
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Sequential Decision Making in Non-stochastic Environments

Permalink
https://escholarship.org/uc/item/81q2710j

Author
Abernethy, Jacob Duncan

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/81q2710j
https://escholarship.org
http://www.cdlib.org/

Sequential Decision Making in Non-stochastic Environments

by

Jacob Duncan Abernethy

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Peter Bartlett, Chair
Professor David Ahn

Professor Christos Papadimitriou
Professor Satish Rao

Fall 2011

Sequential Decision Making in Non-stochastic Environments

Copyright c© 2011

by

Jacob Duncan Abernethy

Abstract

Sequential Decision Making in Non-stochastic Environments

by

Jacob Duncan Abernethy

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Peter Bartlett, Chair

Decision making is challenge, of course, because the world presents itself with a generous por-
tion of uncertainty. In order to have a model for any decision problem we must characterize
this uncertainty. The typical approach is a statistical one, to imagine that the events in the
world are generated randomly according to an as-of-yet-unknown probability distribution.
One can then formulate the decision problem through the lens of estimating the parameters
of this distribution or by learning its properties.

This dissertation shall focus on a rather different model, one in which the world is as-
sumed to be non-stochastic. Rather than aim for a guarantee that holds “in expectation”
or “with high probability,” requiring obvious stochasticity assumptions, we instead strive
for guarantees that hold “no matter what happens,” even under the worst conditions. This
approach, while seemingly pessimistic, leads to surprisingly optimistic guarantees when we
appropriately tailor the goal of the decision maker. The main objective we consider is that of
regret which, roughly speaking, describes the difference between decision maker’s cost minus
the cost of the best decision with the benefit of hindsight.

We give an overview of the aforementioned non-stochastic framework for decision making.
We present a generic problem, known as Online Linear Optimization (OLO), and prove
upper and lower bounds. We consider the bandit version of the problem as well, and give
the first known efficient algorithm achieving an optimal regret rate. We then show a strong
connection between a classic result from the 1950s, known as Blackwell’s Approachability
Theorem, and the OLO problem. We also look at the non-stochastic decision problem as
a repeated game between a Player and Nature, and we show in two cases that the Player’s
optimal minimax strategy is both easy to describe and efficiently computable.

1

Contents

Contents i

1 Introduction 1

1.1 Al’s Dilemma . 1

1.2 Abstract Decision Making and Al’s Dilemma 3

1.3 Who is Nature? A Statistical Approach . 5

1.3.1 Bayesian Assumptions . 5

1.3.2 A Frequentist Approach . 7

1.4 The Competitive Decision Framework . 8

1.4.1 A Warmup Example . 9

1.4.2 History . 11

1.5 Overview of Results . 12

2 First Steps: Online Linear Optimization 15

2.1 Introduction . 15

2.2 Low-Regret Learning with Full-Information 16

2.2.1 Follow the Regularized Leader and Associated Bounds 17

2.2.2 Upper Bounds for Strongly Convex R 19

3 Lower Bounds 21

3.1 Introduction . 21

3.2 Online Convex Games . 22

3.3 Previous Work . 25

3.4 The Linear Game . 26

3.4.1 The Randomized Lower Bound . 26

i

3.4.2 The Minimax Analysis . 28

3.5 The Quadratic Game . 32

3.5.1 A Necessary Restriction . 32

3.5.2 Minimax Analysis . 33

3.6 General Games . 35

4 Online Linear Optimization in the Bandit Setting 40

4.1 Convex Optimization: Self-concordant Barriers and the Dikin ellipsoid . . . 41

4.1.1 Definitions and Properties . 42

4.1.2 Examples of Self-Concordant Functions 44

4.2 Improved Bounds via Interior Point Methods 45

4.2.1 A refined regret bound: measuring ft locally 45

4.2.2 Improvement compared to previous bounds 47

4.2.3 An iterative interior point algorithm 47

4.3 Bandit Feedback . 49

4.3.1 Constructing a Bandit Algorithm . 50

4.3.2 The Dilemma of Bandit Optimization 52

4.3.3 Main Result . 53

4.4 Conclusion . 55

5 Blackwell Approachability 56

5.1 Introduction . 56

5.2 Game Theory Preliminaries . 57

5.2.1 Two-Player Games . 57

5.2.2 Vector-Valued Games . 59

5.2.3 Blackwell Approachability . 60

5.3 Online Linear Optimization . 62

5.4 Equivalence of Approachability and Regret Minimization 63

5.4.1 Convex Cones and Conic Duality . 63

5.4.2 Duality Theorems . 65

5.5 Efficient Calibration via Approachability and OLO 68

5.5.1 Existence of Calibrated Forecaster via Blackwell Approachability . . . 70

ii

5.5.2 Efficient Algorithm for Calibration via Online Linear Optimization . 71

6 Gambler versus Casino 75

6.1 Introduction . 75

6.2 The Value of the Game . 77

6.2.1 The Modified Game . 79

6.3 A Randomized Casino . 80

6.3.1 A Random Walk on the State Graph 80

6.3.2 Survival Probabilities . 80

6.3.3 Expected Path Lengths . 82

6.4 The Optimal Strategy . 83

6.5 Recurrences, Combinatorics and Randomized Algorithms 87

6.5.1 Some Recurrences . 87

6.5.2 Combinatorial Sums . 88

6.5.3 Randomized Approximations . 89

6.5.4 A Simple Strategy in a Randomized Setting 90

6.6 Comparison to Previous Bounds . 90

6.7 Connections to classic problems of probabilistic enumerative combinatorics. . 91

6.8 Conclusion . 92

7 Repeated Games and Budgeted Adversaries 93

7.1 Introduction . 93

7.2 Preliminaries . 94

7.2.1 The Setting: Budgeted Adversary Games 94

7.3 The Algorithm . 95

7.4 Minimax Optimality . 96

7.4.1 Extensions . 97

7.5 The Cost-Sensitive Hedge Setting . 99

7.6 Metrical Task Systems . 100

Bibliography 102

iii

Curriculum Vitæ

Jacob Duncan Abernethy

Education

2002 Massachusetts Institute of Technology
B.S., Mathematics

2006 Toyota Technological Institute at Chicago
M.S., Computer Science

2011 University of California, Berkeley
Ph.D., Electrical Engineering and Computer Science

Personal

Born July 14, 1981
Jackson, Missippi, USA

iv

v

Chapter 1

Introduction

Regrets, I’ve had a few; but then again, too few to mention.
I did what I had to do and saw it through without exemption.
I planned each charted course, each careful step along the byway.
And more, much more than this, I did it my way.

Frank Sinatra

When presented with a problem, how ought we decide what to do? When we have
encountered this problem previously, how should our experience guide us? After one or
many decisions, what is the best way to measure our performance, to determine success or
failure?

In short, the present dissertation is about sequential decision making. More specifically,
we shall focus on decision-making models in which the actor in question wants to avoid
making statistical assumptions on nature of his observations. Before diving into details we
shall tell a story. This story is about a man named Al.

1.1 Al’s Dilemma

Let us begin by imagining the following very simple world.

A man, who we shall call Al, one day wakes up to find himself in a room. The
room contains a single locked door but is completely empty, save for a collection
of buttons on the wall with the following configuration.

A B C D E F G

Above the buttons, there is a sign that reads “YOU MUST PRESS ONE BUT-
TON BEFORE EXITING.” Al stares at the buttons, pondering his situation.

1

What should Al do?

Putting aside the peculiar scenario in which Al now finds himself, the dilemma is entirely
familiar: “I’m in a world that I don’t entirely understand, yet I have to make a decision with
a high level of uncertainty.” Who has not encountered such a scenario thousands of times
throughout one’s life?

Not entirely sure what to do, Al selects one of the buttons, the one labeled A,
and pushes it. Al pauses a moment, but the room remains silent.

We would now like to address the following question: did Al make “the right” decision? Put
more broadly, we want to know, what is a “good” approach to decision-making in uncertain
environments? This question is, of course, unanswerable without some amount of feedback
associated with the chosen action. As far as Al is concerned, the decision problem is entirely
opaque without more information.

While Al stares at the locked door, a loud BEEP occurs from somewhere in
the room, and then, under each button, a number appears.

A B C D E F G

5 0 2 20 3 0 8

Immediately after the BEEP the locked door opens and Al, relieved that he is no
longer stuck in the empty room, proceeds to exit. As he leaves, he is handed an
envelope with the letter A written on the front. Somewhat puzzled, Al opens the
envelope to find that it contains exactly $5.

We can imagine that Al is rather content at this moment. He has found himself in a totally
unfamiliar situation, been presented with an array of options and, knowing nothing of what
mechanism lies behind any of these buttons, has managed to receive five bucks for his choice.
Heck, it appears that if he had simply chosen one button to the right, he wouldn’t have
received anything! There’s just this one thing...

Satisfied with his accomplishment, Al pockets the money and proceeds to exit
the building. But he hesitates, thinking to himself, “But wait, if only I had pressed
button D, I would have gotten twenty bucks!” So Al turns around to see if he
can sneak in another button press or two, but the door is shut. Only mildly
disappointed, Al departs and goes about his day as if nothing had happened.

Al is now in a much more familiar situation: after making his decision, at a moment with
very little certainty about the nature of the problem, he observes the outcome and now
considers, with the benefit of hindsight, the quality of his decision relative to the alternatives.
Unfortunately this analysis is totally hypothetical, as his decision is irrevocable. (Indeed, we
might call this the detriment of hindsight, for it can only cause us to regret our decisions.)

2

Al’s experience in the room with the buttons has hardly ended. The following
morning, Al again awakes inside the mysterious room, and is presented with the
same decision problem: press one of the buttons to exit the room. After selecting
one, he observes the payoffs associated with each button and, as he leaves, receives
the payoff for his selection. The same occurs on the third morning. And the
fourth. And fifth. By this point, he has carefully recorded the values displayed
below each button on every day. This is what he has observed:

A B C D E F G
day1 5 0 2 20 3 0 8
day2 1 0 2 0 8 1 1
day3 9 0 2 0 9 1 3
day4 5 0 2 0 9 0 2
day5 5 0 2 10 0 1 10

Al looks at the data and ponders, again, which button to press.

The problem has suddenly become a lot more interesting. On the first day, Al had an
entirely arbitrary set of options available to him. As far as Al was concerned, button A was
indistinguishable from button C but for the label. Yet we now realize that the same decision
problem is being presented to our hero on each of a potentially long sequence of days. Before
making a decision on any given day, we expect that Al will have learned from the dataset
he has been collecting.

1.2 Abstract Decision Making and Al’s Dilemma

The world in which Al finds himself is plainly a fantasy yet, as an abstraction, the problem
he faces could not be more realistic. On each of a sequence of time periods he is presented
with a decision from a fixed menu. He must select one such decision and, upon making this
decision, is presented with some feedback regarding the outcome of this decision. On each
round the decision maker can utilize information gleaned from past decisions.

When does this type of sequential decision problem arise? It does not take long to find
pertinent examples, such as:

• an investor, making a sequence of trading decision, while observing price fluctuations;

• a gambler, choosing which horse to bet on, while observing each race;

• a caching algorithm, choosing which memory elements to evict, while observing memory
requests;

• a weather forecaster, predicting rain or shine, while observing the outcome the following
day;

3

• a driver, choosing which route to work each day, while observing the traffic on the
roads.

Let us formalize this abstract problem at hand. We will imagine that Al’s decisions
(actions, strategies, etc.) come from some fixed decision set D. For now we will imagine that
D is arbitrary, but typically we will assume that D is either finite or comes from some linear
space in Rn or, at the very least, some Hilbert space. Al then observes some “outcome” that
is revealed by Nature, and we shall assume this outcome is an element of a fixed outcome
set Z. We will imagine that this sequential decision problem occurs on some number of
rounds, and that on round t Al can choose dt as a function of z1, . . . , zt−1—naturally, as
these outcomes are the only ones thus revealed by Nature.

Al, of course, has some objective in mind when making his decisions. If this is a purely
financial problem, Al may simply want to maximize his total wealth. If the problem involves
some uncertainty (which it inevitably will), Al may also want to encode a notion of risk
aversion into the objective. In any case, we shall assume that Al has a pre-determined
real-valued function Objective(d1, z1, . . . , dT , zT) which allows him to measure his decisions
d1, d2, . . . given the sequence of observed actions z1, z2,

In perhaps the simplest case, we can imagine that the objective function is cumulative,
in the sense that it can be written as

Objective(d1, z1, . . . , dT , zT) =
T∑
t=1

`(dt, zt)

where ` : D × Z → R is some arbitrary cost function. Let us note that an objective that
can be written this way encodes several very strong assumptions about the problem at hand.
First, the decision maker’s cost can be separated into a sum of costs over the sequence of
days, and a given day’s cost depends only on the events dt, zt associated with that day.
Moreover, the per-day cost function `(·, ·) is constant throughout.

It is worth noting that cumulative objectives have historically been very popular in the
literature. This is perhaps less surprising when we look at the list of examples above.
Our earnings from betting on the stock market, for example, are cumulative1. Or when a
forecaster predicts the weather she is judged, in aggregate, according to her prediction on
the day relative to the outcome on that day—it would be meaningless, of course, to compare
her prediction today to yesterday’s weather.

Now that we have specified what Al wants to achieve, we must also specify how he shall
achieve it. We say that A is a deterministic decision-making algorithm (or, more frequently,
we will simply use the term algorithm) if it provides a set of maps {A1,A2, . . .}, where At
has the form

At :

t−1 copies︷ ︸︸ ︷
Z × Z × · · · × Z → D

1Depending on the setting, it may be better to think about cumulative performance of an investing
strategy as multiplicative rather than additive, since we can reinvest prior returns. On the other hand, a
common technique to convert the former to the latter is to take the logarithmic of the multiplicative returns.

4

for all nonnegative integers t. A randomized decision-making algorithm is one that provides
maps of the form Z × Z × · · · × Z → ∆(D), where ∆(D) is the set of distributions over D.

1.3 Who is Nature? A Statistical Approach

Let us return our attention to the dilemma that Al faces on each day, namely, “Given
what I know up until today, what button shall I press?” Let us imagine that Al comes up
with a given strategy, and let us imagine that this strategy instructs Al to select button
X. It is natural to ask, is button X the best choice available? Indeed, what do we even
mean by “the best” in this situation? This could be the button that has the lowest risk.
Alternatively, we could look for the button with the highest payoff in expectation. But what
does “in expectation” mean when we have not settled on a notion of randomness?

This brings us to a key philosophical question that one must address in any decision
problem. Let us use the term Nature to refer to the entity which produces the uncertain
outcome associated with each decision. In Al’s case, we shall assume that the rewards
associated with each button are chosen by Nature. More generally, we may think of any
source of data as being produced by Nature. We must ask ourselves, what or who is Nature,
and how shall we model its behavior?

Let us discuss two statistical settings. It is not surprising that we would look to the
statistics to look for advice in solving sequential decisions problems, as a central question of
the field is how to interpret data in a meaningful way. The dilemma Al faces is precisely the
problem of how to leverage past observations on future decisions.

1.3.1 Bayesian Assumptions

We shall now work under the assumption that the data is independently and identically
distributed (i.i.d.); that is, where Nature selects the outcomes zt by independently drawing
each according to a single (fixed) distribution Pθ. We use the symbol θ to refer to the
parameters of the distribution, and we imagine that θ is a member of some parameter space
Θ. We can go a step further and include the assumption that θ was chosen from some prior
distribution π ∈ ∆(Θ). This is often called the Bayesian setting as it allows us to apply
Bayes Rule in order to reason about the conditional probability of a hypothesis given some
data.

Let us consider a cumulative objective function, so that Al wants to minimize the sum∑
t `(dt, zt) for some given loss function `(·, ·). Under this Bayesian setting, we can write

down explicitly what Al can ultimately achieve:

Optimal Cost = inf
algs. A

E
θ∼π

[
T∑
t=1

E
zt∼Pθ

[`(dt, zt)]

]
, (1.1)

where each decision dt is selected as the output of At(z1, . . . , zt−1).

5

Let us spend a moment to consider an intuitive interpretation of the above expression.
We imagine that, before any actions are taken by either Al or Nature, Al must commit to
some algorithm A amongst a large class of such algorithms. In particular Al’s goal is to
attain the small cost possible, hence the search for an infimal value. Once this algorithm is
selected, it is Nature’s turn to select the parameter θ according to the fixed and known prior
distribution π. With the data distribution Pθ now chosen the sequential game proceeds. Al
queries A1(∅) to obtain d1, Nature samples an outcome z1 ∼ Pθ, and Al suffers `(d1, z1). On
the following round Al selects d2 ← A2(z1), Nature samples z2 ∼ Pθ, Al suffers `(d2, z2).
And so on.

There is a fundamental philosophical principle expressed in (1.1): the decision maker is
concerned entirely with the expected cost of the objective, with respect to the set of random
choices made by Nature. This principle is pervasive throughout much of the literature on
decision theory, but it is worth stepping back to ask “Why?” After all, if Al will have but
one chance to play this game then what good is the average case? Here is a potential answer
a decision theorist could give:

Assume our actions will be measured as a function of some uncertain variable
X, and that to the best of our knowledge X assumes one of a range of states, each
having an associated known probability. Without further information, we may
as well imagine that X assumes every such state, weighted by the probability
value. Thus, in order to make a utility calculation over this range of states, our
only option is to perform a weighted average and integrate over the distribution.

This is, of course, a philosophical explanation to a philosophical question, although it is
a reasonably compelling answer. We shall proceed now under the principle of “maximize
expected utility” but we shall return to this question soon.

We now return our attention to the objective in (1.1). By using the linearity of expec-
tation, and the fact that A is defined by a set of independent algorithms A1,A2, . . . we can
rewrite

Optimal Cost =
T∑
t=1

inf
At

E
θ∼π

E
z1,...,zt∼Pθ

[`(At(z1, . . . , zt−1), zt)] . (1.2)

For the time being, let P π be the marginal distribution of the joint outcomes z1, . . . , zt−1

and let π|z1:t−1 be the posterior distribution, i.e. the distribution π over Θ conditioned on
having observed the samples z1, . . . , zt−1. Using Bayes rule we can see that

inf
At

E
θ∼π

E
z1,...,zt∼Pθ

[`(At(z1, . . . , zt−1), zt)] = E
(z1,...,zt−1)∼Pπ

inf
dt∈D

E
θ∼π|z1:t−1

E
zt∼Pθ

[`(dt, zt)].

The right hand side of this final equation brings us to our main point: the optimal algorithm
in the Bayesian setting is to (a) compute the posterior distribution on Θ given the observed
data z1, . . . , zt−1 and (b) to minimize the expected cost according to this distribution. This
statement will come as no surprise to those familiar with Bayesian statistics as this technique
already has a well-known name, maximum a posteriori (MAP) estimation.

6

Summarizing the above discussion, we have considered Al’s dilemma under the condition
that he is willing to make the i.i.d. assumption on Nature and, furthermore, is willing put
faith in a given prior π. Al, an unabashed Bayesian, can now consider his decision-making
task solved, for he has in front of him a simple prescription: select decision dt ∈ D with the
goal of maximizing a posteriori utility. Indeed, Al can sleep well at night.

1.3.2 A Frequentist Approach

We finished the previous section by noting that, as long as the decision maker can commit
to a prior distribution π over the parameter space Θ, the decision-making problem can be
reduced to (a) computing the a posterior distribution and then (b) maximizing expected
utility with respect to this distribution. But what if we are unwilling to commit to any
particular prior? Or worse, what if we commit to a prior distribution yet discover that it is
far from accurate, only to have paid a large cost in the process?

In this “frequentist” paradigm, we still imagine that our data is selected according to
a fixed probability distribution Pθ, and that each zt is drawn (independently) from this
distribution, but we stop short of attempting to answer the question “Where did this magical
Pθ come from?” This is a key distinction with the Bayesian approach, since without a prior
we can not meaningfully have a conversation about the “probabilities over states θ of the
world.” Indeed, within a frequentist setting we can even go so far as to imagine that θ was
selected by an adversary.

This is not quite as pessimistic as it sounds. Let us consider a very simple example:
mean estimation. Al’s decision set, as well as Nature’s outcome set, will be the unit ball
B ⊂ Rn for some positive integer n. The loss will be the squared error, `(x, z) := ‖x− z‖2.
Under this loss function, we are effectively solving the problem of “estimating the mean” of
Pθ because the minimization problem is solved as arg minx∈B Ez∼Pθ ‖x − z‖2 = EPθ [z]. Let
us consider a simple decision-making algorithm, simply predicting the empirical mean thus
far,

xt ← At(z1, . . . , zt−1) =
1

t− 1

t−1∑
s=1

zs.

