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Mapping the global distribution of C4
vegetation using observations and
optimality theory

Xiangzhong Luo 1,2,9 , Haoran Zhou 3,9 , Tin W. Satriawan1, Jiaqi Tian1,
Ruiying Zhao1, Trevor F. Keenan 4,5, Daniel M. Griffith6, Stephen Sitch 7,
Nicholas G. Smith 8 & Christopher J. Still 6

Plantswith theC4 photosynthesis pathway typically respond to climate change
differently frommore commonC3-type plants, due to their distinct anatomical
and biochemical characteristics. These different responses are expected to
drive changes in global C4 and C3 vegetation distributions. However, current
C4 vegetationdistributionmodelsmay not predict this response as they donot
capture multiple interacting factors and often lack observational constraints.
Here, we used global observations of plant photosynthetic pathways, satellite
remote sensing, and photosynthetic optimality theory to produce an
observation-constrained global map of C4 vegetation. We find that global C4

vegetation coverage decreased from 17.7% to 17.1% of the land surface during
2001 to 2019. This was the net result of a reduction in C4 natural grass cover
due to elevated CO2 favoring C3-type photosynthesis, and an increase in C4

crop cover,mainly fromcorn (maize) expansion.Using an emergent constraint
approach, we estimated that C4 vegetation contributed 19.5% of global pho-
tosynthetic carbon assimilation, a value within the range of previous estimates
(18–23%) but higher than the ensemble mean of dynamic global vegetation
models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on
the critical and underappreciated role of C4 plants in the contemporary global
carbon cycle.

C4 is one of the three photosynthetic pathways for terrestrial
plants1 and is reported to account for 18–23%2–4 of global pho-
tosynthesis. C4 plants also drive wildfire dynamics in tropical and
subtropical ecosystems5. C4 plants first evolved in the low atmo-
spheric CO2 environment of the Oligocene Epoch, roughly 24–35
million years ago6. They developed distinct biochemical and
anatomical characteristics to enrich CO2 concentration at the site

of Rubisco carboxylation in leaves, thereby reducing photo-
respiration and enhancing carbon-fixation rates7. These char-
acteristics produce different climate sensitivities in C4 plants
compared to more prevalent C3 plants4,8, and thus are expected
to cause a shift in C4 plant distributions and their contribution to
global photosynthesis under contemporary and future climate
change8–10.
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Many previous studies have examined C4 plant responses to
multiple environmental factors. A consensus is that since most C4

species originated in lower atmospheric CO2 concentrations11,12, they
are expected to benefit less from rising CO2 concentrations compared
to C3 plants. Meanwhile, higher temperatures are expected4 and
reported13–15 to favor C4 over C3 photosynthesis, because the affinity of
O2 to Rubisco relative to CO2 becomes stronger with increasing tem-
perature and also due to differing solubilities of CO2 and O2 with
increasing temperature. This should produce an advantage for the
carbon concentrating mechanism of C4 species, especially under high
temperatures16. Hence C4 species are characteristic of tropical and
subtropical ecosystems. Correspondingly, since C4 photosynthesis is
less limited by CO2 than C3 photosynthesis, it achieves a higher pho-
tosynthetic quantum yield and photosynthetic rates under high light,
especially under high temperatures17. C4 species also should have a
carbon assimilation advantage in arid environments18,19 due to their
higher water use efficiency (i.e., less water loss through stomata for
equivalent carbon gain) than C3 species, though under humid condi-
tions this advantage could be limited9. Contemporary climate change,
such as elevated CO2, rising temperatures, and changing rainfall pat-
terns, can therefore lead to temporal and spatial shifts in the relative
advantages of C4 to C3 photosynthesis. For instance, the differential
response to a changing environment has been linked to observed
woody plant encroachment in tropical Africa, where an increase in
precipitation and elevated atmospheric CO2 levels are hypothesized to
have caused a net decrease in C4 grassland distribution20,21. However,
we currently lack a consensus on how the relative advantages of C4 to
C3 photosynthesis change at the global scale, as regional studies have
reported contrasting results and different driving factors—such as
increased C4 grass distribution due to increased temperature22,
decreased distribution due to elevated CO2

14 or no overall trend23.
Understanding of how climate change has impacted C4 vegetation
constitutes a major challenge due to its role in global photosynthesis
and the terrestrial carbon cycle.

C4 vegetation overwhelmingly consists of natural grasses and
crops using the C4 pathway. One prominent approach to estimate the
distribution of C4 natural grasses is based on the crossover-
temperature model, which predicts that a particular month is deter-
mined to favor C4 grasses over co-occurring C3 grasses when themean
daytime air temperature is >22 °C and precipitation in that same
month is ≥25mm2,24,25. This approach is based on each pathway’s
relative carbon assimilation as a function of temperature, and thus the
crossover temperature is dependent on atmospheric CO2 concentra-
tionwith higher crossovers at higher CO2 levels. A few efforts tomodel
C4 vegetation distribution have further incorporated the seasonality of
precipitation26–29, or mean annual temperature and precipitation8,22,26,
but so far they are only validated and applied at the regional scale.
Some dynamic global vegetationmodels (DGVMs) allow adjustment of
C3 and C4 grass distribution based on the difference between simu-
lated C3 and C4 photosynthesis or the difference between their net
primary productivity30, or based on the simulations from bioclimate
distribution models in each time step, with the baseline C4 map
acquired from remote sensing land cover classifications31,32. Some
cohort-basedDGVMs further consider competition for resources33 and
disturbances34 when simulating C4 distributions. In general, current
estimates of the distribution of C4 vegetation adopt a wide range of
assumptions and generate rather different results10.

