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Differentially Private K-means Clustering
Applied to Meter Data Analysis and Synthesis

Nikhil Ravi, Anna Scaglione, Sachin Kadam, Reinhard Gentz,
Sean Peisert, Brent Lunghino, Emmanuel Levijarvi, and Aram Shumavon

Abstract—The proliferation of smart meters has resulted in a
large amount of data being generated. It is increasingly apparent
that methods are required for allowing a variety of stakeholders
to leverage the data in a manner that preserves the privacy of
the consumers. The sector is scrambling to define policies, such
as the so called ‘15/15 rule’, to respond to the need. However,
the current policies fail to adequately guarantee privacy. In this
paper, we address the problem of allowing third parties to apply
K-means clustering, obtaining customer labels and centroids for
a set of load time series by applying the framework of differential
privacy. We leverage the method to design an algorithm that
generates differentially private synthetic load data consistent with
the labeled data. We test our algorithm’s utility by answering
summary statistics such as average daily load profiles for a
2-dimensional synthetic dataset and a real-world power load
dataset.

Index Terms—differential privacy, clustering, smart grids,
summary statistics, synthetic load generation

NOMENCLATURE

X The subset of the superset that is queried
P The number of datapoints queried
xp The p-th datapoint, e.g., power load of a house
d The dimension of each data point
q(X) The query
q The query answer
q̃ The Differentially private query answer
ci The centroid of cluster i
`p The label of point p
r(X, q) The clustering loss
r̄ The DP accuracy loss
ε The privacy budget
εc The privacy budget associated with the centroids
ε` The privacy budget associated with the labels
δ The privacy guarantee
δc The privacy guarantee associated with the centroids
δ` The privacy guarantee associated with the labels
∆c The sensitivity of the centroid query
∆l The sensitivity of the label query
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I. INTRODUCTION

THE growth in capabilities for data collection and com-
putation has led to better products and greater market

efficiencies in many sectors [1], [2]. In this paper, we consider
the case of electric utilities that, over the last decade, have
significantly expanded their residential metering and sensor
deployments over distribution feeders responding to regula-
tion for demand forecasting transactive energy, power flow
optimization, fault-detection, planning for distributed energy
resources (DERs), and for billing and automatic disconnection
(see e.g., [3] for a taxonomy of the applications). An important
commercial application for the data is to target consumers
for promotional campaigns, mapping their behavior in classes
to improve pricing or to provide incentives for reducing or
shifting consumption, or for installing DER. Among the data
queries that are useful to analyze customer data, clustering is
one of the most common (see e.g., [4] for a survey) because of
its unsupervised nature and relatively high accuracy. In [5], the
authors present a variety of clustering techniques to identify
typical daily load profile of consumers, and in [6], the authors
propose a K-means clustering technique to identify similar
types of load profiles for demand variation analysis and energy
loss estimation.

None of the papers on clustering cited above addressed the
issue of privacy in releasing the query results on customers’
smart meters’ database. Safeguarding against unintended dis-
closure of private data is critical in this sector. In fact,
since the early deployments of residential smart meters, many
researchers have investigated methods to maintain privacy
while still enabling the data to be useful (see [7] for a survey).
The most conventional methods in the industry are access
control (e.g., see [8]), “anonymization” (e.g., see [9]), and
data falsification techniques. Access control techniques alone
allow all or no access. Anonymization masks data or makes
it more general, but it has been shown repeatedly [10], that
it is either removing too much of the data so that the query
becomes useless or that it is typically insufficient, enabling
linkage attacks that can be used to re-identify records. For
example, researchers were able to re-identify some users in
the anonymized data consisting of AOL search engine queries
even when user IDs and IP addresses were removed [11],
and similar approaches were used to re-identify anonymized
records in the Netflix Prize dataset [12] and the Personal
Genome Project [13]. A further disadvantage of anonymization
is that once the data set is released, it is forever vulnerable to
future reidentification attacks. For electric grid data, regulators
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have proposed several policies to share electric consumer
data in the public domain. Of particular note is the “15/15
Rule” [14] which states that any aggregation of customer
data is considered anonymous if it contains at least fifteen
customers and if no single customer’s data comprises 15% or
more of the total values in the aggregated answer. There is
no scientific rationale behind this rule; in fact, we show in
Section II-A that it offers no privacy guarantee.

With this in mind, this paper presents an approach to apply-
ing differential privacy (DP) [15] for releasing the clustering
results of the K-means algorithm to allow several stake-
holders to query the meters’ data while preserving privacy. We
also use the mechanism as a stepping stone to publish differen-
tially private synthetic data that emulate the consumer behavior
in a class. DP consists of a growing suite of randomized meth-
ods to publish the output of data queries while guaranteeing
that even multiple query answers are statistically unlikely to
reveal information about an individual’s data contributions, or
lack thereof. Within the DP framework, there is no release
of raw data, only the output of differentially private queries.
Because DP acts as a “guard” between the query and response,
DP is also capable of ceasing to respond to future queries
once a pre-defined “privacy budget” has been reached. Another
important aspect of DP methods is that they are tailored to the
query and the database that is queried, which explains why
our paper focuses on clustering. In contrast to anonymization
techniques, DP mechanisms corrupt the query answers and
thus, produce relatively lower accuracy, depending on the
amount of noise added. However, the accuracy-privacy tradeoff
is analytically quantifiable through DP.

Generic differentially private clustering techniques have
been previously presented in [16]–[21]. The authors in [16]
proposed a heuristic-based outlier-eliminated DP clustering
mechanism with adaptive Laplacian noise. The authors in [17]
proposed an iterative K-means clustering algorithm for data
in high-dimensional Euclidean spaces. In [19], the authors
proposed a local DP iterative clustering algorithm where noise
is added at the user’s end before transmitting the data to the
aggregator. While guaranteeing DP, these techniques may not
converge. Instead, the authors in [20] proposed a clustering
algorithm that performs an input perturbation in each iteration,
which offers convergence guarantees but drives the cost of
DP higher depending on the number of iteration required for
convergence. The authors of [18], [21] both propose methods
with better initial point selection to improve the clustering
accuracy, where they first generate K ′ � K centroids by
running the adaptive DP K-Means algorithm on randomly
divided subsets of the dataset, before merging them into K
centroids through an iterative process. These papers do not
consider the privacy loss on the publication of cluster labels,
which is ultimately what the classifier wants to know. Also, we
note that the data such as a house’s load profile are relatively
smooth, and the i.i.d. noise added can be partly filtered out,
whereas our proposed randomized mechanism leverages this
fact to improve the performance.