How does this algorithm perform? It is easy to show the following bound

T∑
t=1

`(xt, zt) ≤ Tvar(Pθ) + c log T (1.3)

for some universal constant c > 0. Also, it is worth noting that one can also establish a
matching upper bound.

What does this statement tell us? Put another way, this bound says that there exists some
algorithm (empirical averaging, in particular) such that for any distribution Pθ ∈ ∆(B) our
objective will be no more than the RHS of (1.3). This can be stated in terms of a minimax

7

bound:

inf
A

sup
θ∈Θ

T∑
t=1

E
zt∼Pθ

`(At(z1, . . . , zt−1), zt) ≤ T sup
θ∈Θ

var(Pθ) + c log T = T + c log T. (1.4)

We have expressed the above bound as a sum of two quantities for good reason. The first
term, Tvar(Pθ), is exactly the loss suffered by the decision maker even with knowledge of θ.
In other words, even under optimal play one can not avoid paying at least some cost, since
minx EPθ ‖x − z‖2 = var(Pθ) which must be positive for any non-degenerate distribution.
With this in mind it is worth asking whether we should even count this value towards
Al’s objective—should his performance even factor in this minimum cost of playing the
game? Would it not be more reasonable to consider his cost compared to some hypothetical
omniscient player? This suggests a modified objective function:

Objective(A|θ) :=
T∑
t=1

E
zt∼Pθ

`(At(z1, . . . , zt−1), zt)− T min
x∈B

E
z∼Pθ

`(x, z). (1.5)

In a statistics problem, where `(·, ·) is some estimator loss, this objective is often referred to
as the estimation error. We have proven a relative loss bound if we can show how to control
this objective.

1.4 The Competitive Decision Framework

In the previous section, we discussed a range of statistical approaches to sequential deci-
sion making. We showed that, under a Bayesian setting where the decision maker has faith in
a prior distribution, the “optimal” algorithm, while not necessarily computationally feasible,
is always simple to declare in terms of posterior probabilities. In a frequentist setting, we do
not have such a canonical algorithm, but we can certainly propose algorithms (estimators)
and provide robust guarantees.

However, by taking a statistical view we are adhering to a particular principle, laid out
implicitly in the i.i.d. assumption, about the nature of our observations and our expectations.
We may state this explicitly:

Uncertainty-as-Randomness (UAR) Principle: Each observation we
receive is the result of a draw from a probability distribution; this distribution
has a fixed set of parameters; hence, previous observations ought to inform us
about future outcomes; finally, we ought to view the decision problem through
the lens of estimation.

The UAR Principle is quite broad and is implicit in a vast majority of the literature in not
only statistics but economics, information theory, computer science, etc., as well. Indeed,
it’s crucial in our everyday lives, as it gives us the ability to generalize, to make statements

8

of the form “I can’t see the future, I have a finite dataset, but I still strongly believe X to
be true.” The UAR principle is what leads us to believe the weatherman when we’re told
that a hurricane is approaching—even when we know he is not clairvoyant.

In the present section, and indeed in the rest of this document, we shall be dispensing
with the Uncertainty-as-Randomness principle.

Why would we want to do that, when it has proven to be so powerful? The problem is
that the UAR principle collides with what you might call the Real World Principle: in a large
number of scenarios of interest, our data (observations) are often not generated randomly but
are instead created from the actions of other agents, each optimizing for their own objectives
and making their own informed decisions. We can consider the most extreme example of
this: a two-player zero-sum game. Against a savvy opponent, why should we expect previous
actions to predict future behavior? How do we know we’re not being tricked?

This is not intended to be a full-throated critique of the UAR principle, nor do we
suggest that one should never take a statistical viewpoint. On the contrary, interpreting
uncertainty through the lens of randomness and estimation can be very powerful in vast
number of problems—weather prediction being a prime example. But we emphasize that
these approaches are only robust up to the validity of their assumptions. When we want
to know if it will rain tomorrow, treating weather conditions as a finitely parameterized
random process would seem perfectly reasonable. When we want to predict if a given email
is legitimate or spam, it seems less useful to treat the email’s creator as a random process.

We will spend the rest of this section laying out a model for sequential decision making in
the absence of statistical assumptions. We shall begin in §1.4.1 with an illustrative example,
returning back to Al’s simple dilemma. We will follow that up in §1.4.2 with a discussion
of the history of this framework, and we mention some of the key results in context. We
will spend the entirety of §1.5 surveying the various works laid out in the remainder of this
dissertation.

1.4.1 A Warmup Example

Let us look back at Al’s dilemma which we discussed at the outset of the present Chapter.
On each of a sequence of days, Al is presented with a fixed set of buttons, and he may push
only one. After having pressed one such button, he receives a hidden reward associated
with this particular button. In addition Al also learns the rewards associated with all of the
alternatives, noting what he might have earned, for better or worse.

We shall now switch terminology for the remainder of this chapter and use the term expert
rather than button. This should seem an odd replacement, since typically we do not typically
associate the action of “pushing” with the concept of “expert”, nor do experts typically return
“rewards”. Nevertheless this term has become quite standard in the literature, and indeed
it is common to use the phrase expert setting to describe the abstract problem Al faces; the
historical precedent will be described soon (§1.4.2).

In the expert setting, we imagine an algorithm A, playing the role of Al, that must make

9

a sequence of predictions from the set [N] := {1, 2, . . . , N}, where each index i corresponds
to an expert. It is more generally assumed that the algorithm shall make randomized pre-
dictions, choosing on every round t a distribution wt ∈ ∆N . We shall refer to wt[i] as a
weight for expert i. After A commits to wt, we imagine that Nature assigns a loss to each
expert, represented by a vector `t, where the loss for expert i is some bounded real value
`t[i]. Whereas Al’s problem involved a gain on each round, one generally works with losses
in the expert setting, and it is usually assumed that the loss values lie in [0, 1]. On day t,
A will sample an expert according to the distribution wt, and will suffer the expected loss
according to wt; that is, Ei∼wt `t[i] = wt · `t.

Now we can formally recast Al’s dilemma: how ought he select wt having observed
`1, . . . , `t−1? This question, of course, depends heavily on the objective function that he
would like to optimize. But it also depends very much on his view of Nature: is Nature an
oblivious random process, or is Nature an adversary? We shall imagine that Al is a skeptical
individual and that Al would not want to put faith in any statistical assumptions (bayesian,
i.i.d., etc.). How should our skeptic proceed?

The simplest objective he might like to minimize is the cumulative loss,
∑T

t=1 wt · `t, yet
unfortunately this objective is not well suited for such pessimistic assumptions. For one, if
Nature is indeed an Adversary, then Nature can simply choose `t = 〈1, 1, . . . , 1〉 on every
round, thus ensuring that

∑T
t=1 wt ·`t = T independent of Al’s choices. And even considering

this sequence of outcomes, Al would presumably think to himself, “Well this actually isn’t
so bad, I couldn’t possibly have done any better no matter how I acted!” Indeed, even
under a hypothetical i.i.d. assumption on the sequence `1, . . . , `T , Al could only conclude
that the true distribution Pθ on the loss vectors was really lousy — Even if he’d known this
hypothetical θ he could not have improved.

The previous discussion brings out a key point: we should always control for the “best
case scenario comparison”—the decision maker should never be able to say “yeah but even
if...”. We have already alluded to this issue in equation (1.5) and the discussion preceding
it. In a frequentist paradigm it is quite natural to pose the following question, “what is our
performance relative to what it would have been if we knew exactly the true parameters of
the distribution?” Taking this viewpoint, we could propose that Al focuses on the following
objective:

E
{`t}∼Pθ

[
T∑
t=1

wt · `t

]
− T min

i∈[N]
E
`∼Pθ

`[i].

In other words, an option is to recommend that Al consider his expected performance over the
course of the sequential problem minus the performance of the optimal strategy that knows
the distribution Pθ (represented by mini E `[i]). This is a perfectly reasonable proposal,
except for one flaw: this makes no sense to Al, who is a skeptic and does not believe in the
a notion of a “true distribution” Pθ. Al believes only what he sees, and after T rounds all
Al has seen is T vectors, `1 up through `T .

Our goal is clear: we must find an objective that aims at minimizing the cumulative
loss, that controls for the “best in hindsight” comparison, but avoids appealing to “the true
distribution” or similar such notions. This brings us to the objective which is now commonly

10

known as regret :

RegretT (A) :=
T∑
t=1

wt · `t − min
w∈∆N

T∑
t=1

w · `t. (1.6)

Notice that this quantity does not require any assumptions on the process that generated
the vectors `t, it is an entirely empirical measurement of performance. At the end of any
sequence of decisions, Al can ask himself “What’s my regret so far?” and can compute this
exactly. This is not true for the statistical estimation error, which requires considering a
hypothetical data distribution. When we needn’t consider the data generating process, we
can go a step further and discuss the worst case regret of an algorithm, that is the largest
value of (1.6) over all possible sequences {`t}Tt=1. Indeed, at this point we may as well
imagine that an adversary chooses the sequence with the single goal of inflicting maximal
regret on the Al.

A first glance at this might appear to be a major burden; need we really be robust to an
adversarially chosen sequence of data? Of course one would like to take a pessimistic view of
Nature as we would have incredibly robust guarantees (“no matter what happens...”). The
surprising fact is that we can actually prove such robust guarantees. Precisely, we shall be
able to prove statements of the followin form:

∃A : lim
T→∞

1

T
RegretT (A)→ 0

This statement is quite strong, and it is worth summarizing in words:

There is some algorithm whose average performance on any sequence of data is
eventually no worse than the performance of the best fixed decision in hindsight.

1.4.2 History

We shall begin this section with a review of the history of these universal/adversarial pre-
diction models, starting with Hannan and Blackwell in the 1950s and leading to the present.
We will then spend some time summarizing the contributions of the present document and
how they fit into what has been known.

It was most likely James Hannan who originally proposed a distribution-free framework
for sequential decision making. In his seminal paper “Approximation to Bayes Risk in
Repeated Play” (1957, [43]), he makes a clear case for the proposed approach.

The present paper is concerned with a sequence of N decision problems, which
are formally alike except for the fact that the state of nature may vary arbitrarily
from problem to problem. Decisions are required to be made successively and it
is assumed that they may be allowed to depend on the e.d. (empirical distribu-
tion) of the states of nature across the previous problems in the sequence. This
total lack of assumptions regarding the behavior of the state sequence is a fea-
ture distinguishing the present structure from many considerations of multistage
processes...

11

The most important conclusion of this paper is that the knowledge of the succes-
sive e.d. of the past states makes it constructively possible to do almost as well
at reducing the average inutility across problems as in the case where N and the
distribution of the N states are known in advance.

The sequential decision game Hannan proposed is identical to Al’s dilemma, and the goal
of “reducing the average inutility across problems” relative to when the distribution of the
“states are known in advance” is exactly that of minimizing average regret.

In 1956, around the same period, David Blackwell proved a result now known as the
Approachability Theorem. We shall address this theorem in detail in Chapter 5, but we give a
quick summary here. Blackwell’s theorem concerned the problem of playing a repeated game
with a vector-valued payoff function. The goal proposed by Blackwell was to determine under
what circumstances we can design an adaptive strategy for player 1 so that the average payoff
vector will “approach” a given convex set; hence the term “approachability”. Blackwell gave
a precise necessary and sufficient condition for when a set is approachable. Soon thereafter he
showed that this approachability result can be used to construct, as a special case, Hannan’s
regret minimization strategy.

Between 1960 and 1988 not a great deal was published on the subject of sequential
prediction and decision making under worst-case assumptions. But interest in the topic
surged in the late 80s and throughout the 90s. There is the early work by Littlestone [52]
from 1988 on learning linear threshold functions, Vovk’s work on so-called “aggregating
strategies” [73] which appeared in 1990, work by Foster [36] from 1991, and Cover’s 1991
work on universal portfolios [25]. The notion “learning from experts” (similarly, “combining
expert advice”) was introduced by Littlestore and Warmuth in 1994, and they proposed
the “weighted majority algorithm” although variants of this algorithm had been published
previously. Following these early papers, there as been a large amount of work in this
area over the past 15 years and the list is much too long to give here. Among the major
contributors to this area are Peter Auer, Peter Bartlett, Avrim Blum, Nicolo Cesa-Bianchi,
Dean Foster, Yoav Freund, Claudio Gentile, Sergiou Hart, Elad Hazan, David Helmbold,
Adam Kalai, Satyen Kale, Nick Littlestone, Phil Long, Gabor Lugosi, Andreu Mas-Colell,
Alexander Rakhlin, Robert Schapire, Yoram Singer, Valdimir Vovk, and Manfred Warmuth.
An excellent summary of this area can be found in the book of Cesa-Bianchi and Lugosi
[24]. It can not be emphasized enough that the latter book provided the launching point for
a great deal of the work presented herein.

1.5 Overview of Results

We will now give a short overview of the results in the remainder of this dissertation.

In Chapter 2, we introduce a very generic sequential decision problem known as Online
Convex Optimization (OCO). This problem has been relatively well-studied, and we mostly
review the literature. We discuss a key algorithm, known as Follow the Regularized Leader,

12

which provides a key tool for later analysis. We prove a very generic bound on this algorithm,
setting the stage for a much more interesting analysis in Chapter 4.

In Chapter 3, we focus on lower bounds for the OCO setting. Lower bounds for online
learning problems had existed previously, but we prove a number of very precise bounds.
In particular, for the particular problems we address, we can provide the precise minimax
strategies for both the decision maker and Nature.

In Chapter 4, we consider the bandit version of the Online Linear Optimization problem.
When we refer to a bandit problem, we mean where the decision maker receives very limited
feedback in his decision process. In the full-information version, the decision maker may
observe the entire cost function at the end of each round, whereas in a bandit problem the
decision maker may only observe the cost of the chosen action. For some time the optimal
regret rate was unknown for this problem, as there remained a gap between O(

√
T) and

O(T 2/3). We provide the first efficient algorithm to close this gap. A surprising aspect of
this result is the technique used: the algorithm requires the use of self-concordant barrier
functions that have been studied in the optimization community.

In Chapter 5, we look back at a famous result of David Blackwell known as the Ap-
proachability Theorem. Within a year of publishing this result, Blackwell observed that his
result was connected to Hannan’s result in the nascent field of Online Learning. We take
this observation much further and show that Blackwell’s result is algorithmically equivalent
to the problem of Online Linear Optimization. We provide a specific reduction from the
approachability problem to an OLO problem, and vice versa. We apply this reduction to
the problem of achieving “asymptotic calibration” for sequential binary forecasting, and we
exhibit the first efficient algorithm that attains the desired asymptotic guarantee.

We switch gears in Chapter 6 and consider the expert setting as a zero-sum multistage
game between a gambler and a casino. At each round t, the gambler must choose an action
wt inside of the N -simplex, the casino must then select a cost vector `t ∈ {0, 1}N , and the
gambler suffers wt · `t. We assume that the “loss of the best expert” has a fixed a priori
bound, say an integer k, and as soon as the loss of the best expert is greater than k the game
must end. Although this game has an exponentially-sized state space, and might appear
to be computationally challenging to solve, we can exhibit the minimax strategy for both
gambler and casino. The gambler’s optimal strategy can be described simply in terms of a
random walk.

We build on the latter work in Chapter 7 and consider a more general scenario where
a player takes part in a repeated game against an adversary that has a budget. In the
Gambler/Casino game, the Casino’s budget was that “no expert shall suffer more than
k losses.” But what if the budget is arbitrary, i.e. we have some given function which
determines, as a function of the opponent’s actions, when the game ends? We show that an
the optimal strategy for this game can also be run efficiently, up to an approximation. We
also give several examples where this result applies.

13

Thanks to Co-Authors

Over the last several years I have had the great fortune of working with several excellent
collaborators, and I owe a big debt to all of them. All the results presented in this dissertation
were previously published across different venues and, for the most part, the presentation
herein draws verbatim from these previous works. I will take a moment to reference these
works and to thank the various coauthors.

• The content of Chapter 3 was originally published in 2008 in the Proceedings of
the Nineteenth Annual Conference on Learning Theory (COLT), with Peter Bartlett,
Alexander Rakhlin, and Ambuj Tewari [3].

• Chapter 4 is based on the results published in COLT 2008 with Alexander Rakhlin
and Elad Hazan [8]. The version presented here is from the significantly-modified
journal version of the COLT paper, where the former is currently under review for
IEEE Transactions on Information Theory. A large portion of this journal writeup is
concerned with the “full information” Online Linear Optimization problem, and this
section makes up the entirety of Chapter 2.

• Chapter 5 is based on work published in COLT 2011 with Peter Bartlett and Elad
Hazan [2].

• Chapter 6 draws from work with Manfred Warmuth and Joel Yellin published at COLT
2008 [6].

• Chapter 7 draws from work with Manfred Warmuth published in Advances in Neural
Information Processing Systems 2010 [7].

14

Chapter 2

First Steps: Online Linear
Optimization

2.1 Introduction

Should we expect the past to predict the future? And if no relationship between past and
future can be assumed, may we still obtain some guarantee on our performance? In essence,
this is the problem of universal prediction. In the words of Merhav and Feder [58] in 1998,
a universal prediction strategy is one that “does not depend on the unknown underlying
model and yet performs essentially as well as if the model were known in advance.” Since
those words were written, the universal framework has received much attention in a range
of communities – learning theory, information theory, game theory, optimization – and we
refer the reader to the survey by Merhav and Feder [58] as well as to the excellent book of
Cesa-Bianchi and Lugosi [24] for a thorough exposition.

Let us now present a general model of prediction. A “learner” observes a sequence of
data f1, f2, . . ., and must select a sequence of “strategies” x1, x2, . . . chosen from a class
K, where xt may depend on f1, . . . , ft−1. For every pair (xt, ft), there is a real-valued loss
`(xt, ft) charged to the learner for playing xt when the data was ft. In the universal prediction
framework, the learner hopes to perform nearly as well as the best strategy in hindsight; after
T observations, this is precisely infx∈K

1
T

∑T
t=1 `(x, ft). This general framework is identical to

that presented by Merhav and Feder [57], and is the foundation of the results in Cesa-Bianchi
et al. [21] and Haussler et al. [45].

The results in this chapter shall focus on the universal prediction framework when (a)
the set of strategies K forms a convex set, (b) the loss `(·, ·) is linear, and (c) the learner only
receives limited feedback – that is, partial information – about the data. Let us now give
a precise definition of the model. Imagine a sequential game G(K,F) between the learner
(algorithm) and the environment (adversary) where, for each t = 1 to T ,

• Player chooses xt ∈ K ⊂ Rn

• Adversary independently chooses ft ∈ F ⊆ Rn

15

• Player suffers loss f>t xt and observes feedback Ft.

To produce a “good” algorithm for this particular problem, we have to fix a yardstick
by which to measure an algorithm. In the decision-theoretic framework, it is common to
measure the performance of the prediction method through the notion of regret. That is, the
goal of the Player is to minimize her total loss relative to the best fixed action in K:

RegretT :=
T∑
t=1

f>t xt − min
x∗∈K

T∑
t=1

f>t x∗. (2.1)

In particular, we are interested in rates of increase of RT in terms of T . Without diving into
the details just yet, we mention that Θ(T 1/2) is the minimax optimal rate in many instances
of sequential prediction with linear loss. In the present chapter, we provide an associated
upper bound of the form O(T 1/2) and in Chapter 3 we prove associated lower bounds.

While the adversary chooses ft based on {xs}t−1
s=1, we assume that the feedback sequence

Ft is the only information provided to the player about the adversary’s moves. We distin-
guish two types of feedback. The Full Information setting corresponds to Ft = ft, while the
Bandit setting corresponds to Ft = f>t xt. The latter type of feedback owes its name to the
famous multi-armed bandit problem, which can be seen as an instance of G(K,F) with K
being the n-simplex. The Bandit feedback relays the cost of the chosen decision xt to the
player, while the Full Information supplies the full cost vector.

In the present chapter we shall focus exclusively on the Full Information version of this
problem, but we return to the Bandit setting in Chapter 4. Indeed, the algorithm we give for
the Bandit setting is actually via a reduction to the Full Information setting. For the case
of Full Information, we now present a class of algorithms known as Follow the Regularized
Leader (FTRL), in which the learner attempts to minimize a regularized objective at every
step of the game.

2.2 Low-Regret Learning with Full-Information

The online linear optimization problem is defined as the following repeated game between
the learner (player) and the environment (adversary).

At each time step t = 1 to T ,

• Player chooses xt ∈ K

• Adversary independently chooses ft ∈ Rn

• Player suffers loss f>t xt and observes feedback Ft

The goal of the Player is not simply to minimize his total loss
∑T

t=1 f>t xt, for an adversary
could simply choose ft to be as large as possible at every point in K. Rather, the Player’s goal

16

is to minimize his regret. If the player uses some algorithm A that chooses the predictions
x1,x2, . . . and is presented with a sequence of functions f1:T := (f1, . . . , fT), then we define

Regret(A; f1:T) :=
T∑
t=1

f>t xt − min
x∗∈K

T∑
t=1

f>t x∗.

