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Abstract

Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of
portability, low cost, and low power consumption compared to conventional high-field NMR and
magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target
field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in
a cost function that minimizes the error in the target magnetic field in the sense of least squares.
When the technique is tested on a ring array of permanent-magnet elements, the solution matches
the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a
640 G field homogeneous to 16 100 ppm across a 1.9 cm3 volume located 1.5 cm above the top of the
magnets and homogeneous to 32 200 ppm over a 7.6 cm3 volume. This regime is adequate for MRI
applications. We demonstrate that the homogeneous region can be continuously moved away from
the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable

“sensitive volumes.”
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Introduction

DURING the last decade, a wide range of transportable, portable, and single-sided
nuclear magnetic resonance (NMR) sensors and methodologies have been
developed [1]-[12]. The interest in such devices, as potential standalone or
complementary alternatives to conventional magnetic resonance imaging (MRI),
arises from the obvious advantages of lower costs, portability, access to immovable
arbitrary-sized objects, and scanning in the field. Mobile NMR measurements of, for
example, relaxation times or MRI are currently conducted for applications within
the materials sciences [13]-[20]. Recently, advances in methodology and hardware
construction have allowed for high-resolution NMR spectroscopy in one-sided,
portable NMR systems [21], [22].

Portable systems feature strong magnets that produce either a remote
homogeneous field or some type of natural gradient. The field homogeneity and size
of the homogeneous region come at the expense of the size of these systems or the
overall field strength. For example, the NMR-MOLE is a 6 kg, 20 cm diameter magnet
array that produces a 6.2 cm sensitive volume of 15 000 ppm homogeneity and a
field strength of 767 G located 1 cm away from the surface of the instrument [11].
By comparison, the original NMR-MOUSE weighs 2.5 kg, has a 3.1 cm height and a
5.5 cm diameter, and produces a field strength of 5000 G at the surface, but the
sensitive volume is a thin, 1 mm x 7 mm x 3.5 mm slice in the center of the magnet
[2]. Complementary to and independent of the magnet designs,
several ex situ NMR methodologies were developed recently [23], [24] with the aim

of relaxing hardware design and construction requirements in order to produce



larger effective sensitive volumes. Such methodologies are based on the application
of time modulated RF and static field gradient pulses that generate spatially
dependent phase corrections, without altering the chemical shift signature of the
sample under study. For instance, ex situ hardware matching [21], [23], [25]
corrects the spin phases using crafted radio frequency (RF) fields whose spatial
gradient matches that of the static field gradient. Shim pulses [24] achieve similar
phase corrections by modulating the imaging gradients during the application of RF
pulses without needing a particular spatial variation of the RF field. While these
techniques help in correcting spin dephasing to some extent, and may improve the
apparent homogeneity of a magnet, a relatively homogeneous magnet design is still
arequired starting point for individual applications.

We introduce a permanent-magnet design method which is simple in concept
and implementation, in the sense that it can easily be programmed on a computer
and optimizations are produced in a few minutes. The user specifies a target field
over a volume, and the algorithm outputs a globally optimal arrangement of dipole
sources based on desired tradeoffs between design efficiency and accuracy. This
approach ultimately yields optimal magnet rod sizes and orientations. Such magnet
rods are nowadays available at low cost from many commercial vendors in several
different sizes. Moreover, their assembly as elements of an array is far less

dangerous than the gluing of permanent-magnet (PM) blocks.

Theory



In this section, the general least squares problem that minimizes the norm squared
of the difference between the trial and target fields is described. A more compact,
but less intuitive, version is given in the Appendix.

To generate a field B(r) that best matches a target field, t(r), in the sense of
least squares, one minimizes the volume integral of the norm squared of the

difference between the fields over the region of interest (ROI)

C= / Hﬁ(r)—f(r)Her.
(1)

We describe the trial field , as a linear combination of basis fields
Br) =Y gubu(x).
" (2)

For our particular optimizations, we use bases of two-dimensional
infinitesimal dipoles. A linear combination of an X and a y oriented dipole centered
at the appropriate position fully describes each magnet’s strength and orientation,
and an infinitely long cylinder uniformly magnetized perpendicular to its axis will
reproduce this field. The cylinder’s field strength can be scaled to match the dipole’s
without changing the shape of the field outside of it by scaling its radius as the
square root of the dipole’s strength. The field of such a cylinder magnetized along

the x-axis is given in cylindrical coordinates by (3), where is the remanent field of

the PM block, is the cylinder’s radius, and Sand ¢ sare the radial and angular

coordinates, respectively

B, R? .
B= s (c:os((f)s—ksnl(f))(?).