Uncertainty in global C4 grass distribution is further exacerbated
by the lack of ground observations for validation and then for model
extrapolation, since previous models often relied on either local
datasets26,27 or literature reviews of C4 grass presence and absence2 for
validation. This issue has become less prominent recently as some
studies have used continental scale (i.e., North America) C4 plots

25 and
13C isotopic records23,35 to validate C4 grass distribution models.
Meanwhile, the distribution of C4 crops has been collated and

estimated in some open datasets36–39. These datasets are based on
Food and Agriculture Organization (FAO) census and national
reporting of the harvested area for major C4 crops (i.e., maize, sor-
ghum, millet, sugarcane), which comprised 24% of the global har-
vested area37, and are supplemented by total cropland area change
from FAO and remote sensing40. In particular, the Land-Use Harmo-
nization dataset version 2 (LUHv2) is the principal gridded land use
dataset for the assessment of global carbon budgets36 and future cli-
mate change in CMIP641, in which C4 crop area over time is explicitly
reported. Changes in global C4 crop distribution and the related con-
tribution to global photosynthesis have yet to be evaluated, except for
a few studies that have examined the C4 crop distribution for specific
years2,42,43,

Here we quantify the global C4 vegetation distribution (including
natural grasses and crops) and its contribution to global photosynth-
esis, as well as examine changes in C4 vegetation distribution over the
past two decades. To do so, we use photosynthetic optimality theory
to estimate the relative advantage of C4 to C3 photosynthesis over the
global land surface, and then use the estimated difference in combi-
nation with observations to infer global C4 grass distribution. The
optimality model includes a wide array of selective drivers for C4 grass
distribution - CO2, temperature, light, aridity, nitrogen, and their
interactions44 (see Methods), which are advances over previous
crossover-temperature approaches which include CO2, temperature,
and a precipitation threshold. The optimality model estimates the
optimal leaf photosynthetic rate for C3 and C4 plants, along with
optimal stomatal conductance and root/shoot carbonallocation based
on growing season climate, with a target tomaximize carbon gainwith
minimized water loss44. We further take advantage of multiple open-
access databases of C4 species richness and coverage (i.e., the global
TRY database45, a dataset for the contiguous United States (the DG
dataset)23 and a subset of the Nutrient Network (NutNet)46), global
grassland fractionmaps fromremote sensing (i.e., as themajority of C4

plant cover is non-woody47), in combination with the optimalitymodel
simulations to acquire data-constrained estimates of C4 grass dis-
tribution for the past 20 years. Meanwhile, we obtain and examine C4

crop distribution using multiple open datasets36,39. We further use an
emergent constraint technique—a method to infer an unobservable
variable from an observable variable based on the large spread of
estimates of both variables from DGVMs (see Methods) –to estimate
the contribution of C4 plants to global photosynthesis. By quantifying
howC4 vegetation distribution and photosynthesis have changed over
recent decades, our study improves understanding of historical
changes in terrestrial photosynthesis and the global carbon cycle.

Results
C4 photosynthetic advantage and C4 grass coverage
We found a strongpositive relationship between the observedC4 grass
coverage (i.e., the % of grassland area covered by C4 grass species) and
the relative advantage of C4 photosynthesis (AC4) over C3 photo-
synthesis (AC3) estimated by the optimality model (denoted as the
AC4/AC3 - C4 coverage relationship hereafter; see Methods; Fig. 1b).
With the increase in modeled AC4/AC3, the observed C4 coverage
increased and then gradually plateaued. When AC4/AC3 = 1, C4

accounts for only 5.2% of grassland cover; when AC4/AC3 = 2.5, C4

coverage approaches 100% (Fig. 1b). Across global non-woody regions,
AC4/AC3 ranged from 0.5 to 2.5, with a mean of 1.9 (Fig. 1a). Impor-
tantly, we obtained C4 coverage observations from multiple sources
(i.e., TRY and DG; see Methods), which have different geographic
representations and spatial resolutions. However, the AC4/AC3 - C4

coverage relationships are similar when using different observations
(Fig. 1b), affirming the robustness of the relationship for C4 coverage
estimation. Using the relationship between AC4/AC3 and C4 coverage
(Fig. 1b), and the global AC4/AC3 estimated from the optimality model
(Fig. 1a), we estimated the global C4 grass coverage (% of grassland
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covered by C4; Fig. 1c). We found C4 grass coverage followed a clear
climatic gradient, and tended to be greater under warmer condi-
tions (Fig. 1d).

The global distribution of C4 vegetation
After predicting the C4 grass coverage (% of grassland covered by
C4 grasses; Fig. 1c), we overlaid a global grassland fraction map
from remote sensing (see Methods and Fig. S1) to estimate the
actual C4 natural grass area abundance (% of the land surface
covered by C4 grasses; Fig. 2a). From 2001 to 2019, C4 natural
grass accounted for 14.8 ± 1.3% (mean ± one standard deviation) of
the non-frozen land surface area (Fig. 2a), while C4 crops
accounted for 2.8 ± 0.3% (Fig. 2c). The total estimated C4 area
abundance was 17.5 ± 1.4% (Fig. 2e). There were several C4 natural
grass hotspots (i.e., >30% C4 area abundance) across continents
(Fig. 2a): the Great Plains in North America, the savannas in
Southern Brazil, the savannas in Africa, the grasslands in Central
Asia, and Northern Australia. Meanwhile, we found the main C4

crop zones were in central North America, the Sahel region, and
the west coast of India (Fig. 2c). The disagreement between
remote sensing-based grassland fraction maps (Fig. S4), along
with the uncertainty in the AC4/AC3 - C4 coverage relationship
(Fig.1b), incurred uncertainties in the C4 natural grass distribution
(Fig. 2b)—the uncertainty typically ranges between 1 and 3% of the
land surface area, though in regions like Australia the uncertainty
could be as high as 6–7% (Fig. 2b).

