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MOLECULAR THERMODYNAMICS OF FLUID MIXTURES CONTAINING MOLECULES

THAT DIFFER IN SIZE AND POTENTIAL ENERGY

Ying Hu*, Dorothea Liudecke** and John Prausnitz

Molecular- and Materials Research Division
Lawrence Berkeley Laboratory and
" Chemical Engineering Department
University of California
Berkeley, CA 94720

ABSTRACT

Recent computer—simulation work by Shing and Gubbins for binary mixtures
has shown that common semi-empirical models (van der Waals n—fluid models) are
in error when the molecules of the two components differ appreciably in size;
the error is most severe in the dilute region. While perturbation theories are
much better they, like computer simulations, are not as yet useful for engi-
neering work because of prohibitive computer requirements.

This work proposes an algebraic expression for the Helmholtz energy of a
mixture which gives results in very good agreement with those reported by
Shing and Gubbins. This expression, using the local-composition concept, is
based on a simplified but realistic picture of a fluid mixture: shoert-range
order and long—range disorder. The proposed expression uses the Mansoori-
Carnahan—-Starling-Leland equation for the contribution of repulsive forces.
For the contribution of attractive forces, it uses a new expression based on
not one, but several radii for the first-neighbor shell, one radius for each
component.

With reasonable simplifications, the resulting equation for the Helmholtz

energy indicates that van der Waals “"constant” a 1is a strict quadratic functiom

of mole fraction only at very low densities; at advanced densities, there are
small deviations from the quadratic mixing rule. For practical calculations,
computer requirements are nearly the same as those for conventional engineering
models.

* East China Institute of Chemical Technology, Shanghai, China
** Institut fir Metallphysik, Gottingen, W. Germany
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Since van der Waals' work on fluid mixtures of nonelectrolytes about 90
years ago, many authors have proposed models for the equilibrium properties
of such mixtures. Most of these models follow from phenomenological, semi-
empirical considerations leading, on the omne hand, to variations on the
original van der Waals equation of state le.g. RedliCh-Kwong.(1949), Soave
(1972), Peng-Robinson (1976)] and on the other, to variations on van Laar's
equation for activity coefficients [e.g. Scatchard-Hildebrand (Hildebrand,1929),
Wilson (1964), NRTL (Renon and Prausnitz,1968), UNIQUAC (Abrams and Prausnitz,
1975)}. At the same time, more fundamental models based on perturbation
theéry le.g. Barker-Henderson (1967), Chandler-Weeks—Anderson (1970),
Mansoori-Leland (1970)] have been proposed. More recently, with the increas-
ing availability of large computers,'ic has become possible to avoid models
entirely and to calculate thermodynamic properties of mixtures by computer
simulation using Monté éarlo or molecular—dyhamics techniques (Mansoori. and
Haile, 1983).

While semi-empirical methods often give good agreement with experiment,
such agreement is obtained only through several adjustable binary parameters
which in many cases can represent only one property (usually chosen to be the
Gibbs energy) while failing for another property (e.g. enthalpy or density).
Computer simulations have indicated that currently available semi-empirical
models are fundamentally incorrect for mixtures of different sized molecules,
especially in the dilute region (Shing and Gubbins, 1983).

For engineering work, semi-empirical methods are nevertheless used
because good pertubation theories and computer simulation require excessive
amounts of computer time. For a typical calculation of a chemical potential
in a mixture, computer requiremeﬁts for the modern methods are two or three

oraers of magnitude larger than those for the older, semi-empirical
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techniques. For iterative design of equipment for separation operations,
where thermodynamic propertiés must be calculated over and over again,
presently available theoretical models are not economical.

In this work we preseht an.algebraic expression for the Helmholtz energy
A of a simple mixture; other desired thermodynam;c properties are readily
obtained by standard differentiation. Because it is algebraic, éomputer
rgquireménts for our expression are nearly the same as those for common semi-
empirical models.

- Our expression for A 1is based on a realistic but simplified picture'of
fluid mixtures including those where the components differ appreciably in
molecular size. Although relatively simple (as dictated by low computer
requirements), our expression is in good agreement with computer-éimulation
results reported by Shing and Gubbins (1983).

