates of SPY-mediated O-fucosylation are the DELLA 
proteins, repressors of GA signaling and plant growth 
(Zentella et al. 2017). DELLAs are known substrates of 
SEC-mediated O-GlcNAcylation, but no OGT activity has 
been detected for SPY (Zentella et al. 2016). Instead, SPY 
was recently found to catalyze O-fucosylation of DELLA on 
serine and threonine residues using GDP-fucose as a donor 
substrate (Zentella et al. 2017). O-fucosylation activates 
and O-GlcNAcylation represses DELLA function by increasing 
and decreasing DELLA’s interactions with its target transcrip-
tion factors, respectively (Zentella et al. 2016, 2017). The an-
tagonistic effects of O-GlcNAc and O-fucose modifications 
on DELLA and the lethal phenotype of the spy sec double 
mutant suggest that SPY and SEC can have additive or antag-
onistic effects on different proteins.

In addition to DELLAs, PSEUDO RESPONSE REGULATOR 5 
(PRR5), a circadian clock component, has been shown to be 
destabilized by SPY-mediated O-fucosylation, but is not 

modified by O-GlcNAcylation (Wang et al. 2020). More re-
cently, a transcriptional and RNA splicing regulator, named 
AtACINUS, was reported to be modified by O-fucosylation 
and O-GlcNAcylation (Bi et al. 2021). The human homolog 
acinus (apoptotic chromatin condensation inducer in the 
nucleus) is known as a hub in the protein interaction net-
work that regulates gene expression (Murachelli et al. 
2012). Similarly, AtACINUS interacts with chromatin remod-
eling factors and RNA splicing factors. Several AtACINUS- 
dependent intron splicing events were altered in the spy 
and sec mutants, providing evidence for functions of 
O-fucose and O-GlcNAc in regulating AtACINUS functions 
and alternative RNA splicing (Bi et al. 2021). SPY also inter-
acts with bHLH transcription factors TCP14 and TCP15 to 
promote cytokinin responses (Steiner et al. 2012, 2016). 
TCP14 and TCP15 are O-GlcNAcylated by SEC, but it is un-
clear how O-GlcNAcylation affects their functions and 
whether they are also O-fucosylated (Steiner et al. 2012, 
2016). These genetic and molecular studies have indicated 
that SPY-catalyzed protein O-fucosylation is an important 
cellular signaling mechanism that regulates diverse develop-
mental processes and shares essential functions with SEC/ 
O-GlcNAcylation.

Studies in animals established O-GlcNAcylation of nucleo-
cytoplasmic proteins as a nutrient-sensing mechanism that 
monitors diverse metabolic pathways. Nevertheless, the sig-
nals that control and are transduced by SPY and SEC remain 
unknown in plants. Proteomic studies have identified hun-
dreds of O-GlcNAcylated proteins (substrates of SEC), which 
mostly play important regulatory roles (Xu et al. 2017). 
Identification of the substrate proteins O-fucosylated by 
SPY is required to advance our understanding of the global 
functions of SPY/O-fucosylation and its interplay with SEC/ 
O-GlcNAcylation (Sun 2021).

In this study, we demonstrate SPY’s function in sugar signal-
ing and identify targets of SPY-mediated O-fucosylation. 
We developed an affinity chromatography method using 
Aleuria aurantia lectin (AAL) to identify O-fucosylated pep-
tides in Arabidopsis. Using this method, we identified 
943 O-fucosylated peptides in 467 proteins, generating an 
O-fucosylation profile in plants. Quantitative proteomic com-
parison between wild-type (WT) and spy mutants demon-
strated an essential role for SPY in protein O-fucosylation. 
Our proteomic study provides molecular evidence revealing 
the broad regulatory functions of O-fucosylation in key cellular 
and developmental processes, as well as in all major phytohor-
mone signaling pathways. Comparing the targets of the SPY, 
SEC, and TOR pathways provides a system-level view of net-
work organization and reveals potential junctions of crosstalk 
and overlapping actions among these nutrient-sensing path-
ways in regulating different cellular, developmental, and 
physiological processes. Our study reveals numerous target 
proteins and the network framework for future dissection 
and engineering of the molecular networks that couple nutri-
ent and energy status with growth regulation in plants.
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Results
SPY plays an essential role in sugar-dependent plant 
growth
The spy and sec mutants have been characterized exten-
sively in the context of a wide range of developmental 
and physiological processes. However, it has remained un-
clear whether their phenotypes are related to nutrient 
sensing. To test the function of SPY in sugar-dependent 
growth, we grew Arabidopsis wild-type (WT), as well as 
sec5 (Xing et al. 2018), spy-4 (Swain et al. 2001) and our 
newly identified spy-23 T-DNA insertion mutants on media 
containing 1% sucrose or, as a control, mannitol, which is a 
sugar alcohol that cannot be metabolized by plants. The 
expression levels of SEC (Xing et al. 2018) and SPY (Swain 
et al. 2001) were reported to be severely decreased in these 
mutants. After 4 d of growth under light, the seedlings 
were put in the dark to deplete the sugar supply from 
photosynthesis (Fig. 1, A–D). All seedlings on mannitol 
media stopped growing, while the WT and sec seedlings 
on sucrose-supplemented media continued to grow. 
In contrast, the spy mutants on sucrose-supplemented 
media grew very little compared with WT and sec, indicat-
ing that SPY, but not SEC, is required for sugar-dependent 
growth.