The changes in C4 vegetation distribution
Based on our simulation of C4 natural grass distribution for the past
two decades and the C4 cropland distribution from the LUHv2 dataset
(see Methods), we found the overall area of C4 vegetation decreased
from 17.7 ± 1.4% (mean± one standard deviation) in 2001–2005 to
17.1 ± 1.4% in 2015–2019, as a net effect of a decrease in C4 natural
grasses from 15.0 ± 1.3% to 14.2 ± 1.3%, and an increase inC4 crops from
2.6 ±0.3% to 3.0 ±0.3% (Fig. 3b). The change in C4 shows large spatial
heterogeneity (Fig. 3a). In particular,C4 natural grass areadecreased all
over the globe, except for the central Europe and parts of the western
U.S. (Fig. 3c). C4 crop area increased inmost parts of the world, except
for central North America where there was the largest decrease, and
Europe where there were slight decreases (Fig. 3e).

The increase in C4 crop area was often at the expense of
decreasing C4 natural grasses, as we found that in regions where there
were both C4 crops and C4 natural grasses, more than 50% of the
regions showed C4 natural grasses decreased but C4 crops increased.
Meanwhile, only 14% showed that C4 crops and C4 natural grasses
increased simultaneously, 28% showed they both decreased, and
only 7% of the region showed that C4 natural grasses increased and C4

crops decreased (Fig. 3d). Our attribution analysis suggested that
elevated CO2 was the dominant reason for the decrease in C4 natural
grass distribution, while the impacts of temperature and water stress
(i.e., soil moisture and vapor pressure deficit) were positive (i.e.,
increase C4 coverage) over the study period (Fig. 3f). Most of the
increase inC4 crops, as we analyzed fromanother independent dataset

Fig. 1 | C4 natural grass coverage estimated by the optimalitymodel. a the ratio
ofC4 toC3photosynthesis estimatedby theoptimalitymodel (AC4/AC3) overglobal
non-woody regions; (b) the relationship between observed C4 coverage (% of
grassland) and estimated C4/C3 photosynthetic ratio by the optimality model. C4

coverage observation obtained from difference sources (i.e., TRY, DG datasets;
please see methods); gray shaded area indicates the uncertainty range for the
relationship between AC4/AC3 and C4 coverage (i.e., 95% confidence interval). The

black line represents the regression using both the TRY and DG datasets, while the
red and blue dash lines represent the regression using either the TRY or the DG
dataset. c C4 grass coverage (% of grassland) over the globe, which can be regarded
as the potential C4 area abundancewhengrassland covers 100%of the land surface;
(d) C4 coverage in a climate space ofmean annual temperature (MAT: °C) andmean
annual precipitation (MAP: mm/yr).
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onmajor C4 crop distributions32, came from the expansion of maize in
South America and eastern Europe (Fig. 3f; Fig. S9; see Methods).

The contribution of C4 vegetation to global photosynthesis
The changes in the C4 area can cause associated changes in total C4

photosynthesis, thus impacting global carbon cycle dynamics.
Current ensemble of DGVMs predicted that C4 vegetation con-
tributed from 2% to 40% of global photosynthesis, on 7% to 23% of
the global vegetated land surface area (Figs. S6, S7). The large
spread of model estimates indicates the various assumptions
adopted in C4 vegetation distribution and potentially the different
parameterizations for C4 photosynthesis in DGVMs. Despite these
wide inter-model variations, it is possible to infer emergent con-
straints on C4 vegetation contributions to the carbon cycle. To
quantify the contribution of C4 photosynthesis to global photo-
synthesis, we established an emergent constraint (p < 0.01)
between the DGVM-simulated occupied area and percentage con-
tribution of C4 natural grasses and crops to global photosynthesis,
respectively. We found that with a 1% increase in area, C4 natural
grass contribution to global photosynthesis increased by 1.10%
(Fig. 4a), while the contribution of C4 crops increased by 1.16%
(Fig. 4b). We also conducted a grid cell-level emergent constraint
analysis and acquired similar ranges of slopes (Fig. S10). The lower
coefficient of emergent constraint for C4 grass (i.e., 1.10) than the

coefficient for C4 crop (i.e.,1.16) suggests that croplands tend to
have a higher ecosystem photosynthetic rate compared to grass-
lands over the same area.

We further explored the changes in the coefficients of emer-
gent constraints over the past two decades. We note that for C4

grasslands and C4 croplands, the coefficients all slightly decreased
in the past two decades. The coefficient of C4 crops decreased from
1.16 to 1.15, while the coefficient of C4 grasses decreased from 1.11 to
1.10 from 2001 to 2019 (Fig. 4c). Interestingly, the coefficients are all
greater than 1, highlighting that the per unit area photosynthetic
rate of C4 is generally higher than that of the remaining C3 vegeta-
tion. With the likely increase of global photosynthesis in recent
decades, the decreasing coefficients of C4 indicated that C4 pho-
tosynthesis increased at a slower pace than other (mostly C3)
vegetation. By applying the estimated area of C4 to the annual
emergent constraint coefficients (Fig. 4c), we found that the global
C4 natural grass contribution to photosynthesis decreased from
16.5 ± 1.5% (mean ± one standard deviation) in 2001–2005 to
15.5 ± 1.5% in 2015–2019, the C4 crop contribution to photosynthesis
increased from 3.0 ± 0.3% to 3.4 ± 0.4%, and in total the C4 con-
tribution to global GPP decreased from 19.7 ± 1.9% to 19.0 ± 1.9%
(Fig. 4d). The reported value is greater than the ensemble mean
reported by the DGVMs (14 ± 13%), and is within the range of pre-
viously modeled values (18–23%2–4).