‘ As derived in the following sections, our expression for A is limited
to simple mixtures (i.e. those containing spherical molecules that interact
predominantly through dispersion forces), not only because that is the simplest
case, but also becausé it is only for such mixtures that we can compare our
results with presently-—available computer—simulatidn and perturbation~theory
results. Our expression for A for simple mixtures, however, serves as a

useful basis for a modified expression, suitable for more complex mixtures. -

Molecul ar-Thermodynamic Framework

We seek an expression for Helmholtz energy A as a function of volume
V , temperature T and mole numbers nj, nz...np . Similar to our previous

work (Hu et al., 1983), we begin with the puré fluids in the standard state



(°) and we then subjeét these fluids to three steps, as discussed below.

This procedure gives us an expression of the form
A = A + MAT + BApT + AT &Y

The standard state is the pure, ideal—gas fluid at system temperature
T and 1 bar. | : ..
In the first step, we isothermally mix the pure ideal gases to form an
ideal—-gas mixture at system volume V,
: k i
AAI = Z n:RT ln (n:RT/V) (2)
¢ =1 :
In the second step we isothermally and isometrically change the ideal-
gas mixture to a hard-sphere mixture by inflating eaéh moiecule i1 to diameter
oi - To find AAjy for this step, we use the expression of Mansoori-

‘Carnahan—-Starling-Leland (1971),

DAz = nRT[-301-¢.+Gr 6 0/2 + (3L,+28,)(1=5)"

B} (3)
+3(1-C,-C-8:/3)(1-8) /2 +(83-1)(1-5)]
where | '
£ - !
£ ___ c. T n; N, 3
ST T Ty @
7, = 52:‘__:‘ A':./ (o +0; 0.0 )-’/Z
k k 1/2
—_ 5.\ (C:T5)
¢, 5 Sey (Gi0;;
i Jéf ALJ ; ( S ) O-e
k 3 2
Zszf.;(gi/g)-/:xcluj A ‘
A = [(5:8)7 /8 )(0c -3 ) /(o:0] (x: xj)' .

Here N, is Avogadro's number. For comparison, it is useful to consider also
expressions for AAjj based on van der Waals 1-, 2- and 3- fluid theories

(Rowlinson and Swinton,1982); these are given in Appendix I.



In the third stép, we "turn on” forces of intepmolecglar attracﬁion and
we allow for molecular softness. in other wérds, we charge the hard-sphere
molecules with a potential. To obtain an algebraic expression for AA111 5
we introduce a simplified but realistic physical picture for a dense fluid
mixture as shown in Figure 1. For simplicity, thét‘picture shoﬁs a binaty
mixture. However, the results derived below.are given for a mixture of k |
,componentsv. |

The essential idea in Figure 1 is that a dense fluid is described by
short-range order and long-range disorder. Consider a molecule of species 1
which we arbitrarily select as our central molecule. This central molecule
is surrounded by near neighbors that form a first coordination shell; some of
these neighbors are of species i while others are of species j .

In the top section of Figure.l we show only molecules of species .i and
in the middle section we éhow oniy molecuies‘df species j , in additiom to.
the central molecule. The lowest part of Eigure 1 is the sum of the two
other parts.

In the upper section, we see three neighbor molecules of species i 1in

[ of 1)

the first coordination shell. The center=~to-center distance between the
central molecule and any one of these thrée neighbors is rjj*. The distance
between the center of the central molecule and the outer boundary of the
shell formed by the neighbors is given by rj;**. These distances are shown
by the dashed circles.

The middle section considers the dimensions of the first coordination

shell formed by molecules j . The corresponding distances, again shown by

the.dashed circles, are rji* and rji** .



Consistent with this physical picture, we write

AAn = Aum.SR +AUm g =~ TAm.s8 (4)

where SR designates the short-range (partially ordered) contribution and

LR designates the long-range (random) contribution. Contribution ASy1LR

iw

is zero.