AAL-based chromatography effectively identifies 
O-fucosylated proteins as potential SPY substrates in 
Arabidopsis
To identify O-fucosylated proteins from the Arabidopsis 
proteome, we developed an affinity chromatography meth-
od using AAL (Bandini et al. 2016) to enrich O-fucosylated 
peptides for analysis with mass spectrometry (MS). To deter-
mine whether the identified peptides were modified by 
SPY-mediated O-fucosylation, we used stable isotope labeling 
mass spectrometry (SIL-MS) to quantitatively compare pep-
tide abundance between WT and the spy mutants (Fig. 2A). 
WT and spy-23 or spy-4 seedlings were grown on media 
containing the 14N or 15N stable isotope, with the isotopes 
reversed in repeat experiments (Fig. 2A; Supplemental Fig. S1). 
The 14N- or 15N-labeled tissues (WT and spy-4) or proteins 
(WT and spy-23) were mixed (14N-labeled WT and 
15N-labeled spy were mixed in one experiment and those 
of 14N-labeled spy and 15N-labeled WT were mixed in the 
replicate experiment). Total protein was digested with tryp-
sin. The peptides were purified by chromatography using a 
column packed with AAL-agarose beads. The O-fucosylated 
peptides were eluted with 10 mM L-fucose solution (Fig. 2B). 
The peptides were analyzed by liquid chromatography- 
tandem mass spectrometry (LC-MS/MS) using either high- 
resolution and high-accuracy Orbitrap Q-Exactive HF or 
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Figure 1. SPY plays an essential role in sugar-dependent protein O-fucosylation and plant growth. A) A schematic diagram showing the localizations 
of spy-4 and spy-23 T-DNA insertion sites in the SPY gene. Untranslated regions (UTRs), exons, and introns are represented by empty rectangles, filled 
rectangles, and zigzag lines, respectively. B–D) WT, spy-23, spy-4, and sec-5 seedlings were grown on ½-MS supplemented with 1% sucrose (S) or with 
mannitol as a control (M) for 4 d under light and then transferred to dark for 8 d. Representative seedlings are displayed in (B). Scale bar is 10 mm 
(B). The measurements of hypocotyl lengths and fold changes (FC, +S/+M) are shown in (C). The bar graph shows mean ± SEM (n = 10). ANOVA 
analysis shows that sucrose-induced hypocotyl elongation of spy-23 and spy-4 is significantly different from that of the WT (P-values < 2e-16). The 
percentages of seedlings that developed obvious true leaves are shown in (D). The bar graphs show mean ± SEM of the averages of three replicate 
experiments each including at least 8 seedlings. ANOVA analysis shows that sucrose-induced true leaves development of spy-23 and spy-4 is signifi-
cantly different from that of the WT (P-values = 2.82e-7 and 1.93e-7, respectively).
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Eclipse mass spectrometer with electron-transfer dissociation 
(ETD) (see Materials and Methods for details).

The MS/MS spectra identified 170 O-fucosylated peptides 
in WT and two in spy-4 among a total of 3142 peptides whose 
identification was supported by both 14N- and 15N- labeled 
peptides (Supplemental Fig. S1, Supplemental Datasets S1 
and S2), and 116 O-fucosylated peptides in WT and 40 in 
spy-23 among a total of 4458 peptides (Supplemental Fig. 
S1, Supplemental Datasets S3 and S4) using the same criteria. 
Examination of MS1 spectra indicated that the O-fucosylated 
peptide peaks were near noise level in the spy mutants (Fig. 2, 
C–F). Quantitation of the intensity of isotopic peaks showed 
that all 170 O-fucosylated peptides were over six-fold more 
abundant in WT than in spy-4, whereas only 30 (0.95%) of 
the unmodified peptides showed similar differential abun-
dance in WT and spy-4 (Fig. 2G; Supplemental Datasets S1 
and S2). Similarly, all 116 O-fucosylated peptides were over 
five-fold more abundant in WT than in spy-23, whereas 
only 17 (0.38%) of the unmodified peptides showed similar 
differences (Fig. 2H; Supplemental Datasets S3 and S4). The 
two datasets overlapped by 75 peptides and together show 
SPY-dependent O-fucosylation of 211 peptides from 150 pro-
teins. These results indicate that our AAL-affinity chromatog-
raphy coupled with the mass spectrometry method can 
specifically identify O-fucosylated proteins that are SPY 
substrates.

Hundreds of nucleocytoplasmic proteins are 
O-fucosylated
To identify more O-fucosylated proteins, we applied the 
same AAL-chromatography-MS pipeline to WT without iso-
tope labeling. We analyzed floral tissues (Xu et al. 2017) and 
seedling tissues (Supplemental Fig. S1). Tissues were har-
vested from 9 independent biological experiments and 
34 mass spectrometry runs were performed using higher- 
energy collision dissociation (HCD) and electron-transfer/ 
higher-energy collision dissociation (EThcD) analyses 
(Supplemental Fig. S1). Similar to O-GlcNAc (Xu et al. 
2017), the O-fucose moiety is extremely labile and often dis-
sociates from the precursor during the internal vibronic en-
ergy randomization. During HCD fragmentation, the labile 
bond between the O-fucose moiety and the peptide back-
bone is fragmented before backbone fragmentation; thus, 
the resulting b and y fragment ions often do not contain 
O-fucose. This neutral loss prevents the use of mass shifts 
in the peptide sequence ions to establish the site(s) of 

O-fucosylation modification. As such, HCD data often 
provide a confident assignment of O-fucose to a particular 
peptide but cannot pinpoint the exact site of modification 
in the sequence (Fig. 3A). In contrast, EThcD (Yu et al. 
2017) produces mostly c/z backbone fragment ions that re-
tain the O-fucose moiety, and in many cases allows the as-
signment of the mass spectrum to a particular peptide 
sequence and unambiguous site localization of the modifica-
tion (Fig. 3A).

Our MS analyses of AAL-enriched peptides identified 1750 
distinct O-fucosylated peptides. These O-fucosylated 
peptides correspond to 943 different peptide sequences 
from 467 proteins. The data support at least 1072 
O-fucosylation sites, of which 345 were determined with 
greater than 95% confidence. A list of these modified pep-
tides and sites of the modification are provided in 
Supplemental Dataset S5. Sequence analysis of unambigu-
ously assigned O-fucosylation sites showed no consensus se-
quence other than a slight preference for serine in the 
flanking region (Fig. 3B). The O-fucosylation sites tend to 
be in intrinsically disordered regions; a similar trend was 
found for previously identified O-GlcNAcylated sites (Xu 
et al. 2017; Fig. 3C). Subcellular localization analysis of the 
O-fucosylated proteins using SUBA4.0 (Hooper et al. 2017) 
showed a significant enrichment of nuclear proteins 
(66.8%; P = 2.2e-16, fold enrichment = 2.5) (Fig. 3D; 
Supplemental Dataset S6). In addition, 11.9% and 8.6% of 
the O-fucosylated proteins were predicted to localize in cyto-
sol and plastid, respectively (Fig. 3D; Supplemental Dataset S6). 
Gene ontology (GO) analysis of protein molecular function 
supported regulatory roles for O-fucosylated proteins. 
Based on their molecular function annotations from The 
Arabidopsis Information Resource (TAIR), the O-fucosylated 
proteins showed significant enrichment of key molecular 
functions including histone modification, transcription, 
RNA-processing, translation, protein degradation, protein 
phosphorylation, cytoskeleton, and vesicle trafficking (Fig. 3E; 
Supplemental Dataset S7).