At times, we may refer to the regret with respect to a particular comparator u, namely

Regretu(A; f1:T) :=
T∑
t=1

f>t xt −
T∑
t=1

f>t u.

It is generally assumed that the linear costs ft are chosen from some bounded set
L ⊂ Rn. With this in mind, we also define the worst case regret RegretT (A) :=
supf1:T∈LT Regret(A; f1:T) with respect to L.

2.2.1 Follow the Regularized Leader and Associated Bounds

Follow The Leader (FTL) is perhaps the simplest online learning strategy one might
arrive at: the Player simply uses the heuristic “select the best choice thus far”. In game
theory, this strategy is known as fictitious play, and was introduced by G.W. Brown in 1951.
For the online optimization task we study, this can be written as

xt+1 := arg min
x∈K

t∑
s=1

f>s x. (2.2)

For certain types of problems, applying FTL does guarantee low regret. Unfortunately, when
the loss functions ft are linear on the input space it can be shown that FTL will suffer regret
that grows linearly in T .

A natural approach1, and more well-known within statistical learning, is to regularize
the optimization problem (2.2) with an appropriate regularization function R(x), which is
generally considered to be smooth and convex. The decision strategy is described in the
following algorithm, which we refer to as Follow the Regularized Leader (FTRL).

Algorithm 1 FTRL(R, η): Follow the Regularized Leader

Input: η > 0, regularization R.
On round t+ 1, play

xt+1 := arg min
x∈K

[
η

t∑
s=1

f>s x +R(x)

]
. (2.3)

We recall that this algorithm can only applied in the full-information setting. That is,
the choice of xt+1 requires observing f1, . . . , ft to solve the objective in (2.3).

1In the context of classification, this approach has been formulated and analyzed by Shalev-Shwartz and
Singer [70].

17

We now prove a simple bound on the regret of FTRL for a given regularization function
R and parameter η. This bounds is not particularly useful in and of itself, yet it shall serve
as a launching point for several results we give in the remainder of this chapter.

Proposition 1. Given any sequence of cost vectors f1, . . . , fT and for any point u ∈ K,
Algorithm 1 (FTRL) enjoys the guarantee

Regretu(FTRL(R, η); f1:T)

≤
T∑
t=1

f>t (xt − xt+1) +
R(u)−R(x1)

η
.

Proof. Towards bounding the regret of FTRL(R, η), let us first imagine a slightly modified
algorithm, BTRL(R, η) for Be The Regularized Leader: instead of playing the point xt on
round t, the algorithm BTRL(R, η) plays the point xt+1, that is, the point that would be
played by FTRL(R, η) with knowledge of one additional round. This algorithm is, of course,
entirely fictitious as we are assuming it has access to the yet-to-be-observed ft, but it will be
a useful hypothetical in our analysis.

Let us now bound the regret of BTRL(R, η). Precisely, we shall show the bound for the
“worst-case” comparator u ∈ K, that is

t∑
s=1

f>s xs+1 ≤ min
u∈K

t∑
s=1

f>s u +
R(u)−R(x1)

η
. (2.4)

Notice that, with the latter established, the proof is completed easily. The total loss of
BTRL(R, η) is

∑T
t=1 f>t xt+1, whereas the total loss of FTRL(R, η) is

∑T
t=1 f>t xt. It follows

that the difference in loss, and hence the difference in regret, for any u ∈ K, is identically

Regretu(FTRL(R, η); f1:T)

= Regretu(BTRL(R, η); f1:T) +
T∑
t=1

f>t (xt − xt+1).

Combining this with (2.4) gives the proof.

We now proceed prove (2.4) by induction. The base case, for t = 0, holds trivially. Now
assume the above bound holds for t − 1. The crucial observation is that the point xt+1 is
chosen as the minimizer of the right-hand side of (2.4).

t∑
s=1

f>s xs+1 = f>t xt+1 +
t−1∑
s=1

f>s xs+1

(induction) ≤ f>t xt+1 + min
u∈K

t∑
s=1

f>s u +
R(u)−R(x1)

η

(u← xt+1) ≤ f>t xt+1 +
t∑

s=1

f>s xt+1 +
R(xt+1)−R(x1)

η

= min
u∈K

t∑
s=1

f>s u +
R(u)−R(x1)

η
,

18

which completes the proof.

2.2.2 Upper Bounds for Strongly Convex R

The bound stated in Proposition 1 is difficult to interpret for, at present, it tells us that
the regret is bounded by the size of successive steps between xt and xt+1. Notice that the
point xt+1 depends on both ft and η as well as on the behavior of R. Ultimately, we want
a bound independent of the xt’s since these points are not under our control once we have
fixed R.

We arrive at a much more useful set of bounds if we require certain conditions on the
regularizer R. Indeed, the purpose of including the regularizer was to ensure stability of the
solutions xt, which will help control f>t (xt − xt+1). Via Hölder’s Inequality, we always have

f>t (xt − xt+1) ≤ ‖ft‖∗‖xt − xt+1‖ (2.5)

for any dual norm pair ‖ · ‖, ‖ · ‖∗. Typically, it is assumed that ft is explicitly bounded, and
hence our remaining work is to bound ‖xt − xt+1‖. The usual approach is to require that
R be suitably curved. To discuss curvature, it is helpful to define the notion of a Bregman
divergance.

Definition 2. Given any strictly convex function R, define the Bregman divergence with
respect to R as

DR(x,y) = R(x)−R(y)− 〈∇R(y),x− y〉.

A Bregman divergence measures the “distance” between points x and y in terms of the
“gap” in Jensen’s Inequality, that is by how much the function R deviates at y from it’s
linear approximation at x. It is natural to see that the Bregman divergence is larger for
functions R with greater curvature, which leads us to the following definition.

Definition 3. A function R(x) is strongly convex with respect to some norm ‖ · ‖ whenever
the associated Bregman divergence satisifes DR(x,y) ≥ 1

2
‖x− y‖2 for all x,y.

While it might not be immediately obvious, the strong convexity of the regularization
function in the FTRL algorithm is directly connected to the bound in Proposition 1. Specif-
ically, the term R(u) − R(x1) increases with larger curvature of R, whereas the terms
f>t (xt−xt+1) shrink. Towards making the latter more precise, we give two lemmas regarding
the “distance” between the pairs xt and xt+1.

Lemma 4. For the sequence {xt} chosen according to FTRL(R, η), we have that for any t:

DR(xt,xt+1) ≤ 〈∇R(xt)−∇R(xt+1),xt − xt+1〉
≤ 〈ηft,xt − xt+1〉.

Proof. Recalling that the divergence is always nonnegative, we obtain the first inequality by
noting that for any x,y ∈ K, DR(x,y) ≤ DR(x,y) +DR(y,x) = 〈∇R(x)−∇R(y),x−y〉.

19

For the second inequality, we observe that xt+1 is obtained in the optimization (2.3), and
hence we have the first-order optimality condition〈

∇R(xt+1) + η
t∑

s=1

fs,y − xt+1

〉
≥ 0 ∀y ∈ K. (2.6)

We now apply this inequality twice: for rounds t and t + 1 set y = xt+1 and y = xt,
respectively. Adding the inequalities together gives

〈∇R(xt)−∇R(xt+1),xt − xt+1〉 ≤ 〈ηft,xt − xt+1〉,

concluding the proof.

Lemma 5. For the sequence {xt} chosen according to FTRL(R, η), we have that for any t:

‖xt − xt+1‖ ≤ η‖ft‖∗,

where ‖ · ‖∗ is the associated dual norm.

Proof. Using the definition of strong convexity, we have

‖xt − xt+1‖2 ≤ DR(xt,xt+1) +DR(xt+1,xt)

= 〈∇R(xt)−∇R(xt+1),xt − xt+1〉
(Lemma 4) ≤ 〈ηft,xt − xt+1〉

(Hölder’s Ineq.) ≤ η‖ft‖∗‖xt − xt+1‖.

Dividing both sides by ‖xt − xt+1‖ gives the result.

Applying (2.5) and Lemma 5 to Proposition 1, we arrive at the following.

Proposition 6. When R is strongly convex with respect to the norm ‖ · ‖, then for any
u ∈ K

Regretu(FTRL(R, η); f1:T) ≤ η

T∑
t=1

‖ft‖∗2 + η−1R(u).

What have we done here? By including the additional strong-convexity assumption on
R, we can now measure the algorithm’s regret without concerning ourselves with the specific
points xt chosen in the optimization. Instead, we have a bound which depends solely on the
sequence of inputs {ft} and the choice of regularization R. We can take this one step further
and obtain a worst-case bound on the regret explicitly in terms of T , the maximum value of
R, and the size of the ft’s.

Corollary 7. When R is strongly convex with respect to the norm ‖ · ‖, and for constants
G,R > 0 we have ‖ft‖∗ ≤ G for every t and R(x) ≤ R for every x ∈ K, then by setting

η =
√

R
GT

we have

RegretT (FTRL(R, η)) ≤ 2
√
TGR.

20

Chapter 3

Lower Bounds

3.1 Introduction

The decision maker’s greatest fear is regret : knowing, with the benefit of hindsight, that
a better alternative existed. Yet, given only hindsight and not the gift of foresight, imperfect
decisions can not be avoided. It is thus the decision maker’s ultimate goal to suffer as little
regret as possible.

In the present chapter, we consider the notion of “regret minimization” for a particular
class of decision problems. Assume we are given a set X and some set of functions F on X.
On each round t = 1, . . . , T , we must choose some xt from a set X. After we have made this
choice, the environment chooses a function ft ∈ F . We incur a cost (loss) ft(xt), and the
game proceeds to the next round. Of course, had we the fortune of perfect foresight and had
access to the sum f1 + . . .+fT , we would know the optimal choice x∗ = arg minx

∑T
t=1 ft(x).

Instead, at time t, we will have only seen f1, . . . , ft−1, and we must make the decision xt
with only historical knowledge. Thus, a natural long-term goal is to minimize the regret,
which here we define as

T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

A special case of this setting is when the decision space X is a convex set and F is some
set of convex functions on X. In the literature, this framework has been referred to as
Online Convex Optimization (OCO), since our goal is to minimize a global function, i.e.
f1 + f2 + · · · + fT , while this objective is revealed to us but one function at a time. Online
Convex Optimization has attracted much interest in recent years [48, 78, 69, 15], as it provides
a general analysis for a number of standard online learning problems including, among others,
online classification and regression, prediction with expert advice, the portfolio selection
problem, and online density estimation.

While instances of OCO have been studied over the past two decades, the general problem
was first analyzed by Zinkevich [78], who showed that a very simple and natural algorithm,
online gradient descent, elicits a bound on the regret that is on the order of

√
T . Online

gradient descent can be described simply by the update xt+1 = xt − η∇ft(xt), where η

21

is some parameter of the algorithm. This regret bound only required that ft be smooth,
convex, and with bounded derivative.

A regret bound of order O(
√
T) is not surprising: a number of online learning problems

give rise to similar bounds. More recently, however, Hazan et al. [48] showed that when
F consists of curved functions, i.e. ft is strongly convex, then we get a bound of the form
O(log T). It is quite surprising that curvature gives such a great advantage to the player.
Curved loss functions, such as square loss or logarithmic loss, are very natural in a number
of settings.

Finding algorithms that can guarantee low regret is, however, only half of the story;
indeed, it is natural to ask “can we obtain even lower regret?” or “do better algorithms
exist?” The goal of the present chapter is to address these questions, in some detail, for
several classes of such online optimization problems. We answer both in the negative: the
algorithms of Zinkevich and Hazan et al. are tight even up to their multiplicative constants.

This is achieved by a game-theoretic analysis: if we pose the above online optimization
problem as a game between a Player who chooses xt and an Adversary who chooses ft, we
may consider the regret achieved when each player is playing optimally. This is typically
referred to as the value VT of the game. In general, computing the value of zero-sum games
is difficult, as we may have to consider exponentially many, or even uncountably many,
strategies of the Player and the Adversary. Ultimately we will show that this value, as well
as the optimal strategies of both the player and the adversary, can be computed exactly and
efficiently for certain classes of online optimization games.

The central results of this chapter are as follows:

• When the adversary plays linear loss functions, we use a known randomized argument
to lower bound the value VT . We include this mainly for completeness.

• We show that indeed this same linear game can be solved exactly for the case when
the input space X is a ball, and we provide the optimal strategies for the player and
adversary.

• We perform a similar analysis for the quadratic game, that is where the adversary must
play quadratic functions. We describe the adversary’s strategy, and we prove that the
well-known Follow the Leader strategy is optimal for the player.

• We show that the above results apply to a much wider class of games, where the
adversary can play either convex or strongly convex functions, suggesting that indeed
the linear and quadratic games are the “hard cases”.

3.2 Online Convex Games

The general optimization game we consider is as follows. We have two agents, a player
and an adversary, and the game proceeds for T rounds with T known in advance to both
agents. The player’s choices will come from some convex set X ⊂ Rn, and the adversary

22

will choose functions from the class F . For the remainder of the chapter, n denotes the
dimension of the space X. To consider the game in full generality, we assume that the
adversary’s “allowed” functions may change on each round, and thus we imagine there is a
sequence of allowed sets L1, L2, . . . , LT ⊂ F .

Online Convex Game

G(X, {Lt}):
1: for t = 1 to T do
2: Player chooses (predicts) xt ∈ X.
3: Adversary chooses a function ft ∈ Lt.
4: end for
5: Player suffers regret

RT =
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

From this general game, we obtain each of the examples above with appropriate choice
of X,F and the sets {Lt}. We define a number of particular games in the definitions below.

It is useful to prove regret bounds within this model as they apply to any problem that
can be cast as an Online Convex Game. The known general upper bounds are as follows:

• Zinkevich [78]: If L1 = . . . = LT = F consist of continuous twice differentiable
functions f , where ‖∇f‖ ≤ G and ∇2f � 0, then1

RT ≤
1

2
DG
√
T .

where D := maxx,y∈X ‖x− y‖ and G is some positive constant.

• Hazan et al. [48]: If L1 = . . . = LT = F consist of continuous twice differentiable
functions f , where ‖∇f‖ ≤ G and ∇2f � σI, then

RT ≤
1

2

G2

σ
log T,

where G and σ are positive constants.

• Bartlett et al. [15]: If Lt consists of continuous twice differentiable functions f ,
where ‖∇f‖ ≤ Gt and ∇2f � σtI, then

RT ≤
1

2

T∑
t=1

G2
t∑t

s=1 σs
,

where Gt and σt are positive constants. Moreover, the algorithm does not need to
know Gt, σt on round t.

1This bound can be obtained by a slight modification of the analysis in [78].

23

All three of these games posit an upper bound on ‖∇f‖ which is required to make the
game nontrivial (and is natural in most circumstances). However, the first requires only that
the second derivative be nonnegative, while the second and third game has a strict positive
lower bound on the eigenvalues of the Hessian ∇2f . Note that the bound of Bartlett et al
recovers the logarithmic regret of Hazan et al whenever Gt and σt do not vary with time.

In the present chapter, we analyze each of these games with the goal of obtaining the
exact minimax value of the game, defined as:

VT (G(X, {Lt})) =

inf
x1∈X

sup
f1∈L1

. . . inf
xT∈X

sup
fT∈LT

(
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

)
.

The quantity VT (G) tells us the worst case regret of an optimal strategy in this game.

First, in the spirit of [15], we consider VT for the games where constants G and σ, which
respectively bound the first and second derivatives of ft, can change throughout the game.
That is, the Adversary is given two sequences before the game begins, 〈G1, . . . , GT 〉 and
〈σ1, . . . , σT 〉. We also require only that the gradient of ft is bounded at the point xt, i.e.
‖∇ft(xt)‖ ≤ Gt, as opposed to the global constraint ‖∇ft(x)‖ ≤ Gt for all x ∈ X. We may
impose both of the above constraints by carefully choosing the sets Lt ⊆ F , and we note
that these sets will depend on the choices xt made by the Player.

We first define the Linear and Quadratic Games, which are the central objects of this
chapter.

Definition 8. The Linear Game Glin(X, 〈Gt〉) is the game
G(X, {Lt}) where

Lt = {f : f(x) = v>(x− xt) + c, v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.

Definition 9. The Quadratic Game Gquad(X, 〈Gt〉, 〈σt〉) is the game G(X, {Lt}) where

Lt = {f : f(x) = v>(x− xt) +
σt
2
‖x− xt‖2 + c,

v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.

The functions in these definitions are parametrized through xt to simplify proofs of the
last section. In Section 3.4, however, we will just consider the standard parametrization
f(x) = w · x.

We also introduce more general games: the Convex Game and the Strongly Convex
Game. While being defined with respect to a much richer class of loss functions, we show
that these games are indeed no harder than the Linear and the Quadratic Games defined
above.

Definition 10. The Convex Game Gconv(X, 〈Gt〉) is the game G(X, {Lt}) where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f � 0}.

24

Definition 11. The Strongly Convex Game Gst-conv(X, 〈Gt〉, 〈σt〉) is the game G(X, {Lt})
where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f − σtI � 0}.

We write G(G) instead of G(〈Gt〉) when all values Gt = G for some fixed G. This holds
similarly for G(σ) instead of G(〈σt〉). Furthermore, we suppose that σ1 > 0 throughout the
chapter.

3.3 Previous Work

Several lower bounds for various online settings are available in the literature. Here we
review a number of such results relevant to the present chapter and highlight our primary
contributions.

The first result that we mention is the lower bound of Vovk in the online linear regression
setting [74]. It is shown that there exists a randomized strategy of the Adversary such that
the expected regret is at least [(n− ε)G2 lnT − Cε] for any ε > 0 and Cε a constant. One
crucial difference between this particular setting and ours is that the loss functions of the
form (yt−xt ·wt)

2 used in linear regression are curved in only one direction and linear in all
other, thus this setting does not quite fit into any of the games we analyze. The lower bound
of Vovk scales roughly as n log T , which is quite interesting given that n does not enter into
the lower bound of the Strongly Convex Game we analyze.

The lower bound for the log-loss functions of Ordentlich and Cover [65] in the setting
of Universal Portfolios is also logarithmic in T and linear in n. Log-loss functions are
parameterized as ft(x) = − log(w · x) for x in the simplex, and these fit more generally
within the class of “exp-concave” functions. Upper bounds on the class of log-loss functions
were originally presented by Cover [25] whereas Hazan et al. [48] present an efficient method
for competing against the more general exp-concave functions. The log-loss lower bound of
[65] is quite elegant yet, contrary to the minimax results we present, the optimal play is not
efficiently computable.

The work of Takimoto and Warmuth [72] is most closely related to our results for the
Quadratic Game. The authors consider functions f(x) = 1

2
||x − y||2 corresponding to the

log-likelihood of the datapoint y for a unit-variance Gaussian with mean x. The lower
bound of 1

2
D2(lnT − ln lnT + O(ln lnT/ lnT)) is obtained, where D is the bound on the

norm of adversary’s choices y. Furthermore, they exhibit the minimax strategy which, in
the end, corresponds to a biased maximum-likelihood solution. We emphasize that these
results differ from ours in several ways. First, we enforce a constraint on the size of the
gradient of ft whereas [72] constrain the location of the point y when ft(x) = 1

2
||x − y||2.

With our slightly weaker constraint, we can achieve a regret bound of the order log T instead
of the log T − log log T of Takimoto and Warmuth. Interestingly, the authors describe the
“− log log T” term of their lower bound as “surprising” because many known games “were
shown to have O(log T) upper bounds”. They conjecture that the apparent slack is due to
the learner being unaware of the time horizon T . In the present chapter, we resolve this issue

25

by noting that our slightly weaker assumption erases the additional term; it is thus the limit
on the adversary, and not knowledge of the horizon, that gives rise to the slack. Furthermore,
the minimax strategy of Takimoto and Warmuth, a biased maximum likelihood estimate on
each round, is also an artifact of their assumption on the boundedness of adversary’s choices.
With our weaker assumption, the minimax strategy is exactly maximum likelihood (generally
called “Follow The Leader”).

All previous work mentioned above deals with “curved” functions. We now discuss
known lower bounds for the Linear Game. It is well-known that in the expert setting, it
is impossible to do better than O(

√
T). The lower bound in Cesa-Bianchi and Lugosi [24],

Theorem 3.7, proves an asymptotic bound: in the limit of T → ∞, the value of the game
behaves as

√
(lnN)T/2, where N is the number of experts. We provide a similar randomized

argument, which has been sketched in the literature (e.g. Hazan et al [48]), but our additional
minimax analysis indeed gives the tightest bound possible for any T .