P4

(3)



Physical implementations employing rod lengths significantly longer than the
maximum distance of any rod center to the target field will reproduce these designs
within a scaling factor of the field strength at a small loss of homogeneity as shown
in Section III-B.

By substituting (2) into (1), we get

C=g'Mg—2gTm~+1 (4)

where t is a scalar, M is an n X n symmetric matrix and m an n long vector, n being
the number of basis fields, and these are defined by the appropriate overlap

integrals where V is the volume of the target region:

M, = / Bi(r) - B;(r)dr
J

m; = / 5,1(1') - f(r)dr

v
t= / t(r) - £(r).
v (5)
To determine the extrema with respect to variations in the coefficients {gi},

we differentiate (4) with respect to gk and use the fact that M is a symmetric matrix

to get

aC
- — 21“’[1\,‘,0,' — 27724;,.

o
(6)

Setting (6) equal to zero for all possible yields

=M m.
& o



If M is not singular and hence the basis fields are linearly independent, the
solution is optimal. This point, when it exists, must be a global minimum with
respect {gi} to because the original cost function, (1), is bounded from below and is
quadratic with respect to the optimized coefficients. If M is an ill-conditioned or
even a singular matrix, or yields unrealizable or inefficient designs then matrix

regularization or constrained optimization can overcome these issues.

A. Optimizing for Dipole Orientation: Applying Multiple Quadratic Equality
Constraints

Tasks such as determining optimal magnetization angles given fixed magnet
block shapes, positions, and strengths; or reproducing a different field with a pre-
existing adjustable magnet using our rod implementation scheme, require

calculating optimal magnetization orientations given fixed strengths. Here, (4) must

2
be optimized under the equality constraints, (8), where each “J is a positive scalar
fixing a rod’s magnitude and the n x n matrices Kj are symmetric and positive

definite where n is the number of basis fields

{a";? =gl Kig}. @)
In our application, has the diagonal elements corresponding to the jth rod’s x and y
dipole fields set to 1 with the remaining elements set to 0.

The case of a single quadratic constraint has been worked out for various
applications, see for example [26]. The case of arbitrarily many quadratic

constraints adds some complications, but this more general case is also tractable.



Following Golub [26], we determine the constrained optimum via the method of
Lagrange multipliers. The Lagrangian is
BN Sy A T 2
=g Mg—2g m+2/\j (g KJ-g—aJ-)
J 9
A= {AIT)\Q? v :/\'n}

where are the Lagrange multipliers. The extremum of (9) is

attained when its gradient with respect to g is zero, and is given by

-1

gopt = M+ AK; | m

! (10)

where we have used the fact that M and Kj are symmetric, positive definite matrices.
Since the form of the Lagrangian is the same as our original cost function, this is still
(7) but with a modified matrix.

Solving for the Lagrange multipliers by substituting the solution for g into the

constraints (8) yields an expression that does not have a trivial solution. A Newton-
Raphson algorithm canbe applied to solve for A We approximate optimal
coefficients, (10), by substitution into the constraints, (8), to first order in A,

aA)1

Specifically, the matrix equation (- can be approximated by I+ ¢A for small

values of a. Thus, to first order in /\, the optimal coefficients are

gopt =M m =) \;MK;M!m.
j (11)

Substituting (11) into (8) and retaining only the zeroth and first order terms in /\,

our constraints can be approximated by



a2 = (M ITm)TKy(M~1m)
-2) A(MT'm) KM (M m).
I (12)
The solution for A now reduces to solving a matrix equation
LA\—p=-A
where the components are
Aj= crf-
pj =M~ m)TK;(M™'m)
L,t,j = ‘)(M_lm)TK,iM_lKJ'(:M_lm).

The A obtained is not an exact solution, so the constraint is not immediately
satisfied. To improve the compliance, the constraint methodology is applied
iteratively to the cost function modified by the previously obtained Lagrangian, (14)

TIM ="M+ > I\K;.
J (14)
In our application, we found that this iterative technique consistently converged.