Fig. 2 | The modeled global distribution of C4 vegetation and associated
uncertainties.The area occupied by (a) C4 natural grasses, (c) C4 croplands and (e)
all C4 vegetation (unit: % of the land surface). The uncertainties of the area

abundance of (b) C4 natural grasses, (d) C4 croplands and (f) all C4 vegetation (unit:
% of the land surface).
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Discussion
In this study, we estimated the global C4 vegetation distribution and
quantified the changes in C4 vegetation distribution and photosynth-
esis over the past two decades, using an optimality photosynthesis
model, photosynthetic pathway records from global/regional data-
bases and remote sensing observations. On average, from 2001 to
2019, C4 plants occupied 17.5 ± 1.4% of the global vegetated surface
and contributed 19.5 ± 1.9% of global photosynthesis, within the range
of previous estimates (i.e., 18–23% for photosynthesis) but are greater
than the estimates from the ensemblemeanofDGVMs (13 ± 8% for area
and 14 ± 13% for photosynthesis). C4 total area and C4 contribution to
global photosynthesis bothdecreasedover this period (i.e., 0.6%of the
land surfaceand0.7%of global GPP),which resulted fromthe increases
in C4 crop area and its contribution to global photosynthesis, and the
decreases in C4 natural grass area and its contribution to global
photosynthesis.

Our study suggests that the decrease in C4 natural grass dis-
tribution was primarily driven by elevated CO2, in accordance with

previous theoretical and experimental works that showed C4 advan-
tage in carbon assimilation over C3 decreased with rising CO2

48–50.
There is also evidence showingmanygrassland and savanna areas have
been invaded by C3 woody species, with increased atmospheric CO2

proposed as a major driver for the encroachment51,52. The decrease in
the emergent constraint coefficients demonstrated that the impact of
elevated CO2 on C4 and C3 were included in most DGVMs (Fig. 4c).
Evidence for the historical expansion of C4 over geological time scales
seems to support our conclusion, in particular for Africa where CO2

dominates the C4 grassland expansion or decline50,53,54, while in Central
Asia55, Australia56, central China57 and central US grasslands58 reports
showhydroclimatic change impactedC4 grass distribution. Our results
also show that the changes in soil moisture and VPD over the past two
decades largely induced positive impacts on C4 grass distribution,
though globally their impacts were unable to offset the negative
changes driven by elevated CO2 (Fig. 3f; Fig. S8).

To assess the distribution of C4 vegetation, we noted that there
were three types of abundance used in previous literatures: for

Fig. 3 | Changes in the global distribution of C4 vegetation between 2001–
2019. Spatial distributions of changes in (a) total C4 vegetation, (c) C4 natural
grasses and (e) C4 crops from 2001 to 2019; b The changes in the total area of C4

vegetation, C4 natural grasses andC4 crops, inpercentages of global vegetated land
surface; d the synergies of changes in C4 natural grasses and C4 crops, where ++
means both C4 natural grasses and C4 crops area abundance increased, − −means
both decreased, + − means C4 natural grasses increased and C4 crops abundance
decreased,− +means the opposite; f the drivers for the change inC4 natural grasses

and C4 crops area abundances. Climate drivers include atmospheric CO2 con-
centration, air temperature (Tair), vapor pressure deficit (VPD) and soil moisture
(SM) during the growing seasons. In (b), the uncertainty for C4 crop is 10%of the C4

crop area reported, the uncertainty for C4 natural grass area is the combination of
the uncertainty in remote sensing-based grassland fraction and the uncertainty of
the AC4/AC3 - C4 coverage relationship (Fig. 1b), and uncertainty for C4 vegetation is
the combination of uncertainties of C4 crop and C4 natural grass areas.
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modeling practice, we often used the area abundance, that is, the
percentage of the land surface occupied by C4 plants. However, the
area abundance was challenging to observe over large scales, and it
was rare to have direct observations of large-scale area abundance
other than approximations from remote sensing32. Most observations
of C4 presence and cover are at the species level and, therefore,
observation-based studies often report the relative species richness of
C4 plants13,26. A few studies reported biomass abundance, i.e., the
percentage of local biomass contributed by C4 plants, and biomass
abundance is often much higher than the species abundance27,29,
echoing some studies suggesting that species abundance should be
used with caution to infer biomass abundance and productivity56. In
this study, we developed a conversion factor to translate C4 species
richness into C4 area abundance, using plot-level concurrent mea-
surements of both from NutNet. We found 1% increase in C4 species
richness led to 1.51 ± 0.15% in C4 area abundance (Fig. S3). The con-
version factor enabled us to translate global observations of C4 species
richness into C4 coverage to develop the AC4/AC3 - C4 coverage rela-
tionship in our study (Fig. 1b, S1).