Finally, we provide reductions between Quadratic and Strongly Convex as well as Lin-
ear and Convex Games. While apparent that the Adversary does better by playing linear
approximations instead of convex functions, it requires a careful analysis to show that this
holds for the minimax setting.

3.4 The Linear Game

In this section we begin by providing a relatively standard proof of the O(
√
T) lower

bound on regret when competing against linear loss functions. The more interesting result
is our minimax analysis which is given in Section 3.4.2.

3.4.1 The Randomized Lower Bound

Lower bounds for games with linear loss functions have appeared in the literature though
often not in detail. The rough idea is to imagine a randomized Adversary and to compute
the Player’s expected regret. This generally produces an O(

√
T) lower bound yet it is not

fully satisfying since the analysis is not tight. In the following section we provide a much
improved analysis with minimax strategies for both the Player and Adversary.

Theorem 12. Suppose X = [−D/(2
√
n), D/(2

√
n)]n, so that the diameter of X is D. Then

VT (Glin(X, 〈Gt〉)) ≥
D

2
√

2

√√√√ T∑
t=1

G2
t

Proof. Define the scaled cube

Ct = {−Gt/
√
n,Gt/

√
n}n.

Suppose the Adversary chooses functions from

L̂t = {f(x) = w · x : w ∈ Ct}.

26

Note that ‖∇f‖ = ‖wt‖ = Gt for any f ∈ L̂t.

Since we are restricting the Adversary to play linear functions with restricted w,

VT (Glin(X, 〈Gt〉)) ≥ VT (G(X, L̂1, . . . , L̂T))

= inf
x1∈X

sup
f1∈L̂1

. . . inf
xT∈X

sup
fT∈L̂T

[
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]

= inf
x1∈X

sup
w1∈C1

. . . inf
xT∈X

sup
wT∈CT

[
T∑
t=1

wt · xt − inf
x∈X

x ·
T∑
t=1

wt

]

≥ inf
x1∈X

E
w1

. . . inf
xT∈X

E
wT

[
T∑
t=1

wt · xt − inf
x∈X

x ·
T∑
t=1

wt

]
,

where Ewt denotes expectation with respect to any distribution over the set Ct. In particular,
it holds for the uniform distribution, i.e. when the coordinates of wt are ±Gt/

√
n with

probability 1/2. Since in this case EwT wT · xT = 0 for any xT , we obtain

VT (Glin(X, 〈Gt〉))
≥ inf

x1∈X
E
w1

. . . inf
xT−1∈X

E
wT−1

inf
xT∈X

E
wT

[
T∑
t=1

wt · xt − inf
x∈X

x ·
T∑
t=1

wt

]
= inf

x1∈X
E
w1

. . . inf
xT−1∈X

E
wT−1

inf
xT∈X[

T−1∑
t=1

wt · xt − E
wT

inf
x∈X

x ·
T∑
t=1

wt

]
= inf

x1∈X
E
w1

. . . inf
xT−1∈X

E
wT−1

[
T−1∑
t=1

wt · xt − E
wT

inf
x∈X

x ·
T∑
t=1

wt

]
,

where the last equality holds because the expression no longer depends on xT . Repeating
the process, we obtain

VT (Glin(X, 〈Gt〉)) ≥ − E
w1,...,wT

inf
x∈X

x ·
T∑
t=1

wt

= − E
{εi,t}

min
x∈

{
− D

2
√
n
, D
2
√
n

}n
(

x ·
T∑
t=1

wt

)
,

where wt(i) = εi,tGt/
√
n, with i.i.d. Rademacher variables εi,t = ±1 with probability 1/2.

The last equality is due to the fact that a linear function is minimized at the vertices of the

27

cube. In fact, the dot product is minimized by matching the sign of x(i) with that of the
ith coordinate of

∑T
t=1 wt. Hence,

VT (Glin(X, 〈Gt〉)) ≥ − E
{εi,t}

n∑
i=1

− D

2
√
n

∣∣∣∣∣
T∑
t=1

εi,t
Gt√
n

∣∣∣∣∣
=
D

2
E
{εi,t}

∣∣∣∣∣
T∑
t=1

εi,tGt

∣∣∣∣∣ ≥ D

2
√

2

√√√√ T∑
t=1

G2
t ,

where the last inequality follows from the Khinchine’s inequality [24].

3.4.2 The Minimax Analysis

While in the previous section we found a particular lower bound on VT (Glin), here we
present a complete minimax analysis for the case when X is a ball in Rn (of dimension n at
least 3). We are indeed able to compute exactly the value

VT (Glin(X, 〈Gt〉))

and we provide the simple minimax strategies for both the Player and the Adversary. The
unit ball, while a special case, is a very natural choice for X as it is the largest convex set
of diameter 2.

For the remainder of this section, let ft(x) := wt · x where wt ∈ Rn with ‖wt‖ ≤ Gt.
Also, we define Wt =

∑t
s=1 ws, the cumulative functions chosen by the Adversary.

Theorem 13. Let X = {x : ‖x‖2 ≤ D/2} and suppose the Adversary chooses functions
from

Lt = {f(x) = w · x : ‖w‖2 ≤ Gt}.
Then the value of the game

VT (Glin(X, 〈Gt〉)) =
D

2

√√√√ T∑
t=1

G2
t .

Furthermore, the optimal strategy for the player is to choose

xt+1 =

 −D

2
√
‖Wt‖2 +

∑T
s=t+1Gs

Wt.

To prove the theorem, we will need a series of short lemmas.

Lemma 14. When X is the unit ball B = {x : ‖x‖ ≤ 1}, the value VT can be written as

inf
x1∈B

sup
w1∈L1

. . . inf
xT∈B

sup
wT∈LT

[
T∑
t=1

wt · xt + ‖WT‖

]
(3.1)

In addition, if we choose a larger radius D, the value of the game will scale linearly with this
radius and thus it is enough to assume X = B.

28

Proof. The last term in the regret

inf
x∈B

∑
t

ft(x) = inf
x∈B

WT · x = −‖WT‖

since the infimum is obtained when x = WT

‖WT ‖
. This implies equation (3.1). The fact that

the bound scales linearly with D/2 follows from the fact that both the norm ‖WT‖ will scale
with D/2 as well as the terms wt · xt.

For the remainder of this section, we simply assume that X = B, the unit ball with
diameter D = 2.

Lemma 15. Regardless of the Player’s choices, the Adversary can always obtain regret at
least √√√√ T∑

t=1

G2
t (3.2)

whenever the dimension n is at least 3.

Proof. Consider the following adversarial strategy and assume X = B. On round t, after
the Player has chosen xt, the adversary chooses wt such that ‖wt‖ = Gt, wt · xt = 0 and
wt ·Wt−1 = 0. Finding a vector of length Gt that is perpendicular to two arbitrary vectors
can always be done when the dimension is at least 3. With this strategy, it is guaranteed
that

∑
t wt · xt = 0 and we claim also that

‖WT‖ =

√√√√ T∑
t=1

G2
t .

This follows from a simple induction. Assuming ‖Wt−1‖ =
√∑t−1

s=1 G
2
s, then

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2,

implying the desired conclusion.

The result of the last lemma is quite surprising: the adversary need only play some vector
with length Gt which is perpendicular to both xt and Wt−1. Indeed, this lower bound has a
very different flavor from the randomized argument of the previous section. To obtain a full
minimax result, all that remains is to show that the Adversary can do no better!

Lemma 16. Let w0 = 0. If the player always plays the point

xt =
−Wt−1√

‖Wt−1‖2 +
∑T

s=tG
2
s

(3.3)

29

then

sup
w1

sup
w2

. . . sup
wT

[
T∑
t=1

wt · xt + ‖WT‖

]
≤

√√√√ T∑
t=1

G2
t

i.e., the regret can be no greater than the value in (3.2).

Proof. As before, Wt =
∑t

s=1 ws. Define Γ2
t =

∑T
s=tG

2
s, the forward sum, with ΓT+1 = 0.

Define

Φt(w1, . . . ,wt−1) =
t−1∑
s=1

xs ·ws +
√
‖Wt−1‖2 + Γ2

t

where xt is as defined in (3.3) and Φ1 is
√∑T

t=1G
2
t . Let

Vt(w1, . . . ,wt−1) = sup
wt

. . . sup
wT

[
T∑
t=1

wt · xt + ‖WT‖

]

be the optimum payoff to the adversary given that he plays w1, . . . ,wt−1 in the beginning
and then plays optimally. The player plays according to (3.3) throughout. Note that the
value of the game is V1.

We prove by backward induction that, for all t ∈ {1, . . . , T},

Vt(w1, . . . ,wt−1) ≤ Φt(w1, . . . ,wt−1)

The base case, t = T + 1 is obvious. Now assume it holds for t + 1 and we will prove it for
t. We have

Vt(w1, . . . ,wt−1)

= sup
wt

Vt+1(w1, . . . ,wt)

(induc.) ≤ sup
wt

Φt+1(w1, . . . ,wt)

=
t−1∑
s=1

xs ·ws +

(∗) sup
wt

[
xt ·wt +

√
‖Wt−1 + wt‖2 + Γ2

t+1

]
Let us consider the final supremum term above. If we can show that it is no more than√

‖Wt−1‖2 + Γ2
t (3.4)

then we will have proved Vt ≤ Φt thus completing the induction. This is the objective of the
remainder of this proof.

30

Figure 3.1. Illustration for the proof of the minimax strategy for the ball. We suppose
that xt is aligned with Wt−1 and depict the plane spanned by Wt−1 and wt. We
assume that wt has angle α with the line perpendicular to Wt−1 and show that α = 0
is optimal.

We begin by noting two important facts about the expression (*). First, the supremum
is taken over a convex function of wt and thus the maximum occurs at the boundary, i.e.
where ‖wt‖ = Gt exactly. This is easily checked by computing the Hessian with respect to
wt. Second, since xt is chosen parallel to Wt−1, the only two vectors of interest are wt and
Wt−1. Without loss of generality, we can assume that Wt−1 is the 2-dim vector 〈F, 0〉, where
F = ‖Wt−1‖, and that wt = 〈−Gt sinα,Gt cosα〉 for any α. Plugging in the choice of xt in
(3.3), we may now rewrite (*) as

sup
α

FGt sinα√
F 2 +G2

t + Γ2
t+1

+
√
F 2 +G2

t + Γ2
t+1 − 2FGt sinα︸ ︷︷ ︸

φ(α)

We illustrate this problem in Figure 3.1. Bounding the above expression requires some care,
and thus we prove it in Lemma 24 found in the appendix. The result of Lemma 24 gives us
that, indeed,

φ(α) ≤
√
F 2 +G2

t + Γ2
t+1 =

√
‖Wt−1‖2 + Γ2

t .

Since (*) is exactly supα φ(α), which is no greater than√
F 2 + Γ2

t ,

we are done.

We observe that the minimax strategy for the ball is exactly the Online Gradient Descent
strategy of Zinkevich [78]. The value of the game for the ball is exactly the upper bound for
the proof of Online Gradient Descent if the initial point is the center of the ball. The lower
bound of the randomized argument in the previous section differs from the upper bound for
Online Gradient Descent by

√
2.

31

3.5 The Quadratic Game

As in the last section, we now give a minimax analysis of the game Gquad. Ultimately we
will be able to compute the exact value of VT (Gquad(X, 〈Gt〉, 〈σt〉)) and provide the optimal
strategy of both the Player and the Adversary. What is perhaps most interesting is that
the optimal Player strategy is the well-known Follow The Leader approach. This general
strategy can be defined simply as

xt+1 = arg min
x∈X

t∑
s=1

fs(x);

that is, we choose the best x “in hindsight”. As has been pointed out by several authors, this
strategy can incur Ω(T) regret when the loss functions are linear. It is thus quite surprising
that this strategy is optimal when instead we are competing against quadratic loss functions.

For this section, define Ft(x) :=
∑t

s=1 fs(x) and x∗t := arg minx Ft(x). Define σ1:t =∑t
s=1 σs. We assume from the outset that σ1 > 0. We also set σ1:0 = 0.

3.5.1 A Necessary Restriction

Recall that the upper bound in Hazan et al. [48] is

RT ≤
1

2

G2

σ
log T

and note that this expression has no dependence on the size of X. We would thus ideally
like to consider the case when X = Rn, for this would seem to be the “hardest” case for the
Player. The unbounded assumption is problematic, however, not because the game is too
difficult for the Player, but the game is too difficult for the Adversary!. This ought to come
as quite a surprise, but arises from the particular restrictions we place on the Adversary.

Proposition 17. For G, σ > 0, if maxx,y∈X ‖x − y‖ = D > 4G/σ, there is an α > 0 such
that VT (Gquad(X,G, σ)) ≤ −αT .

Proof. Fix xo,xe ∈ X with ‖xo − xe‖ > 4G/σ. Consider a player that plays x2k−1 = xo,
x2k = xe. Then for any x ∈ X,

f2k−1(x) ≥ f2k−1(xo)−G‖x− xo‖+
σ

2
‖x− xo‖2,

And similarly for f2k and xe. Summing over t (assuming that T is even) shows that
Vt(Gquad(X,G, σ)) is no more than

T∑
t=1

ft(xt)−
T∑
t=1

ft(x) ≤ T

2

(
G‖x− xo‖ −

σ

2
‖x− xo‖2

+G‖x− xe‖ −
σ

2
‖x− xe‖2

)
.

32

But by the triangle inequality, any x ∈ X has ‖x − xo‖ + ‖x − xe‖ ≥ D. Subject to
this constraint, plus the constraints 0 ≤ ‖x − xo‖ ≤ D, 0 ≤ ‖x − xe‖ ≤ D shows that
Vt(Gquad(X,G, σ)) ≤ T (GD − σD2/4)/2 ≤ −αT for some α > 0, since D > 4G/σ.

As we don’t generally expect regret to be negative, this example suggests that the
Quadratic Game is uninteresting without further constraints on the Player. While an ex-
plicit bound on the size of X is a possibility, it is easier for the analysis to place a slightly
weaker restriction on the Player.

Assumption 3.5.1. Let x∗t−1 be the minimizer of Ft−1(x). We assume that the Player must
choose xt such that

σt‖xt − x∗t−1‖ < 2Gt.

This restriction is necessary for non-negative regret. Indeed, it can be shown that if we
increase the size of the above ball by only ε, the method of Proposition 17 above shows that
the regret will be negative for large enough T .

3.5.2 Minimax Analysis

With the above restriction in place, we now simply write the game as G ′quad(〈Gt〉, 〈σt〉),
omitting the input X. We now proceed to compute the value of this game exactly.

Theorem 18. Under Assumption 3.5.1, the value of the game

VT (G ′quad(〈Gt〉, 〈σt〉)) =
T∑
t=1

G2
t

2σ1:t

.

With uniform Gt and σt, we obtain the harmonic series, giving us our logarithmic regret
bound. We note that this is exactly the upper bound proven in [15, 48], even with the
constant.

Corollary 19. For the uniform parameters of the game,

G

2σ
log(T + 1) ≤ VT (G ′quad(G, σ)) ≤ G

2σ
(1 + log T).

The main argument in the proof of Theorem 18 boils down to reducing the multiple round
game to a single round game. The following lemma gives the value of this single round game.
Since the proof is somewhat technical, we postpone it to the Appendix.

Lemma 20. For arbitrary Gt, σt,σ1:t−1 > 0,

inf
∆:||∆||≤ 2Gt

σt

sup
δ

(
Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)
=

G2
t

2σ1:t

=
G2
t

2σ1:t

,

and indeed the optimal strategy pair is ∆ = 0 and δ any vector for which ‖δ‖ = Gt
σ1:t

.

33

We now show how to “unwind” the recursive inf sup definition of VT (G ′quad(〈Gt〉, 〈σt〉)),
where the final term we chop off is the object we described in the above lemma.

Proof of Theorem 18. Let x∗t−1 be the minimizer of Ft−1(x) and z ∈ X be arbitrary. Note
that Ft is σ1:t-quadratic, so

Ft(z) = Ft−1(z) + ft(z)

= Ft−1(x∗t−1 + (z− x∗t−1)) + ft(z)

= Ft−1(x∗t−1) +∇Ft−1(x∗t−1)(z− x∗t−1)

+ 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z)

= Ft−1(x∗t−1) + 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z),

where the last equality holds by the definition of x∗t−1. Hence,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
ft(xt)− ft(z)− 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Expanding ft around xt,

ft(xt)− ft(z) = −∇ft(xt)(z− xt)− 1

2
σt‖z− xt‖2.

Substituting,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2 − 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Then

Vt := inf
x1

sup
f1

. . . inf
xt

sup
ft

(
t∑

s=1

fs(xs)− inf
z
Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt

sup
ft,z

(
t∑

s=1

fs(xs)− Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+ inf

xt
sup
ft,z

(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2

− 1

2
σ1:t−1‖z− x∗t−1‖2

)]
.

34

However, we can simplify the final inf sup as follows. We note that the quantity ∇ft(xt)(xt−
z) is maximized when ∇ft(xt) = Gt

xt−z
‖xt−z‖ . Second, we can instead use the variables ∆ =

xt − x∗t−1 and δ = z − x∗t−1 in the optimization. Recall from Assumption 3.5.1 that ‖xt −
x∗t−1‖ = ‖∆‖ ≤ 2Gt

σt
. Then,

Vt = inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+ inf

∆:||∆||≤ 2Gt
σt

sup
δ

(Gt‖∆− δ‖

− 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)]
= inf

x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+

G2
t

2σ1:t

]

= Vt−1 +
G2
t

2σ1:t

,

where the second equality is obtained by applying Lemma 20. Unwinding the recursion
proves the theorem.

Corollary 21. The optimal Player strategy is to set xt = x∗t−1 on each round.

Proof. In analyzing the game, we found that the optimal choice of ∆ = xt−x∗t−1 was shown
to be 0 in Lemma 20.

3.6 General Games

While the minimax results shown above are certainly interesting, we have only shown
them to hold for the rather restricted games Glin and Gquad. For these particular cases, the
class of functions that the Adversary may choose from is quite small: both the set of linear
functions and the set quadratic functions can be parameterized by O(n) variables. It would
of course be more satisfying if our minimax analyses held for more richer loss function spaces.

Indeed, we prove in this section that both of our minimax results hold much more gen-
erally. In particular, we prove that even if the Adversary were able to choose any convex
function on round t, with derivative bounded by Gt, then he can do no better than if he
only had access to linear functions. On a similar note, if the Adversary is given the weak
restriction that his functions be σt-strongly convex on round t, then he can do no better
than if he could only choose σt-quadratic functions.

35

Theorem 22. For fixed X, 〈Gt〉, and 〈σt〉, the values of the Quadratic Game and the Strongly
Convex Game are equal2:

VT (Gst-conv(X, 〈Gt〉, 〈σt〉)) = VT (Gquad(X, 〈Gt〉, 〈σt〉)).

For a fixed X and 〈Gt〉, the values of the Convex Game and the Linear Game are equal:

VT (Gconv(X, 〈Gt〉)) = VT (Glin(X, 〈Gt〉)).

We need the following lemma whose proof is postponed to the appendix. Define the
regret function

R(x1, f1, . . . ,xT , fT) =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

Lemma 23. Consider a sequence of sets {Ns}Ts=1 and M ⊆ Nt for some t. Suppose that for
all ft ∈ Nt and xt ∈ X there exists f ∗t ∈M such that for all

(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ R(x1, f1, . . . ,xt, f
∗
t , . . . , . . . ,xT , fT).

Then

inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈Nt

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT)

= inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈M

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT).

Proof of Theorem 22. Given the sequences 〈Gt〉, 〈σt〉, let Lt(xt) be defined as for the Strongly
Convex Game (Definition 10) and L∗t (xt) be defined as for the Quadratic Game (Definition
9). Observe that L∗t ⊆ Lt for any t. Moreover, for any ft ∈ Lt and xt ∈ X, define
f ∗t (x) = ft(xt) + ∇ft(xt)>(x − xt) + 1

2
σt‖x − xt‖2. By definition, ft(xt) = f ∗t (xt) and

∇ft(xt) = ∇f ∗t (xt). Hence, f ∗t ∈ L∗t . Furthermore, ft(x) ≥ f ∗t (x) for any x ∈ X, and x∗ in
particular. Hence, for all (x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ R(x1, f1, . . . ,xt, f
∗
t , . . . , . . . ,xT , fT).

The statement of the first part of the theorem follows by Lemma 23, applied for every
t ∈ {1, . . . , T}. The second part is proved by analogous reasoning.

2We note that the computation of VT for the Quadratic Game required a particular restriction on the
player, Assumption 3.5.1, where here we only consider a fixed domain X.