Having classified the customers, synthetic load models
that emulate the corresponding profiles are an important
tool in power system studies to run realistic simulations.

To overcome the shortage of publicly available large scale
load datasets, researchers have tried to fill the gap by either
publishing anonymized real data or creating synthetic datasets
using historical datasets [22], [23]. Recently, researchers have
adapted the use of conditional Generative Adversarial Net-
works (GAN) to generate realistic, synthetic week-long time-
series load profiles at high resolutions [24], [25]. But these
frameworks lack privacy guarantees for the historical data used
in the process. To make matters worse, if the distribution of the
generated synthetic data is close to the distribution of the true
historic data, then any privacy leaked by the estimated statistics
from the true data will also be leaked by the synthetically
generated data. Also, we argue that the statistical structure of
each class data can be approximated well by a multivariate
log-normal distribution, whose generation is far less complex
to train and use compared to a GAN.

A synopsis of our contributions is as follows:
1) We propose a novel differentially private clustering mech-

anism, which to the best of our knowledge contains:
• The first analysis of the privacy leakage on the publi-

cation of the noisy labels and the first mechanism to
publish them with DP guarantees.

• The first of its kind, optimum scheme for adding colored
Gaussian noise to the cluster centroids, that we recently
proposed in [26]. This mechanism also provides greater
accuracy for a given privacy budget compared to adding
white noise, and also performs better in terms of privacy
leakage compared to existing literature.

2) We also provide a mechanism that, leveraging the empir-
ical good fit of Advanced Metering Infrastructure (AMI)
data with a mixture of multivariate log-normal vectors,
generates differentially private synthetic load data for each
cluster, that can be safely published for simulation studies.

Finally, we test the efficacy of the proposed mechanism on
samples drawn from a Gaussian mixture and a real-world AMI
dataset. We wish to remark that the publication mechanism
proposed for labels and centroids is broadly applicable to any
type of data, while the generation of synthetic data relies on
the AMI statistics and, thus, is domain specific.

Paper organization: In Section II, we introduce our prob-
lem statement, discuss the threat model, before introducing the
DP framework. In Section III, we describe a DP mechanism
for the publication of the clustering query and in Section IV,
we present a model to generate synthetic load profiles. Finally,
in Section V, we numerically test our algorithms, before
concluding this paper in Section VI.

Notation: Boldfaced lower-case (upper-case respectively)
letters denote vectors (matrices respectively) and xi (Xij

respectively) denotes the ith element of a vector x (the ijth

entry of a matrix X respectively). Calligraphic letters denote
sets and | · | their cardinality. Finally, [N ] denotes the set of
integers {0, 1, . . . , N − 1}.

II. PRELIMINARIES

In the following, we denote by X a set of feature vectors
xp, p ∈ [P ] embedded in Rd that are in a database X , which
we can organize as a P × d matrix X := [x1, . . . ,xP ]ᵀ.
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Specifically, in an energy system that is considered in this
paper, X is the set of homes that a utility company serves, xp
is the time-series of meter data of house p. To review the basic
concepts, we set the problem in general terms and denote by
q(X) the function that maps X onto the query answer, and
denote the outcome by q ∈ Q, where Q is the domain of the
query answers.

A. Is the “15/15” Rule sufficient?

For energy systems, the 15/15 rule focuses on an averaging
query:

q(X) = (1/P )
∑
x∈Xx, (1)

where P ≥ 15 and ∀x ∈ X , x ≤ 0.15 q(X). The claim of the
15/15 rule is that if one abides by it, then the data points are
anonymized. However, there is a fundamental flaw with this
type of aggregation when it comes to the privacy of each of
the data records x ∈ X . Let us now consider an adversary who
has queried for the average of the dataset X and a neighboring
dataset X ′, which differ from X by just one point x0 ∈ X ,
i.e., X ′ = X \ {x0}. If both q(X) and q(X ′) are revealed to
them, then by simple algebra:

x0 = Pq(X)− (P − 1)q(X ′). (2)

Thus, they are able to infer the value of the point x0 ∈ X
in the scenario described above, no matter what P is. This
shows the need for a randomized response to the aggregate
query, because responding with the exact answer to repeated
queries will lead to privacy leakage. Next, we introduce our
problem setup.

B. Problem Statement and Threat Model

In this paper, we consider the scenario where a trusted
central data owner collects and stores the data and untrust-
worthy third parties query them. For example, an electric
utility collects and stores the AMI data of the customers
as seen in fig. 1. The electric utility agents, with legitimate

Utility
x0

x1
...

xP−1

Fig. 1: The utility collects the raw AMI data from the
customers it serves.
access to the data, use them to perform operational functions
such as scheduling, billing, etc., without being hindered by
noisy data1. But the electric utility must abide by strict laws

1There exists a second school of DP works, including [27], called Local
DP, where there is no central data owner with access to the raw data. Here,
individual customers add local noise to their own data before forwarding it to
the data owner. In such scenarios, there is a significant cost to the operational
functions of the electric utility, as it now does not possess the raw data it
needs.

pertaining to customer privacy while publishing the data or
aggregate query answers to external agents. Third party agents
may query (q) the utility’s data, and receive a differentially
privatized answer (q̃) instead of the true query response (q),
as shown in fig. 2. The quality of the DP response depends on
the budget ((εc, δc), (ε`, δ`)) that the analyst is willing to spend
to get the answer. The concept of privacy budget is explained
in detail later in Section II-C.

Utility

DP

Analystq, X, (εc, δc), (ε`, δ`)

(εc, δc), (ε`, δ`)

q, X, (εc, δc), (ε`, δ`)

q q̃

Fig. 2: A third party analyst may query the dataset.

The goal of this paper is to study a differentially private
randomized mechanism that would allow an analyst to perform
a K-means clustering query on X ⊆ X ; that is, the analyst
will obtain the information about the centroids as well as the
labels of the data points in X through a randomized algorithm
that will make it either difficult or impossible to tell if the
database X or X ′ was queried, with X ′ missing one feature
vector relative to X . The randomized mechanism proposed
involves adding structured noise to the cluster centroids and
to a subset of the labels. Prior to describing the mechanism, we
review both the K-means clustering algorithm and the basic
notion of DP next.