Overlap of the O-fucosylome with the O-GlcNAcome 
and targets of TOR signaling reveals the integration of 
nutrient-sensing pathways
Previous studies indicated a complex relationship between 
SPY and SEC, including redundant functions in embryo via-
bility, antagonistic regulation of GA signaling, and unique 
functions of SPY in various developmental processes 

Figure 2. Continued 
digested. O-fucosylated peptides (shown with triangle tag) are captured using AAL-agarose beads and analyzed by LC-MS/MS. B) The chromatogram 
of absorbance at 214 nm of AAL-chromatography shows enrichment of O-fucose-modified peptides after elution with O-fucose (the inset shows an 
amplified view of the elution peak). C–F) Selected MS1 spectra show the relative abundance of O-fucosylated (C and E) and non-O-fucosylated (D 
and F) peptides in WT compared with spy. The peptides are from ABA-RESPONSIVE KINASE SUBSTRATE 2 (AKS2, AT1G05805.1) (C), 
RIBULOSE-BISPHOSPHATE CARBOXYLASES (RBCL, ATCG00490.1) (D, F), and WITH NO LYSINE (K) KINASE 4 (WNK4, AT5G58350.1) (E). C*) 
Carbamidomethylated cysteine. G, H) Scatter plots of log10 ratios of WT/spy-4 (G) and WT/spy-23 (H) for peptides (data for O-fucosylated peptides 
are in orange color) that were detected and quantified in both isotope-switched replicate experiments.
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(Sun 2021). To understand the relationship between 
O-fucosylation and O-GlcNAcylation at the molecular and 
network levels, we compared the O-fucosylome with the 
O-GlcNAcome (Xu et al. 2017). Of the 262 O-GlcNAcylated 
proteins, 128 were also detected as O-fucosylated (Fig. 4A). 
The TOR kinase is another important nutrient sensor. Of 
the 83 TOR-targeted phosphoproteins (Van Leene et al. 

2019), 26 were detected as O-fucosylated, 16 were detected 
as O-GlcNAcylated, and 15 were modified by both (Fig. 4A; 
Supplemental Dataset S8). These results identified groups 
of proteins that are common targets of the SPY, SEC, and 
TOR pathways, of two of the three pathways, or potential 
targets unique to each pathway (Fig. 4A; Supplemental 
Dataset S8).
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Based on known or predicted cellular functions of these 
groups of proteins, the common targets of SPY, SEC, and 
TOR are mostly involved in RNA processing and translation 
(EIF4G and CONSERVED BINDING OF EIF4E1/CBE1) (Fig. 4, B 
and C). Additionally, the targets shared by SPY and SEC are 
mostly involved in transcription, nuclear pore complex, 
and microtubule organization (Fig. 4, D–F). Common targets 
shared by SPY and TOR include autophagy factor ATG1A 
and vesicle trafficking protein EPS1 (Fig. 4, G and H). SPY ap-
pears to play prominent roles in certain vesicle trafficking 
processes and has unique roles in DNA replication, DNA re-
pair, protein degradation, and photosynthesis (Fig. 4, I–K).

Many O-fucosylated proteins play important roles in 
SPY-regulated biological processes
Genetic studies have shown that SPY functions in various de-
velopmental and physiological processes. Many O-fucosylated 
proteins are known to play important roles in these 
SPY-regulated processes and are therefore likely downstream 
mediators of SPY regulation (Fig. 5). The spy mutants display 
slim and dwarf phenotypes and severe growth defects. The 
O-fucosylome data suggests that one major mechanism by 
which SPY regulates plant growth is through modulation of 
phytohormone signaling, as components of many phytohor-
mone signaling pathways are modified by O-fucose (Fig. 5). 
SPY O-fucosylates and activates DELLA proteins to suppress 
GA signaling (Zentella et al. 2017). Specifically, SPY was shown 
to O-fucosylate the LSN peptide of RGA (Zentella et al. 2017). 
The same LSN peptide was also identified as O-fucosylated in 
our O-fucose profiling experiment (Supplemental Dataset S5). 
In addition to RGA, we also detected O-fucosylation of many 

DELLA-interacting proteins. These include several compo-
nents of the switch defective/sucrose non-fermentable (SWI/ 
SNF) class of ATP-dependent chromatin remodeling com-
plexes (Fig. 4D). Components of the SWI/SNF complex have 
been reported to interact with SPY and DELLA and play roles 
in GA responses (Archacki et al. 2013; Sarnowska et al. 2013). 
DELLA-interacting proteins also include components of other 
phytohormone signaling pathways (Hu and Ma 2006; 
Matsushita et al. 2007; Daviere et al. 2014; Fukazawa et al. 
2014; Kumar et al. 2019; Fig. 5). These include four members 
of the INDETERMINATE DOMAIN transcription factors 
(IDD1, IDD2, IDD4, and IDD5) (Fukazawa et al. 2014; Kumar 
et al. 2019), and four members of class I TCP transcription fac-
tors (TCP8, TCP14, TCP15, and TCP22) involved in GA and 
cytokinin responses (Daviere et al. 2014; Fukazawa et al. 
2014; Kumar et al. 2019), and two members of the 
BRASSINAZOLE RESISTANT 1 (BZR1) family transcription fac-
tors (BES1/BZR1 HOMOLOG 2 (BEH2) and BES1/BZR1 
HOMOLOG 4 (BEH4)) involved in brassinosteroid (BR) signal-
ing (Bai et al. 2012), and three auxin response factors (ARF6, 
ARF7, ARF8) (Oh et al. 2014) (Fig. 5). Additional components 
other than the DELLA-interacting factors were O-fucosylated 
in the cytokinin, auxin, and BR pathways. Furthermore, we de-
tected O-fucosylation of the key component of the ethylene 
pathway (EIN2) (Alonso et al. 1999), and many proteins in-
volved in the ABA and jasmonic acid (JA) signaling pathways 
(Fig. 5).