36

Appendix

Proof of Lemma 20. We write

Pt(∆, δ) := Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

and
Qt(∆) := sup

δ
Pt(∆, δ),

then our goal is to obtain inf
∆:‖∆‖≤ 2Gt

σt

Qt(∆). We now proceed to show that the choice ∆ = 0

is optimal. For this choice,

Qt(0) = sup
δ

Gt‖δ‖ − 1

2
σ1:t‖δ‖2 =

G2
t

2σ1:t

.

Here the optimal choice of δ is any vector such that ‖δ‖ = Gt
σ1:t

.

Now let us consider the case that ∆ 6= 0. First, suppose ∆ 6= δ. Note that the optimum
supδ Pt(∆, δ) will be obtained when the gradient with respect to δ is zero, i.e.

−Gt
∆− δ
‖∆− δ‖

− σt(δ −∆)− σ1:t−1δ = 0

implying that δ is a linear scaling of ∆, i.e. δ = c∆. The second case, ∆ = δ, also implies
that δ is a linear scaling of ∆. Substituting this optimal form of δ,

Qt(∆) = sup
c∈R

[Gt|1− c| · ‖∆‖

− 1

2
σt(1− c)2‖∆‖2 − 1

2
σ1:t−1c

2‖∆‖2
]
.

We now claim that the supremum over c ∈ R occurs at some c∗ ≤ 1 for any choice of ∆.
Assume by contradiction that c∗ > 1 for some ∆. Then c̃ = −c∗ + 2 achieves at least the
same value as c∗ since |1− c∗| = |1− c̃| while (c∗)2 > (c̃)2, making the last term larger, which
is a contradiction. Hence, c ≤ 1 and, collecting the terms,

Qt(∆) = sup
c≤1

[(
Gt‖∆‖ − 1

2
σt‖∆‖2

)
+c ·

(
σt‖∆‖2 −Gt‖∆‖

)
− c2 ·

(
1

2
σ1:t‖∆‖2

)]
.

Since we now assume ‖∆‖ 6= 0, we see that the supremum is achieved for c∗ =

37

σt‖∆‖2−Gt‖∆‖
σ1:t‖∆‖2 = σt‖∆‖−Gt

σ1:t‖∆‖ ≤ 1 and

Qt(∆) =
(σt‖∆‖2 −Gt‖∆‖)2

2σ1:t‖∆‖2
+ (Gt‖∆‖ − 1

2
σt‖∆‖2)

=
σ2
t ‖∆‖2 − σt‖∆‖Gt +G2

t

2σ1:t

+ (Gt‖∆‖ − 1

2
σt‖∆‖2)

=
σt
σ1:t

(
1

2
σt‖∆‖2 − ‖∆‖Gt

)
+ (Gt‖∆‖ − 1

2
σt‖∆‖2) +

G2
t

2σ1:t

=
σ1:t−1

σ1:t

(
Gt − 1

2
σt‖∆‖

)
‖∆‖+

G2
t

2σ1:t

>
G2
t

2σ1:t

,

where the last inequality holds by because ‖∆‖ ≤ 2Gt
σt

. Hence, the value Qt(∆) is strictly

larger than G2
t/(2σ1:t) whenever ‖∆‖ > 0 and is equal to this value if ∆ = 0. Hence, the

optimal choice for the Player is to choose ∆ = 0.

Proof of Lemma 23. Fix ft ∈ Lt and xt ∈ X. Let f ∗t ∈ M be as in the statement of the
lemma. Define

h1(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT)

:= R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

h2(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT)

:= R(x1, f1, . . . ,xt, f
∗
t , . . . ,xT , fT).

By assumption, h1 ≤ h2. Hence, we can inf/sup over the variables xt+1, ft+1, . . . ,xT , fT ,
obtaining

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, f
∗
t , . . . ,xT , fT)

for any (x1, f1, . . . ,xt−1, ft−1). Hence, since f ∗t ∈M

sup
ft∈Nt

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ sup
ft∈M

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

38

for all (x1, f1, . . . ,xt−1, ft−1,xt). Since M ⊆ Nt, the above is in fact an equality. Since the
two functions of the variables (x1, f1, . . . ,xt−1, ft−1,xt) are equal, taking inf’s and sup’s over
these variables we obtain the statement of the lemma.

Lemma 24. The expression

FG sinα√
F 2 +G2 +K2

+
√
F 2 +G2 +K2 − 2FG sinα

is no more than
√
F 2 +G2 +K2 for constants F,G,K > 0 and any α.

Proof. We are interested in proving that the supremum of

φ(α) =
FG sinα√

F 2 +G2 +K2
+
√
F 2 +G2 +K2 − 2FG sinα

over [−π/2, π/2] is attained at α = 0. Setting the derivative of Φ(α) to zero,

FG cosα√
F 2 +G2 +K2

− FG cosα√
F 2 +G2 +K2 − 2FG sinα

= 0

which implies that either cosα = 0 or sinα = 0, i.e. α ∈ {−π/2, 0, π/2}. Taking the second
derivative, we get

φ′′(α) = − FG sinα√
F 2 +G2 +K2

−
(
− FG sinα√

F 2 +G2 +K2 − 2FG sinα

+
(FG cosα)(FG cosα)

(F 2 +G2 +K2 − 2FG sinα)3/2

)
.

Thus, φ′′(0) < 0. We conclude that the optimum is attained at α = 0 and therefore

φ(α) ≤
√
F 2 +G2 +K2

39

Chapter 4

Online Linear Optimization in the
Bandit Setting

We stick with our focus on the problem of Online Linear Optimization, but we now
consider the so-called Bandit version of the problem. In this version, once the decision
maker commits to his choice xt he does not have access to the linear cost functions ft
chosen by Adversary and, instead, observes only the scalar-valued cost f>t xt. The Bandit
setting is obviously more difficult, as the Player has strictly less information, yet under
many circumstances it is the more realistic problem. A classic example of this problem is
often referred to as the bandit shortest path problem, also known as the “driving to working
problem,” which we now sketch.

Formally, the bandit shortest path problem is defined as the following repeated game.
Given a directed graph G = (V,E) and a source-sink pair s, t ∈ V , at each time step t = 1
to T ,

• Player chooses a path pt ∈ Ps,t, where Ps,t ⊆ {0, 1}E is all s, t-paths in the graph

• Adversary independently chooses weights on the edges of the graph ft ∈ Rm

• Player suffers and observes loss, which is the weighted length of the chosen path∑
e∈pt ft(e)

The problem is transformed into an instance of bandit linear optimization by associating
each path with a vector x ∈ {0, 1}|E|, where x(i) indicates the presence of the ith edge. The
loss is then defined through the dot product f>x. Define the set K as the convex hull of the
set of paths. It is well-known that this set is the set of flows in the graph and can be defined
using O(m) constraints: positivity constraints and conservation of in-flow and out-flow for
every vertex other than source/sink (which have unit out-flow and in-flow, respectively).
Hence, to convert this into a problem of Online Linear Optimization, we must allow the
decision maker to choose xt in the convex hull, which is equivalent to a flow or “randomized
path” in the graph. Of course, in a shortest path problem we need to obtain a discrete path
and not a flow, but the latter can be accomplished (efficiently) via randomized rounding.

40

Why should we consider this to be a key example for the Bandit setting? If we think
about a fellow that must choose a route from home to work on each of a sequence of days,
the feedback this commuter receives on each day is quite limited, he only observes the traffic
on the selected route. Unfortunately, he does not have access to the traffic patterns on the
roads not included in his chosen route.

This Bandit Linear Optimization problem is very well-studied [26, 27, 9, 33, 10, 56, 14]
and many algorithms have been proposed. The result in the present Chapter settled an open
problem proposed by Awerbuch and Kleinberg [11], who asked whether there is an efficient
algorithm for Bandit Linear Optimization which achieve the optimal Θ(

√
T) regret bound,

and we answer this in the affirmative with a constructive solution.

A somewhat surprising fact about the result is that we required using tools from the
optimization literature, from the area known as Interior Point Methods (IPM). In particular,
we introduce the use of self-concordant barrier functions as a regularizer for the FTRL
problem. Our proposed algorithm and proof require several tools from this area, and we
begin with a summary of these techniques and a handful of helpful existing results developed
by the IPM community.

4.1 Convex Optimization: Self-concordant Barriers

and the Dikin ellipsoid

An unconstrained convex optimization problem consists of finding the value x ∈ Rn

that minimizes some given convex objective g(x). Unconstrained optimization has generally
been considered an “easy” problem, as straightforward techniques such as gradient descent
and Newton’s Method can be readily applied, and the solution admits a simple certificate,
namely when ∇g = 0. On the other hand, when the objective g() must be minimized on
some convex set K, known as constrained optimization, the problem becomes significantly
more difficult.

Interior-point methods were designed for precisely this problem and they are arguably one
of the greatest achievements in the field of Convex Optimization in the past two decades.
These iterative polynomial-time algorithms for Convex Optimization find the solution by
adding a barrier function to the objective such that the barrier diverges at the boundary of
the set. We may now interpret the resulting optimization problem, on the modified objec-
tive function, as an unconstrained minimization problem which, as mentioned, can now be
solved quickly. Roughly speaking, this approximate solution can be iteratively improved by
gradually reducing the weight of the barrier function as one approaches the true optimum.
In work pioneered by Karmarkar in the context of linear programming [50], and greatly gen-
eralized to constrained convex optimization by Nesterov and Nemirovskii, it has been shown
that this technique admits a polynomial-time complexity as long as the barrier function is
self-concordant, a property we soon define explicitly.

In the present work we will borrow several tools from the Interior-point literature, fore-
most among these is the use of self-concordant barrier functions. The utility of such functions

41

is somewhat surprising, as our ultimate goal is not polynomial-time complexity but rather
low-regret learning algorithms. While learning algorithms often involved adding “regular-
ization” to a particular objective function, for the special case of learning with “bandit”
feedback , as we shall see in Section 4.3, the self-concordant regularizer provides the missing
piece in obtaining a near-optimal regret guarantee.

The construction of barrier functions for general convex sets has been studied extensively,
and we refer the reader to [62, 16] for a thorough treatment on the subject. To be more
precise, most of the results of this section can be found in [61], page 22-23, as well as in the
aforementioned texts. We also refer the reader to the survey of Nemirovskii and Todd [60].

4.1.1 Definitions and Properties

In what follows, we list the relevant definitions and results on the theory of Interior Point
Methods that will be used later in the present chapter. Let K ⊂ Rn be a convex compact
set with non-empty interior int(K).

Basic Properties of Self-concordant Functions

Definition 25. A self-concordant function R : int(K) → R is a C3 convex function such
that

|D3R(x)[h,h,h]| ≤ 2
(
D2R(x)[h,h]

)3/2
.

A ϑ-self-concordant barrier R is a self-concordant function with

|DR(x)[h]| ≤ ϑ1/2
[
D2R(x)[h,h]

]1/2
.

Here, the third-order differential is defined as

D3R(x)[h1,h2,h3] :=

∂3

∂t1∂t2∂t3
|t1=t2=t3=0R(x + t1h1 + t2h2 + t3h3).

We will further assume that the function approaches infinity for any sequence of points
approaching the boundary of K. Also, since K is compact, we can assume that R is non-
degenerate.

A central fact about interior point methods is that they can be applied quite generally, as
any arbitrary n-dimensional closed convex set admits an O(n)-self-concordant barrier [62].
Hence, throughout this chapter, ϑ = O(n), but can even be independent of the dimension,
as for the sphere.

As self-concordant functions are used as a tool in optimization via iterative updates,
there are a few objects used to “measure” the region around every point x ∈ K as well as
the progress of the optimization.

42

Definition 26. Let R be a self-concordant function. For any x ∈ int(K), we define an
associated norm ‖ · ‖x as

‖h‖x = (h>∇2R(x)h)1/2.

We can also define ‖ · ‖∗x, the dual norm to ‖ · ‖x, as1

‖h‖∗x = (h>(∇2R(x))−1h)1/2.

For any x ∈ int(K) we define the Dikin ellipsoid of radius r

Wr(x) := {y ∈ K : ‖y − x‖x < r},

that is, the ‖ · ‖x-norm ball around x. Finally, we define the Newton decrement for R at x
as

λ(x,R) := ‖∇R(x)‖∗x = ‖∇2R(x)−1∇R(x)‖x

When we use the term Dikin Ellipsoid it will be implied that the radius is 1 unless
otherwise noted. This ellipsoid W1(x) is a key piece of our main result, in particular due to
the following nontrivial fact (See Nemirovskii [61] on page 23 for proof):

∀x ∈ int(K) W1(x) ⊂ K. (4.1)

In other words, the inverse Hessian of the self-concordant function R stretches the space in
such a way that the eigenvectors of ∇2R−1 fall in the set K.

Self-concordant functions are used as a tool in a well-developed iterative algorithm for
convex optimization known as the damped Newton method. While optimization is not the
primary focus of the present work, we shall employ a modification of the damped Newton
method as a more efficient alternative to one of our main algorithms, so we now briefly sketch
the technique.

Given a current point x ∈ K, one first computes the Newton direction

e(x,R) = −[∇2R(x)]−1∇R(x),

and then a damped Newton iteration is performed, where the updated point is then

DN(x,R) = x− 1

1 + λ(x,R)
e(x,R),

While not necessarily clear at first glance, this iterative process converges very quickly.
It is convenient to measure the progress to the minimizer in terms of the Newton decrement,
which leads us to the following Theorem.

Theorem 27 (e.g. [60]). For any self-concordant function R, let x be any point in the
interior of K and let x∗ := arg minR. Then DN(x,R) ∈ K and whenever λ(x,R) ≤ 1/4
we have

‖x− x∗‖x ≤ 2λ(x,R)

‖x− x∗‖x∗ ≤ 2λ(x,R)

λ(DN(x,R),R) ≤ 2λ(x,R)2

1This is equivalent to the usual definition of the dual norm, namely ‖h‖∗x := sup{h · z : ‖z‖x ≤ 1}.

43

The key here is that the Newton decrement, which bounds the distance to the minimizer,
decreases at a doubly-exponential rate from iteration to iteration. As soon as λ(x,R) ≤ 1/4,
we require only O(log log ε−1) iterations to arrive at an ε-nearby point to x∗.

Self-concordant Barriers and the Minkowsky Function

The final result we state is that a self-concordant barrier function on a compact convex set
K does not grow excessively quickly despite that it must approach ∞ towards the boundary
of K. Ultimately, the crucial piece we shall need is that the growth is logarithmic as a
function of the inverse distance to the boundary. Towards this aim let us define, for any
x,y ∈ int(K), the Minkowsky function πx(y) on K as

πx(y) = inf{t ≥ 0 : x + t−1(y − x) ∈ K}.

The Minkowsky function measures distance from x to y as a portion of the total distance
on the ray from x to the boundary of K that goes through the point y. Hence πx(y) ∈ [0, 1]
always and when x is considered the “center” of K then 1− πx(y) can be interpreted as the
distance from y to the boundary of K.

Theorem 28. For any ϑ-self-concordant barrier on K, and for any x,y ∈ int(K), we have
that

R(y)−R(x) ≤ ϑ ln

(
1

1− πx(y)

)
.

A proof can be found in the lecture notes of Nemirovskii [61] and elsewhere.

It is important to notice that any linear perturbation R′(x) := R(x) + h · x of a self-
concordant functionR is again a self-concordant function. Indeed, the linear term disappears
in the 2nd and 3rd derivatives in the first requirement of Definition 25. In the same vein,
the norm induced by such R′ is identical to that of R.

4.1.2 Examples of Self-Concordant Functions

We note a straightforward fact that illuminates how self-concordant barriers can be com-
bined.

Lemma 29. Let R1 be a ϑ1-self-concordant barrier function for the set K1 and let R2 be a
ϑ2-self-concordant barrier function for the set K2, then R := R1 + R2 is a (ϑ1 + ϑ2)-self-
concordant barrier function for the set K1 ∩ K2.

The above Lemma is most useful for constructing self-concordant barriers on sets defined
by the intersection of simpler sets. For example, on the set [0,∞] there exists a very simple
barrier, namely R(x) = − log x. A quick check verifies that this function satisfies both the
self-concordance and the barrier property with equality with ϑ = 1. In addition, we can
easily extend this to any half-space H in Rn by letting R(x) = − log δ(x, H), where δ(·, H)

44

is the Euclidean distance to the half-space. Finally, if the set K is a polytope in Rn, then
it is defined as the intersection of a number of halfspaces. Equivalently, it can be defined
by linear inequalities Ax � b for some m× n matrix A, which leads us immediately to the
log-barrier function of this polytope, namely

R(x) :=
m∑
i=1

− log(Aix − bi).

We note that this choice of R is m-self-concordant, as it is the sum of m 1-self-concordant
barriers.

For the n-dimensional ball,

Bn = {x ∈ Rn ,
∑
i

x2
i ≤ 1},

the barrier function R(x) = − log(1−‖x‖2) is 1-self-concordant. In particular, this leads to
the linear dependence of the regret bound in Section 4.3.3 on the dimension n, as ϑ = 1.

4.2 Improved Bounds via Interior Point Methods

In Section 2.2 we defined the problem of Online Linear Optimization, and developed
a technique for proving regret bounds via a regularization technique. In Section 4.1 we
presented a brief summary of known results from the literature on interior point methods
and self-concordant functions. In the present section we bring these seemingly dissimilar
topics together and show that, by utilizing a self-concordant barrier as a regularization
function, one can obtain much improved bounds for an array of problems. In particular,
the introduction of these interior point techniques leads to a novel efficient algorithm for
the Bandit setting with an essentially-optimal regret guarantee, resolving what was an open
question for several years.

4.2.1 A refined regret bound: measuring ft locally

We return our attention to proving regret bounds as in Section 2.2, but we now add a
twist. The conclusions from that Section can be summarized as follows. For any FTRL
algorithm, we achieve the fully general (yet unsatisfying) bound in Proposition 1. We can
also apply Hölder’s Inequality and, with the assumption that R is strongly convex, we arrive
at Proposition 6.

The analysis of Proposition 6 is the typical approach, and indeed it can be shown that
the above bound is tight (within a small constant factor from optimal), for instance, in
the setting of prediction with expert advice [24]. On the other hand, there are times when
we cannot make the assumption that ft is bounded with respect to a fixed norm. This is
particularly relevant in the bandit setting, when we will be estimating the functions ft yet
our estimates will blow up depending on the location of the point xt. In such cases, to obtain

45

tighter bounds, it will be necessary to measure the size of ft with respect to a changing norm.
While it may not be obvious at present, the ideal way to measure ft is with the quadratic
form defined by the inverse Hessian of R at the point xt. Indeed, this is precisely the norm
defined in Section 4.1.1.

Theorem 30. Suppose for all t we have η‖ft‖∗xt ≤
1
4
, and R is a self-concordant barrier.

Then for any u ∈ K

Regretu(FTRL(R, η); f1:T) ≤ 2η
T∑
t=1

(‖ft‖∗xt)
2 + η−1R(u).

Before proceeding to the proof let us emphasize a key point, namely that the function R
is playing two distinct roles: first, R is the regularization function for FTRL and, second,
when we refer to the norms ‖ · ‖x and ‖ · ‖∗x, these are with respect to the function R.

Proof of Theorem 30. Since R is a barrier, the minimization problem in (2.3) is uncon-
strained. As with Proposition 6, we can apply Hölders inequality to the term f>t (xt− xt+1).
As the inequality holds for any primal-dual norm pair, we bound

f>t (xt − xt+1) ≤ ‖ft‖∗xt‖xt − xt+1‖xt . (4.2)

We can write Φt as the objective used to obtain xt+1 in the FTRL algorithm, that is

Φt(x) := η
t∑

s=1

f>s x +R(x).

We can then bound

‖xt − xt+1‖xt = ‖xt − arg min Φt‖xt
(By Theorem 27) ≤ 2λ(xt,Φt) = 2‖∇Φt(xt)‖∗xt

Recall that Theorem 27 requires λ(xt,Φt) = ‖∇Φt(xt)‖∗xt ≤ 1/4. However, since xt minimizes
Φt−1, and because Φt(x) = Φt−1(x) + ηf>t x, it follows that ∇Φt(xt) = ηft. By assumption,
η‖ft‖∗xt ≤

1
4
. Furthermore, we have now shown that

‖xt − xt+1‖xt ≤ 2η‖ft‖∗xt ,

and when applied to (4.2) gives

f>t (xt − xt+1) ≤ 2η(‖ft‖∗xt)
2.

Combining this inequality with Proposition 1 finishes the proof.

46

4.2.2 Improvement compared to previous bounds

Assuming that R is strongly convex, modulo multiplicative log T terms the bound ob-
tained in Theorem 30 are never asymptotically worse than previous bounds, and at times
are significantly tighter. We will briefly demonstrate this point in the present section.