To obtain an expression for AAjyy; we write

j=t

AUJH SR nN Z‘: Z I Z(‘) €J5 ( r'i*) | (5)

Kk k oo N
! NiNaw oo .. 2
AUm,:.R = -2—an g X; JZ=‘: fr,, v; X;E;(r)y4mnr dr (6)
Je '
{ k &k Xi he ,
ASIHSR e 'Z—'nR Z £ X.Z¢) Xs; En —:E;- , (7)
. |,= J“ Ji

In these equations, k is Boltzmann's constant, n is the total number
of moles azd %51 is the local mole fraction of j around a central molecule

i ; if no other subécript appears, Xjj refers to the real mixture while

subscript hs refers to the hard-sphere mixture.

The coordinaticn number Z(i) 1s the total number of neighbor molecules

in the first shell around a central molecule of species i . The potential
€41 is evaluated at distance rji* + In our calculations, reported below,

- we use the Lennard—Jones potential but some other potential could be used.
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One of our main problems is:to obtain an expression for Z(i) .

.To do so, we set z(j) equal to the product of three quantities:

k volume of first number density—dependent

z(i) = Z coordination shell "density of Boltzmann factor (8)
j=1i formed by mole- “molecules for i-j pair

_cules j v
The purpose of the Boltzmann factor is to obtain consistency with the
theory of fluids at low densities where the radial distribution function gji(r)
is given by exp [-sji(r)/kT]. The purpose of the Boltzmann factor in

Eq. (8) is toAcofrect the overall density to obtain a local demsity. Our

density—-dependent Boltzmann factor takes the semiempirical form

exp [-aeij(rij*)/kT]'

‘where a depends on density p such that

as p+*o, a*a,, where a, 1s a constant near unity
and, as p + dense fluid, a becomes very small, i.e. 0 o <L g

At high densities, the distribution of nearest neighbors depends primarily
on molecular geometry (packing effect) and only weakly on the ratio of
potential to kinetic energy. Therefore, a tenas to zero as densitv increases.

Yor mixtures of spherical molecules, siuple geomet:ic consicerations

give the first and second factors on the right side of Equation (8).

-

We obtain
ko, I L R SN VI
Zw = 2 (-G Ty erploot &l @

i=i

For the dimensions of the first shell, we write



*
r,.* =K °1j (10)

ij

Ty = K**oij (11)

where K* and K** are universal constants. Since rij* is very close to
the first peak of the gij radial distributioh, we expect K* to be near
1.15. To obtain a good approximation for K** » We use computer-simulation
.data for local mole fractions, kindly sent to us by Professor K. Gubbins
(1983); these data indicate that, for hard-sphere mixtures, the local
composition varies somewhat in the region (1.0-1.5) oyj ; howevef for

larger distances, the local composition does not change. This suggesﬁs to
us that K** should be close to 1.5; comparison of calculated and "observed”
(computer-simulation) Henry's constants, as discussed later, indicates that
the optimum values are K* =1.150 and K** =1.575.

Local - Compositions

To find local composition Xjj » we minimize AAI] (Eq. 4)
according to

d(AAII_I) . ‘ =0 (12)
T,V, bulx comrposition

subject to two restraints. The first of these follows from normalization

(material balance) while the second follows from a balance of ij pairs:
the numder of ij pairs must egual the number of ji  pairs. For a binary

mixture, (i=l, j=2) these restraints can be written

X113 +x21 = x2 T x2 =1

Z(1) ¥ X 217 %2(2) X2 X312

[+ ]

fhd



For a binary. mixture, there is only one independent variable which we here

choose to be x2]; . Eq. (12) becomnes

oAAm

( qu- T; V: Xy

|

a3)

Substituting Eqs. (5,6,7) into Eq. (13), we obtain

X, Ziy X, + Zy X2 "f( Ziy X+t Zery X )l' AX X ZenZw T (14)
—_— g 1
2 Z Zury Xy Tz '

where T, == |- exp{[€, (n) Y+ € (FE)-E(TT) -fucr:i)J/kT} Xoihs Lazhs /( Liz ks Lashs )
Extension to ternary and higher mixtures is briefly discussed in
Appendix I. |
When « =1 , The local composition becomes
| X, 0. exp[-Eu(ra VKT ) —
X, 0.} expl-E(r)/kT] + Xo Gl exp[- €., (RI/KT]