SPY is likely to interact with SEC in regulating phytohor-
mone responses. O-fucosylation and O-GlcNAcylation of 
DELLAs have been shown to have opposite effects on their 
interaction with partner transcription factors such as BZR1 
(Zentella et al. 2016, 2017). Both O-fucose and O-GlcNAc 

JKD

ER

Root 
development

IDD5

MRH2

PFA6BIB

MKK5

MKK4

MAC5B

WRKY72

AtGRP7

CPK3

EDR1

EXA1

EIF4G

elFiso4G1

NIG

Immunity

BHLH129

KIN2

RAF11

AKS2

CPK3

DWA3

SUA

ABA/stress

JAZ9

JAV1

JMT

JA

ARF6

ARF8

AFB4

ARF7 PAX

TPL

TOL3

Auxin

AHL25

IDD1

IDD2

IDD4

IDD5

TCP22

TCP8

TCP14 TCP15

GA

BIM1BEH2

BEH4

BR

EIN2

Ethylene

ELF3

Circadian

PKS1 PHYE

Light

TIC

TCP21STIPARR1

Cytokinin

KHZ1

CP2

ELF3

FLX

FLL4

LD

VRN1

Flowering

PHL

NAC075

SPL10

SPL11

TCP23

FLC regulators

RGA1

TCP14

TCP15

AtGRP7

CID3

CID4

DRMY1

RAF18

TIC

Figure 5. O-Fucosylated proteins function in diverse biological processes. Representative groups of O-fucosylated proteins with important functions 
in biological processes. Yellow text and underline mark proteins that are also O-GlcNAc-modified and TOR targets, respectively.

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data


1326 | THE PLANT CELL 2023: 35; 1318–1333                                                                                                                     Bi et al.

modifications were detected for several TCPs, IDDs, ARFs, 
and EIN2, suggesting that the two O-glycosylation pathways 
interact not only in GA responses, but also in cytokinin, aux-
in, and ethylene responses. Interestingly, EIN2 is also a target 
of TOR signaling (Fu et al. 2021). These results indicate that 
SPY/O-fucosylation modulates all phytohormone responses, 
in various combinations with the O-GlcNAc and TOR 
pathways.

Phenotypes of the spy mutants suggest roles for SPY in light 
responses, circadian rhythm (Tseng et al. 2004; Wang et al. 
2020), root development (Cui et al. 2014; Mutanwad et al. 
2020), flowering (Jacobsen and Olszewski 1993), and immunity 
(Zhang et al. 2019; Sun 2021). Consistent with the genetic evi-
dence, the O-fucosylated proteome includes light signaling 
components such as PHYTOCHROME E (PHYE) (Clack et al. 
1994) and phytochrome kinase substrate1 (PKS1) 
(Fankhauser et al. 1999), proteins involved in the circadian 
clock such as TCP21 (Pruneda-Paz et al. 2009), TIME FOR 
COFFEE (TIC) (Hall et al. 2003) and EARLY FLOWERING 3 
(ELF3) (Hicks et al. 2001), and many proteins involved in 
root development, flowering, and immunity (Fig. 5). These re-
sults show that SPY/O-fucosylation, acting in various combina-
tions with the O-GlcNAc and TOR pathways, modulates key 
cellular activities as well as phytohormone signaling, develop-
ment, and responses to environmental signals.

Discussion
As a central nutrient signaling mechanism, O-glycosylation of 
nucleocytoplasmic proteins has been extensively studied in 
metazoans but has attracted little attention in the field of 
plant biology. Genetic evidence indicates an essential func-
tion of O-glycosylation in both kingdoms, as the ogt mutants 
in mammals and the spy sec double mutant in Arabidopsis 
are lethal (O’Donnell et al. 2004; Hartweck et al. 2006). 
Furthermore, genetic and biochemical studies in 
Arabidopsis have suggested complex interactions between 
SPY and SEC in a wide range of developmental and physio-
logical processes (Hartweck et al. 2002; Ong et al. 2018). 
Our study provides genetic evidence for the sugar-signaling 
function of SPY and a proteomic dataset of O-fucosylated 
proteins in plants, thereby revealing a sugar-signaling net-
work that involves SPY-mediated O-fucosylation of hundreds 
of cellular targets regulating plant growth and development. 
Our dataset also reveals overlap and potential nodes of cross-
talk between the SPY/O-fucosylation, SEC/O-GlcNAcylation, 
and TOR signaling pathways.

Studies in animals have shown that the level of O-GlcNAc 
modification of cellular proteins fluctuates with nutrient 
availability and metabolic status. Whether SPY and SEC activ-
ities depend on metabolic status has not been examined ex-
perimentally in plants. By growing plants in the dark to 
deplete endogenous sugars, we showed that exogenous sugar 
supports seedling growth in a SPY-dependent manner, dem-
onstrating the sugar-sensing function of SPY-mediated 
O-fucosylation. Our results support the notion that sugar 

availability determines the cellular concentration of 
GDP-fucose, the donor substrate of SPY, and hence the level 
of SPY-mediated O-fucosylation of nucleocytoplasmic pro-
teins, which mediate sugar regulation of physiological and 
developmental responses such as growth promotion under 
sugar-replete conditions and growth arrest or stress re-
sponses under sugar-deficient conditions.

We showed that AAL-chromatography specifically enriches 
O-fucosylated peptides. It has been reported that AAL specif-
ically binds to O-fucose (Bandini et al. 2016). We developed 
and optimized an AAL-chromatography procedure to enrich 
for O-fucosylated peptides from Arabidopsis samples. Using 
high-resolution/high-accuracy mass spectrometry, combined 
with two fragmentation modes and/or isotope labeling, we 
have identified large-scale O-fucosylated peptides with high 
confidence. The observation that all the quantified 
O-fucosylated peptides were either undetectable or detected 
at a reduced level in the spy mutants further confirms the 
mass spectrometry identification.

Our proteomic data and the phylogeny of OGTs consistent-
ly support that SPY is the only POFUT that catalyzes terminal 
O-fucose modifications in Arabidopsis, although the possibility 
of another POFUT cannot be ruled out. SPY and SEC represent 
two evolutionarily conserved branches of the OGT family. A 
single SEC-like OGT catalyzes all O-GlcNAc modifications in 
animals, whereas in Arabidopsis, SEC and SPY, without other 
homologs (Olszewski et al. 2010; Sun 2021), are likely solely re-
sponsible for O-GlcNAc and O-fucose modifications, respect-
ively. The decreased levels of all the 211 quantified 
O-fucosylated peptides in spy provide proteomic evidence 
supporting that SPY is the only POFUT that catalyzes terminal 
O-fucose modifications in Arabidopsis. Detection of some 
O-fucosylated peptides in the spy mutants is likely due to par-
tial loss of SPY function in the spy-23 and spy-4 alleles, which 
contain T-DNA insertions around the translation start site and 
may express a low level of full-length or truncated SPY pro-
teins with catalytic activity. In the absence of evidence for an-
other SPY homolog or isozyme, the proteins that showed a 
decreased level of O-fucosylation in spy can be confidently 
considered as direct SPY substrates, and those O-fucosyl pep-
tides un-quantified in our study are most likely also SPY sub-
strates. Our study suggests that the Golgi-localized homologs 
of mammalian protein O-fucosyltransferases (Smith et al. 
2018) may not catalyze terminal O-fucose modification which 
is bound by AAL.