1) Review of K-means clustering: The K-means algorithm
splits the dataset, into K > 1 subsets (clusters) and assigns a
label to each point corresponding to the nearest cluster centroid
to itself. In other words, the query we are interested in is given
by q : RP×d → [K]P × RK×d. The problem can formally
be posed as an optimization problem of the form:

arg min
C

1

P

∑
k∈[K]

∑
p∈Ck
‖xp − ck‖p (3a)

s.t.
⋂
k∈[K]

Ck = [P ], (3b)

where C = {C1, . . . , CK} is the partition in K clusters and
ck ∈ Rd is the centroid of a cluster Ck, obtained by averaging
the points {xp}p∈Ck . The objective in eq. (3a) minimizes the
cost of clustering assignment C with the constraint in eq. (3b),
so that every point in the database is assigned a cluster label
whose centroid is the closest. The output of this algorithm
consists of two components:

q(X) := {c(X), l(X)}, (4)

where
1) c(X) – with outcome c = [cᵀ0 , . . . , c

ᵀ
K−1]ᵀ is the sub-query

that returns the set of K centroids {ck ∈ Rd}k∈[K].
2) l(X) – with outcome ` is the sub-query that assigns a label

to each feature point xp that corresponds to an index of
such centroids.

The performance of the K-means query outcome, q = {c, `},
is measured in terms of the clustering loss which is defined
as:
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Definition 1 (Clustering Loss). The clustering loss of a K-
means clustering algorithm is given by the sum of squares of
the distance from each point to the centroids of its cluster, i.e.,

r(X, q) :=
1

P

∑
p∈[P ]

‖xp − c`p‖22, where q = {c, l} (5)

We note that this is equivalent to the minimizer of the
clustering query in eq. (3a), and that a lower clustering loss
is better. In later sections, we introduce the DP mechanism
that will corrupt the query outcome via an additive noise
mechanism, and publish q̃ in place of q. This naturally induces
an additional loss on top of the clustering loss. Thus, we define
the DP (query) accuracy loss as follows:

Definition 2 (DP (query) Accuracy Loss). Given a query
answer q and a DP answer q̃, the DP query accuracy loss,
or simply the DP accuracy loss, is given by:

r̄(X, q, q̃) =
r(X, q̃)− r(X, q)

r(X, q)
, (6)

where r(X, q̃) is the clustering loss if the outcome of the K-
means clustering algorithms were q̃. Since q is the minimizer
of eq. (3), r̄ ≥ 0, and the equality is met in the absence of a
DP mechanism.

It is also important to define the reward of our DP query
answer. The addition of noise strengthens the privacy guaran-
tees while increasing the DP accuracy loss. Since the reward
and DP accuracy loss have a negative correlation, we will
discuss the performance of our mechanisms in terms of their
DP accuracy loss alone, with the understanding that lower the
DP accuracy loss, the higher is the reward.

Finally, to restate, the goal of our mechanism is to guarantee
differential privacy of the K-means clustering query answer
while minimizing the DP accuracy loss.

2) Threat model to the K-Means Clustering Query: As
discussed in the prior sections, traditional rules of thumb
adapted by specific industries have flawed quantification of
privacy guarantees, and anonymization often fails in the pres-
ence of substantial side information. In this regard, the threat
we consider in this paper is that of a third-party analyst’s
ability to discern the value of any particular data point in the
dataset that is under investigation.

To illustrate the threat, consider a scenario when both the
centroids and labels are readily available for a dataset X . Now,
suppose an additional point x is added to the dataset and this
leads to a change in a single centroid, say of a cluster k. Notice
that each centroid is similar to the average query that was
under investigation in Section II-A. Now, using the information
about the population of each cluster obtained from the vector
of labels, an adversary can infer the value of the point x as
described in Section II-A.

This threat is especially relevant in smart grid data analysis.
To elaborate, consider the average query and a dataset that
contains power loads of P − 1 houses without solar photo-
voltaics (PVs) and one house with solar PVs installed. During
the daytime, there will be periods during which the latter does
not consume any power from the electric grid, and in fact
injects power to the grid. Then, its load measurement will

be negative (by convention) as opposed to the positive load
measurements of all the other houses in the dataset. Thus, the
average query with and without the last house will be vastly
different from one another, making that house highly sensitive
to the average query and a possible source of privacy leakage,
as now the fact that it contains a solar PV can be inferred by
the analyst.

Remark 1 (Internal and External Threats). We do not con-
sider insiders (of the organization that stores the data) with
legitimately acquired access to the data as threats. Instead, we
are concerned with the inference of a data point’s involvement
after a particular aggregate query has been published to an
external untrustworthy third party.

C. Differential Privacy

We now introduce DP as an alternative to the widely used
“15/15” Rule in the smart grid industry to publish private
aggregate data. We denote the DP query answer by q̃(X), and
has a random outcome q̃ ∈ Q, with distribution f(q̃|X) (the
probability density function for continuous random queries and
the probability mass function for discrete random variables).
We briefly introduce the conventional definitions that explain
how differential privacy is measured and established. The first
and the most widespread definition of differential privacy was
introduced in [15], [28]. It states that:

Definition 3 ((ε, δ)-Differential privacy). A randomized mech-
anism q̃ is (ε, δ)-differentially private if for all neighboring
datasets X and X ′ that differ in one point, for any arbitrary
event pertaining to the outcome of the query, the randomized
mechanism satisfies the following inequality

∀S, P r(q̃(X) ∈ S) ≤ exp(ε)Pr(q̃(X ′) ∈ S) + δ, (7)

where Pr(A) denotes the probability of the event A, for some
privacy budget ε ≥ 0 and δ ∈ [0, 1].