Xy = (15)
which is the same as that in Wilson's equation; Therefore, Wilson's local
composition is, in a sense, "exact” at low densities, as previously pointed

out by Chao and Leet (i1¥23), iowever, at liguid-iike dsnsities, a 1is

small compared to unity and therefore Wilson's equation overestimates nonran-—
domness, as pointed out previously (Nakanishi et al., 1982).

For hard-sphere mixtures €17 = €22 = €32 =0 . In that case,

:C:.:, hs

3
X, Oy /( X, O-”3+ I&U:',) . (16)

The equations given above provide an algebraic expression for Helmholtz
energy A of a mixture containing spherical molecules that differ in size

and potential energy. These equations were derived to provide a good
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approximation to results obtained from computer simulation'as shown in chg

next section.

Comparison of Results with Those from Monte Carlo and Perturbation-

Theory Calculations

First, we consider dense binary mixtures whose molecules are of the
same size. We use our algebraic equation to calculate local composition,'
residual chemical potential and Henry's constant over a wide range
of ratio €;;3/€32 « We compare our calculated results with
those reported by Nakanishi (1982) and by Shing and Gubbins (1983),
using Monte-Carlo computer simulation (MC) and perturbation theories (LHB =
Leonard-Henderson Barker (1970); LL = Lee-Levesque (1973)), For

characteristic energy €35 , we use
egp = ey e Py | an

For our present purposes we confine attention to dense liquid mixtures.
For these we use o =0 .

Pigeor2a 2 shows lccal compositions X3y or xpp for an equimclar mixture

(ra

(x3 = xp =1/2) where gy] = €32/2 ; these local compositions are shown

as a function of €37 (lower abscissa) or .klZ (upper abscissa). Our
results agree well with tgose based on MC especially when we éonsider the
probable uncertainty in tie [MC calculations.
The residual potential is shown in Figure 3 for the case €]1/€22=2;
€yp/k = 100K ; T = 120K ; p0223 = 0.7 and gy, =09y = 3.4058 .
Agreement is again good, probablj within computational error.

The most sensitive test is provided by Henry's constant. Results are

shown in Figure 4 for conditions similar to those in Figure 3 except that

a2



€ /€3y 1is now the independent Var;able an¢- €12 =erli 322)1/2
with kj, = U. Agreement with MC is excellen; exéept for véry sméll valuesv
for 612/622 which ére almost never attained in real mixtures. However,

we are not convinced that the MC results are correct in the limit

€2 * 0 . This limit is for a mixture.where €11 = €12 = 0 ; according

to MC, for this case, H/pkT =1 ; But this corfesponds to a zer§ residual
chemical potential for the solute. That, however, is not reasonable since
| molecular diameters o¢; and ¢ are not zero: that is,‘we ﬁéQe a
hard-sphere solute dissolved in a real solvent. For such a solute, the residual
chemical potential should not vanish because the definition of residual reférs
to an ideal gas, not a hard-sphere gas.

Figure 5 shows the variation of coordinat;on numbers with the size ratio
(012/022)3. When the central molecule i = 2 , the coordination
number z is about 12 wheh the size ratiO'goes to zero. For equal-sized molecules
z is near 10, and z is about 6 when the size ratio is somewhat larger than 2.

On the other hand, when ceﬁtral molecule i = 1 and the size ratio goeé to

zero, the coordination number is very low because in that event the region

of Local order is vanishingly small. bBut as the size ratio increwses, the
coordination number rises to about 12.

Residual potentials are shown in Figures 6 and 7 for a variety of
conditions, as indicated. Figure 6 compares results obtained from this work
with those obtained for !C and from van der Waals n~fluid theories. For the
case shown, o032 is only slightly larger than ¢33 ; for that case, one—fluid
van der Waals theory provides a fair approximation. Figure 7 provides
comparisons with MC and perturbation theories. It would be useful to make

comparisons for cases where (012/022)3>l.5 but, unfortunately, no MC

results are as yet available for such cases.



