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Abstract

One may be interested in a pure multipole magnetic field (i.e, proportional to sin(nf) or cos(nf))
whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate z ( say
proportional to cos im—zlm, where L denotes the half-period of the wiggler and m=1,2,3 ...). Associated
with such a z variation, there necessarily will be present a z component of magnetic field which in the
source-free region, ‘in fact, will give rise to both normal and skew transverse fields associated with
the functions A,(z) and A,(z) as expressed in Reference™. In this note the field components and
expression for the scalar potential both inside and outside a thin pure winding surface are included with
additional contributions from a possible high permeable shield. It is also shown that for a pure dipole
case of n=1 and a pure axial variation of m=1 the transverse field can be derived from a simple two

dimensional field.

Scalar Potential

We note that in the curl-free divergence-free region near the axis r=0 the field components may be

expressed as given by B = —VV where V is a scalar potential function for which V2V = 0.
10 ( oV oV n?v
S| pes L i S 1
rdr (T ar ) dz2 4 ’ L

The general form for the proposed solution as shown in Reference ¢ can be written in the form that
includes both “skew” and “non-skew” terms of all integer harmonic of order n (including n=0):

V= —{Z " Z m 2k [Agfk)(z) sinnf — ,3153")(.2) cos nﬁ] } 2

n=0 k=0

and the magnetic field components derived accordingly as :

B, = _E;_V = Z [gmr”_l sinnf — §pr™ ! cos nB]
"
n - . 3
By = —;V = Z [ggnr L cosnl + §p, 7" ! sin n@] 3)
av % a - n
B, = = ; [gzn7" sin O — Gopr™ cos nd|
where .
Yrn = Grn
96n = Gon 4
gzn = gZH

are general functions of r and z that include the appropriate “normal” and “skew” terms
An(z) and A,(z) ( see Appendix B ).

b 3D Field Harmonics — S.Caspi , M.Helm , and L.J. Laslett , SC-MAG-328 , LBL-30313 , March

1991.
¢ An Approach To 3D Magnetic Field Calculation Using Numerical and Differential Algebra Methods

— S.Caspi , M.Helm , and L.J. Laslett , SC-MAG-395 , LBL-32624 , July 1992.
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Inner Field r < R

For the region within the windings ( R equals the thin winding radius ) of a helical wiggler such
functions and even derivatives of order (2k) are expressed as

dulz)= Z By m cos [(Qm - 1)%]

m=1
Aq(2) = Z Bp,m sin [(2m - 1)%]
m=1
: [(2m — D] * Tz (5)
AR () = mzz:l (—1)F [@_Ll] B o8 [(Qm = 1)3]

An(zk)(z) = Z (_1)’“ [@] 2an,m sin [(Qm - l)%]

m=1

and with the substitution of the above expressions into the scalar potential V ( Equation 2)

(2m — V)7r A (2m — 1)z
§ r§ 2 . i i
Vir,82) = n Bnm[Zm—l ] k'n-l—k [ 5T } sin |nd 7

(6)
and with
1 wmr 2k+n
Tt} = ( ) 7
(wmr) kl(n + k) \ 2 &
k=0
where I, denotes the “modified” Bessel function ( of the first kind and order n),
om —1 23\
bl = -(——u and Gam = n'(—) By ®)
L bl
we express the scalar potential ( Equation 6 ) as
(r,0,2) E Z Gr,mIn(wmr) sin (nd — wip2) ©)
n=1m=1
where for a dipole sextupole , decapole etc, n=1,3,5...., m=1,2,3...., and L = half period.
The transverse field components and z directed field thus become
By=—= —Z Z Grmitoml, wmr)sm(nﬂ Wm2)
n=1m=1
1 BV
By = _;% = — E Z T, m In(wm) cos (nf — wp 2) (10)
n=1m=1
Z Z Grn,mwm In(wmr) cos (nf — wp2)
n=1m=1
with N
L{eopr) = Dypiliopr)— Efn(wmr) (11)

where the prime denotes differentiation of the Bessel function with respect to its argument.