Compared to the previously estimated C4 vegetation distribu-
tion from a crossover-temperature model2 (Fig. S5), our study
provided a similar area occupied by C4 vegetation (20.5million km2

versus 21.1 million km2). We find a lower estimate for Africa, where
our estimate of C4 area abundance showed a more nuanced gra-
dient compared to the estimate from the crossover-temperature

model (Fig. S5). We suspect this is partly due to their difference in
relating C4 photosynthetic advantage to C4 grass coverage (% of
grassland covered by C4 grasses) – while our study used the AC4/
AC3 - C4 grass coverage relationship to gradually adjust C4 grass
coverage, the crossover-temperature model assumes all grasslands
in the pixel are C4 grassland as long as the monthly climate satisfies
the crossover criteria (e.g., mean daytime air temperature is >22 °C
and precipitation in that same month is ≥25mm). Therefore, for
regions where monthly climate meets the crossover criteria (e.g.,
sub-Sahel Africa), the crossover-temperature model tends to esti-
mate 100% C4 grass, however, it was not the case for the optimality
approach in those regions (Fig. 1c). Meanwhile, we estimated con-
siderably higher C4 grass cover in Central Asia, which is consistent
with the reported prevalence of C4 species in the region26,59 – the
high abundance in these inland regions were potentially due to
harsh environments characterized by high maximum temperature
and aridity levels, which favor the growth of C4 plants over C3. We
also note that our approach may underestimate C4 grass distribu-
tion in some mesic savanna ecosystems—such as the longleaf pine
savannas in the Southeastern US—where a C4 understory exists
beneath a C3 canopy

60,61. The underestimation is likely because the
optimality model predicted no photosynthetic advantage for C4

plants over C3 under low light conditions in understory (Fig. 1a), and
the remote sensing products reported low grassland fraction in the
region (Fig. S4).

Fig. 4 | The contribution of C4 vegetation to global photosynthesis. The
emergent constraints between the percentageof area occupied and the percentage
of global photosynthesis contributed by (a) C4 natural grasses and (b) C4 crops,
based on the estimates from an ensemble of the DGVMs; c changes in emergent
constraint coefficients (i.e., the slopes of the linear regressions in (a, b) from 2001
to 2019 for C4 natural grasses and C4 crops). The uncertainties in (a, b, c) were

quantified as one standard error (i.e., SE) by bootstrapping models when getting
emergent constraint; d The contributions of C4, C4 natural grasses and C4 crops to
global GPP from 2001 to 2019, whereas the uncertainty was quantified as one SE by
bootstrapping the uncertainty range of C4 areas and the uncertainty range of the
emergent constraint coefficients.
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In our study, we estimated the annual distribution of C4 grasses
using the growing seasonmean climate; however,many locations have
seasonal shifts between C4 and C3 grass dominance depending on
seasonal climate variations4. For example, in the grasslands of south-
east Australia, a recent study suggests C4 dominance is the highest in
summer when there is high temperature and low precipitation, while
other seasons have more C3 vegetation

28. Therefore, for modeling the
seasonal variation of carbon fluxes from seasonal changes in C4 grass
distribution, the crossover-temperature approach based on monthly
climate and weighted by a vegetation index like NDVI could be more
useful2. We acknowledge that the distribution of our observations was
not uniform across the globe, with North America being better
represented compared to other regions (Fig. S2). As an additional test
to validate our estimation of C4 vegetation distribution, we compared
the C4 grass coverage estimated in our study (Fig. 1c) with the C4

coverage estimated from isotopic measurements and remote sensing
in Australia62 (Fig. S11). This validation demonstrates a strong agree-
ment (r =0.69, p <0.01) between the two independent estimates,
affirming the robustness of our estimates in under-sampled regions.

We also need to highlight that the optimality approachwas based
on the assumption that C4 grass distribution is determined by the
photosynthetic advantage of C4 compared to C3, and the photo-
synthetic advantage is largely dependent on local climate44. While this
assumption is also adopted by the crossover-temperature model, it
neglects the role of grass phylogeny in determining C4 grass dis-
tributions. Some studies have suggested that grass clades (i.e., Pooi-
deae for C3, and PACCMAD for C3 and C4) are perhaps more critical
than photosynthetic pathway for determining C4 and C3 grass dis-
tributions, at least along temperature gradients19,63,64. This lack of
consideration on phylogeny in C4 grass distribution models may
impact predictions of future distributions, as C3 grasses from certain
clades have less competitive disadvantage compared to C4 grasses in a
warmer world.

Other environmental changes that can impact C4 grass distribu-
tion include fire and nitrogen deposition. Fire can influence C4 cov-
erage and productivity either through creating open canopies for light
capture by C4 plants or as a characteristic of semi-arid environments
that provide a photosynthetic advantage for C4

65. Recent woody plant
encroachment suggests fire had a central role51,66 in the formation of
grasslands and the rise of C4 dominant grasslands in late Neogene67

and late Miocene68. For recent decades, since globally the trend of fire
occurrence is still very uncertain with strong regional variations in the
trend69, wewere unable to quantify its impact on C4 grass distribution.
Neither the crossover-temperatureC4model, nor theoptimalitymodel
we used, incorporates the role of fire in C4 dynamics at present.
However, since our approach used annual grassland fractional maps
based on satellite remote sensing, the impacts of fire at the annual
scale were implicitly considered. SomeDGVMs have incorporated fire-
relevant processes, however, we found they estimated lower C4 grass
abundance (i.e., 9.6 ± 6.7%) than thosemodels that do not include fires
(i.e.,11.8 ± 3.2%). Additionally, since C4 plants have higher photo-
synthetic nitrogen use efficiency than C3

70, anthropogenic nitrogen
deposition71 might have impacted the relative advantage of C4 to C3

photosynthesis. Previous studies have suggested C4 plants tend to
have a higher photosynthetic rate than C3 across a spectrum of
nitrogen supply -meaningC4plants have photosynthetic advantageon
infertile soils and the advantage will be enhanced by increased nitro-
gen availability, which can be used to increase C4 leaf area72. In this
study, we used a data-driven product of leaf nitrogen content and
remote sensing leaf area index to simulate C4 grass distribution (see
Methods), which may have implicitly accounted for the effect of
nitrogen deposition or limitation on C4 photosynthesis.