To match to a particular target field, we wanted to fit to the shape of the
vector field rather than its particular magnitude, as in general one will not know the
specific strength of the homogeneous region that a magnet can best produce. With
equality constraints placed on the coefficients, their overall magnitude cannot adjust
to best match the strength of the target field. This flexibility may be retained for
quadratically constrained optimizations by placing a variable scalar term in the

target field overlap vector m, substituting it with sm, and subsequently determining



the optimal value for s. With this substitution, the iterative first-order equation for

A becomes

LA —p= —3—.,A.
57 (15)

The general solution (16) follows if s decomposed into the partial

solutions for the Lagrange multipliers Ap and A4 as defined in (16)

A=Ay —
p=LJ\,
A=L\4.

(16)

The optimal match occurs when the original cost function is minimally perturbed so
that the optimal solution obeys the constraints, and hence when [l is minimized
with appropriately defined constraint matrices Kk, By explicitly writing out the
norm of A as a scalar product of its solution and differentiating with respect to the

field scalar, s, the optimum is attained for

(17)

Equation (17) has no real solutions when Aa* Ap < 0 This condition would
imply that an infinitely strong field would be optimal, a physically unrealistic
situation given the application of finding optimal dipole orientations that matches a
particular field. However, this condition can nonetheless arise in optimizations, and

implementations of this technique should be careful to handle this condition.



Simulations

We first verify the present technique in the context of designing ring magnet
configurations, the solution of which is the well-known Halbach dipole [27]. We
then apply the methodology to the design of a single-sided magnet array for use in
mobile NMR. For this single-sided design, we demonstrate how to alter the field
profile by only changing the rod orientations, and compare the effects of using finite
versus infinite length rods for producing a variety of target fields using the
quadratic equality constraint version of our optimization. All optimizations and field
plots were computed with Matlab (The Mathworks, Natick, MA). The initial
solutions for the proposed single-sided NMR array were checked using Comsol33’s
magnetostatics module (The COMSOL Group, Stockholm, Sweden) for consistency.
A. Ring Magnets

For ring-shaped arrays of magnets, an optimal solution for the magnetization
is the Halbach dipole array [27]. This provides a check of our method against a

known solution to this problem. The magnitude and orientation of a ring of 16 PM

elements, were optimized to reproduce a unit target field, H, = 1, over both a
circular and a cross-shaped region of interest to test the effects of varied regions of
interest. Fig. 1 illustrates the results from the direct application of (5) and (7), along
with the analytical Halbach dipole configuration approximated with 16 magnet
elements for comparison.

The optimization over the circular and cross-shaped regions show a
remarkable similarity to the actual Halbach dipole configuration with respect to

their fields and optimal magnetizations. These matches require an appropriate



choice of the target field’s region of interest and/or the use of matrix regularization,
and yield designs with smaller homogeneous regions than the Halbach dipole that
are within a part per ten thousand of the target field strength. There is also a 1%
and 12% reduction in field strength relative to the Halbach dipole for the circular
and cross-shaped target regions, respectively. Thus, this classic design, originally
derived using analytical arguments [27], can alternatively be obtained using this
relatively simple numerical method at a small cost in performance with respect to
homogeneity and field strength.

The size of the circular target region had to be within a certain range (its
radius had to be between about 60% to 90% that of the dipole positions) to produce
designs resembling the Halbach dipole without matrix regularization. To obtain a
Halbach-like design from the cross-shaped target region, the optimization matrix
was regularized by adding the identity matrix to it in order to eliminate the very
small negative eigenvalues from its diagonalization.

The difference in homogeneity between the Halbach and numerically
optimized designs differ on the order of parts per ten thousand of the target field’s
strength and likely arise from numerical errors in calculating matrix terms and the
matrix inverse. Deviations of this order of magnitude are not surprising given the
optimization matrices involved are ill-conditioned, while the Halbach design comes
from an exact analytical solution [27]. Practically, deviations on this level are not
too important as variations in actual magnet blocks would cause larger variations in
the field. Nonetheless, these variations indicate that the method requires

improvements if one wanted to optimize for better homogeneities. Furthermore,



analytically the matrices cannot have negative eigenvalues as the cost function is
bounded from below, yet the numerically calculated matrix for the cross-shaped
target region often does. This indicates that numerical errors can have significant

qualitative effects, and leads to the need for matrix regularization.

B. Design of a Single-Sided NMR Magnet

We now demonstrate an application to the design of a portable, single-sided
MRI sensor. A series of unconstrained optimizations identified an optimal magnet
geometry and orientation of the magnet rods, which was then characterized by
finite-element modeling. Subsequent optimizations demonstrate that sensitive
volume can be moved by simply rotating the magnet rods.