The key advantage is that, by measuring the loss functions ft using ‖ft‖∗2xt = f>t ∇−2Rft,
the bound may depend on something that does not scale with T . In particular, if a majority
of the points xt are close to the boundary, where the regularizer R has large curvature and
the inverse hessian ∇−2R is tiny, we can expect the terms ‖ft‖∗2xt to be miniscule.

As a simple example, consider an OLO problem in which the convex set is the real line
segment K = [−1, 1], and we shall use FTRL with the simple logarithmic barrier R(x) =
− log(1 − x) − log(1 + x). Let us now imagine a natural scenario in which our sequence of
cost vectors f1, f2, . . . has some positive or negative bias, and hence for some c > 0 we have
‖f1 + . . .+ ft‖ ≥ ct for large enough t, say t > t0 for constant t0. It is easily checked that the
FTRL optimization for our chosen regularization will lead to ‖xt‖ ≥ 1− 1

cηt
for t > t0, which

implies that ∇2R(xt) ≥ 4
c2η2t2

. Pick a constant B so that
∑t0

t=1 2‖ft‖∗ 2
xt ≤ B. For t > t0, we

can now bound

‖ft‖∗ 2
xt = fT∇−2R(xt)f ≤

4

c2η2t2
.

Depending on the sign of f1 + . . .+ fT , set the comparator according to u = ±(1− 1/T)
so that R(u) ≤ log T . We arrive at the following bound on the regret via theorem 30:

Regretu(FTRL(R, η); f1:T) ≤ 2η
T∑
t=1

[
‖ft‖∗xt

]2
+ η−1R(u)

≤ ηB + η−1 log T + η−1C,

where C hides the constant 8
c2

∑T
t=t0+1

1
t2

. With an appropriately tuned2 η, we obtain a

bound on the order of O(
√

log T).

We may now compare this to to previous “fixed-norm” regret bounds, such as those
for online gradient descent of Zinkevich [77], where the value ‖ft‖ does not change. The
corresponding bound for this algorithm would be O(ηT + η−1) which, even when optimally
tuned, must grow at a rate at least Θ(

√
T).

4.2.3 An iterative interior point algorithm

Algorithm 1 requires the solution of a convex program every iteration. In this section we
give a more efficient iterative algorithm.

Define Φt(x) := η
∑t

s=1 f>s x +R(x), the FTRL objective at time t.

2In this short example, we must assume that the value of η is initially tuned for the given loss sequence.
For a bound that is robust to arbitrary sequences of loss vectors an adaptive selection of η is necessary, but
such issues are beyond the scope of this chapter.

47

Algorithm 2 Itertive FTRL (I-FTRL)(R, η)

Input: η > 0, regularization R.
Initialize y1 = arg minx∈KR(x)
On round t+ 1, play

yt+1 := DN(Φt,yt) = yt +
1

1 + λ(yt,Φt)
e(yt,Φt). (4.3)

and observe ft+1.

Computationally, to generate yt+1, it only requires storing the previous point yt and
computing the Newton direction and Newton decrement. This latter vector can be computed
by inverting a single matrix – the Hessian of the regularization function R at yt – and a
single matrix-vector product with the gradient of Φt at point yt.

While Algorithm 2 may seem very different from the FTRL method, it can be viewed
as an efficient implementation of the same algorithm, and hence borrow the almost same
regret bounds. Notice in the bound below that for η = Õ(1√

T
), as is the optimal setting

of parameter in Theorem 30, the additive term is a constant independent of the number of
iterations.

Theorem 31. Let K be a compact convex set and R be a ϑ-self-concordant barrier on K.
Assume ‖ft‖∗yt ≤ C for all t and ηC ≤ 1

8
. Then for any u ∈ K

Regretu(I-FTRL(R, η); f1:T)

≤ Regretu(FTRL(R, η); f1:T) + 16C3η2T . (4.4)

To prove this theorem, we show that the predictions generated by Algorithm 2 are very
close to those generated by Algorithm 1. More formally, we prove the following lemma,
where {xt} denotes the sequence of vectors generated by the FTRL algorithm as defined in
equation (2.3).

Lemma 32.
‖yt − xt‖yt ≤ 2λ(yt,Φt−1) ≤ 4λ2(yt−1,Φt−1) ≤ 16η2C2

Before proving this lemma, let us show how it immediately implies Theorem 31:

Regretu(I-FTRL(R, η); f1:T)

=
T∑
t=1

f>t (yt − u) =
T∑
t=1

f>t (xt − u) +
T∑
t=1

f>t (yt − xt)

= Regretu(FTRL(R, η); f1:T) +
T∑
t=1

‖ft‖∗yt‖yt − xt‖yt

≤ Regretu(FTRL(R, η); f1:T) + 16η2C3T

We can now proceed to prove Lemma 32:

48

Proof of Lemma 32. The proof is by induction on t. For t = 1 the result is true because
x1,y1 are chosen to minimize R. Suppose the statement holds for t, we prove for t+ 1. By
definition,

λ2(yt,Φt) = ∇Φt(yt)[∇2Φt(yt)]
−1∇Φt(yt)

= ∇Φt(yt)[∇2R(yt)]
−1∇Φt(yt).

Note that
∇Φt(yt) = ∇Φt−1(yt) + ηf>t .

Using (x+ y)TA(x+ y) ≤ 2xTAx+ 2yTAy we obtain

1

2
λ2(yt,Φt) ≤ ∇Φt−1(yt)[∇2R(yt)]

−1∇Φt−1(yt)

+ η2f>t [∇2R(yt)]
−1ft

= λ2(yt,Φt−1) + η2(‖ft‖∗yt)
2.

The first term can be bounded by the induction hypothesis:

λ2(yt,Φt−1) ≤ 64η4C4. (4.5)

As for the second term, by our assumption on ‖ft‖∗yt

η2(‖ft‖∗yt)
2 ≤ η2C2 .

Combining the results,

λ2(yt,Φt) ≤ 2 · (64η4C4 + η2C2) ≤ 4η2C2, (4.6)

where the last inequality follows since η2C2 ≤ 1
64

. In particular, this implies that λ(yt,Φt) ≤
1
4

and, therefore,

λ(yt+1,Φt) ≤ 2λ2(yt,Φt) ≤ 8η2C2 ≤ 1

8

according to Theorem 27. The induction step is completed by applying Theorem 27 again:

‖yt+1 − xt+1‖yt+1 = ‖yt+1 − arg min Φt‖yt+1

≤ 2λ(yt+1,Φt) .

4.3 Bandit Feedback

We now return our attention to the bandit version of the online linear optimization
problem that we have discussed. The additional difficulty in the bandit setting rests in the
feedback model. As before, an xt is chosen at round t, an Adversary chooses ft, and the cost
f>t xt is paid. But, instead of receiving the entire vector ft, the learner may only observe the

49

scalar value (f>t xt). Recall that, in our Follow The Regularized Leader template, the point
xt is computed with access to (f1, f2, . . . , ft−1) whereas an algorithm in the bandit setting is
given only (f>1 x1, f

>
2 x2, . . . , f

>
t−1xt−1) as input.

Let us emphasize that the bandit model is difficult not only because the feedback has
been reduced from a vector to a scalar but also because the content of the feedback actually
depends on the chosen action. This present an added dilemma for the algorithm : is it
better to select xt in order to gather better information or, alternatively, is it better to
choose xt to exploit previously obtained information? This is typically referred to as an
exploration-exploitation trade-off, and arises in a range of problems.

In this section, we make an additional assumption that the adversary is oblivious. That
is, the sequence f1, . . . , fT is fixed ahead of the game. For results in bandit optimization
against non-oblivious adversaries, we refer the reader to [5].

4.3.1 Constructing a Bandit Algorithm

A large number of bandit linear optimization algorithms have been proposed, but essen-
tially all make use of a generic template algorithm. This template has three key ingredients:

1. A full-information algorithm A which takes as input a sequence of loss vectors ft
and returns points x ∈ K; that is,

xt ← A(f1, f2, . . . , ft−1)

2. A sampling scheme sampler(x) for each x that defines a distribution on K with the
property that

E
y∼sampler(x)

y = x (4.7)

3. A corresponding estimation scheme guesser(`,y,x) which uses the randomly cho-
sen y and the observed value ` = f>y to produce a “guess” of f. For every linear
function f, guesser must satisfy

E
y∼sampler(x)

[guesser(f>y,y,x)] = f. (4.8)

For the remainder of this chapter, we will use f̃t to denote the random variable
guesser(f>t yt,yt,xt) when the definition of sampler and guesser are clear.

These ingredients are combined into the following recipe, which describes the generic
construction taking a full-information algorithm A for online linear optimization and pro-
duces a new algorithm for the bandit setting. We shall refer to this bandit algorithm as
BanditReduction(A, sampler, guesser).

50

Algorithm 3 BanditReduction(A, sampler, guesser)

Input: full-info algorithm A, sampling scheme sampler(·), estimation scheme
guesser(·, ·, ·)

1: Initialize x1 ← A({})
2: for t = 1 . . . T do
3: Randomly sample yt ∼ sampler(xt)
4: Play yt, observe f>t yt
5: Construct f̃t ← guesser(f>t yt,yt,xt)
6: Update xt+1 ← A(̃f1, f̃2, . . . , f̃t)
7: end for

What justifies this reduction? In short, the unbiased sampling and unbiased estimation
scheme allow us to bound the expected regret of BanditReduction(A, sampler, guesser)
in terms of the regret of A on the estimated functions. Let us denote A′ :=
BanditReduction(A, sampler, guesser), and for simplicity, let Et[·] be the expectation over
the algorithm’s random draw of yt ∼ sampler(xt) conditioned on the history, i.e. the ran-
dom y1, . . . ,yt−1. In the following, the assumption that ft’s are fixed ahead of the game is
crucial. For any u ∈ K, the expected regret of A′ is

E[Regretu(A′; f1, . . . , fT)] = E

[
T∑
t=1

f>t (yt − u)

]

(By tower rule) = E

[
T∑
t=1

E
t
[f>t (yt − u)]

]

(By (4.7)) = E

[
T∑
t=1

E
t
[f>t (xt − u)]

]

(By (4.8)) = E

[
T∑
t=1

E
t
[̃f>t (xt − u)]

]

(By tower rule) = E

[
T∑
t=1

f̃>t (xt − u)

]
= E[Regretu(A; f̃1, . . . , f̃T)]

Notice, however, that the last expression within the E[·] is exactly the regret of A when the
input functions are f̃1, . . . , f̃T . This leads us directly to the following Lemma:

Lemma 33. Assume we are given any full-information algorithm A and any sampling
and estimation schemes sampler, guesser. If we let the associated bandit algorithm be
A′ := BanditReduction(A, sampler, guesser), then the expected regret of the (randomized)
algorithm A′ on the fixed sequence {ft} is equal to the expected regret of the (deterministic3)

3Although we do not consider these here, there do exist randomized algorithms for the full-information
setting. In terms of regret, randomized algorithms provide no performance improvement over deterministic
algorithms, yet randomization may lead to other benefits, e.g. computation. In the bandit setting, however,
randomization is entirely necessary for vanishing regret.

51

algorithm A on the random sequence {f̃t}. That is,

E[Regretu(A′; f1, . . . , fT)] = E[Regretu(A; f̃1, . . . , f̃T)]

This Lemma is quite powerful: it says that we can construct a bandit algorithm from a
full-information one, achieve a bandit regret bound in terms of the full-information bound,
and we need only construct sampling and estimation schemes which satisfy the properties in
(4.7) and (4.8).

4.3.2 The Dilemma of Bandit Optimization

At first glance, Lemma 33 may appear to be a slam dunk: as long as we have a full-
information algorithm A with a low-regret guarantee, we can seemingly construct a Bandit
version A′ with an identical regret guarantee in expectation. The remaining difficulty, which
may not be so obvious, is that the regret of A is taken with respect to the random estimates
{f̃t}, and these estimates can unfortunately have very high variance! In general, the typical
bound on Regret(A; f1, . . . , fT) will scale with the magnitude of the ft’s, and this can be quite
bad if the ft’s can grow arbitrarily large.

Let us illustrate this issue with a simple example. Assume K = ∆2 = {αe1 + (1−α)e2 :
∀α ∈ [0, 1]}. We need to construct a sampling scheme and an estimation scheme, and we
give a natural choice. Assume x = αe1 + (1−α)e2 and assume the unobserved cost function
is f, then let

y =

{
e1, w.p. α

e2, w.p. 1− α
f̃ =

{
f>y
α

e1, when y = e1

f>y
1−αe2, when y = e2.

It is easily checked that these sampling and estimation schemes satisfy the desired require-
ments (4.8) and (4.7). The downside that the magnitude of f̃ can grow with max{ 1

α
, 1

1−α}
(assuming here that ‖f‖ = O(1)). While the careful reader may notice that things are
not so bad in expectation, as E ‖f̃‖ = O(1), the typical regret bound generally depends on

E ‖f̃‖2 which grows with max{ 1
α
, 1

1−α}. If we apply the strong-convexity result from Sec-
tion 2.2.2, and by correctly choosing η, we would have a regret bound scaling with the

quantity E
[√∑T

t=1 ‖f̃t‖∗2
]
≤
√∑T

t=1 E ‖f̃t‖∗2. To obtain a rate of roughly O(
√
T) it is

necessary that we have E ‖f̃t‖∗2 = O(1).

Perhaps our sampling and estimation schemes could have been better designed? Unfor-
tunately no: the variance of f̃ can not be untethered from max{ 1

α
, 1

1−α}. This example sheds
light on a crucial issue of Bandit optimization: how does one handle estimation variance
when x is close to the boundary? Note that the aforementioned example does not lead to
difficulty when max{ 1

α
, 1

1−α} = O(1). A common approach, used in various forms throughout
the literature [27, 9, 33, 11, 56, 42], is simply to restrict x = αe1 + (1 − α)e2 away from
the boundary, requiring that α ∈ [γ, 1− γ] for some appropriately chosen γ ∈ (0, 1/2). This
restriction does have the benefit of guaranteeing E ‖f̃‖2 = O(1/γ), but this comes at a price:
this γ-perturbation means we can only compete with a suboptimal comparator, and this
approximation shall give an additive O(γT) in the regret bound.

52

The solution, which we present in the following section, is based on measuring the function
f̃t with a local norm. This was our original aim in developing the FTRL algorithms based on
self-concordant barrier functions: they allows us to obtain a regret bound which measures
each f̃t in such a way that depends on the current hypothesis xt. Indeed, the norm ‖ · ‖xt ,
which locally measures f̃t is precisely what we shall need. Ultimately we will show that, with
the correct choice of sampling scheme, we can always guarantee that as we shall show that
‖f̃t‖xt = O(1).

4.3.3 Main Result

We now describe the primary contribution of this chapter, which is an efficient algorithm
for Bandit linear optimization that achieves a

√
T -regret bound. We call this algorithm

SCRiBLe, standing for Self-Concordant Regularization in Bandit Learning.

We have now developed all necessary techniques to describe the result and prove the
desired bound. The key ingredients of our algorithm, that help overcome the previously-
discussed difficulties, are:

1. A self-concordant barrier function R for the set K (Section 4.1.1)

2. The full-information algorithm FTRL (Section 2.2.1) using the barrier R as the regu-
larization

3. A sampling scheme sampler(x) based on the Dikin ellpisoid W1(x) (Section 4.1.1)
chosen according to R. Specifically, if we denote {e1, . . . , en} and {λ1, . . . , λn} as the

eigenvalues and eigenvectors of ∇2R(xt), the algorithm will sample yt ← xt± λ−1/2
i ei,

one of the 2n poles of the Dikin ellipsoid, uniformly at random.

4. An estimation scheme guesser(·, ·, ·) which produces estimates aligned with eigenpoles
of Wr(x). Specifically, corresponding to the eigenpole chosen by sampler, guesser

outputs
f̃t ← ±n

(
f>t yt

)
λ

1/2
i · ei

5. An improved regret bound for self-concordant functions using local norms (Sec-
tion 4.2.1)

We now state the main result of the chapter.

Theorem 34. Let K be a compact convex set and R be a ϑ-self-concordant barrier on K.

Assume |f>t x| ≤ 1 for any x ∈ K and any t. Setting η =
√

ϑ log T
2n2T

, the regret of SCRiBLe

(Algorithm 4) is bounded as

E[Regretu(SCRiBLe; f1, . . . , fT)] ≤
√

8n2ϑT log T + 2

whenever T
log T

> 8ϑ.

53

Algorithm 4 SCRiBLe

1: Input: η > 0, ϑ-self-concordant R
2: Let x1 = arg minx∈K [R(x)].
3: for t = 1 to T do
4: Let {e1, . . . , en} and {λ1, . . . , λn} be the set of eigenvectors and eigenvalues of

∇2R(xt).
5: Choose it uniformly at random from {1, . . . , n} and εt = ±1 with probability 1/2.

6: Predict yt = xt + εtλ
−1/2
it

eit .
7: Observe the gain f>t yt ∈ R.

8: Define f̃t := n
(
f>t yt

)
εtλ

1/2
it
· eit .

9: Update

xt+1 = arg min
x∈K

[
η

t∑
s=1

f̃>s x +R(x)

]
.

10: end for

Proof. SCRiBLe is exactly in the template of Algorithm 3, using the full-information algo-
rithm FTRLR and with sampler(·) and guesser(·, ·, ·) that satisfy properties (4.7) and (4.8)
respectively. By Lemma 33, we can write

E[Regretu(A; f1, . . . , fT)] = E[Regretu(FTRLR; f̃1, . . . , f̃T)].

We then apply Theorem 30 to obtain for any u ∈ K

E[Regretu(FTRLR; f̃1, . . . , f̃T)]

≤ 2η E

(
T∑
t=1

[
‖f̃t‖∗xt

]2
)

+ η−1R(u)

= 2η E

(
T∑
t=1

E
t

(
‖f̃t‖∗xt

)2
)

+ η−1R(u)

= 2η E

[
T∑
t=1

E
t

(
f̃>t ∇−2

xt Rf̃t

)]
+ η−1R(u)

= 2η E

[
T∑
t=1

E
t

(
(nf>t yt)

2λite
>
it∇

−2
xt Reit

)]
+ η−1R(u)

= 2η E

[
T∑
t=1

E
t
(nf>t yt)

2

]
+ η−1R(u)

≤ 2ηn2T + η−1R(u)

If u is such that πx1(u) ≤ 1− 1
T

then by Theorem 28 we have that

R(u) ≤ ϑ log T. (4.9)

54

If, on the other hand, πx1(u) > 1 − 1
T

then we can define u′ := (1 − 1/T)u + (1/T)x1.
Certainly,

Regretu(A; f1:T) = Regretu
′
(A; f1:T) +

T∑
t=1

f>t (u′ − u)

= Regretu
′
(A; f1:T) +

1

T

T∑
t=1

f>t (x1 − u)

≤ 2ηn2T + η−1R(u′) + 2

≤ 2ηn2T + ϑη−1 log T + 2

4.4 Conclusion

We have given the first efficient algorithm for bandit online linear optimization with
optimal regret bound. For this purpose, we introduce the fascinating tool of self-concordant
barriers from interior point optimization and give a new algorithm for full-information online
linear optimization with strong regret bounds.

In the full information case, we have given an iterative version of our algorithm which is
preferable computationally, and a similar iterative algorithm can be derived for the bandit
case as well.

55

Chapter 5

Blackwell Approachability

5.1 Introduction

Von Neumann’s minimax theorem (1928) establishes a central result in the theory of
two-player zero-sum games, essentially by providing a prescription to both players. This
prescription is in the form of a pair of optimal strategies, either of which attains the optimal
worst-case value of the game even without knowledge of the opponent’s strategy. However,
the theorem fundamentally requires that both players have utility that can be expressed as
a scalar. In 1956, in response to von Neumann’s result, David Blackwell posed an intriguing
question: what guarantee can we hope to achieve when playing a two-player game with a
vector-valued payoff ?

When our payoffs are non-scalar quantities, it does not make sense to ask “can we earn
at least x?”. A sensible generalization is, “can we guarantee that our vector payoff lies in
some convex set S?” In this case the story is more difficult, and Blackwell observed that an
oblivious strategy does not suffice—in short, we do not achieve “minimax duality” for vector-
payoff games as we can when the payoff is a scalar. Blackwell was able to prove that this
negative result applies only for one-shot games. In his celebrated Approachability Theorem
[18], one can achieve a duality statment in the limit when the game is played repeatedly, and
the player may learn from his opponent’s prior actions. Blackwell constructed an algorithm
(that is, an adaptive strategy) that guarantees the average payoff vector “approaches” S.

Blackwell’s Approachability Theorem has the flavor of learning in repeated games, a
topic which has received much interest. In particular, there are a wealth of recent results
on so-called no-regret learning algorithms for making repeated decisions given an arbitrary
(and potentially adversarial) sequence of cost functions. The first no-regret algorithm for
a “discrete action” setting was given in a seminal paper by James Hannan in 1956 [43].
That same year, David Blackwell pointed out [17] that his Approachability result leads, as
a special case, to an algorithm with essentially the same low-regret guarantee proven by
Hannan.