In this study, we used LUHv2—the primary dataset used in current
global carbon cycle modeling and climate forecasting36,41—to examine
the changes in C4 cropland and reported an increase in C4 cropland

area. However, we note a key source of uncertainty in this dataset: the
historical simulation of C4 crop distribution used a constant fraction of
C4 cropcover for eachglobal grid cell, basedonly onobservations circa
200041. Therefore, the increase in C4 crop area in LUHv2 could just
reflect an increase in all croplands rather than real C4 expansion. To
reduce the uncertainty caused by this issue, we used another cropland
dataset39, which dynamically simulated the area of 17 major crop types
(including main C4 crops maize, millet and sorghum) based on annual
FAOcensus of cropharvested areas. This analysis confirmedour results
regarding the increase in C4 cropland mainly due to the expansion of
maize (Fig. 3f), with a similar spatial pattern reported (Fig. S9).
However, the sum of the three main C4 species only increased by 0.1%,
relatively lower than what we see from the LUHv2 dataset (i.e., 0.4%).
We can conclude there was an increase in C4 cropland, though the
magnitude of increase should be subject to further examinations.

In conclusion, we used a combination of plant photosynthetic
pathway records, remote sensing, and an optimality-based photo-
synthesis model to estimate the global C4 coverage and the magni-
tudes of C4 photosynthesis and their variations over the past two
decades. We infer that C4 vegetation covered on average 17.5% of the
global land surface over the period from 2001 to 2019, while C4 grass
cover decreased due to elevated CO2 and C4 crop cover increased
because of corn (maize) expansion. We predict that C4 photosynthesis
accounted for 19.5% of the global total photosynthesis, with an
increased contribution from C4 crops and a decrease from C4 natural
grasses during this period. Our study offers an updated and more
observationally constrained estimate of C4 vegetation distribution and
photosynthesis, thereby improving our understanding of potential
future C4 changes and enhancing the quantification of the global car-
bon budget.

Methods
The overarching framework
The distribution of C4 vegetation overwhelmingly consists of C4 nat-
ural grasses andC4 crops. To estimate theC4 natural grass distribution,
we first used an optimality photosynthesis model44 to simulate the
optimal photosynthetic assimilation rates of C4 andC3 plants (noted as
AC3 and AC4, respectively) using 0.5 × 0.5 degree gridded historical
climate (i.e., CRU-JRA2020), soil73 and leaf nitrogen content74. We cal-
culated the ratio of AC4 to AC3, and established a statistically sig-
nificant (p <0.01) relationship between AC4/AC3 and the observed C4

coverage from multiple databases—the TRY database45 and the DG
dataset25 based on an assumption that larger AC4/AC3 indicates higher
C4 grass coverage (% of grassland covered by C4 grasses). Using the
AC4/AC3 - C4 coverage relationship, we estimated the C4 grass cover-
age (a.k.a. potentialC4 abundancewhengrasses cover 100%of the land
surface) from estimated AC4/AC3 for the globe. We lastly overlaid the
C4 coverage map to a global map of grassland fraction from remote
sensing to acquire actual C4 grass abundance (% of the land surface
covered by C4). The workflow is presented in Fig. S1. Meanwhile, for C4

crop distribution, we directly used the estimates from the LUHv2-2019
dataset, in which C4 crop distribution is estimated from FAO survey
and satellite remote sensing.

Processing observational C4 records
We acquired 61,588 georeferenced records of photosynthetic path-
ways from the TRY database (last accessed 2022 June), among them,
there were 2269 records of C4. The time range of the record covers
roughly the past 50 years. We first removed the woody species from
the records, based on species names and an index table from the TRY
database (https://www.try-db.org/TryWeb/Data.php#3), as our study
aimed to examine C4 grass distribution and the global cover of C4

forests is not extensive47. After the step, we kept 13,919 records for
non-woody species, among which 1963 were C4. We further removed
82 records that belong tomajor C4 crops (i.e.,maize, sugarcane,millet,
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and sorghum) and kept 1881 records.We then aggregate these records
to 10 × 10 degree cells, in each cell we calculate the species richness of
C4 (i.e., number of C4 species/total number of herbaceous species, the
numberswerederived from the available records in the TRYdatabase).
The gridded values of C4 species richness would be further used to
constrain the optimality model to estimate global C4 grassland cov-
erage. Here we use the large-size grid cell to make sure there were
enough samples in each cell to acquire a meaningful estimate of C4

abundance – in this analysis, each cell should have at least 50 species
(i.e., C3 andC4 in total).Weused 1619 (out of 1881) C4 species records in
this aggregation step, and obtained 23 10 × 10 degree cells for the
analysis (Fig. S2).