However, the effect of large differences in molecular size is shown
dramatically in Figure 8 which shows Henry's constanté calculated
by MC, perturbation theories, and van der Waals theories. It is evident that
the algebraic equation for Helmholtz energy A , described above, gives very
good results. Figure 8 emphasizes that van der Waals n—fluid theories are
very poor in the dilute region whenever there is a significant difference in
molecular size.

Some calculations were also made for a few real mixtures of spherical
(or nearly spherical) molecules. The results are shown in Table 1 ; pure-
component parameters are shown in Appendix III. Results calculated
with the method presented here are as good as those calculated from

perturbation theory (Grundke et al.,1973).

Implications Toward a “Practical” Equation for Calculating

Chemical Potentials in Mixtures

The results of this study lead to some useful suggestions toward a
practical equation of the van der Waals form for the chemical potential of a
cemponent in a fluid mixture.

lie find that, to an excellent approximation, the local mole fraction is

ci-;? X, %j exp [ -cl &y ( rel)/kT]

(18

It can then be shown that

AAﬁ = -n*a"/V (L9)
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where, for the mixture, van der Waals "constant” atl is given by

k k
H H
a = ?-’ Jz-’: x; IJ a;J' (20)

and “constant™ aijH is related to reduced temperature kT/eij by

A€y
ayj = €504 {os8 (43 )[e"P("qa )1 ]r o] o)

where €44 is the Lennard-Jones energy parameter. It is important to
emphasize that Equation (2U) is not as;umed but derived from our previously
stated assumptions.
We use superscript H on "constant” a because we want to call
attention to its definition which, as indicated by Eq. (19), is in terms of the

Helmholtz energy. In the equation of state (EOS), “"constant” - a is somewhat

different because it depends on density; the relation between al and aEOS
is found from P=—(3A/3V)T,ni; it is given by
M
_ Ecs 472
Q™ = a’-Vv{£=) (22)
oV T. 7

1f “constant”™ a depends only on temperature and composition, there is no
difference between af and aEOS . This is the case in popular semi-empirical
equations (like Soave-Redlich-Kwong) but computer simulations clearly show that
“"constant” a depends on density in addition to temperature and composition.

The quadratic mixing rule indicated by Eq. (20) follows directly from our

derivation, subject only to the use of approximate local mole fractions Eq.

(18). However, since a depends on reduced density, "constant” agj

L

(for i=j and for i # j) also has a composition dependence; that dependence is

not large (especially at high reduced density where o << 1) but for highly
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asymmetric mixtures | o044 >>ojj], it can be significant,
To illustrate, we fit the eduations,derived here to extensive experimental

data for argon, we find that

3. o0.1865
_ . - 0.5 g
ol 060’ 8 (CT") (23)

for the range pc3 =0 to 0.8

We obtain an excellent fit of vapor pressures, liquid densities and
second virial coefficients in the temperature range 85 < T < 1000 K wusing

the conventional Lennard-Jones parameters ¢ = 3.27 & and €/k = 109.4 K.

H 3

Figure 9 shows reduced a® as a function of reduced demnsity po
and reduced temperature kT/e .

For extension to mixtures, we assume that Eq. (23) can be generalized to

oL = 0.60 - 0.58 (PT*)'%° (24)
where -3 . k 3 (25)
G = > X0y

This definition of the reduced density for a mixture is based on the mean—
density approximation discussed by Gonsalves and Leland (1978).
We can now illustrate the variation of al! Qith composition. We consider
a saturated, isothermal binary mixture at 150 K with ell/k =100 K ;
o61) = 3.40 8 ; €yp/k = 200 K and opp =4.40'8 . For the mixture, we use
012 = (gy) * 092)/2 and €}, = (e;) €22)1/2. At saturation conditions,