For the initial optimization, the optimal dipole strengths and orientations
were optimized for a series of possible placements of four dipoles via the least
squares optimization method presented. The optimal dipole positions were chosen
by selecting the best of these possible arrangements. Algorithms 1 and 2 describe
the optimization scheme. Fig. 2 illustrates the possible dipole locations, the target
field region, and the field zeroing region.

Dipole orientations and strengths were optimized for a main target field of
unit strength and oriented parallel to the plane containing the magnets.! An
additional optimization matrix and vector based on a zero target field over the field
zeroing region were added at a small scaling factor determined by Algorithm 1 (f; =

1.6 x 10-4) to the main target field’s optimization matrix and vector before

1 The target field’s orientation allows for the use of RF-coils with greater sensitivity.



calculating the optimal coefficients to make the inverted matrix less ill-conditioned
and improve the design’s efficiency. To maximize design efficiency and maintain
reasonable homogeneity, we used the largest possible scaling factor that kept the
homogeneity to ~1 part per hundred, which is comparable in magnitude to the
performance of previously published systems [11], [12], [28], [29].

From this series of arrangements, each with optimized dipole strengths and
orientations, the best in terms of homogeneity, field strength, and stability was
selected to obtain optimal dipole positions. The homogeneity is calculated as the
RMS deviation of the field from the target field, which is Sqrt(C) /A where C is our
cost function from (4) and is the area for the main target field. Equation (3)
determines the field strength at the center of the target region for the rod radii and
orientations corresponding to the optimal coefficients. The stability of a set of dipole
positions is quantified by the magnitude of the gradient of the cost function with
respect to changes in dipole position and magnetization ( IVxC| and Ve,
respectively), and is calculated by finite differences between the position’s optimal
design and its perturbations.

The best arrangement from our search is illustrated in Fig. 3, and these
optimal dipole positions are also shaded in Fig. 2 to view it in relation to the original
optimization parameters. The construction, performance, and application of this
system will be presented in a future publication. Since the original optimization
applies to infinitely long rods, we perform finite-element modeling of its finite rod

implementation to validate the performance of this method (see Fig. 3). The dipoles



are implemented with 18 cm long rods? so that the length of any one rod is
significantly longer than the distance of its center to the target field. In this case, the
rod lengths are slightly more than 3 times longer than their distance to the target
region. The optimal coefficients and available space lead to outer and inner rod radii
of 2 cm and 1 cm, and orientations off from coplanar by 24.1 deg and 3.5 deg,
respectively, as illustrated in Fig. 3. A Comsol33 simulation indicates that this
configuration with rods whose remanent fields are 1.3 T yields a 640 G, 1.9 cm
sensitive volume with a 16 100 ppm homogeneity, or a 7.6 cm sensitive volume with
a 32 200 ppm homogeneity.

Finally, we fine tune the rod orientations of the previously optimized design
to adjust for the effects of finite rod lengths, and demonstrate how this design can
produce a movable sensitive volume by rotating the magnet rods with a series of
leastsquares optimizations subject to multiple of quadratic equality constraints (see
Section [1-A). The target fields are identical in size (a 2 cm 1 cm slice in the plane
bisecting the rod axes) and orientation to the original optimization, but vary in their
distance from the array to produce a movable sensitive volume [see Fig. (4i)]. The
optimizations accurately model and adjust for finite rod lengths, by using the basis
fields of finite rods (numerically evaluated assuming B; = 1.3T), and repeats these
optimizations using an infinite rod basis for comparison. The equality constraints
are necessary to use with a finite rod basis, as field shape, in addition to magnitude,
varies with the rod’s dimensions. Each rod’s orientation is then modeled by the

superposition of two basis functions: one for magnetization along x and one alongy.

2 While 18 cm long rods are hard to obtain and impractical to use, they can be
realized by aligning two collinear 9 cm long rods.