Note here the C4 abundance from the TRY database was species
richness, not equal to the area abundance that is often used in DGVMs.
To acquire C4 grass coverage (% of grassland covered by C4) from C4

species richness (%of grass species that is C4), we used anopen dataset
from the global nutrient network (NutNet) that has paired C4 species
richness and C4 area abundance (% of the land surface covered by C4)
to infer their relationship46 (Fig. S3). The dataset includes species-
specific coverage records as well as the grass species richness data
collected in 25m2 plots across 34 sites. Each site has between 1 and 6
control plots. We only used the data from the control plots, excluding
plots that underwent nutrient addition treatments. To avoid the
uneven distribution of data samples, we grouped the paired observa-
tions by their C4 species richness, and for each species richness we get
a mean C4 area abundance and the standard deviation of the C4 grass
coverage. We then conducted 1000 linear fittings (i.e., with an inter-
cept of 0, since C4 grass coverage should be 0 when C4 species
abundance is 0), and for each fitting we used randomly sampled C4

grass coverage values (i.e., based onmean and the standard deviation)
value against C4 species richness values. The slopes of the linear
regressions represented a conversion factor between C4 species rich-
ness and C4 grass coverage (Fig. S3).

In addition to the TRY database that has a global representation,
we also used a gridded C4 grass coverage data compiled for the con-
tiguous United States (denoted as the DG dataset)23. The DG dataset
provides C4 grass coverage (% of grassland) aggregated at a 100 km
resolution grid, which was sampled from roughly 40,000 plots over
the past 40 years. Please note that the DG dataset only surveyed C4

grass species. We used the DG dataset and the TRY database to
establish the relationship between AC4/AC3 and C4 grass cover-
age (Fig. 1b).

Processing cropland and land use data
We used a gridded C4 crop distribution from the LUHv2 dataset
(version: LUHv2-GCB2019)36. It was estimated based on the FAO
census and national reporting of >170 major crop types (including
themain C4 types), supplemented by the total cropland area collated
by HYDE3.240 which came from FAO census and remote sensing
products. The C4 crop fraction of each grid cell was only acquired
based on observations circa 200037 and the fraction was kept con-
stant over the study period. The most recent versions of the LUHv2
dataset have been used in CMIP6 for the IPCC AR6 report and the
global carbon budget. Since the LUHv2 dataset did not contain an
estimate of uncertainty, we relied on an independent study that
compared four different land use products (including LUHv2) and
reported the uncertainty of cropland estimation between products
was about 10%75.We thus used 10% to represent the uncertainty range
of the C4 cropland area.

In addition to LUHv2, we used another open dataset reporting the
area of 17 main crop types from 1961 to 201439. Unlike the LUHv2
dataset which almost exclusively relied on observations circa 2000 to
quantify the C4 crop fraction, this other dataset used annual FAO
census records for crop area fractionestimation, including thoseof the
three primary C4 crops: maize, millet, and sorghum. We used this

dataset to examine the changes in global C4 croplands and compare to
the values obtained from the LUHv2 dataset.

The optimality model for C4 and C3 photosynthesis
Weused optimal C3 andC4 photosynthesismodels to simulate optimal
C3 and C4 photosynthesis44. The soil-plant-air water continuum was
incorporated in C3 photosynthesis models76 and C4 photosynthesis
models77 to examine interactions of CO2, water availability, light and
temperature. The model considered optimal stomatal resistance and
leaf/fine-root allocation to maximize the carbon gain regarding water
loss, and successfully predicted the ancient distribution of C4 species
in Oligocene and Miocene44.

In the current study, we improved the modeling processes
through the following aspects. (1) We used different parameters for C3

andC4 species specifically to better represent thediversity ofC3 andC4

species variability (Table S2 in the Supplementary Note). (2) We con-
sidered the effects of nitrogen availability and optimal nitrogen allo-
cation between C3 and C4 species. Specifically, we adjusted the
maximum carboxylation rate (Vcmax) andmaximum electron transport
rate (Jmax) values using optimal Jmax/Vcmax ratio (i.e., 2.1 for C3 and 5.0
for C4, which were supported by both measurements and theoretical
modeling)78,79 and available leaf nitrogen content for C3 and C4

respectively. (3) Since a large majority of C4 species are herbaceous,
when wemodeled closed canopy biomes (e.g., those pixels dominated
by tree and shrubs), we used estimates of understory photosynthetic
active radiation (PAR) to model the relative advantage of the herbac-
eous species. A full model description and the parameterization is in
the Supplementary Note.

Using the models, we were able to calculate the optimal assim-
ilation rates for C3 and C4 (i.e., AC3 and AC4) over the globe at the 0.5-
degree resolution (i.e., dependent on the spatial resolution of climate
input), where the relative advantage of C4 to C3 is defined as AC4/AC3.
The simulation was conducted at an annual time step and there was no
need for model initialization. When establishing the relationship
between AC4/AC3 and C4 grass coverages (Fig. 1b) from the DG and
TRY datasets, we aggregated the simulations from 0.5-degree to
1-degree (approximately 100 km at the equator) and 10-degree. As the
relationships derived fromboth 10-degree (i.e., TRY) and 1-degree (i.e.,
DG) data were similar, we assumed that the relationship is scale-
independent. Consequently, we applied it to 0.5-degree estimates of
AC4/AC3 to infer global C4 grass coverage. We also assumed that the
relationship between AC4/AC3 and C4 grass coverage was time-
invariant.

Running the optimality model
We used annual growing season average soil water potential, vapor
pressure deficit (VPD), 2 m daytime air temperature (Tair), photo-
synthetic active radiation (PAR) and leaf nitrogen content as
inputs for the optimality photosynthesis model. The growing
season was defined using the MODIS phenology product
(MCD12Q2)80.