Our O-fucosylome data includes multiple previously re-
ported SPY substrates and interactors. These include RGA, 
TCP14, TCP15, and components of the SWI/SNF complex 
(Sarnowska et al. 2013; Steiner et al. 2016; Zentella et al. 
2017). However, we did not detect O-fucosylation of PRR5 
and AtACINUS (Wang et al. 2020; Bi et al. 2021), suggesting 
that we achieved only partial coverage of the O-fucosylome. 
On the other hand, the detection of O-fucosylation of mul-
tiple members of the same protein family (such as ARFs 
and ECTs, Figs. 4B and 5) suggests the high coverage of our 
proteomic dataset.
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Many O-fucosylated proteins have known functions that are 
consistent with the genetic functions of SPY, and are therefore 
likely functional targets of SPY. For example, the large overlap 
between the O-fucosylated and O-GlcNAcylated proteomes is 
consistent with the embryo-lethal phenotype of the spy sec 
double mutant (Hartweck et al. 2002). In particular, the over-
lap represents essential functions such as transcription, RNA 
processing, translation, as well as auxin and cytokinin signaling 
which are essential for growth and embryogenesis. 
Considering that loss of TOR is also lethal, it is interesting to 
note that the three nutrient signaling pathways overlap in 
post-transcriptional and translational regulation as well as 
auxin and ethylene signaling (Deng et al. 2016). The crosstalk 
among O-fucosylation, O-GlcNAcylation, and TOR-dependent 
phosphorylation on these shared target proteins is likely part 
of the central control system for cell growth.

Energy and nutrient homeostasis involves multiple signal-
ing pathways including O-glycosylation and target of rapa-
mycin (TOR) (Sabatini 2017). Exogenous sugar is required 
for growth after shifting seedlings from light to constant 
darkness, and such growth-promoting effect of sugar re-
quires both TOR (Zhang et al. 2016) and SPY (Fig. 1). A prote-
omic study in Arabidopsis identified 83 TOR-regulated 
phosphoproteins (Van Leene et al. 2019). About 31% (26 
of 83) of TOR-regulated phosphoproteins are O-fucosylated 
and 19% (16 of 83) are O-GlcNAcylated (Fig. 4A). Fifteen 
TOR-regulated phosphoproteins are both O-fucosylated 
and O-GlcNAcylated (Fig. 4A; Supplemental Dataset S8), in-
cluding EIN2, a key component of the ethylene signaling 
pathway recently reported to be a substrate of TOR (Fu 
et al. 2021) and to interact with SPY in tomato (Solanum ly-
copersicum) (Xu et al. 2022). Almost half of the 
O-GlcNAcylated proteins (128 of 262) are O-fucosylated. 
This supports extensive functional overlap between 
O-fucosylation and O-GlcNAcylation and also suggests a 
tight connection between the O-glycosylation-mediated 
and TOR-mediated nutrient signaling pathways. Out of the 
26 substrates common to TOR and SPY, nine are 
RNA-binding proteins and eight out of these nine are also 
SEC substrates, four are translation regulators, and three 
out of these four are also SEC substrates (Supplemental 
Dataset S8). This observation highlights the importance of 
RNA processing and translation regulation in mediating cel-
lular responses to diverse nutrient signals. The SPY/SEC/TOR 
co-regulated RNA-binding proteins are mostly from the 
MEI2-like family and the Pumilio family (Supplemental 
Dataset S8). In yeast, the mei2 gene is a master regulator of 
meiosis and the five Arabidopsis MEI2-LIKE (AML) proteins 
appear to play a similar role in a redundant manner (Kaur 
et al. 2006). AML1-5 is highly expressed in the shoot apical 
meristem, young buds, and reproductive organ primordia 
(Kaur et al. 2006). Compromising AMLs leads to sterility, de-
velopmental arrest caused by defects in meristem activity, 
and various meiotic chromosome organization defects 
(Kaur et al. 2006). Similarly, the Arabidopsis PUMILIO pro-
teins (APUMs) are required for stem cell maintenance and 

differentiation, as well as active cell divisions (Abbasi et al. 
2011). SPY, SEC, and TOR also co-regulate translation elong-
ation factors and related regulators. Several studies showed 
that translation elongation factors play a role in cell division 
and growth (Feng et al. 2007; Zhou et al. 2014; Wang et al. 
2016). These genetic and proteomic studies together suggest 
that the RNA processing and translation factors co-regulated 
by SPY/SEC/TOR are important regulatory hubs for nutrient- 
dependent growth and development.

The crosstalk among O-fucose, O-GlcNAc, and TOR signal-
ing is likely complex and variable for different target proteins. 
The lethal phenotype of the spy sec double mutant suggests 
that O-fucosylation and O-GlcNAcylation have similar and 
additive effects on certain target proteins in contrast to their 
antagonistic effects on the DELLA proteins and GA responses. 
Interestingly, SPY is O-GlcNAcylated and O-fucosylated, sug-
gesting direct crosstalk in addition to the co-regulation of 
shared targets. Crosstalk between O-GlcNAcylation and phos-
phorylation of the same Ser/Thr residue or nearby residues, as 
well as complex interactions between the O-GlcNAc and TOR 
pathways, have been observed in metazoans (Hart et al. 2011; 
Park et al. 2014; Sodi et al. 2015; Very et al. 2018). Our prote-
omic datasets support many hypotheses and provide molecu-
lar targets that can be tested in the future to advance our 
understanding of the interactions among the nutrient signal-
ing pathways.