The variations are restricted to rod rotations only, by constraining the sum of
squares of the pair of coefficients representing each rod. Since the magnitude of the
coefficients are fixed and unable to adjust to the strength of the target field, the
optimization adjusts the target field strength to minimize the perturbation to the
original cost function. The technique’s implementation is specified in Algorithm 3.
Fig. 4 details the constrained optimization’s results for a range of target fields
for both 18 cm and infinitely long rod bases. This optimization yields the
appropriate orientations of finite rods to give homogeneous regions like those in
Fig. (4i) at different distances from the array. However, very close target regions
(<2.9 cm) exhibited dramatically worsened homogeneities, as shown in Fig. (4iii),
where the algorithm fails to yield homogeneous solutions, and gives chaotic
behavior, as seen in the plots of optimal field strengths, Fig. (4ii), and optimal
angles, Fig. (4iv). Arrangements with the highest field strengths and best
homogeneities occur around a target field distance of 3.5 cm (labeled b). This
coincides with the original target region, for which the rod sizes and positions were
optimized. Further out target regions correspond to regions where the fields of the
individual rods weaken, so it is natural that the fields of the optimal solutions also
weaken. Furthermore, the rods’ relative sizes and positions cease to be optimal for
more distant sensitive volumes, and the homogeneity tends to worsen. Fig. (4ii)-
(iv) also provides a way to compare the use of the infinite rod basis to its finite
length implementation. Replacement with the 18 cm long rods effectively leads to
the sensitive volume’s strength to be scaled down, a small decrease in homogeneity,

and very similar optimal rod orientations which differ more for distant sensitive



volumes. Thus, when the algorithm is able to produce homogeneous regions and the
target region is reasonably close (<4.5 cm), implementation of the infinite rod
design with finite length rods yields the same design with a small cost to
homogeneity and a rescaled sensitive volume strength. The differences become
more pronounced at more distant sensitive volumes where the infinite rod
approximation becomes worse. Thus, the field scaling factor (~0.5 at 3 cm and ~0.4
at 10.5 cm) decreases with distance, and the optimal angles become significantly

different past 4.6 cm though only for the inner rods in this example.

Discussion

We presented a magnet design technique based on the least-squares fit of a
target field and demonstrated its application to the design of ring magnets and a
single-sided NMR magnet. The optimization finds a global optimum for the sizes and
orientations of an array of cylindrical magnets, whose potential adjustability offers
greater experimental flexibility and several advantages for implementation. The
optimization itself is simple and compares well to similar methods, but requires
appropriate application to yield useful results.

We demonstrated that this technique leads to good permanent magnet
designs. Its reproduction of designs very similar to the Halbach dipole array, even
with a cross-shaped target region, confirms that it leads to reasonable optimal
solutions. The technique also produced a single-sided NMR magnet design with

good performance in terms of the balance between field strength, homogeneity, and



sensitive volume location, and demonstrated that this design can have the unique
feature of a variable sensitive volume location.

The overall approach leads to designs based on cylindrical magnet rods, and,
though this can lead to weaker field strengths due to not filling a maximal amount of
volume with magnetic material, these designs have several significant advantages.
Such magnet rods are commercially available over a range of sizes, but more
importantly allow for significant adjustments by rotating the rods with an
appropriately designed frame. An adjustable frame allows the rods to be initially
oriented for an easier assembly and to be adjusted from their theoretically optimal
orientations to compensate for variations in the magnets. With accurate field maps
of the actual rods, these corrections could be directly calculated. In our specific
application, the resulting adjustable sensitive volume gives greater experimental
flexibility: closer sensitive volumes for greater signal or further out to probe deeper
within the sample. Without this adjustability, previous magnets could only achieve
this flexibility over sensitive slices instead of over volumes [2].

Our approach is unique in comparison to other magnet optimization
techniques [8], [30]-[34] in that it combines a target field optimization that locates a
global optimum with a few simple matrix calculations to the design of adjustable
permanent magnet assemblies. Other linear programing based techniques like 1p-
norm [30], [31] have been applied to coil designs and could provide an alternative
optimization technique within our implementation strategy. Our approach most
closely resembles the scalar potential approach [35] in that it finds an optimal linear

combination of basis fields, but that technique instead yields pole-piece based



designs and optimizes the lower order terms of an expansion of the target field
instead of fitting it over a volume.