Note that, since δ is a bound that may not be tight, smaller
values of δ are possible. Hence, (ε, δ) guarantees are sufficient
but not necessary conditions to ensure that information about
X leaks. The authors in [29] introduced a revised definition
of privacy as follows:

Definition 4 ((ε, δ)-Probabilistic Differential privacy). The so-
called privacy leakage function LXX’ is the log-likelihood ratio
between the two hypotheses that the query outcome q̃ is the
answer generated by the data X or the data X ′ that differ by
one element. Mathematically:

LXX’(q̃) := log
f(q̃|X)

f(q̃|X ′) , (8)

A randomized mechanism q̃(X) is (ε, δ) differentially private
for X if and only if:

sup
X′

Pr (LXX’(q̃) > ε) ≤ δ. (9)

It can be shown that (ε, δ)-PDP is a strictly stronger
condition than (ε, δ)-DP.
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Theorem 1 (PDP implies DP [30]). If a randomized mecha-
nism is (ε, δ)-PDP, then it is also (ε, δ)-DP, i.e.,

(ε, δ)−PDP⇒ (ε, δ)−DP, but (ε, δ)−DP ; (ε, δ)−PDP.

In dealing with a multidimensional answer q̃ (as is for
the case of a k-means clustering algorithm that returns K
centroids and P data labels) a first common simplification
is to use independent mechanisms for different components;
a second common simplification is to use the following
lemma to map the (εj , δj) results for the scalar independent
mechanism employed onto a global (ε, δ) result, rather than
LXX’(q̃) =

∑m
j=1 LXX’(q̃j).

Lemma 1 (Sequential composition [31]). If n randomized
algorithms Mi, i = 1, 2, . . . , n, are (εi, δi)-DP, then the
sequential execution of these algorithms on the database X
provides (

∑
i εi,

∑
i δi)-differential privacy.

In this paper, we use Definition 4 which has an immediate
statistical interpretation: if values of (ε, δ) are close to zero,
even when one adopts the optimum statistical test for the
hypotheses that the randomized answer is produced by the
neighboring datasets X or X ′ that differ in one point, the test
produces results that mostly are incorrect or are unreliable
answers (i.e., there is a non-zero probability that the test is
wrong). Of course, this comes at a cost in terms of accuracy
of the answer, which is important to account for.

Next, we describe the mechanism q̃(X) = {c̃(X), l̃(X)}
that renders the clustering query answer (ε, δ)-DP.

III. AN (ε, δ)-DP MECHANISM FOR K-MEANS
CLUSTERING

The K-means clustering query, as described in II-B1,
has two components: the centroids and the labels
q(X) = {c(X), l(X)}. Our method introduces independent
randomized mechanisms applied to each component and uses
composition as defined in Lemma 1 to provide overall DP
guarantees.

A. Differential Privacy Guarantees for Cluster Centroids

In this section, we first remind the readers of the classical
white Gaussian noise mechanism and then introduce the novel
additive colored Gaussian noise mechanism, where we perturb
the output by adding noise to the cluster centroids found by an
appropriate clustering algorithm with convergence guarantees.

As discussed in Section II-A, any DP mechanism should
introduce uncertainty on the query answer so that its random
outcomes under two neighboring datasets X or X ′ are statis-
tically indistinguishable with high probability.

1) Review of the White Gaussian Noise Mechanism: The
Gaussian noise output perturbation mechanism is a popular op-
tion in DP for publishing a variety of statistics. The approach
entails adding i.i.d. noise to the cluster centroids as follows:

c̃(X) = c(X) + η = c+ η, (10)

where η is a normally distributed noise vector with mean 0
and variance σ2I . The following theorem provides the DP
guarantees for such a method:

Theorem 2 (Cluster centroids are (εc, δc)-DP [15]). The addi-
tive noise mechanism in eq. (10) provides (εc, δc)-DP for any
two neighboring datasets X and X ′ when η ∼ N (0, σ2I),
for some εc ≥ 0 and δc ∈ [0, 1], where

σ ≥ ∆c
εc

√
2 log(2/δc) (11)

and ∆c is the query sensitivity given by:

∆c = sup
X′
‖c(X)− c(X ′)‖2.

But it can be shown that a white noise mechanism applied to
a smooth time-series dataset can be filtered out. For example,
in fig. 3, we plot the average of the daily power loads of
the houses in a feeder along with a DP white Gaussian noise
treated load curve, where noise standard deviation was set at
σ = 0.75. This noise can easily be filtered out by a Saviztky-
Golay filter [32] (of order 1 with a window size of 300), a
generalized moving average mechanism, as shown in bottom
plots in fig. 3. For a dataset containing the power loads of
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Fig. 3: Illustration of the pitfalls of white noise mechanisms
on smooth time-series data.
houses in a set of feeders, the centroids found through a K-
means algorithm are often in the low-frequency domain, and
adding white noise that reside in the high-frequency domain
is often not enough.

2) Proposed Colored Gaussian Noise Mechanism: As an
alternative to the conventional method of adding i.i.d. noise to
each entry of the query, we consider the fact that, particularly
in the case of time series, it is often the case that they are
sparse in a transform domain, such as the Discrete Fourier
Transform or the Wavelet transform. In such a scenario, we
propose the addition of colored Gaussian noise instead, where
the noise added depends on the relative positions of the
centroids in question:

c̃(X) = c(X) + η̂ where η̂ ∼ N (0,Γ−1), (12)
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where where Γ is the noise precision matrix. The following
theorem states the privacy guarantees of this mechanism, with
its proof presented in [26, Theorem 4].

Theorem 3 (Colored Gaussian Noise Mechanism is
(εc, δc)-DP). The additive noise mechanism in eq. (12) pro-
vides (εc, δc)-DP for any two neighboring datasets X and X ′

that differ in one point, for some εc ≥ 0 and δc ∈ [0, 1].

While the proof is presented in [26], we briefly provide the
sketch of the proof here.

Proof. The design of the optimal noise vector hinges on the
design of its covariance matrix. This is seen by analyzing
the numerator of the DP accuracy loss function in eq. (6),
which quantifies the deviation of the accuracy loss function
(defined in eq. (5)) at the noisy query answer q̃ from its
optimal value obtained at the true query answer q. Under the
Gaussian mechanism, the clustering loss is given by:

r(X, q̃) =
1

P

∑
p∈[P ]

‖xp − c̃`p‖22 =
1

P

∑
p∈[P ]

‖η̂`p −
(
xp − c`p

)
‖22

= r(X, q) +
∑
k∈[K]

‖η̂k‖22 −
2

P

∑
p∈[P ]

〈η̂`p ,xp − c`p〉

= r(X, q) + ‖η̂‖22 −
2

P

∑
p∈[P ]

〈η̂`p ,xp − c`p〉,

where η̂ = [η̂T0 , . . . , η̂
T
K−1]T with η̂k being the noise vector

added to the centroid of cluster k. Thus, we can write the
following:

Eη̂[r(X, q̃)− r(X, q)] = Tr(covar(η̂)) = Tr(Γ−1),

where Tr(A) is the trace of the matrix A given by the sum
of the elements on its diagonal. Hence, in order to achieve the
lowest DP accuracy loss, we have to minimize the trace (Tr)
of the noise covariance matrix (the inverse of Γ).