Outer Field r > R

For a configuration in which the magnetic field components are produced by means of currents
confined to lie on the surface of a circular cylinder ( radius R), it can be of interest to evaluate the
character of the magnetic field components that must be present in the external region ( r>R ) and
to determine the components ( J, and Jp, at R) of current density for this configuration. The surface
currents will give rise to a discontinuity of the components B, and By at the interface ( r=R ), but the
normal ( radial ) component will pass continuously through this surface and assume the form

Z Z Gn mwm%K (W) sin (n — wp2) (for 2 B) (12)

n=]1 m=1

Consistent with B; written immediately above a scalar potential function V for the external region is
given by

V=% 3 Gnm}{—%ﬂ (wmr) sin (nf — Wy 2) (for »>R)  (13)

n=1m=1

where the prime denotes differentiation of the Bessel functions with respect to its argument, and

K,‘l(wmr) =— [Knu_l(wm'r) + %Kn(wmr) (14)

m

The remaining field components are found to be

Z E nGy, mK me) 1K,,(u.vmvr') cos (nf — wp2)

mit)r
n=1 m=1 R)) (15)
n(Wm
Bz = ’; mz_ Gn mWw mI{ R) .[(n(wm'l") Cos ('ﬂg — WmZ)

Surface currents at r=R

The discontinuity of the field components at the interface r=R now permit evaluation of the
conespondmg surface currents on this cylindrical surface. We denote the current system at the interface
r=R by J = J.€; + Jp€p ('amp/m ), and recall the relation i §B dl =1 (or —(AB) J ), where
po=4710—" in MKS-A units. Then

L (0 Z)]r R= _[Bezt Béﬂf]

16)
(o B) K, (@m B) = I (@m ) Kn(wnR) (
:-112_:17”2:171(?“,,3 REK (om B) 08 (n0 — wp2)
and through the use of the Wronskian I,,Ix’; - I,',Kn — —ﬁg
1 1
J:(0,2)|p=p = —— nGhp, » cos (nf — wpz) D
Z Z " wm R? K, (wn R)

n=1m=1



and

Jo(0, 2)|r=p = #L [Bint- _ pest)

' ' 18)
wnR) K. (wnR) — I.(wnR) Kn(wnR (
g L X Grman B Eolon) s (n0 )
and again through the use of the Wronskian
1 1
Jo(0,2)|r=p = —— Z Z Gnm—=——r cos (nl — wp 2) (19)

o R K, (wn R)

n=1m=1

The pair of components satisfy the conservation condition V - J = % + %%ﬂ = 0 as required.

Contribution of axially-symmetric ferromagnetic shield

We realize that if an. axially-symmetric ferromagnetic shield of high permeability is present with
a radius r=a ( a > R ), the induced magnetization will contribute supplemental fields ( “image fields”)
that in the region interior to r=a may themselves be derived from a scalar potential ( V,'Z;'?°). The
appropriate boundary condition at r=a will be fulfilled if we specify that yinnge 4 ydirect — constant
or if we conveniently specify that V,;7e9¢ = —y/direct and specifically

yimage Z Z & mr L:Jm];)) Ky (wpa)sin (nf — wp2) (6t ¥=w) 120)

n=1m=1

If the iron radius is constant ( not a function of z) we can write the scalar potential for r<a

- Ky (wma) .
yimage G ) I o — - t r<

nE lmi_ 7, mK BT () n(wmT) sin (Rl — wp2) (at T < a)

(21)
For the TOTAL magnetic potential function at r<R<a , we then have
mR) Kn(wma) :
total '

- = — 22
VEx nE 1 mE 1 Gum [1 V7 (me)In(wma)} In(wpr) sin (nf — wp2) (22)

The factor contained within the square brackets is an enhancement factor arising from the inclusion of
magnetization developed in the high permeability ferromagnetic shield. For the special 2d case where
L — oo or wpa<<l1 this factor becomes approximately

_ I (wmR) K (wma) R\™"
My,.0 g[ K (o BTy (i) oy i (23)
and the potential
R 2n
Wfﬁ.’ -2D Z Z Bum !1 s (E) ]rﬂ sin (nf — wp2) (24)
n=1m=1



as expected for the enhancement of the 2D field. For the above approximation we made use of the
following asymptotic relations

s —0

ne 5 (5)’
B~ (n—1)! (f) —n

12 2 1 (25)
! S n—

I(s) ~ 50— (5)

K6 ~-1()

The square brackets in Equation (22) is plotted in Fig. 4 Appendix A for n=1 and m=1.