the change in reduced liquid density is small. As indicated on the right side of

Figure Y, reduced ab is not sensitive to reduced density in this region,
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thérefore we expect that, for the liquid mixture, a plot of all  (for the mixture)
versus X gives a curve very close to a parabola as given by "classical” v;n
def Waals theory. Figure lUashows the ratio of aH\to aH(classiéal). We
find that af (for the mixture), as calculated by the methods presented
here, is closely approximated by the "classical” all  when 1,, is near -0.0375 .
However, the situation is qualitatively different for the saturated vapor.
Here the reduced density changes appreciably with vapor composition. As
indicated on the left side of Figure 9, reduced all varies significantly with
reduced density in this region. In that case, we expect that al (for the
mixture) is not a quadratic function of x for isothermal conditions at
saturation. Figure 10bshows that there is no value of 1j7 which can make
all(classical) agree with that calculated here.

To obtain the chemical potential, we combine Eq. (4) for AAyyy with’

Egqs. (2,3) for the other contributions; for component i, chemical potential

i is found from

oA

oNn: )T,V, 78

(26)

e

When we perform this differentiation, we note that y; depends not only on

aH and a@. but also on the derivative of aH

ii i ij with composition (through

the assumed dependence of a on reduced density). This dependence introduces
an asymmetry in the chemical potential which one would not immediately expect

from Eq. (20) which gives all (for the mixture) as a quadratic function of x .



From these considerations we conclude that the original vaggder Waals

symmetric (quadratic) mixing rule for "constant” atl gives a very good first
approximation which, in any event, is exact at zero demnsity. However, since
H H H

a::  and

ii » 23§ ajj are somewhat density-dependent, and since

coefficients a
density depends on composition, we find that there are small deviations from
van de% weals' symnetric mixing rule; at high densities, these are probably eot
significant unless there is a very large size difference. For liquid mix-
tures where the size difference is moderate, our study leads to a conclueion
identical to that reached by Hoheisel and Kohler (1983): essentially all
effects of size difference arise from the repulsive (Carnahan-Starling)l
contribution to the partition function. For such liquid mixtures, in the
attractive eontfibution, it is proper to neglect effects of nonrandomness'as
suggested by the quadratic mixing rule for van der Waals “"constant"” al .

However,.it appears that, for mixtures where g11 and &22 differ.
appreciably, all (for the mixture) is not a quadratic function of x at
moderate densities, e.g. in the vapor phase along the saturation line, whenever
that phase is  well remo?ed from the ideal-gas limit.

This conclusion follows from our assumption that, for a mixture, « 1is a
function of reduced density with the mixing rule given by Eq. (25). This
assumé&ion requires more detailed study. We cannot now come to any definite
conclusion because, unfortunately, computer simuletions are currently available
only at high reduced densities, not at intermediate reduced densities.
Conclusion

Our results indicate once more that the original van der Waals theory

(which separates repulsive and attractive contributions to the Helmholtz energy)

provides a remarkably good approximation, for pure fluids and for mixtures,

provided that the reduced density is high. Our present position is that, for

LN
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relatively simple mixtures, we know what to do at the two ends of the density

spectrum: small densities (where the second virial coefficient‘is sufficient)

and high densities where the mean-field appréximation 1s good. Our ignorance

is in the intermediate—density region. Hopefully, computer—-simulation workers
will supply intermediate—density results in the notftoo-distant.future. Such

results are necessary for further progreés toward a reliable equation of state
for fluid mixtures.

Our study shows that computer simulations are extremely useful for pro-
viding guidance in the develop@ent of algebraicvequations for the Helmholtz-
energy as a functign of temperature, density and cgmposition. While it is
likely ﬁhat, in some future generation, all desired thermodynamic properties
" will be generated by computer simulations alone, it is also likely that limi-
tations in molecular theory and in computing capacity wil; make it necessary
for many years to depend on algebraic expressions for practical caléulaﬁions
as required for chemical process design.