Concurrently, in order to maintain the DP guarantees, we
need to satisfy eq. (11). Thus, we have the following condition:

∆c2 ≤ ε2c
2 log(2/δc)

=: γc, (13)

where σ is set to 1, and the cluster query sensitivity is:

∆c = sup
X′
‖Γ1/2 (c(X)−c(X ′)) ‖2. (14)

Thus, for all neighboring datasets X ′ ∈ X of X that differ in
one element, we have that:

(c(X)− c(X ′))
ᵀ

Γ (c(X)− c(X ′)) ≤ ∆c2 ≤ γc.
Finally, we write the following optimization problem to find

the optimal noise covariance matrix that finds the covariance
matrix that satisfies the DP conditions while providing the
least DP accuracy loss:

min
Γ

tr(Γ−1) (15)

s.t. (c(X)− c(X ′))
ᵀ

Γ (c(X)− c(X ′)) ≤ γc,∀X ′ ∈ X .
In the following lemma, we provide the means to find the
optimal noise covariance (see [26, Lemma 5] for proof):

Lemma 2 (Optimal Choice of Γ). Let the matrix CXX’ contain
as its columns all possible (c(X) − c(X ′)), X ′ ∈ X and
let us assume that CXX’ is full row rank, and that the first
Kd columns of CXX’, corresponding to the set D ⊆ X have
the smallest norms and are linearly independent, forming the
matrix we refer to as C∗XX’. Then, the optimization problem in
eq. (15) has a unique solution and it evaluates to:

Γ? = R
− 1

2

λ? , (16)

where λ∗ is the vector consisting of the Lagrangian multipliers
associated with the optimization problem and has only Kd
non-zero values which correspond to the constraints associ-
ated with the set D, and:

Rλ? :=
∑
X′∈D

λ?X′ (c(X)−c(X ′)) (c(X)−c(X ′))
ᵀ
, (17)

where λ?X′ ,∀X ′ ∈ D are the non-zero Lagrange multipliers
for the problem in eq. (15). Their values are:

λ∗i = v−2
i where v = γcM

−11, Mij = [C
∗ᵀ

2
XX’ ]2ij . (18)

Thus, the mechanism in eq. (12) is (εc, δc)-DP with the noise
covariance set according to eq. (16).

B. Differential Privacy Guarantees for the Labels

In this section, we focus on a mechanism for publishing
the labels in a way that is differentially private. This task is
less straightforward than the previous one. To begin with, if
the number of points P is extremely high compared to the
number of clusters K, then the removal of one point from the
dataset might not necessarily change the labels of the rest of
the points, it is unnecessary to randomize the labels. We have
to ensure that we randomize the labels of a subset of the points,
which when removed changes the labels of the rest of the
points, i.e., those point which are sensitive to the label query.
Secondly, to complicate matters, adding random errors to the
labels of points very close to the centroids would result in
extremely inaccurate results, making the answers completely
useless. Given these two caveats, the task of any algorithm is
two-fold:
i) Choose the ideal subset of points whose labels are to be

randomized, and
ii) randomize the labels of these points such that we achieve

the least error.
1) Choice of Points to Randomize: In a densely populated

field of points, the effect of the removal of one point from
the dataset on the position of the centroids is minimal. Thus,
points closer to their centroids and points in clusters far away
from other clusters tend to retain their labels. However, the
labels of the points in the periphery of a cluster, and especially
those in the vicinity of points from another cluster, might
flip on the removal of a point from the dataset. Thus, only
these edge points contribute to the sensitivity of the label
query. The mechanism that we propose in this section only
adds label noise to a subset of the population, say L ⊆ [P ],
which is the set of all the points whose label changes if any
other point is removed. The composition of L is illustrated in
fig. 4, where we have a set of points {0, . . . , 19}. Here, when
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 5 14

L = {2, 4, 7, 9, 13, 15, 17}

Fig. 4: The composition of the set of points whose labels are
treated with the DP Label mechanism.

point 1 is removed from the set, the new cluster affiliations
of the points in {2, 7, 17} are different from what they were
before. Similarly, the cluster affiliations of points in {2, 9, 13}
(respectively {4, 15}) are changed when point 5 (respectively
point 14) is removed. The union of all such sets of points
forms the set L.

2) Randomized Mechanism for the Labels: Unlike in the
case of cluster centroids, the use of Gaussian (or any other
unbounded noise) mechanism is impermissible for the labels,
as they are integers belonging to the set [K]. Thus, we employ
a modulo-K additive mechanism where the output is given by:

[̃l(X)]p =

{
[l(X)]p ⊕K νp, p ∈ L
[l(X)]p, otherwise,

(19)

where {νp}p∈L are i.i.d random variables in the set [K] and
⊕K is the modulo K addition operator, which ensures that
the range remains in the permissible set [K]. The mechanism
involves the modular addition of i.i.d noise samples to the
labels of each of the points in L. In the following theorem,
we provide the DP guarantees afforded by this mechanism
with the proof in Appendix A.

Theorem 4 (Labels are (ε`, δ`)-DP). The modulo additive
noise mechanism in eq. (19) provides (ε`, δ`)-DP for any two
neighboring datasets X and X ′ when {νp}p∈L are i.i.d and
have the following probability mass function:

f(νp) =

{
1− ρ, νp = 0
ρ

K−1 , νp = [K] \ {0},

where K ≥ 2, ρ < 0.5, ∆l is the query sensitivity given by:

∆l = sup
X′
‖lL(X ′)− lL(X)‖0,

and δ` is 0 when ε` > ∆l × log
(

(1−ρ)(K−1)
ρ

)
and when

ε` < ∆l× log
(

(1−ρ)(K−1)
ρ

)
, it is given by

δ` = ∆l!