Helical dipole with simple sinusoidal relation

We shall examine a helical dipole with single terms for both series n and m. The choice n=1
indicates a pure dipole with no higher harmonics , and m=1 indicates a pure wz/L variation with no
additional frequencies. We express the field components for r<R and n=m=1 as

2L
o — G11-—511

(26)
L Tr Tz
Bg = —231,1 (;) Il (f) Cos (9 =3 'f)
mr Tz
B, = 2By (f) cos (9 - f)
and 9B/ L\ 1 i
7 I P ©. (e s " e 27
0= (@) w1 (- D) e
We note that a linear relationship exists between the following field components
By T
o P o i 2
By 7 (28)
and note as well that for 77 < 3 or r < 3 the field components can be expressed with less than
1% error as
3/mr\2 5 saryt T r7r\6 ) TZ
Br = ‘Bll[l t+3lzz) + i) +mls) +] sin (0 - )
1 1 1
12 144

w3 ) B ) o) e
b= b 15 () 5 G + G+ ] (- )

The representations above will describe a field that formally is both divergence free and curl free —
provided that the summations are not truncated. If, however, we wish to truncate these series expressions,
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we at best can only do so in such a way that one, but not both, of these conditions is satisfied. Thus,
if we wish to preserve the divergence condition V - B = 0, we should take care that the sum over the
k index in the series for B, should terminate at a value of k that is less by unity than the termination
value for this index in the series for the transverse field components B, & Bs.

We shall calculate B;; and compare it with Bygq that is produced by a straight long dipole
(L — oo) carrying the same total current. In the 2D case where a current density ( per unit length)
of J(0) = Jpcosf and Jy = % will produce a dipole field of Byy = 1‘“%, the dipole field in terms
of the total amp-turn is

By = £000 (30)

We shall evaluate the total amp-turn in the helical wiggler by integrating the azimuthal current density
along #=0 using equation (27) ( see Fig. 1 below).

TR
§=—
L
m L L
2 2 2 (31
2311 1 / Tz 2B1 1R
Ip= | J;|;=0Rd0 = | Jplgmpdz = ——2=—— L T
0 / | 0 / 9'9 oz ™ sKl(s) cos T z ﬂgszKI(s)
0 0 0

By equating the total current in both the 2D dipole and the helical wiggler the ratio of their transverse
fields can be reduced to a dimensionless form :

By, g !
—= =3s°K,(s (32)
0
and note that in the limiting case ( using Eq. 25 ) as L — oo
: By 1
sap—— =1 33
limg—o Doy (33)
Pole
pra L3
o
L
2 midplane



as it should be.

The relation between the normalized transverse fields and s ( Eq. 32) plotted in Figure 1, reveals
a range that surprisingly is grater than 1 where a maximum of 1.0616089 is reached at s=0.6 . A
computational check was made with a cylinder of radius R=2.0 c¢m, surrounded by a current sheet in

ler field to 2D field

B1,1/B2d
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Ratio of helical
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Figure 1 Ratio of wiggler field to 2d dipole field.



a cosf fashion ( Figure 2) such that

I
J= E? cos0 =39 x 10° cos 6 (A/em) (34)

with a dipole field of
By = "2"—}{3‘) = 2.4504 (tesla) (35)

( we picked N=39 turns, I=2000 A and note that Ip=NI). A quick check with the 2D program “pkpeak”
yields a similar value of Byq=2.4583 (tesla). Applying the same current configuration in two examples
of a helical wiggler with the same radius R but different periods, such that

A =2L=5 em , s=ﬂ=2.513

L

R (36)
A=2L=20 em i S=T=0.6283

Equation (32) then predicts the following results :

BiaM) _prer o By = 1.3976 (tesla)
Bad

Bii) _ 06135 o By = 2600 (tesla)
2d

With the aid of the 3D program “figends” using a model such as shown in Figure 3, the corresponding
values are :