Over the years several other problems have been reduced to Blackwell approachability,
including asymptotic calibration [35], online learning with global cost functions [30] and more

56

[54]. Indeed, it has been presumed that approachability, while establishing the existence of
a no-regret algorithm, is strictly more powerful than regret-minimization; hence its utility in
such a wide range of problems. In the present chapter we prove, to the contrary, that Black-
well’s Approachability Theorem is equivalent, in a very strong sense, to no-regret learning
for the setting of Online Linear Optimization. This shows that the connection discovered by
Blackwell, between regret and approachability, is much stronger than originally supposed.

More specifically, we show how any no-regret algorithm can be converted into an algo-
rithm for Approachability and vice versa. This algorithmic equivalence is achieved via the
use of conic duality : an approachability problem over a convex cone K can be reduced to an
online linear optimization instance where we must “learn” within the polar cone K0. The
reverse direction is similar. This equivalence provides a range of benefits and one such is
“asymptotic calibrated forecasting”. The calibration problem was reduced to Blackwell’s
Approachability Theorem by Foster [34], and a handful of other calibration techniques have
been proposed, yet none have provided any efficiency guarantees on the strategy. Using
a similar reduction from calibration to approachability, and by carefully constructing the
reduction from approachability to online linear optimization, we achieve the first efficient
calibration algorithm.

Related work There is by now vast literature on all three main topics of this chapter:
approachability, online learning and calibration, see [24] for an excellent exposition.

Calibration is a fundamental notion in prediction theory and has found numerous applica-
tions in economics and learning. Dawid [28] was the first to define calibration, with numerous
algorithms later given by Foster and Vohra [35], Fudenberg and Levine [39], Hart and Mas-
Colell [44] and more (see e.g. [68, 66]). Foster has given a calibration algorithm based on
approachability [34]. There are numerous definitions (mostly asymptotic) of calibration in
the literature. In this chapter we give precise finite-time rates of calibration. Furthermore,
we give the first efficient algorithm for calibration: attaining ε-calibration (formally defined
later) required a running time of poly(1

ε
) for all previous algorithms, whereas our algorithm

runs in time proportional to log 1
ε
.

5.2 Game Theory Preliminaries

5.2.1 Two-Player Games

Formally, a two-player normal-form game is defined by a pair of action sets [n] and [m],
for natural numbers n,m, and a pair of utility functions u1, u2 : [n]× [m]→ R. When player
1 chooses action i and player 2 chooses action j, player 1 and player 2 receive utilities u1(i, j)
and u2(i, j) respectively. An important class of two-player games are known as zero-sum, in
that u1 ≡ −u2. For zero-sum games we drop the subcripts on u1, u2 and simply write u(i, j)
for player 1’s utility, and −u(i, j) for player 2’s utility. For the remainder of this section,
we shall be concerned entirely with zero-sum games, hence we will refer to player 1 as the
Player and player 2 as the Adversary.

57

It is natural to assume that the players in a game may include randomness in their
choice of action; simple games such as Rock-Paper-Scissors require randomness to achieve
optimality. When the players choose their actions randomly according to the distributions
p ∈ ∆n and q ∈ ∆m, respectively, the expected utility for the Player is

∑
i,j p(i)q(j)u(i, j).

Von Neumann’s minimax theorem, widely considered the first key result in game theory, tells
us that both the Player and the Adversary have an “optimal” randomized strategy that can
be played without knowledge of the strategy of their respective opponent.

Theorem 35 (Von Neumann’s Minimax Theorem [63]). For any integers n,m > 0 and any
utility function u : [n]× [m]→ R,

max
p∈∆n

min
q∈∆m

∑
i,j

p(i)q(j)u(i, j) = min
q∈∆m

max
p∈∆n

∑
i,j

p(i)q(j)u(i, j)

The statement of the minimax theorem is often referred to as duality as it swaps the min
and max. This result can be used to establish strong duality for linear programming. It was
proven by Maurice Sion in the 1950’s that von Neumann’s notion of duality can be extended
further, for a much larger class of input spaces and a more general class of functions.

Theorem 36 (Sion1, 1958 [71]). Given convex compact sets X ⊂ Rn,Y ⊂ Rm, and a
function f : X × Y → R convex and concave in its first and second arguments respectively,
we have

inf
x∈X

sup
y∈Y

f(x,y) = sup
y∈Y

inf
x∈X

f(x,y).

In the present work we shall not need anything quite so general, although we use this
theorem to generalize slightly the class of two-player zero-sum games. Rather than define
the actions of our players as being drawn randomly from discrete sets [n] and [m], let the
players’ decision space be characterized by given compact convex sets X ⊂ Rn and Y ⊂ Rm

respectively. In addition, we shall assume that the utility is characterized by a biaffine
function u : X × Y → R; that is, u(αx + (1 − α)x′,y) = αu(x,y) + (1 − α)u(x′,y) and
u(x, αy+(1−α)y′) = αu(x,y)+(1−α)u(x,y′) for every 0 ≤ α ≤ 1, x,x′ ∈ X and y,y′ ∈ Y .
Following Sion’s theorem, we arrive at the following.

Corollary 37. For compact convex sets X ⊂ Rn and Y ⊂ Rm and any biaffine function
u : X × Y → R, we have

max
x∈X

min
y∈Y

u(x,y) = min
y∈Y

max
x∈X

u(x,y)

This alternative description of a zero-sum game has two advantages. First, we now assume
that both players are deterministic. That is, we have converted the notion of a randomized
strategy on a discrete action space to a deterministic strategy x inside of a convex set
X . Rather than evaluate the expected utility of a randomized action, this expectation is
now incorporated via the linearity of u(·, ·). Note, crucially, that the assumptions that u

1The original paper of Sion proves an even more general statement than what we give.

58

is biaffine and X and Y are convex imply that neither player gains from randomness, as

Ex Ey u(x,y) = u(Ex x,Ey y).

A second advantage of this framework is that it allows us to work with action spaces
that might seem prohibitively large. For example, we can imagine a game in which each
player must select a route in a graph G between two endpoints, and the utility is the amount
of overlap of their paths. The set of paths in a graph is exponential, and even counting
the number of such paths is #P -hard. However, we may instead set X and Y to be the
flow polytope of G. The flow polytope can be described by a polynomially-sized number of
constraints, and hence is much easier to work with.

5.2.2 Vector-Valued Games

Let us now turn our attention to Blackwell’s question: what can be guaranteed when
the utility function of the zero-sum game is vector-valued? Following the definition in the
previous section, we can define a vector-valued game in terms of some biaffine utility function
v : X ×Y → Rd from a product of two convex compact decision spaces X ⊂ Rn and Y ⊂ Rm

to d-dimensional space. The biaffine property is defined in the natural way.

Note that we may not apply our usual notions of utility maximization when dealing
with vector-valued games—what does it mean to “maximize” a vector? Furthermore, the
concept of “zero-sum” is not immediately clear. Blackwell proposed the following framework:
suppose that the Player, who selects x ∈ X , would like his vector payoff v(x,y) to land inside
of a particular closed convex set S ⊂ Rd, where S is fixed and known to both players. We
shall say that the Player wants to satisfy S. The Adversary, who selects y ∈ Y , would like
to prevent the Player from satisfying S.

Let us return our attention to the simple case of scalar-valued games discussed in Sec-
tion 5.2.1. The duality statement achieved in the Minimax Theorem, typically stated in
terms of swapping the order of min and max, can instead be formulated in terms of swap-
ping quantifiers ∀ and ∃.

Proposition 38. For any convex compact sets X ⊂ Rn and Y ⊂ Rm, and any biaffine utility
function u : X × Y → R, we have the following implication for any c ∈ R:

∀y ∈ Y ∃x ∈ X : u(x,y) ∈ [c,∞) =⇒ ∃x ∈ X ∀y ∈ Y : u(x,y) ∈ [c,∞).

This proposition is simply another way to state duality, in the following form:

min
y∈Y

max
x∈X

u(x,y) ≥ c =⇒ max
x∈X

min
y∈Y

u(x,y) ≥ c.

Put another way, if the Player can earn c by choosing his strategy with knowledge of the
Adversary’s strategy, then he can earn c obliviously as well.

Here we have simply taken the Minimax Theorem and stated it in terms of satisfying a
set, namely the set S = [c,∞) for some value c. This interpretation begs the question: can

59

we achieve a similar “duality” statement for vector-valued games? In other words, given a
biaffine utility function v : X × Y → Rd and any convex set S ⊂ Rd, does the statement

∀y ∈ Y ∃x ∈ X : v(x,y) ∈ S =⇒ ∃x ∈ X ∀y ∈ Y : v(x,y) ∈ S

hold in general? The answer, unfortunately, is no! Consider the following easy example:
X = Y := [0, 1], the payoff is simply v(x, y) := (x, y) for x, y ∈ [0, 1], and the set in question
is S := {(z, z) ∀z ∈ [0, 1]}. Certainly the premise is true, since for every y there exists an x,
namely x = y, such that v(x, y) ∈ S. On the other hand, there is no such single x for which
v(x, y) ∈ S for any y.

5.2.3 Blackwell Approachability

While we might hope that minimax duality, framed in terms of set satisfiability, would
extend from scalar-valued games to vector-valued games, the previous example appears to be
a nail in the coffin. But in fact the story is not quite so bad: the proposed example is difficult
because it is a one-shot game. What Blackwell observed, and led to the Approchability
Theorem, is that if the game is played repeatedly then one can achieve duality “in the limit.”
To make this precise we introduce some definitions.

Definition 39. A Blackwell instance is a tuple (X ,Y ,v(·, ·), S), with X ⊂ Rn and Y ⊂ Rm

compact and convex, v : X × Y → Rd biaffine, and S ⊂ Rd convex and closed. For any
instance (X ,Y ,v(·, ·), S), we say that

• S is satisfiable if ∃x ∈ X ∀y ∈ Y : v(x,y) ∈ S.

• S is response-satisfiable if ∀y ∈ Y ∃x ∈ X : v(x,y) ∈ S.

• S is halfspace-satisfiable if, for any halfspace H ⊇ S, H is satisfiable.

To recap, when our utility function v is scalar-valued, i.e. for zero-sum games where
d = 1, then minimax duality holds and, according to Proposition 38, this be rephrased as
“If S := [c,∞) is response-satisfiable then S is satisfiable.” On the other hand, for vector-
valued games it is not the case in general that “S is response-satisfiable =⇒ S is satisfiable”
for arbitrary sets S. What Blackwell showed is that response-satisfiability does lead to a
weaker condition, termed approachability. Before we define this precisely, let us use the
notation dist(z, U) to denote the distance between a point z and some convex set U , that
is infx∈U ‖z− x‖.

Definition 40. Given a Blackwell instance (X ,Y ,v(·, ·), S), we say that S is approach-
able if there exists some algorithm A which selects points in X such that, for any sequence
y1,y2, . . . ∈ Y, we have

dist
(

1
T

∑T
t=1 v(xt,yt), S

)
→ 0 as T →∞,

where xt ← A(y1,y2, . . . ,yt−1).

60

Under this new notion, we now allow the Player to implement an adaptive strategy for
a repeated version of the game, and we require that the average utility vector becomes
arbitrarily close to S. Intuitively, we may think of approachability as “satisfiability in the
limit”.

Theorem 41 (Blackwell’s Approachability Theorem [18]). For any Blackwell instance
(X ,Y ,v(·, ·), S), S is approachable if and only if it is response-satisfiable.

The beauty of this theorem is that, while we may not be able to satisfy S in a one-shot
version of the game, we can satisfy the set “on average” if we may play the game indefinitely.

This version of the theorem, which appears in Evan-Dar et al. [30], is not the one usually
attributed to Blackwell. The original theorem uses the concept of halfspace satisfiability. It
is not difficult to establish the equivalence of the two statements via the following lemma,
whose proof uses a nice application of minimax duality.

Lemma 42. For any Blackwell instance (X ,Y ,v(·, ·), S), S is response-satisfiable if and
only if it is halfspace-satisfiable.

Proof. (=⇒) Assume that S is response-satisfiable. Hence, for any y there is an xy such
that v(xy,y) ∈ S. Now take any halfspace H ⊃ S parameterized by θ, c, that is H =
{z : 〈θ, z〉 ≤ c}. Then let us define a scalar-valued game with utility u(x,y) = 〈θ,v(x,y)〉.
Notice that H ⊃ S implies that 〈θ, z〉 ≤ c for all z ∈ S. Since S is response-satisfiable, for
every y there is an xy such that v(xy,y) ∈ S =⇒ u(xy,y) ≤ c. We then immediately see
that

max
y∈Y

min
x∈X

u(x,y) ≤ max
y∈Y

u(xy,y) ≤ c.

It follows from Corollary 37 that minx∈X maxy∈Y u(x,y) ≤ c. Let x∗ ∈ X be any minimizer
of the latter expression and notice that, for any y ∈ Y , we have that u(x∗,y) ≤ c. It follows
immediately that H is satisfiable.

(⇐=) Assume that S is not response-satisfiable. Hence, there must exists some y0 ∈ Y
such that v(x,y0) /∈ S for every x ∈ X . Consider the set U := {v(x,y0) for all x ∈ X} and
notice that U is convex since X is convex and v(·,y0) is affine. Furthermore, because S is
convex and S ∩U = ∅ by assumption, there must exist some halfspace H separating the two
sets, that is S ⊆ H and H ∩ U = ∅. By construction, we see that for any x, v(x,y0) /∈ H
and hence H is not satisfiable. It follows immediately that S is not halfspace-satisfiable.

Although it is not posed in this language, Blackwell’s original theorem uses the concept of
a halfspace oracle. Given a Blackwell instance (X ,Y ,v(·, ·), S), define a halfspace oracle to be
a function O that takes as input any halfspace H ⊃ S and returns a point O(H) = xH ∈ X ,
and we shall refer to a halfspace oracle as valid if it satisfies that for each halfspace H ⊃ S,
v(xH ,y) ∈ H for any y ∈ Y .

Theorem 43. For any Blackwell instance (X ,Y ,v(·, ·), S), the set S is approachable if and
only if there exists a valid halfspace oracle.

61

Notice that the existence of a valid halfspace oracle is equivalent to the halfspace-
satisfiability condition. Hence, via Lemma 42, this theorem is equivalent to Theorem 41.

To achieve approachability, following Definition 40 one must construct an algorithm A
that maps the observed subsequence y1, . . . ,yt−1 ∈ Y to a point xt ∈ X . By the previous
theorem, in order for the set S to be approachable, there must be a valid halfspace oracle
O, and hence A may make calls to O. Blackwell actually provides such an algorithm, quite
elegant for its simplicity, which can be found in his original work [18] as well as in the book
of Cesa-Bianchi and Lugosi [24].

We note that, when an approachability algorithm A is adapted to a Blackwell instance
(X ,Y ,v(·, ·), S), and makes calls to a halfspace oracle O, we may write AOX ,Y,v,S to make the
dependence clear.

5.3 Online Linear Optimization

Online Convex Optimization (OCO) has become a popular topic within Machine Learning
since it was introduced by Zinkevich in 2003 [77], and there has been much followup work
[69, 67, 47, 1]. It provides a generic problem template and was shown to generalize several
existing problems in the realm of online learning and repeated decision making. Among these
are online pattern classification, the “experts” or “hedge” setting, and sequential portfolio
optimization [37, 46].

In the OCO setting, we imagine an online game between Player and Nature. Assume
the Player is given a convex decision set K ⊂ Rd and must make a sequence of a decisions
x1,x2, . . . ∈ K. After committing to xt, Nature reveals a convex loss function `t, and Player
pays `t(xt). The performance of the Player is typically measured by regret which we shall
define below. In the present work we shall be concerned with the more specific problem
of Online Linear Optimization (OLO) where the loss functions are assumed to be linear,
`t(x) = 〈ft,x〉 for some ft ∈ Rd.

We define the Player’s adaptive strategy L, which we refer to as an OLO algorithm, as a
function which takes as input a subsequence of loss vectors f1, . . . , ft−1 and returns a point
xt ← L(f1, . . . , ft−1), where xt ∈ K.

Definition 44. Given an OLO algorithm L and a sequence of loss vectors f1, f2, . . . ∈ Rd,
let Regret(L; f1:T) :=

∑T
t=1〈ft,xt〉 − minx∈K

∑T
t=1〈ft,x〉. When the sequence of loss vectors

is clear, we may simply write RegretT (L).

An important question is whether an OLO algorithm has a regret rate which scales
sublinearly in T . A sublinear regret is key, for then our average performance, in the long
run, is essentially no worse than the best in hindsight. We use the term no-regret algorithm
when it possesses this property.

Theorem 45. For any bounded decision set K ⊂ Rd there exists an algorithm LK such that
RegretT (LK) = o(T) for any sequence of loss vectors {ft} with bounded norm.

62

Later in the chapter we provide one such algorithm, known as Online Gradient Descent,
proposed by Zinkevich [77].

Before proceeding, let us demonstrate the value of no-regret algorithms by proving an
aforementioned result. We shall sketch a proof of the minimax statement of Corollary 37. As-
sume we are given convex and compact decision space X ⊂ Rn and Y ⊂ Rm, and without loss
of generality assume we have a utility function u : X ×Y → R of the form u(x,y) = x>My
for some M ∈ Rn×m. Weak duality, i.e. miny∈Y maxx∈X x>My ≥ maxx∈X miny∈Y x>My is
trivial, and so we turn our attention to the reverse inequality. We shall imagine our game
is played repeatedly, where on round t the first player chooses xt and the second chooses yt,
but where both players select their strategies according to a no-regret algorithm. For every
t we shall set xt ← LX (f1, . . . , ft−1) and yt ← LY(g1, . . . ,gt−1), where we define the vectors
ft := −Myt and g>t := x>t M . By applying the definition of regret twice, we have

1
T

∑T
t=1 x>t Myt = min

y∈Y

(
1
T

∑T
t=1 xt

)>
My + RegretT (LY)

T
≤ max

x∈X
min
y∈Y

x>My + o(T)
T
,(5.1)

1
T

∑T
t=1 x>t Myt = max

x∈X
x>M

(
1
T

∑T
t=1 yt

)
− Regret(LX)

T
≥ min

y∈Y
max
x∈X

x>My − o(T)
T
.(5.2)

Combining these two statements gives miny∈Y maxx∈X x>My ≤ maxx∈X miny∈Y x>My +
o(T)
T

. Of course, we can let T →∞ which immediately gives the desired inequality.

The previous example foreshadows a key result of this chapter, which is that any no-
regret learning algorithm can be converted into an approachability strategy. If we interpret
Blackwell Approachability as a generalized form of Minimax Duality for vector-valued games
then it may come as no surprise that regret-minimizing algorithms would provide a tool in
establishing both game-theoretic results. However, in a certain sense regret-minimization is
too heavy a hammer for proving Minimax Duality. For one, the above proof requires that
we imagine a repeated version of the game, whereas scalar-valued game duality holds even
for one-shot. Indeed, more standard proofs of von Neumann’s result do not rely on repeated
play. Blackwell Approachability, on the other hand, fundamentally involves repeated play,
and in fact we shall show that regret-minimization is the perfectly-sized hammer, as it is
algorithmically equivalent to approachability.

5.4 Equivalence of Approachability and Regret Mini-

mization

5.4.1 Convex Cones and Conic Duality

We shall define some basic notions and then state some simple lemmas. Henceforth we
use the notation B2(r) to refer to the `2-norm ball of radius r. The notation x′ ⊕ x is the
vector concatenation of x and x′.

Definition 46. A set X ⊂ Rd is a cone if it is closed under multiplication by nonnegative
scalars, and X is a convex cone if it is also closed under element addition. Given any set

63

K ⊂ Rd, define the conic hull cone(K) := {αx : α ∈ R+,x ∈ K} which is also a cone in
Rd. Also, given any convex cone C ⊂ Rd, we can define the polar cone of C as

C0 := {θ ∈ Rd : 〈θ,x〉 ≤ 0 for all x ∈ C}.

It is easily checked that if K is convex then cone(K) is also convex. The following Lemma
is folklore.

Lemma 47. If C is a convex cone then (1) (C0)0 = C and (2) supporting hyperplanes in C0

correspond to points x ∈ C, and vice versa. That is, given any supporting hyperplane H of
C0, H can be written exactly as {θ ∈ Rd : 〈θ,x〉 = 0} for some vector x ∈ C that is unique
up to scaling.

The distance to a cone can conveniently be measure via a “dual formulation,” as we now
show.