Tair was acquired from the CRU-JRA2020 dataset. VPD was esti-
mated using the specific humidity and air temperature from CRU-
JRA2020. Soil water potential was estimated from soil texture prop-
erties from soil grids and global soil water content datasets, using the
Clapp & Hornberger equation81. The global soil water content datasets
came fromGLEAM v382. To avoid extreme low soil water potential that
does not allow plant growth in the optimality model, we set the
minimal soil water potential to −3MPa. The leaf nitrogen content was
acquired from a machine learning upscaled leaf traits product74.
PAR was also acquired from the CRU-JRA2020 dataset, which is a
reanalysis from CRU83 and JRA84. We directly used PAR for ‘open’
ecosystems (i.e., grasslands, savannas), however, for dense forests and
shrublands we used understory PAR (i.e., as C4 grasses often exist in
understories), which was derived from PAR and multi-year average
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MODIS LAI85 (i.e., assume they are overstory LAI) following a radiation
gradient mandated by the Beer’s Law.

We ran the photosynthetic optimality models multiple times in
the process.Wefirstmodeled the growing seasonAC4/AC3 in the study
period using the climatology of the variables mentioned from 2001 to
2019. To model the growing season AC4/AC3 from 2001 to 2019, for
each year we used the 20-year climatology (i.e., 20 years before the
target year) of the driving variables. In addition, we also conducted
simulation for four scenarios, in which we replaced the climate input
for 2001 simulation with the CO2, Tair, VPD and soil moisture from
2019, respectively. Then we used AC4/AC3 to estimate the C4 grass
distribution for each year or for each scenario. By calculating the dif-
ference between the C4 grass distribution of four scenarios and the C4

grass distribution in 2001, we quantified the contribution of CO2, Tair,
VPD and soil moisture to the changes in C4 grass distribution.

Remote sensing estimates of global grassland fraction
Multiple remote sensing products provide information on grassland
distributions. Some directly provide continuous fraction values (i.e.,
GLC86 at 100 meter and Dynamic World87 at 10 meter) and some pro-
vide categoric information on grassland and savannas (i.e., MODIS88 at
500 meter and ESA-CCI89 and 300 meter). For the former, we can
directly calculate the grassland fraction value at 0.5-degree resolution;
for the latter, we assign the grassland/savanna type pixel to 100% and
others to 0% grassland, and then obtain the mean value for each 0.5
grid cell. We found that those four estimates of grassland fraction vary
considerably (Fig. S4). Based on a visual comparison of the four esti-
mates (i.e., GLC, Dynamic World, MODIS and ESA-CCI) against vege-
tation map estimates90, we found Dynamic World and ESA-CCI
substantially underestimate grassland fraction.We therefore usedonly
MODIS and GLC estimates of grassland fractions in our study.

The MODIS grassland fraction product is available from 2001 to
2019. The GLC product is only available from 2015 to 2019. To extend
theGLCproductback to 2001,we employed a random forest approach
to estimate GLC estimates based on surface reflectance, climate, and
soil type and extrapolate it to 2001 (i.e., the training accuracy is 99%
and the validation accuracy is 95%).We used the average ofMODIS and
GLC estimates to represent the grassland fraction. To quantify the
uncertainty of the approach, for each pixel we bootstrapped 1000
times between the MODIS estimate and the GLC estimate, and use the
one standard deviation of these 1000 values to represent the uncer-
tainty in grassland fraction.

Dynamic Global Vegetation Models (DGVMs)
We used 11 DGVMs participating in the global carbon
project91(Table S1) in our study. Though all of the 11 DGVMs provided
simulations for C4 natural grasses, only 7 of them have simulations for
C4 crops (Table S1).We established anemergent constraint betweenC4

area and C4 photosynthesis contribution using the estimates from the
model ensemble. We used the S3 scenario (i.e., considering elevated
CO2, climate change and land use change) of model simulations in our
analysis.

Emergent constraint approach
The emergent constraint technique is widely used in climate and
modeling communities to infer unobserved quantities of interest in
land surfaceprocesses92,93. The underlying assumption is that although
there is a large spread in themodel estimates of an observed variable X
and an unobserved variable Y across models, the relationship linking
the two is tightly constrained across models. Based on the strong and
robust relationship across models between X and Y, observations of X
can be used to generate a constraint on unobserved Y. This approach
has been termed ‘emergent’ because the functional relationship can-
not be diagnosed from a single model, but rather emerges from the
spread of the model estimates. The emergent constraint identified in

this study links the contribution of C4 grasses/crops to total GPP to the
percentages of area coveredbyC4 grasses/crops as estimated from the
ensemble of DGVM simulations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The global C4 vegetation distribution map is available at https://
zenodo.org/records/10516423. The CS C4 map was acquired from
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=932. The CRU TS4.02
climate data is available at https://crudata.uea.ac.uk/cru/data/hrg/, the
soil moisture data can be downloaded from https://www.gleam.eu/#
datasets. The global dataset of leaf photosynthetic pathway was
acquired from the TRY database https://www.try-db.org/TryWeb/
Home.php, by selecting those records with the field “photosynthesis
pathway (traitID: 22)”. The DG dataset was obtained from the sup-
porting information of https://onlinelibrary.wiley.com/doi/10.1111/jbi.
13061. The subset of the observations from the nutrient network
(NutNet) are accessible at https://portal.edirepository.org/nis/
mapbrowse?packageid=edi.1037.2.

Code availability
The code for analysis is available at https://github.com/lxzswr/
C4distribution/ and https://zenodo.org/records/10516423. The code
of optimality photosynthesis model is available at https://github.com/
zhouhaoran06/C3C4OptPhotosynthesis-. All maps in the study were
generated with the assistance of the ‘M_Map’ package in Matlab, the
instruction of which is available at https://www.eoas.ubc.ca/~rich/
map.html.
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