By (A

Bid) _guisr o By, = 1.3894 (tesla)
Baq

Bi,1(X2

Bi1(A2) =1.0518 or B = 2.5858 (tesla)
2d

We comment here that the field components as described by Eq. (26) differs from the corresponding
expression written in the Appendix of a paper by J.Blewett et al? due to possible typographical errors
in that paper. We also note that if we express the total current written in equation (31) in a form similar
to that expressed in Blewett’s paper we arrive at the total current per pole (= 2lp)

5B1,10

39
m2(SR Ky + K1) 39

Current[pole =

where A\o=2L ( period ). Blewett’s expression for the current differs by a factor of 1/1 + (;LE)Q

5B1,1A0y/1 + (#)2 (40)

w2 (2 Ky + K)

For the case of a single pair of current carrying wires wound in a bifilar helix® this expression is also
different from both cases.

Current [pole =

5B1,1A0

41
dm (TR Ko + Ky) aa

Current/[pole =

Orbits and fields in the helical wiggler — Journal of Applied Physics, Vol. 48, No. 7, July 1977
¢ Static and Dynamic Electricity — W.R.Smythe, p.277.
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Figure 2 Winding cross section in a cosf configuration,




AN

\
\\
Figure 3 3D windings for half period L=10 in a cos(7z/L) configuration.
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Appendix A Iron contribution

Equation (22) suggest a field enhancement factor arising from an iron sheet placed at r=a. Figure 4
shows such a factor for n=1 and m=1 as a function of s = % with the ratio of a/R used as a parameter./

iron-radius/Current-radius

— T 1 T T T

Ferromagnetic shield factor

1 —

10108,]

Figure 4 Field compression factor in a helical dipole wiggler.

f I would like to acknowledge the help I received from Domenico Dell’orco in producing this graph.
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Appendix B 3D harmonic coefficients

In order that the series for the potential V,, satisfy the differential equation (Eq. 1 ) we introduce
the functions A,(z) and express the coefficients ¢, , gon ,9-n as general functions of r and z as

shown below :

1 nln+ 2k y .
Grn(r,2) = Z (—I)LHW_;%)'A?)(Z)T%
k=0 ) )

! nln ; )
ggn(T', Z) s Z (__1)14'1 m/{gﬂ)(z)rzk
k=0 ' '

_ k+1 n! (2k+1)_2k
Gan(r,2) = Y (-1) T TR k)!An r
k=0

Explicitly we can write the above as :

gn(r12) = ~nA(2)+ LS A = Gy (o
M 1?(:—? R 3)A',;""(z)r6 -
i e I(H—TLI—)A;(Z)TJ C32n+ T)(n + Q)A:”(Z)T4
+ 38 1 1)(:+ T 3)A;""(z),n6 =
Funlr ) = ~Aal2) + mA:(z)# C32(n+ 11)(71 +2) o (B

ey

@

For the expressions of the skew terms just replace grn , 9on >9zn With Grn , Gon ,Gzn and A,(z)

with A,(z)

The representation specified above for 3-D magnetic fields, can be written in terms of functions
A,(z) and A,(z) and their derivatives for the example used in the main part of the paper where n=1

and m=1, such that :

' : 2k
Ag%) = (—1)‘1“ (E) Bi,1 cos i

L L
/1&%) = (~—~1)k (%) ZkBl,l sin ELZ-
ARED - (4)’“(%)%_131,1 sin =
Ag%—l) - (_1)k+1 (%) 2""131,1 — %

©)

In the next series of graphs we include results of such A’s ( both normal and skew ) computed by
the program “figends” for one of the example previously noted ( 2L=5.0 ). We note the sinusoidal

periodicity of the A’s and their derivatives according to the above relations.
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Helical wiggler 2L.=5.0 - Normal

Figure 7 Normal A3 as a function of z over a full period..
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Helical wiggler 2L.=5.0 - Normal

Figure 8 Normal A5 as a function of z over a full period..
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Helical wiggler 2L.=5.0 - Normal

Figure 9 Normal A7 as a function of z over a full period..
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Figure 10 Normal A9 as a function of z over a full period..
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Helical wiggler 2L.=5.0 - Skew

Figure 13 Skew AS5 as a function of z over a full pericd..
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