The O-fucosylome also identified proteins that potentially 
mediate SPY regulation of phytohormone responses, circa-
dian rhythm, floral transition, light signaling and responses, 
ABA and stress responses, immunity, root development, 
and photosynthesis (Fig. 5). The spy mutant was initially 
identified as a GA response mutant and later shown to be hy-
posensitive to cytokinin (Jacobsen and Olszewski 1993; 
Greenboim-Wainberg et al. 2005). While SPY’s functions in 
GA and cytokinin responses, through DELLA and TCP factors, 
respectively, have been studied at the molecular level 
(Steiner et al. 2012; Zentella et al. 2017), our data reveal a 
broad integration of SPY/O-fucosylation with phytohormone 
signaling pathways. We found that SPY O-fucosylates not 
only DELLAs but also many proteins that interact with 
DELLAs, including members of the IDD, ARF, TCP, and 
BZR1/BES1 families and the SWI/SNF chromatin remodeling 
complex. How O-fucosylation and O-GlcNAcylation affect 
these DELLA-interacting factors and their interaction with 
DELLAs are interesting questions for future study.

The spy mutant shows reduced sensitivity to cytokinin in 
terms of root growth inhibition, anthocyanin accumulation, 
leaf margin serration, suppression of inflorescence elongation, 
and trichome development (Olszewski et al. 2010). Some of 
these phenotypes were attributed to the SPY-dependent sta-
bilization of TCP14 and TCP15 (Steiner et al. 2012, 2016). The 
tcp14 tcp15 double mutant shows a reduced sensitivity to 
cytokinin-induced leaf margin serration and trichome devel-
opment, but not suppression of inflorescence elongation 
(Steiner et al. 2012). Our O-fucosylome shows that both 
TCP14 and TCP15 are O-fucosylated by SPY (Fig. 5). In 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
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addition, ARR1, a type-B response regulator that mediates 
cytokinin-dependent transcriptional activation (Hwang et al. 
2012), is O-fucosylated by SPY. ARR1 could explain the 
cytokinin-insensitive phenotype of spy that appears to be in-
dependent of TCP14 and TCP15.

In addition, O-fucosylation was detected on components 
of the BR, auxin, ABA, ethylene, and JA pathways. Many of 
these components of phytohormone signaling pathways 
are also modified by O-GlcNAc (Fig. 5). These observations 
indicate that SPY and SEC co-regulate GA, cytokinin, auxin, 
and ethylene responses, whereas SPY may target unique 
components in the BR, ABA, and JA pathways.

The spy mutants show early flowering phenotypes 
(Jacobsen and Olszewski 1993; Silverstone et al. 2007), and 
the O-fucosylome includes at least 16 proteins that are 
known to be involved in various flowering regulation path-
ways. Eight of these proteins are also O-GlcNAcylated 
(Fig. 5), consistent with the weaker early flowering pheno-
type of sec. Among these eight flowering regulators, 
GLYCINE RICH PROTEIN 7 (AtGRP7) promotes flowering 
in Arabidopsis, and its wheat homolog TaGRP2 is involved 
in flowering promotion by vernalization (Streitner et al. 
2008; Xiao et al. 2014). Interestingly, vernalization induces 
O-GlcNAcylation of TaGRP2 which contributes to the 
winter-dependent flowering (Xiao et al. 2014). These ob-
servations suggest that SPY may regulate flowering 
through multiple pathways including the vernalization 
pathway.

The spy mutants have pale leaves, suggesting a defect in 
chloroplast development and photosynthesis. Intriguingly, 
the O-fucosylome includes 40 chloroplast proteins including 
39 encoded by nuclear genes. Interestingly, a recent study 
showed that SPY mediates O-fucosylation of the 
chloroplast-localized chaperonin CPN20 to reduce its accu-
mulation in the chloroplast (Liang et al. 2021); however, 
CPN20 was not among the O-fucosylated proteins we de-
tected. SPY was previously reported to localize to the nucleus 
and cytosol (Swain et al. 2002). The proteins may be 
O-fucosylated before being imported into the chloroplast. 
It is also possible that a fraction of SPY localizes to the chloro-
plast. In animals, OGT is alternatively spliced to produce dif-
ferent forms that localize to the cytosol, nucleus, and 
mitochondria (Lazarus et al. 2006; Sacoman et al. 2017). 
Gene annotation in TAIR shows that SPY and SEC may also 
be alternatively spliced in Arabidopsis, but the localization 
of these isoforms has not been studied. Interestingly, no 
O-GlcNAcylation was detected on chloroplast proteins (Xu 
et al. 2017). A unique function of SPY in modifying and regu-
lating chloroplast proteins would be consistent with its evo-
lutionary prominence in photoautotrophic organisms 
(Olszewski et al. 2010).

In summary, our work uncovers the physiological function of 
SPY in sugar-dependent growth, the molecular functions of 
SPY at the proteomic scale, and the cellular targets of 
O-fucosylation. Our findings will pave the way for new discov-
eries of protein O-fucosylation and cross-talks with other 

pathways and enable functional study of O-fucosylation of 
hundreds of proteins by the plant community.

Materials and methods
Plant materials and growth conditions
All the Arabidopsis thaliana plants used in this study were in 
the Col-0 ecotype background. The plants were grown in 
greenhouses with a 16-h light/8-h dark cycle (about 
150 μmol m−2 s−1 natural light supplemented with white 
LED light) at 22–24 °C for general growth and seed harvest-
ing. For seedlings grown on the medium in Petri dishes, the 
sterilized seeds were grown on half-strength Murashige and 
Skoog (½-MS) medium and supplemented with 0.8% (w/v) 
phytoagar. Plates were placed in a growth chamber under 
constant light (about 82 μmol m−2 s−1 fluorescent bulbs) at 
22 °C. T-DNA insertional mutants spy-23 (WiscDsLox241C03) 
(Woody et al. 2007), spy-4, sec-2, and sec-5 were previously de-
scribed (Bi et al. 2021).

Sugar-dependent growth experiment
WT, spy and sec seeds were sterilized and placed at 4 °C for 
2 d. WT and sec seeds were transferred onto ½ MS supple-
mented with 1% (w/v) sucrose or mannitol and placed in a 
growth chamber under constant light at 22 °C. About 12 h 
later, the spy seeds were transferred onto the same plates 
to ensure a similar time of germination as the WT and sec 
seeds. Seedlings were grown for 4 d in the growth chamber 
and then transferred to dark for 8 d. Hypocotyl lengths 
were measured from scanned images using the ImageJ soft-
ware, and true leaf development was scored. The results 
were analyzed by two-way ANOVA in R (length ∼ genotype*-
sugar; percentage ∼ genotype*sugar). Outputs are provided 
in Supplemental Dataset S9.