Appendix IV gives a convenient $simmary of our proposed “"practical” equatibn

or stzte »t its present state of developnant.
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Table 1

COMPARISON OF EXCESS PROPERTIES
AT P = 0 and x) = 0.5

GE and HE in Jemo1~1

and VE in cm3-mo1r~!

PERTURBATION
SYSTEM | PROPERTY EXPERIMENTAL THEORY THIS WORK
Ar + Kr ke 0.004 0.017 0.008
(116 K) G 84 84 84
HE - 45 . 38
vE -0.52 -0.47 -0.55
Kr + Xe kéj 0.022 0.012
(161 K) G 115 115 115
uH - 69 61
vE -0.70 ~0.50 -0.57
(84 K) GE 34 34 34
HE 51 35 39
vE -0.18 -0.27 -0.32
Ar + CO ky 0.014 0.014 0.007
(84 K) G 57 57 57
BE - 79 86
vE 0.10 -0.07 -0.09
(91 K) G 74 74 74
HE 103 89 90
vE 0.17 0.03 0.03
0, *Ar K S 0.018 U.UL3 G.000
(54 X) GE 37 37 37
HE 60 52 56
vE 0.14 -.06 0.07
02 + NZ k..-j -0.002 -0,008
(78 K) GE 42 42 42
pb b4 43 48
vE -0.21 -0.26 -0.32
N, + CO ks 0.014 0.010 0.008
(84 K) G 23 23 23
HE - 34 36
vE U.l3 U.07 0.07
(91 K) G 115 115 ' 115
HE 105 96 91
vE -0.32 -0.48 -0.62

A\l
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig, 3

Fig. 4

Fig- 6'

Short?range order and long-range randomness

Variation of local compositions with e€;3/€3] and kyg.

€22%2e1) » €12=Verlezzlkp) , YEIT €23/k=119.8 K,

09p=3.405 & , pg3=0.75 , T=120 K , x;=0.5

MC: Monte Carlo results by Nakanishi et al. (1982)

Reduced residual chemical potential for mixtures with energy ratio
€11/€22= 2 » €3p/k =100 K, T =120 K , pa3y = 0.7 ,

o2 = 3.405 & .

MC: Monte Carlo method, LHB: Leonard-Henderson-Barker theory,

LL: Lee-Levesque method (Shiﬁg and Gubbins, 1983)

Henry's constant (or residual chemical potential in infinite dilutionm,
uf(x1=0)/kT = ln(Hl’lekT)) for mixtures witﬂ different'energy7
ratio elz/szz .

€2/K =100 K , T =120 K , pagy = 0.7 , app = 3.405 .

MC, LEB, LL: See caption of Fig. 3

O
i
}.—c
i
<
.
wn

Variztion of cocrdination numbers with size ratic

[O%]
[}
(@]
.
~4

€9p/k =100 K , 0y, = 3.405 & , T =120 K , po°
Reduced residual chemical potential for mixtures with

( 01/ 09902125, €,,/k=100 K, T=120 K, 0,,=3.405 &,

pc3=0.7 .

Comparison with Monte Carlo results (Shing and Gubbins, 1983) and
van der Waals n-fluid models

(a) for component 1 (b) for component 2



Fig. 7

Fig. 8

Fig. 9

Fig.l0
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Reduced residual chemical potential for mixtures with

( 013/ 092)°=1.5, €97/k=100 K, T=120 K, 0,=3.405 &,
pc3=0.7 .Comparison with Monte Carlo results and Perturbation
theory. MC, LHB, LL: see caption of Fig. 3.

(a) for component 1 (b) for component 2

Henry's constant (or residual chemical potential at infinite
dilution) for mixtures witb different size raﬁio ( 012/ 022)3,
€,9/k=100 K, G,,=3.405 &, T=120 K, po>=0.7 .

Comparison with (a) Monte Carlo results and van der Waals
n-fluidvmodels (b) Perturbation theory.

MC, LHB, LL: see caption of Fig. 3

Variation of reduced van der Waals constant a?j/(eij/k)/(NAvc 3)

3

ij

with reduced density po and reduced temperature kT/eij .

Variation of reduced van der Waals constant agj/(eij/k)/(NAvcij3)

with composition.