[
ρ(K − 2)

K − 1

]∆l

×

∆l∑
mc=0

∆l∑
m0=`+mc

[
(K−1)(1−ρ)

ρ

]m0

(K − 2)−(m0+mc)

m0!mc!(∆l−m0 −mc)!
.

We measure the label mechanism’s degradation of the
solution as the number of points whose labels are changed,

i.e., ‖lL(X) − l̃L(X)‖0, and in expectation this loss is given
by:

E[‖lL(X)− l̃L(X)‖0] = Eν

[∑
p∈L1{νp 6=0}

]
= |L|ρ.

Finally, the total degradation of the combined centroid and
label perturbations is measured as follows:

r(X, q̃) :=
1

P

∑
p∈[P ]

‖xp − c̃˜̀
p
‖22.

C. Mechanism and its Differential Privacy Guarantees

In Sections III-A to III-B, we provided differential private
mechanisms for the publication of cluster centroids and point
labels. In algorithm 1, we provide the overall DP K-means
mechanism with colored Gaussian noise for the centroids and
discrete noise for the labels. In the following corollary, we

Algorithm 1 DP Mechanism with colored Gaussian noise and
randomized labels

1: procedure DPK-MEANS(q, X, εc, δc, ε`, δ`)
2: q(c, `)← Cluster X into K clusters.
3: Calculate Γ according to eq. (16) with εc and δc.
4: c̃← c+ η, where η ∼ N (0,Γ).
5: ˜̀ ← ` ⊕ ν, with ν distributed according to the

conditions of theorem 4.
6: end procedure

Output: q̃ = {c̃, ˜̀}.

state the overall DP guarantees that encapsulates the complete
query as described in eq. (4).

Corollary 1 (Clustering query is (ε, δ)-DP). For any two
neighboring datasets X and X ′, the mechanisms described
in eq. (10) and eq. (19) together provide (ε, δ)-DP guarantees
with:

ε = εc + ε`, δ = δc + δ`. (20)

The proof follows from Theorems 3 to 4 and Lemma 1.

IV. USE CASE: POWER SYSTEMS AGGREGATE QUERY
PUBLICATION AND SYNTHETIC LOAD GENERATION

The guarantees provided by the proposed DP clustering
mechanism are tailor-made to the ones that regulatory agen-
cies are trying to achieve with regard to the publication of
consumer data, since third-party agencies will not be able to
gleam information about the presence, or lack thereof, of any
individual entry in the database.

The method proposed is general and can be applied to any
kind of data. In this section, we go one step further and
use the guarantees afforded in the publication of labels and
centroids to generate synthetic load profiles for the nodes in
the dataset, leveraging an empirical property that is specific to
AMI data. In fact, it so happens that the daily load profiles
when divided into clusters (to be discussed in section V-B in
detail) exhibit an excellent fit with a multivariate log-normal
distribution whose generation is relatively simple. The first
step to generate synthetic samples is to group the dataset by
clusters, take the logarithm (adding a large constant if the net
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load data have negative values) and then use the DP centroids
and DP covariance to fit separate Gaussian distributions to
each cluster and then go back to power loads profiles taking
an exponential (and subtracting the constant, if needed. Letting

Algorithm 2 Algorithm to generate Load Profiles

1: procedure LOGNORMSAMPLES
2: Cluster X into K clusters.
3: for k ∈ [K] do
4: Xk ← log([xp1 . . .xp|C̃k|

] + α11ᵀ)

5: µ̂k = 1
|C̃k|
Xk1 + ηk

6: Σ̂k = 1
|C̃k|
XkX

ᵀ
k + Φk

7: X̂ ← samples drawn from N (µ̂k, Σ̂k)
8: X̂ ← exp(X̂)− α11ᵀ.
9: end for

10: end procedure

exp(X) (resp. log(X)) denote the matrix where each element
is the exponent (resp. logarithm) of the corresponding element
in X , the algorithm in algorithm 2 generates prototypical load
shapes for each cluster. Our DP clustering mechanism renders
the estimates of the means and labels differentially private. To
obtain a DP covariance, we apply the Wishart mechanism [33].
Using this fitted distribution, we then generate multivariate
Gaussian samples, before finally outputting the exponential
of the generated samples. This approach is summarized in
algorithm 2, where the α parameter is used to ensure that
the argument of the log operation remains positive, and ηk
and Φk are the noise added to the cluster centroid and to the
covariance matrix of the data pertaining to the cluster k.

V. NUMERICAL RESULTS

In this section, the proposed methods are tested on a
synthetic dataset consisting of points drawn from a Gaussian
mixture and then with two real-world datasets.

A. Synthetic Dataset

In this section X consists of P = 1000 points, each
randomly drawn from a Gaussian mixture with K = 6
equally likely components that are in R2 and are N (µk, σI)
k ∈ [K] with µk ∈ R2. Note that because the mixture
components covariance is I , here we do not need colored
noise for the centroids. The output of the K-means clustering
algorithm is shown in fig. 5 and it is the clustering assignment
that we consider as the true assignment. In the same figure,
we highlight the elements of the set L by marking them
with markers encircled by yellow borders. These points have
additive noise added to their labels, as shown in eq. (19),
and those whose labels changed after the DP mechanism are
highlighted with square (�) markers with blue borders. In
fig. 6, we show the variation of noise variances for various
δcs, the variation of δc for various noise variances and the
DP accuracy loss for various δcs. As expected, in order to
achieve a stronger privacy guarantee (i.e., lower δc values for
given σ), we require a higher privacy budget and, in a similar
vein, a lower DP accuracy loss (in other words, a lower noise

−4 −2 0 2 4 6 8 10 12

−14
−12
−10
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−4
−2
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[xp]1

[x
p
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L
Lc

True centroids

Noisy centroids

Noisy Labels

Fig. 5: Gaussian Mixture Dataset scatter plots: the six classes
are indicated using different colors, with the points belonging
to the set L indicated by smaller marks with a yellow border.
Of these, the points whose labels changed are indicated using
square (�) markers.

variance) requires a higher privacy budget for a given level
of privacy guarantee. It is also important to note the effect
of the sensitivity on the performance of the DP mechanism
proposed for the labels. Queries that are highly sensitive to the
underlying dataset require a larger noise variance and, in turn,
reduce the reward of the DP query answer. This is illustrated
in fig. 6 (right), where, as the sensitivity ∆l increases, the
expected percent of errors, ρ|L| ∗ 100/P , also increases for a
given privacy budget.