Bioinformatic analysis
Subcellular localization analysis was performed with SUBA4.0 
(https://suba.live/) with default settings (Hooper et al. 2017). 
The consensus subcellular localization was used.

GO analysis was performed with the Protein ANalysis 
THrough Evolutionary Relationships (PANTHER) Classification 
System (Mi et al. 2021), using the PANTHER GO-Slim 
Molecular Function and the PANTHER GO-Slim Biological 
Process options. Analysis type was set to PANTHER 
Overrepresentation Test. Repetitive GO terms were removed. 
The nuclear protein enrichment was calculated with the bi-
nom.test function in R.

Disorderness calculation was performed with Protein dis-
order prediction server (PrDOS) (https://prdos.hgc.jp) 
(Ishida and Kinoshita 2007).

Peptide preparation for AAL-enrichment
For quantitative analysis using metabolic stable isotope label-
ing mass spectrometry (SIL-MS), the Col and spy seedlings 
were grown on 14N (½-MS nutrient without nitrogen 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad023#supplementary-data
https://suba.live/
https://prdos.hgc.jp
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(PhytoTechnology Laboratories), 14NH4
14NO3 [0.5 g/L, Sigma], 

K14NO3 [0.5 g/L, Sigma], pH 5.7) or 15N media (½-MS nutrient 
without nitrogen, 15NH4

15NO3 [0.5 g/L, Cambridge Isotope 
Laboratory], K15NO3 [0.5 g/L, Cambridge Isotope Laboratory], 
pH 5.7) for 14 d under constant light at 22 °C. For the SIL-MS 
quantification experiments comparing WT and spy-4, equal 
amounts of plant tissue powder of the 14N and 15N samples 
were mixed before protein extraction, whereas the samples of 
WT and spy-23 were mixed after protein extraction.

Flowers were harvested from 5-week-old Col plants grown 
in greenhouses with a 16-h light/8-h dark cycle at 22–24 °C. 
The tissues were then ground in liquid nitrogen.

Three volumes (6 ml) of buffer Y (0.1 M Tris⋅HCl, pH 8.0; 
2% (w/v) SDS; 20 mM EGTA; 20 mM EDTA; 1.2% (v/v) 
Triton X-100; 50 mM NaF; 2 × protease inhibitor (Roche); 
and 40 µM PUGNAc inhibitor (Sigma)) were added to 2 g tis-
sue powder in a 50 ml tube. The samples were vortexed for 
1 min and then heated for 10 min at 60 °C. The samples 
were centrifuged at 20,000 × g for 20 min at room tempera-
ture (RT) and the supernatant was each transferred to a new 
50 ml tube. Equal volume (∼6 ml) of ice-cold phenol (Tris 
buffered, pH 7.5–7.9) was added and samples were vortexed 
for 1 min. Samples were centrifuged at 20,000 × g at 4 °C for 
15 min to separate phenol and aqueous phases. The upper 
aqueous phase was removed without disturbing the inter-
face. The phenol phase was re-extracted twice with ice 
cold buffer Z (50 mM Tris-HCl, pH 8.0, stored at 4 °C). 
Five-volume of cold 0.1 M ammonium acetate in methanol 
was added to the samples and then the samples were incu-
bated at −80 °C overnight. Tubes were centrifuged at 
20,000 × g for 20 min at 4 °C and supernatant was removed. 
The pellets were washed with 10 ml cold 0.1 M ammonium 
acetate in methanol twice and 10 ml cold methanol twice. 
After removing the trace methanol with pipettes, 1 ml resus-
pension buffer (6 M Guanidine-HCl, in 25 mM NH4HCO3, pH 
8.0) was added to resuspend the pellets. The samples were 
each transferred to a new 1.5 ml tube and sonicated at 
10% duty cycle for 10 s (1 s ON/OFF) three times (Branson 
Digital Sonifier 250). Tris(2-carboxyethyl)phosphine hydro-
chloride (0.5 M TCEP, Sigma) was added to the samples to 
a final concentration of 2 mM and the samples were incu-
bated for 60 min at 56 °C. Iodoacetamide (Sigma, 0.5 M) 
was added to the samples to a final concentration of 
10 mM and the samples were incubated for 60 min at RT 
in the dark. The samples were diluted with 25 mM 
NH4HCO3 to make a final guanidine-HCl concentration of 
1.5 M. Protein concentrations were measured by Bio-Rad 
protein Assay (Bradford). For the 14N/15N quantification ex-
periments comparing WT and spy-23, an equal amount of 
protein from the 14N and 15N-labeled samples were mixed. 
Modified trypsin (Trypsin, TPCK Treated) was added (1: 50 
w/w) and the samples were incubated at 37 °C overnight. 
Modified trypsin was added once again (1:50 w/w) and incu-
bated for an additional 6 h. Next, the protease activity was 
quenched by acidification of the reaction mixture with for-
mic acid to a final concentration of 1% formic acid. The 

samples were centrifuged at 20,000 × g for 10 min to remove 
insoluble material. The supernatant was desalted using 
Sep-PAK C18 cartridges following manufacturer’s instruc-
tions (Waters). The peptide samples were dried up using 
SpeedVac (Thermo) and stored at −80 °C before use.

O-fucosylated peptide enrichment with AAL-agarose 
chromatography
A chromatography column (Tricorn 5/50 Column, Cytiva) was 
packed with 0.7 ml AAL-agarose (Vector laboratories) follow-
ing the manufacturer’s instructions. Dried peptide samples 
were resuspended in 105 µl buffer A (PBS + 5% acetonitrile) 
and 100 µl was loaded. Chromatography was performed 
with AKTA purifier (GE Healthcare) at a flow rate of 100 µl/ 
min. Buffer B consisted of buffer A with 10 mM L-fucose 
(Cayman). After washing with seven volumes (4.9 ml) of buffer 
A, O-fucosylated peptides were eluted using buffer B. The 
eluted fractions were collected and combined for desalting 
using Sep-PAK C18 cartridges (Waters). The peptide samples 
were dried using SpeedVac (Thermo) and stored at −80 °C be-
fore mass spectrometric analysis.