(a) for saturated liquid (b) for saturated vapor

~
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APPENDIX I AAyy from van der Waals n—fluid model :

(1) One-fluid

AAp = nRT (45-35%)/(1-§)" (1-1)
where » 4 n&i ~3 i - . ’
ST e v ¢ -
3 k k 3 - .
g =— 2.3 Xix;0y5 , O;=1(0:+0;)/2
. 1=2{ =f R - .
(2) Two—fluid. ! .
k . ' _
Ar = nRT X € (48:-355)/C1-5.)" @2
where §= T 'nNA,: —3 ' | |
t 6 v i
—1 K 3 L

(3) Three—=fluid k A
- AAzr = mRT i S 1o (4557355 )/C1- 5407 (13
] e=1 J':l . .

where -

7rv'nNA\; 3 S
g.‘.j — % % o . O’;J—_—"(O'{*’U:,')/Z

Y]

Pl
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APPENDIX II Calculation of local compositions for a multicomponent mixture

For a k-component system, the total number of local mole fractions
is kz . However, these are subject to two kinds of restraints. The
first follows from normalization represented by k equations of the form
k
2 X = | 1 =1,....k (1I-1)
j=1 '
The second follows from a balance of 1j pairs, represented by k(k-1)/2

equations of the form

Z(i) X X§i = 2(j) X Xij i=1, oo, k3 j=1+1, «o., k (11-2)

The total number of independent variables is equal to k2-k-k(k-1)/2

= k(k-1)/2.
Differentiating Helmholtz energy change AAjyy with respect to

these k(k-1)/2 independent local mole fractions, we obtain k(k-1)/2 equations

04Ax
( a IU; )

_— C) (11-3)

When we solve these equations, we obtain k(k-1)/2 1local mole fractioms.

For 2 binary, an analytical expression for local mole fractions can be

‘easily obtained as is shown by Equation (l4)., For a multicomponent system,

especially when k>3, the situation becomes more difficult. In this case,
it is better to use simplified local mole fractions as shown in Equation

(18).
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APPENDIX II1 Potential parameters:for pure fluids

Fluid e/k/K a/R
Argon 119.8 3.405
Krypton 167.0 3.633
Methane 152.0 - 3.74
Nitrogen 101.3 ' 3.612
Oxygen 119.8 3.36
Carbon monoxide 104.2 3.62

APPENDIX IV Summary of “practical”™ equation of state at its present
stage of development

The equation of state is found from

where A 1s given by Equation (l); AAj is given by Equation (2) and AAjg
1s-given by Equatidﬁ (3). | | ‘ |

For AAIII use Equations (19), (20), (21), (24) and (25).

The chemical potential u 1is given by Equation (26). An expressionrfor
the contribution of AAjr to u is found in "Applied Statistical Mechanics”
by T. M. Reed and K. E. Gubbigs, page 258. However, the equation given there
is in a form significantly different f;om that used here. Interested readers

can obtain a copy of our expression by writing to one of the authors.

Pal



27~

List of symbols

A Helmholtz energy

a van der Waals “constant”

G Gibbs energy ’

H Enthal py

H} 2 . Henry's constant of 1 in 2
K" ,K constants

k Boltzmann's constant

kio binary parameter

112 binary parameter

LHB Leonard-Henderson—Barker

LL Lee-Levesque

MC Monte Carlo

Nay Avogadro's number

n number of moles

P pressure

r intermolecular distance

T* location of molecules in first coordination shell
r** outer radius of first coordination shell
R gas constant

S Entropy

T temperature

v volume

X mole fraction

X]25sX2] e+ local mole fraction _
z(y) coordination number for molecule i

a density dependent constant

€ potential energy

€ energy parameter

p chemical potential

o size parameter

o) nunber density

Superscripts

E excess properties

EOS derived from equation of state
H derived from Helmholtz energy expression
r residual

° standard state

Subscripts

hs hard sphere

LR long range

SR short range

1,2,¢¢¢,i,j,k component index
I,I1,I11 step in model construction
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