B. Real-World Power Systems AMI Dataset

In this section, we apply our mechanisms for the publication
of K means statistics for P = 1416 houses’ daily profiles
(with one hour-resolution) that belong to 12 distribution cir-
cuits across California, USA. The dimension of each house’s
daily profile, xp, is d = 25 accounting for the load consumed
from midnight to midnight. With a choice of K = 6 clusters,
to visualize the daily profiles that are in R25, we map them on
R2 using Multidimensional Scaling2 (MDS) and, as before, in
fig. 7, the points in L are highlighted using markers encircled
in yellow borders. As seen in the MDS plot in fig. 7, we have
close to 7 points that are clear outliers in the dataset. These
outliers drive up the sensitivity value, which would require
either higher noise covariance or a very large DP budget.

Domain Specific Knowledge: It is extremely important to
pair the guarantees provided by DP with domain specific
knowledge in order to extract the best possible reward. With
the assumption that the data holder has knowledge regarding
the class (i.e., commercial, residential, farm, etc.) to which

2MDS is a form of non-linear dimensionality reduction which is used to
translate information about the pairwise ‘distances’ among a set of n objects or
individuals into a configuration of n points mapped into an abstract Cartesian
space [34]. It is important to note that points shown in MDS are solely for
visualization purposes and not to be interpreted as containing behind-the-meter
generation if a node’s co-ordinates are negative.
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Fig. 6: DP performance for Gaussian Mixtures.
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Fig. 7: Scatter plots of AMI dataset mapped in 2-d using MDS.
The high sensitivity ∆c = 39.20 is due to outliers.

each node belongs to and depending on the application for
which the data is being utilized, it is prudent that we analyze
nodes that belong to similar classes and exclude class outliers.
For example, in order to incentivize desired behavior by their
customers, utilities might compare consumers with similar
contracts, connected to distribution circuits in similar areas and
climates and not mix commercial and residential customers.
The clustering problem of the reduced dataset with outliers
(commercial customers on closer inspection) removed, now
with P = 1409, has a sensitivity equal to 2.13, which
has reduced by a factor close to 20. We show the scatter
plot of the dataset (using MDS) in fig. 8 with the true and
noisy cluster centroids, where a colored Gaussian noise with
εc = 30, δc = 0.2, ε` = 30, δ` = 0. In addition, the points
whose labels were modified are also indicated using a �
marker. We show the (εc, δc) tradeoff in fig. 9 (left), and in
fig. 9 (center), we compare our method against the white noise
mechanism and the ones discussed by Balcan [17], Yu [16],
and Ni [21]. It shows a clear improvement in the DP accuracy
loss for a given (εc, δc) pair for our method compared to
the others. The method proposed in [16] first eliminates the
outliers as a preprocessing step, similar to our preprocessing
step above, but differs in the noise mechanism used to perturb
the centroids, and does not provide privacy guarantees on
published labels. In fact, the 20-nearest neighbors based outlier
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Fig. 8: Scatter plot of the AMI Dataset with outliers omitted,
which has a sensitivity ∆c = 2.13. Note that the points, which
are originally 25d, are embedded in a 2d-space using MDS.
εc = 30, δc = 0.2, ε` = 30, δ` = 0.

elimination heuristic in [16] removes the same data points
that we removed from our original dataset. Note that the DP
schemes that utilize a Laplacian noise mechanism all have ε-
DP guarantees, while our scheme has an (ε, δ)-DP guarantee.
In essence, with a small increase δ above 0, our mechanism
provides a far better DP accuracy loss performance.

Synthetic Load Profile Generation: Now, we use algo-
rithm 2 to generate synthetic load profiles for this dataset. In
fig. 10, we notice that the histograms of samples at each time
interval are heavy tailed for every cluster except clusters 2 and
4. Note however that the number of nodes in these two clusters
are significantly lower than the number of time intervals. We
fit each time interval at each cluster to a group of heavy
tailed distribution, and according to the Bayesian Information
Criterion (BIC), the log-normal distribution is the best fit with
the lowest BIC, for all clusters except 2 and 4. Since the
number of samples in these two clusters are significantly lower
than the number of time intervals (25), fitting any multivariate
distribution becomes extremely inaccurate. Finally, in fig. 11,
we show (in gray) 15 log-normal sample time series for
each cluster with α = 15kW . Here, the following privacy
parameters were utilized: (εc, δc, ε`, δ`) = (30, 0.2, 30, 0).

Standard Test Systems: The synthetic load profiles gener-
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plot of εc vs δc, (center) a plot of εc vs DP accuracy loss (δc = 0.01), where our colored Gaussian mechanism with label
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Fig. 10: Histograms of the load profiles at each time interval, grouped by cluster. The red curves show the best fit log-normal
PDF.
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Fig. 11: DP Daily Load Shapes of the six clusters without outliers: εc = 30, δc = 0.2. The brown and green shaded regions
indicate the 90% confidence interval (CI) of the true and the synthetically generated data points, respectively. These indicate
the region between the 0.05 and 0.95 quantiles of the true dataset and that of the fitted log-normal distribution. The synthetic
log-normal Daily Load Shapes of the six clusters are shown in gray lines.

ated in the previous section are now tested on two standard
test cases, namely the MATPOWER 141-bus radial distribution
system from [35] with P ′ = 141 and a modified balanced
IEEE-123 test case from [36] with P ′ = 123. The testing
methodology is as follows:
1) Randomly sample P ′ houses from the original dataset of

P = 1409 houses, where the six classes are weighed
according to their population. Let mk be the size of class
k in the sampled dataset.

2) Generate mk samples using Algorithm 2 for all classes
k ∈ [K]. Now we have X(t) ∈ RP

′×d consisting of P ′

true load profiles for d time intervals and a corresponding
X(s) ∈ RP

′×d for the P ′ synthetic load profiles.
3) Load a test case with P ′ buses and set X(t)

p,t as the active
power load for bus p, for all p ∈ [P ′]. Similarly, the reactive
power load is set as 10% of the active power load.