MS analysis
For higher-energy collision dissociation (HCD experiments), 
peptides were analyzed by liquid chromatography-tandem 
mass spectrometry (LC-MS) on an Easy LC 1200 UPLC liquid 
chromatography system (Thermo Fisher) connected to a 
Q-Exactive HF hybrid quadrupole-Orbitrap mass spectrom-
eter (Thermo Fisher). Peptides were separated using analytical 
Easy-Spray C18 columns (75 μm × 150 mm) (Thermo, ES803). 
The flow rate was 300 nl/min, and a 120 min gradient was 
used. Peptides were eluted by a gradient from 3% to 28% solv-
ent B (80% (v/v) acetonitrile/0.1% (v/v) formic acid) over 
100 min and from 28% to 44% solvent B over 20 min, followed 
by a short wash at 90% solvent B. Precursor scan was from 
mass-to-charge ratio (m/z) 375 to 1,600 (resolution 120,000; 
AGC 3.0e6) and the top 20 most intense multiply charged pre-
cursors were selected for fragmentation. Peptides were frag-
mented with HCD with normalized collision energy (NCE) 27.

HCD/EThcD data were acquired on an Orbitrap Eclipse 
(Thermo Scientific, San Jose, CA, USA) equipped with an 
Easy LC 1200 UPLC liquid chromatography system 
(Thermo Fisher). Peptides were fractionated on an analytical 
Easy-Spray C18 column (75 μm × 150 mm) (Thermo, ES803) 
using the same gradient as the HCD experiment. Precursor 
ions were scanned with either two consecutive HCD and 
EThcD or EThcD only. For both types of scans, the precursor 
ions were scanned from 375 to 1,600 m/z (resolution 120,000; 
AGC 4.0e5) and the charge state 2+ to 6+ were filtered in the 
quadrupole with a selection window of 1.0 m/z and MIPS 
Peptide filter enabled. For consecutive HCD and EThcD, 
HCD was carried out at collision energy of 27% measured 
in Orbitrap with 60 ms maximum injection time and 1 micro 
scan (resolution 15,000; AGC 1.0e4). The peptides were then 
subjected to EThcD fragmentation with maximum injection 
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time of 100 ms, supplemental activation collision energy of 
35% measured in the Orbitrap with 3 micro scans (resolution 
15,000; AGC 5.0e4). The overall scan cycle was 3 s. For EThcD 
only scan the precursors were subjected to EThcD fragmen-
tation with 35% supplemental activation collision energy and 
200 ms maximum injection time (resolution 15,000, AGC 
15.0e4). The number of microscans and scan cycle were the 
same as with the sequential EThcD.

MS/MS data were converted to peaklist using a script 
PAVA (peaklist generator that provides centroid MS2 peak-
list) (Guan et al. 2011; Shrestha et al. 2022), and data were 
searched using Protein Prospector against the TAIR database 
Arabidopsis thaliana from December 2010 (https://www. 
arabidopsis.org/), concatenated with sequence randomized 
versions of each protein (a total of 35,386 entries). A precur-
sor mass tolerance was set to 5 ppm and MS/MS2 tolerance 
was set to 20 ppm. Carbamidomethylcysteine was searched 
as a constant modification. Variable modifications included 
protein N-terminal acetylation, peptide N-terminal glutam-
ine (Gln) conversion to pyroglutamate, methionine (Met) 
oxidation, as well as O-fucosylation of serine and threonine 
and single, double, and triple neutral loss of O-fucosylation. 
15N-labeled searches were done the same as mentioned 
above, considering all 20 amino acids are constantly modified 
by 15N labeling. False discovery rate (FDR) was set to 1% for 
both proteins and peptides. For quantification, 15N labeling 
efficiency was manually checked. “15N labeling” was chosen 
as a quantitative method using Protein Prospector with auto-
matic adjustment of L:H intensity ratios with labeling effi-
ciency. The cleavage specificity was set to trypsin, allowing 
two missed cleavages and a maximum of three modifications. 
False discovery rate was less than 1% at the peptide level ac-
cording to target:decoy database searching.

Quantification of data from the 14N/15N reverse labeling ex-
periment was manually checked to correct data points with 
wrong peak calling. The background signal intensity was set to 
1,000 and the expect value cut-off was set to 0.00001. Peptides 
that showed median WT/spy ratios with greater than 100-fold 
difference in the forward and reverse labeling experiments 
were removed as inconsistent measurements. The consistently 
quantified median WT/spy ratios of O-fucosylated and 
non-O-fucosylated peptides were shown in scatter plots.

The O-fucosylated peptide list was filtered sequentially to 
reduce false positives: (i) From proteins with more than one 
unique mass peptide; (ii) From proteins with one unique 
mass peptide but identified by both HCD and EThcD; (iii) 
From proteins with one unique mass peptide, which had ex-
pectation value <= 1.0e-6; (iv) From O-GlcNAc-modified 
proteins and spectrum quality was manually inspected. 
Peptides that passed these filters were combined into the fi-
nal list of O-fucosylated peptides.

Accession numbers
The mass spectrometry proteomics data are available via 
PRIDE, with accession numbers PXD038490 and PXD038491.

SPY (AT3G11540); SEC(AT3G04240)

Supplemental data
The following materials are available in the online version of 
this article.

Supplemental Fig. S1. Summary of AAL-enrichment and 
MS experiments.

Supplemental Dataset S1. Quantification of peptides in 
WT vs spy-4 stable isotope labeling mass spectrometry 
(SIL-MS) experiments.

Supplemental Dataset S2. Median WT/spy-4 signal ratios 
of peptides detected and quantified in both isotope- 
switched replicate experiments.

Supplemental Dataset S3. Quantification of peptides in 
WT vs spy-23 stable isotope labeling mass spectrometry 
(SIL-MS) experiments.

Supplemental Dataset S4. Median WT/spy-23 signal ra-
tios of peptides detected and quantified in both isotope- 
switched replicate experiments.

Supplemental Dataset S5. A compiled list of all 
O-fucosylated peptides.

Supplemental Dataset S6. Subcellular localization of 
O-fucosylated proteins predicted by SUBA 4.0.

Supplemental Dataset S7. GO analysis of O-fucosylated 
proteins with PANTHER.

Supplemental Dataset S8. Overlaps among O-fucosylated 
proteins, O-GlcNAcylated proteins and TOR-targeted 
phosphoproteins.

Supplemental Dataset S9. Two-way ANOVA analysis of 
sucrose-dependent growth phenotypes.
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