While our optimization technique is simple to implement, it requires the
appropriate selection of magnet rods and their corresponding basis fields. The 2-D
dipole basis is useful for the initial optimization because its field has a simple
analytical form and the relative dipole magnitudes can be adjusted in their infinite
length rod implementation by changing their relative radii. However, their finite-
length rod implementations must have the rod lengths significantly longer than the
distance of any rod center to the region of the target field. Subsequent optimizations
with a finite rod basis can help adjust for errors introduced in the approximation,
but these can only adjust their orientations since quadratic equality constraints
need to be used with this basis. Any such quadratically constrained optimization
requires multiple iterations to correctly determine the Lagrange multipliers and
should optimize the target field strength so to minimize the applied Lagrange
multipliers because the optimal field strength will vary depending on the basis and
target field location. As done in Section III-B, a series of these constrained
optimizations with finite and infinite length rod bases can show where the finite rod
implementation causes more than just a rescaling of field strength and a slight loss
in homogeneity by testing a range of target field distances or possible rod lengths.
With a range of target field distances, we demonstrated that with our design
significant errors occurred when some of the rod lengths became less than 2.7 times

longer than the distance of their centers to the target region,3 while also showing

3 We omit the effect of the rod radius becoming to large relative to length,



how to produce a movable sensitive volume. A more direct comparison between the
infinite and finite length rod fields, while useful, is difficult because the field within
the plane bisecting the finite rod lacks a simple analytical solution and the
magnitude of its field is radially asymmetric unlike for the infinite rod case.
Therefore, it is simpler to test the practical effect on the array.

Matrix regularization techniques and efficiency-increasing measures are
often needed to ensure that the optimal designs are reasonably robust and efficient,
because the optimization matrix M is often ill-conditioned. In the case of optimizing
the ring array of magnets to the cross-shaped target field, the original optimization
matrix M is poorly conditioned, but with a matrix regularization consisting of adding
the identity matrix to its M at a small scaling factor, the optimization still nearly
reproduces a Halbach like array. In the second set of optimizations, the relative
homogeneity and efficiency of the optimized single-sided NMR magnet was
controlled by adding the optimization matrix for the field-zeroing region (M) to the
main target field's optimization matrix (M) at a weighting that gave the desired
balance of field strength and homogeneity. Thus, instead of obtaining optimal
designs with very homogeneous, but weak fields, we could control the trade-off
between homogeneity and field strength.

Finally, our optimization strategy leaves the dipole positions in need of
optimization. A global search over a fairly coarse grid yielded a good one-sided MR

magnet design, while slightly denser grids did not yield significant improvements.

since physical considerations like avoiding rod overlap with each other or with
the target region will keep the rod radii significantly smaller than the distance
to the target field and hence rod length.



To fine tune dipole positions more computationally efficient strategies could be
used, potentially borrowing from the strategies employed in l,-norm optimizations

for magnet design [30].

Appendix A: Optimization Applied Over Discrete Points

The original cost function, (1), with the basis set expansion directly applied
toitis
¢ = [Irwe - ar
Vv (18)
where g is the vector of linear weightings, F(r) is a matrix whose columns represent
different basis functions and whose rows represent different components of the
field, and t(r) is the target field. If the minimization is over a discrete set of points
{p} and the field’s components are Cartesian, the integral of the norm becomes a
sum of the square of the field’s vector components
C=3 > M-t
{r} {a} (19)
The sum over points can be combined with the sum over field components to create
a simplified matrix expression, (20), if we let the rows of ' and t span a more
general space that sequentially lists the field components of every point

C=|rg—t*.
(20)



The optimal solution here is the classic least-squares fitting problem of linear
algebra, for which there are many pre-existing routines. The matrix is the same as
the one used in the l,-norm method to relate constraints placed on the field to
constraints on the optimal currents.

An experimental realization of the 4-elements cylindrical rod design

proposed in this paper is to appear in [36].
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Fig. 1. Optimal ring arrays of magnet rods that produce the uniform magnetic field,
over their central regions. The fields are calculated assuming infinitely long rods,
each with uniform remanent fields of 1.3 T. The homogeneity of each field’s
magnitude within parts per hundred (pph), parts per thousand (ppt), and parts per
ten-thousand (pptt) are indicated by the shaded regions. The circles indicate rod
placement and sizes, and the arrows indicate the orientation of each rod’s
magnetization. We optimized using the presented technique over circular and
cross-shaped regions as indicated by the unmasked areas (masked areas are
indicated by crosshatching) and included the Halbach dipole solution for
comparison. For both target regions, we obtain solutions with rod sizes and
orientations similar to the Halbach dipole.
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Fig. 2. Optimization parameters for the initial design of a single-sided magnet

for NMR. The target region for a homogeneous field is indicated by the white
rectangle and the region for field minimization (field zeroing) by the hatched region.
Circles represent possible dipole positions, where a possible combination