4) Run an optimum power flow for this case with the mod-
ified loads and collect the voltage magnitude and phase
information at each bus.

5) Repeat steps 3 and 4 for all time intervals t ∈ [d].
6) Repeat steps 3, 4, and 5 by using X(s) instead of X(t).
In fig. 12 and fig. 13, we show the histograms of voltage

magnitude and phase obtained under both cases with true
and synthetic load profiles. The voltage magnitude and phase
obtained for the synthetic load profiles provide a good match
for those obtained for the true load profiles.
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Fig. 12: Histogram of the voltage magnitude and phase under
true and synthetic load profiles for the IEEE 123-bus case.

VI. CONCLUSION

In this paper, we presented an efficient, differentially private
mechanism to answer summary statistics about data pertaining
to a smart grid. To answer queries about the users in a dataset,
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Fig. 13: Histogram of the voltage magnitude and phase under
true and synthetic load profiles for the MATPOWER 141-bus
case.

such as daily load shapes, we showed the use of clustering and
the publication of the extracted clustered centroids rather than
publishing individual daily loads. Our algorithm includes a
colored Gaussian noise mechanism to guarantee differential
privacy about the cluster centroids, and a novel discrete noise
mechanism to guarantee differential privacy of the cluster
labels. We also demonstrated the utility of our proposed mech-
anism using numerical simulations by answering queries such
as daily load shapes and load duration curves of the houses in
a power systems daily load dataset consisting of 1416 houses.
In addition, we showed the importance of domain-specific
knowledge to improve the utility of differential privacy. Fi-
nally, using the proposed clustering mechanism, we provided
a mechanism to generate prototypical daily load shapes for the
houses in a dataset.

APPENDIX A
PROOF OF THEOREM 4

The joint probability mass function of the noise samples
(stacked in a vector ν) can be written as:

f(ν) = (1− ρ)γ−‖ν‖0
(

ρ

K − 1

)‖ν‖0
,

where ‖a‖0 is the zero “norm” operator that counts the number
of non-zero elements in the vector a. Consider the privacy
leakage function:

LXX’( ˜̀) = log
f (̃l(X)|X)

f (̃l(X ′)|X ′)
= log

f(ν)

f(ν + lL(X ′)− lL(X))
,

where lL(X) and lL(X ′) map the points in X∩L and X ′∩L,
respectively, to their labels. Letting lXX’ = lL(X ′)− lL(X), we
have:

LXX’( ˜̀) = log
(
(ρ−1 − 1)(K − 1)

)‖ν+lXX’‖0−‖ν‖0

= (‖ν + lXX’‖0 − ‖ν‖0) log
(
(ρ−1 − 1)(K − 1)

)
.

For K ≥ 2 and ρ < 0.5, the term log
(
(ρ−1 − 1)(K − 1)

)
is

non-negative. Thus, the probability that the absolute value of
the privacy leakage function exceeds ε` is:

Pr(LXX’( ˜̀) ≥ ε`) = Pr(‖ν + lXX’‖0 − ‖ν‖0 ≥ `), (21)

where ` := ε`/ log
(
(ρ−1 − 1)(K − 1)

)
.

a) Case 1: When ` > ‖lXX’‖0, the above probability is 0.
Furthermore, with ∆l := supX′ ‖lXX’‖0, we have:

sup
X′

Pr(LXX’( ˜̀) ≥ ε`) = 0 if ` > ∆l. (22)

b) Case 2: When ` ≤ ‖lXX’‖0, the calculation of the
probability in eq. (21) is not a straightforward task and
involves numerical estimation.

Let M0 and Mc be the number of zero elements and the
number of elements which satisfy νp+lXX’,p = 0,3 respectively,
in ν. Based on the values of νp and lXX’,p 6= 0,4 we can make
the following observations:

1) Whenever νp = 0, the value of (‖ν+lXX’‖0−‖ν‖0) increases
by 1.

2) Whenever νp 6= 0 such that νp + lXX’,p = 0, the value of
(‖ν + lXX’‖0 − ‖ν‖0) decreases by 1.

3) For the remaining possible value that νp can take, the value
of (‖ν + lXX’‖0 − ‖ν‖0) does not change. The number of
such elements in ν is ‖lXX’‖0 −M0 −Mc.

From their respective definitions, it is clear that M0 and Mc

are jointly multinomial, i.e.,

Pr(M0 = m0,Mc = mc)

=
(‖lXX’‖0)!(1− ρ)m0( ρ

K−1 )mc(ρ(K−2)
K−1 )(‖lXX’‖0−m0−mc)

m0!mc!(‖lXX’‖0 −m0 −mc)!
,

(23)

and it can also be shown that ‖ν+ lXX’‖0−‖ν‖0 = M0−Mc.
When ` ≤ ‖lXX’‖0, eq. (21) can be simplified to:

Pr(‖ν + lXX’‖0 − ‖ν‖0 ≥ `)

=

‖lXX’‖0∑
mc=0

‖lXX’‖0∑
m0=`+mc

Pr(M0 = m0,Mc = mc)

= (‖lXX’‖0)!

[
ρ(K − 2)

K − 1

]‖lXX’‖0
×

‖lXX’‖0∑
mc=0

‖lXX’‖0∑
m0=`+mc

[
(K−1)(1−ρ)

ρ

]m0

(K − 2)−(m0+mc)

m0!mc!(‖lXX’‖0 −m0 −mc)!
(24)

Since the expression eq. (24) grows monotonically with ‖lXX’‖0,
we can define the sensitivity as ∆l := supX′ ‖lXX’‖0. Thus,

sup
X′

Pr(LXX’( ˜̀) ≥ ε`) = ∆l!

[
ρ(K − 2)

K − 1

]∆l

×

∆l∑
mc=0

∆l∑
m0=`+mc

[
(K−1)(1−ρ)

ρ

]m0

(K − 2)−(m0+mc)

m0!mc!(∆l−m0 −mc)!
(25)

From eq. (22) and eq. (25), the proposed mechanism is
(ε`, δ`)−PDP and thus, it is also (ε`, δ`)−DP from theorem 1.

3Note that we are using modulo K addition here.
4In case of lXX’,p = 0, the value of (‖ν + lXX’‖0 −‖ν‖0) does not change

for any value of νp.
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