of 4 dipoles obeying the appropriate symmetry for selection are shaded. The
schematic illustrates the xy-plane of the system, where the rods producing the
dipole fields extend to infinity along +/_z.
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Fig. 3. The optimal magnet design implemented with 18 cm long magnet rods,
each with a uniform remanent field of 1.3 T, and modeled using Comsol33. The
magnitude of the magnetic field is plotted over the slice bisecting the magnetic
rods over a range of 550 to 710 G with off-scale regions in white. The magnet

rods are indicated by the gray cylinders and the orientation of their magnetization

by the arrows.
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Fig. 4. Optimal magnet rod orientations for our optimal magnet design for a range of
sensitive volume distances d;, and for finite (18 cm) and infinite length rod
implementations with uniform remanent fields of 1.3 T. (i) Homogeneous regions
plotted over the slice bisecting the magnet rod lengths produced by finite length
rods. The shaded regions indicate where the field's magnitude varies within a part
per ten and a part per hundred of the optimal target field strength. The array
produces slightly larger homogeneous regions for sensitive volumes near the
original target region (d: = 3.5 cm). (ii) Field strength of the sensitive volumes. The
finite length rods produce sensitive volumes with field strengths that are a fraction
of their infinite length rod equivalents which decreases with distance ( 50% at d; =
3.0 cm vs 40% at d¢ = 10.5 cm). (iii) Inhomogeneity quantified as the average
magnitude of the difference between the actual and target field over the

target region normalized to the optimal target field strength. Sensitive volumes
produced by the finite rods are slightly more inhomogeneous than for the infinite
length rods. The algorithm yields inhomogeneous solutions for d; < 2.9 cm for these
target regions. (iv) Optimal rod orientations. The rod angles are illustrated

within the Magnet Arrangement portion of i. The optimal angles for the finite and
infinite length rods match for homogeneous systems with d¢ < 4.5 cm, indicating a
region where our finite rod implementation of 2D dipoles is effective.
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Algorithm 1 Determining the appropriate weighting for the
“field-zeroing” region

—

: Choose a representative set of dipole positions {z; }.

2: Calculate the target field matrix and vector, M and m, and
the field zeroing matrix M, (m, = 0) from (5).
3: repeat

4:  Appropriately set or adjust the scaling factor for the field
zeroing region, f..

)]

Calculate the effective cost function to be minimized.

Meir = (1 — )M+ f-Mz. mege = (1 — f2)m.
6: Determine the optimal coefficients, goor = Me_ﬂ1 Meff.

7: until The homogeneity falls within the desired range.



Algorithm 2 Global Search: Optimal Positions
of the Dipole Array

1: Determine the appropriate zero-field weighting, f. as in
Algorithm 1.

2: Determine the distinct sets of dipole positions, {z} };, to
be tested.

3: for all {x; }, do

4: Calculate the target field matrix and vector (M and m) and
the zero-field matrix (M) where m; = 0 from (5).

5: Calculate the effective cost function to be minimized.

Mer = (1 — f.)M+ f.Mz, mgr = (1 — f.)m.
6: Determine the optimal coefficients, gt = Me}fl Meff.

7: Calculate the approximate homogeneity, (', the
implementation’s field strength, and its resilience to
variations, |VxC| = />, ([C(za + &) — C(x4)]/0)2
and |VgC| = /> ([C(ga + 6) — C(ga)]/6)* where C
is the cost function in (4) for the main target field.

8: end for

9: Rank the systems for optimal homogeneity, efficiency and
stability.

10: Choose the best compromise system.



Algorithm 3 Optimizing With Multiple Quadratic Constraints

1: Generate the constraint matrices and scalars, K 7 and vy,

2: Calculate the target field matrix and vector, M and m,
from (5).

3: while the constraints (8) are not obeyed. do

4: Calculate the first order Lagrange multiplier solution
matrices and vectors: L, A and p from (13).

5: Find the first order approximations to the Lagrange
multiplier solution vectors \, and A\ from (16).

6: Determine the relative field-strength s which allows for
the minimal applied constraint from (17).

7: if Ay - Ap < 0 then

8: Quit. Inform the user of the condition and return the
previous iteration’s solution for A and gopt

9: endif
10: Calculate the Lagrange multiplier, A, as in (16).

11: Add in the Lagrange multipliers into the solution matrix,
M. See (14). {This new matrix now replaces the previous
one for future loop iterations. }

12: Calculate the optimal coefficients. gope = M~1(sm).
13: end while