Lemma 48. For every convex cone C in Rd

dist(x, C) = max
θ∈C0∩B2(1)

〈θ,x〉 (5.3)

Proof. We need two simple observations. Define πC(x) as the projection of x onto C. Then
clearly, for any x,

dist(x, C) = ‖x− πC(x)‖ (5.4)

〈x− πC(x),y〉 ≤ 0 ∀y ∈ C and hence x− πC(x) ∈ C0 (5.5)

〈x− πC(x), πC(x)〉 = 0 (5.6)

Given any θ ∈ C0 with ‖θ‖ ≤ 1, since πC(x) ∈ C we have that

〈θ,x〉 ≤ 〈θ,x− πC(x)〉 ≤ ‖θ‖‖x− πC(x)‖ ≤ ‖x− πC(x)‖,

which immediately implies that maxθ∈C0,‖θ‖≤1〈θ,x〉 ≤ dist(x, C). Furthermore, by selecting

θ = x−πC(x)
‖x−πC(x)‖ which has norm one and, by (5.4), is in C0, we see that

max
θ∈C0,‖θ‖≤1

〈θ,x〉 ≥
〈

x− πC(x)

‖x− πC(x)‖
,x

〉
=

〈
x− πC(x)

‖x− πC(x)‖
,x− πC(x)

〉
= ‖x− πC(x)‖,

which implies that maxθ∈C0,‖θ‖≤1〈θ,x〉 ≥ dist(x, C) and hence we are done.

Our results require looking at convex cones rather than convex sets, hence we must
consider the process of converting a set into a cone. In order to not lose information about
the underlying set K ⊂ Rd, we shall embed the set into a higher dimension, and instead look
at cone({κ} ×K) ⊂ Rd+1, where κ := maxx∈K ‖x‖ is the diameter of K. We prove that this
process of “lifting” and conifying does not perturb distances by more than a constant.

64

Lemma 49. Consider a compact convex set K ⊆ H in Rd and x /∈ K. Let x̃ := κ ⊕ x and
K̃ := {κ} × K. Then we have

dist(x̃, cone(K̃)) ≤ dist(x,K) ≤ 2dist(x̃, cone(K̃)) (5.7)

Proof. Since dist(x̃, K̃) = dist(x,K) and K̃ ⊂ cone(K̃), the first inequality follows imme-
diately.

For notational convenience let w = πcone(K̃)(y) be the projection of y onto cone(K̃) and

v = πK̃(y) be the projection onto K̃. Consider the plane determined by the three points
x̃,w,v. Notice that the triangle ∆(x̃,w,v) is similar to the triangle ∆(0, κ ⊕ 0,v), and
hence by triangle similarity

‖v‖
‖κ⊕ 0‖

=
‖x̃− v‖
‖x̃−w‖

=
dist(x̃, K̃)

dist(x̃, cone(K̃))

For a visual aid, we provide a picture of this triangle similarity in Figure 5.1. Since v ∈ K̃
we have ‖v‖ ≤ ‖K̃‖ ≤ 2κ. In addition ‖κ⊕ 0‖ = κ and the result follows.

Figure 5.1. A geometric interpretation of the proof of Lemma 49.

5.4.2 Duality Theorems

In the previous sections we have presented two sequential decision problems, summarized
in Figure 5.2. We now show that these two decision problems are algorithmically equivalent :
any strategy (algorithm) that achieves approachability can be converted into an algorithm
that achieves low-regret, and vice versa.

We present this equivalence as a pair of reductions. In Algorithm 5 we show how a learner,
presented with a OLO problem characterized by a decision set K and an arriving sequence
of loss vectors f1, f2, . . ., can minimize regret with only oracle access to some approachability
algorithm A. In Algorithm 6 we show how a player, presented with a Blackwell instance

65

Blackwell Approachability Problem

Given a Blackwell instance (X ,Y ,v(·, ·), S)
and a valid halfspace oracle O : H 7→ xH ∈
X , construct an algorithm A so that, for
any sequence y1,y2, . . . ∈ Y ,

dist(1
T

∑T
t=1 v(xt,yt), S)→ 0

where xt ← A(y1, . . . ,yt−1).

Online Linear Optimization Problem

Given a compact convex set K ⊂ Rd, con-
struct a learning algorithm L so that, for
any sequence of loss vectors f1, f2, . . . ∈ Rd

we have vanishing regret, that is∑T
t=1〈ft,xt〉 −minx∈K

∑T
t=1〈ft,x〉 = o(T),

where xt ← L(f1, . . . , ft−1).

Figure 5.2. A summary of Blackwell Approachability and Online Linear Optimization

(X ,Y ,v(·, ·), S) and a valid halfspace oracle O, can achieve approachability when only given
oracle access to a no-regret OLO algorithm L. For the remainder of the chapter, for a given
Blackwell instance (X ,Y ,v(·, ·), S) and approachability algorithm A, D(A; y1, . . . ,yT) shall

refer to the rate of approachability dist
(

1
T

∑T
t=1 v(xt,yt), S

)
. We shall write DT (A) when

the input sequence is clear. For the convex set K, we shall let κ := maxx∈K ‖x‖, the “norm”
of the set K.

Algorithm 5 Conversion of Approachability Alg. A to Online Linear Optimization Alg. L
1: Input: compact convex decision set K ⊂ Rd

2: Input: sequence of cost functions f1, f2, . . . , fT ∈ B2(1)
3: Input: approachability oracle A
4: Set: Blackwell instance (X ,Y ,v(·, ·), S), where X := K, Y := B2(1), v(x, f) = 〈f ,x〉

κ
⊕−f ,

and S := cone({κ} × K)0

5: Construct: valid halfspace oracle O // Existence established in Lemma 50
6: for t = 1, . . . , T do
7: Let: L(f1, . . . , ft−1) := AOX ,Y,v,S(f1, . . . , ft−1)
8: Receive: cost function ft
9: end for

In Algorithm 5 we require the construction of a valid halfspace oracle. In the lemma
below we give one such oracle and prove that it is valid, but we note that this construction
may not be the most efficient in general; any particular scenario may give rise to a simpler
and faster construction.

Lemma 50. There exists a valid halfspace oracle for the Blackwell instance in Algorithm 5.

Proof. Assume we have some halfspace H which contains S = cone({κ} × K)0. We can
assume without loss of generality that H is tangent to S and, since S is a cone, H meets the
origin; that is, H = {θ : 〈θ, zH〉 ≤ 0} for some zH ∈ Rd. Furthermore, H ⊃ cone({κ}×K)0

implies that zH ∈ (cone({κ} × K)0)0 = cone({κ} × K). Equivalently, zH = α(κ ⊕ xH)

66

for some xH ∈ K and some α > 0. With this in mind, we construct our oracle by setting
xH ← O(H).

It remains to prove that this halfspace oracle is valid. We compute 〈v(xH , f), zH〉:

〈v(xH , f), zH〉 = 〈κ−1〈f ,xH〉 ⊕ −f , ακ⊕ αxH〉 = α〈f ,xH〉+ 〈−f , αxH〉 = 0.

By definition, 〈v(xH , f), zH〉 ≤ 0 implies that v(xH , f) ∈ H for any f and we are done.

Theorem 51. The reduction defined in Algorithm 5, for any input algorithm A, produces
an OLO algorithm L such that Regret(L)

T
≤ 2κDT (A).

Proof. Applying Lemmas 48 and 47 to the definition of DT (A) gives

DT (A) ≡ dist

(
1

T

T∑
t=1

v(xt, ft), S

)
= max

w∈cone(κ⊕K)∩Bd2 (1)

〈
1

T

T∑
t=1

v(xt, ft),w

〉
(5.8)

Notice that, in this optimization, we can assume w.l.o.g. that ‖w‖ = 1, or w = 0. In the
former case we can write w = κ⊕x

‖κ⊕x‖ for some x ∈ K, and we drop the latter case to obtain
the inequality

DT (A) ≥ max
x∈K

〈
1

T

T∑
t=1

v(xt, ft),
κ⊕ x

‖κ⊕ x‖

〉
=

1

T
max
x∈K

(∑T
t=1〈ft,xt〉 −

∑T
t=1〈ft,x〉

)
‖κ⊕ x‖

≥
1
T

(∑T
t=1〈ft,xt〉 −

∑T
t=1〈ft,x∗〉

)
‖κ⊕ x∗‖

≥
1
T

RegretT (A)

2κ
,

where we set x∗ := arg minx∈K
∑T

t=1〈ft,x〉.

We turn our attention to the second reduction.

Algorithm 6 Conversion of Online Linear Optimization Alg. L to Approachability Alg. A
1: Input: Blackwell instance (X ,Y ,v(·, ·), S), with S a cone; and a valid halfspace oracle
O

2: Input: Online Linear Optimization oracle L
3: Set: K = S0 ∩B2(1)
4: for t = 1, . . . , T do
5: Query L: θt ← LK(f1, . . . , ft−1), where fs ← −v(xs,ys)
6: Query O: xt ← O(Hθt) where Hθt := {z : 〈θt, z〉 ≤ 0}
7: Let: A(y1, . . . ,yt−1) := xt
8: Receive: yt ∈ Y
9: end for

We now prove a similar rate for reverse direction. Here we assume that S is a cone, but
we relax this restriction next.

67

Theorem 52. The reduction in Algorithm 6, when S is a cone, leads to a rate of approach-
ability of algorithm A of DT (A; y1:T) ≤ Regret(LK;f1:T)

T
.

Proof. We state precisely the halfspace oracle guarantee from line 6. We know that v(xt,y) ∈
Hθt or equivalently 〈θt,v(xt,y)〉 ≤ 0 for any y ∈ Y . In particular, since v(xt,yt) = −ft, we
have 〈θt, ft〉 ≥ 0. We bound DT (A) by applying Lemma 48 to obtain:

DT (A) = dist

(
1

T

T∑
t=1

v(xt,yt), S

)
= max

θ∈K

〈
1

T

T∑
t=1

v(xt,yt),θ

〉
=

1

T
max
θ∈K

(
−

T∑
t=1

〈ft,θ〉

)

≤ 1

T

(
T∑
t=1

〈ft,θt〉 −min
θ∈K

T∑
t=1

〈ft,θ〉

)
(5.9)

=
1

T
RegretT (A) (5.10)

where the inequality follows by the halfspace oracle guarantee.

For a Blackwell instance (X ,Y ,v(·, ·), S), even when S is not a cone we can still use
Algorithm 6 by lifting S: apply Algorithm 6 to the instance (X ,Y ,v′(·, ·), S ′), where S ′ :=
cone({κ} × S) and v′(x,y) := κ⊕ v(x,y).

Corollary 53. Given a Blackwell instance (X ,Y ,v(·, ·), S) with compact S, and let its lifted
instance be (X ,Y ,v′(·, ·), S ′) as described above. Then

dist

(
1

T

T∑
t=1

v(xt,yt), S

)
≤ 2 · dist

(
1

T

T∑
t=1

v′(xt,yt), S
′

)
≤ 2

T
RegretT (A)

Proof. Apply Lemma 49 to Theorem 52.

We include the compactness assumption only because Lemma 49 requires it yet it is
not necessary; the size of S does not enter into the bound. For any Blackwell instance
(X ,Y ,v(·, ·), S) with non-compact S, we may always consider a functionally equivalent in-
stance (X ,Y ,v(·, ·), S0), where S0 ⊂ S is compact. Letting U := {v(x,y) : x ∈ X ,y ∈ Y},
which is compact, we may simply let S0 be the convex hull of all projections of points in U
onto S. Hence dist(z, S) = dist(z, S0) for all z ∈ U .

5.5 Efficient Calibration via Approachability and OLO

Imagine a sequence of binary outcomes, say ‘rain’ or ‘shine’ on a given day, and imagine
a forecaster, say the weatherman, that wants to predict the probability of this outcome on
each day. A natural question to ask is, on the days when the weatherman actually predicts
“30% chance of rain”, does it actually rain (roughly) 30% of the time? This exactly the
problem of calibrated forecasting which we now discuss.

68

There have been a range of definitions of calibration given throughout the literature,
some equivalent and some not, but from a computational viewpoint there are significant
differences. We thus give a clean definition of calibration, first introduced by Foster [34],
which is convenient to asses computationally.

We let y1, y2, . . . ∈ {0, 1} be a sequence of outcomes, and p1, p2, . . . ∈ [0, 1] a sequence of
probability predictions by a forecaster. We define for every T and every probability interval
[p− ε/2, p+ ε/2) for p ∈ [0, 1] and ε > 0, the quantities

nT (p, ε) :=
T∑
t=1

I[pt ∈ [p− ε/2, p+ ε/2)], ρT (p, ε) :=

∑T
t=1 ytI[pt ∈ [p− ε/2, p+ ε/2)]

nT (p, ε)
.

The quantity ρT (p, ε) should be interpreted as the empirical frequency of yt = 1, up to round
T , on only those rounds where the forecaster’s prediction was within ε/2 of p. The goal of
calibration, of course, is to have this empirical frequency ρT (p, ε) be close to the estimated
frequency p in the limit. The standard definition of a calibrated forecaster is one that satisfies

for all p ∈ [0, 1], ε > 0 : lim sup
T→∞

|ρT (p, ε)− p| ≤ O(ε) unless nT (p, ε) = o(T). (5.11)

Requiring that nT (p, ε) does not grow too slowly is an important condition, as we can not
expect the forecaster to be calibrated in regions on which he predicts only a small number
of times. On the other hand, this case-sensitive condition is somewhat awkward, and we
instead use the following equivalent notion.

Definition 54. Let the (`1, ε)-calibration rate for forecaster A be

Cε
T (A) = max

0,

bε−1c∑
i=0

nT (iε, ε)

T
|iε− ρT (iε, ε)| − ε

2

 .

We say that a forecaster is (`1, ε)-calibrated if Cε
T (A) = o(1), or alternatively

lim supT→∞C
ε
T (A) ≤ 0.

The definition of asymptotic calibration considers the “total error” over an ε-grid, and
it adjusts the normalization for each term to 1

T
. The benefit here is that we can ignore

intervals in this grid for which nT (p, ε) = o(T). In addition, we subtract the constant ε/2
which is an artifact of the discretization by ε; this is the smallest constant which allows
for lim supT→∞C

ε
T (A) ≤ 0. A standard reduction in the literature (see e.g. [24]) shows

that a fully-calibrated algorithm (i.e. one satisfying (5.11)) can be constructed from and
(`1, ε)-calibrated algorithm. Henceforth we only consider the (`1, ε) condition.

As our goal is to minimize the calibration score Cε
T , we can interpret this value instead

as a distance to the `1-norm ball. Define the calibration vector cT ∈ Rbε−1c at time T as:
cT (i) = nT (iε,ε)

T
(iε− ρT (iε, ε)).

Claim 1. Whenever cT /∈ B1(ε/2), we have

Cε
T = dist1(cT , B1(ε/2)).

69

Proof. Notice that for any x: dist1(x, B1(ε/2)) := miny:‖y‖1≤ε/2 ‖x− y‖1 = max{0,−ε/2 +
‖x‖1}. The second equality follows by noting that an optimally chosen y will lie in the same
quadrant as x. When we set x = cT , it is clear that ‖cT‖1 > ε/2 given our assumption that
cT /∈ B1(ε/2).

The utility of this claim shall be to convert the problem of (`1, ε)-calibration to a problem
of approachability; that is, can we approach the set B1(ε/2) for a particular vector-valued
game? In the following section we describe this construction in detail.

5.5.1 Existence of Calibrated Forecaster via Blackwell Approach-
ability

A surprising fact is that it is possible to achieve calibration even when the outcome
sequence {yt} is chosen by an adversary, although this requires a randomized strategy of
the forecaster. Algorithms for calibrated forecasting under adversarial conditions have been
given in Foster and Vohra [35], Fudenberg and Levine [39], and Hart and Mas-Colell [44].

Interestingly, the calibration problem was reduced to Blackwell’s Approachability The-
orem in a short paper by Foster in 1999 [34]. Foster’s reduction uses Blackwell’s original
theorem, proving that a given set is halfspace-satisfiable, in particular by providing a con-
struction for each such halfspace. Here we provide a reduction to Blackwell Approachability
using the response-satisfiability condition – that is by using Theorem 41 – which is both
significantly easier and more intuitive than Foster’s construction2. We also show, using the
reduction to Online Linear Optimization from the previous section, how to achieve the most
efficient known algorithm for calibration by taking advantage of the Online Gradient Descent
algorithm of Zinkevich [77], using the results of Section 5.4.

We now describe the construction that allows us to reduce calibration to approachability.
For any ε > 0 we will show how to construct an (`1, ε)-calibrated forecaster. Notice that from
here, it is straightforward to produce a well-calibrated forecaster [35]. For simplicity, assume
ε = 1/m for some positive integer m. On each round t, a forecaster will now randomly
predict a probability pt ∈ {0/m, 1/m, 2/m, . . . , (m− 1)/m, 1}, according to the distribution
wt, that is Pr(pt = i/m) = wt(i). We now define a vector-valued game. Let the player
choose wt ∈ X := ∆m+1, and the adversary choose yt ∈ Y := [0, 1], and the payoff vector
will be

v(wt, yt) :=

〈
wt(0)

(
yt −

0

m

)
,wt(1)

(
yt −

1

m

)
, . . . ,wt(m)(yt − 1)

〉
(5.12)

Lemma 55. Consider the vector-valued game described above and let S := B1(ε/2).
If we have a strategy for choosing wt that guarantees approachability of S, that is
1
T

∑T
t=1 v(wt, yt)→ S, then a randomized forecaster that selects pt according to wt is (`1, ε)-

calibrated with high probability.

2A similar existence proof was discovered concurrently by Mannor and Stoltz [55]

70

The proof of this lemma is straightforward, and is similar to the construction in Foster
[34]. The key fact is that 1

T

∑T
t=1 v(wt, yt) = E[cT], where the expectation is taken over

the algorithms draws of every pt according to the distribution wt. Since each pt is drawn
independently, by standard concentration arguments we can see that if 1

T

∑T
t=1 v(wt, yt) is

close to the `1ball of radius ε/2, then the (`1, ε)-calibration vector is close to the ε/2 ball
with high probability.

We can now apply Theorem 41 to prove the existence of a calibrated forecaster.

Theorem 56. For the vector-valued game defined in (5.12), the set B1(ε/2) is response-
satisfiable and, hence, approachable.

Proof. To show response-satisfiability, we need only show that, for every strategy y ∈ [0, 1]
played by the adversary, there is a strategy w ∈ ∆m for which v(w, y) ∈ S. This can be
achieved by simply setting i so as to minimize |iε − y|, which can always be made smaller
than ε/2. We then choose our distribution w ∈ ∆m+1 to be a point mass on i, that is we set
w(i) = 1 and w(j) = 0 for all j 6= i. Then v(w, y) is identically 0 everywhere except the ith
coordinate, which has the value y − i/m. By construction, y − i/m ∈ [−1/m, 1/m], and we
are done.

5.5.2 Efficient Algorithm for Calibration via Online Linear Opti-
mization

We now show how the results in the previous Section lead to the first efficient algorithm
for calibrated forecasting. The previous theorem provides a natural existence proof for
Calibration, but it does not immediately provide us with a simple and efficient algorithm.
We proceed according to the reduction outlined in the previous section to prove:

Theorem 57. There exists a (`1, ε)-calibration algorithm that runs in time O(log 1
ε
) per

iteration and satisfies Cε
T = O

(
1√
εT

)
The reduction developed in Theorem 52 has some flexibility, and we shall modify it for

the purposes of this problem. The objects we shall need, as well as the required conditions,
are as follows:

1. A convex set K

2. An efficient learning algorithm A which, for any sequence f1, f2, . . ., can select
a sequence of points θ1,θ2, . . . ∈ K with the guarantee that

∑T
t=1〈ft,θt〉 −

minθ∈K
∑T

t=1〈ft,θ〉 = o(T). For the reduction, we shall set ft ← −v(wt, yt).

3. An efficient oracle that can select a particular wt ∈ X for each θt ∈ K with the
guarantee that

dist

(
1

T

T∑
t=1

v(wt, yt), S

)
≤ 1

T

(
T∑
t=1

〈−v(wt, yt),θt〉 −min
θ∈K

T∑
t=1

〈−v(wt, yt),θ〉

)
(5.13)

71

where the function dist() can be with respect to any norm.

The Setup Let K = B∞(1) = {θ ∈ Rd : ‖θ‖∞ ≤ 1} be the unit cube. This is an
appropriate choice because we can write dist1(x, B1(ε/2)) for x /∈ B1(ε/2)) as

dist1(x, B1(ε/2)) := min
y:‖y‖1≤ε/2

‖x− y‖1 = −ε/2 + ‖x‖1 = −ε/2− min
θ:‖θ‖∞≤1

〈−x,θ〉; (5.14)

The former equality was proved in Claim 1. Furthermore, we shall construct our oracle
mapping θ 7→ w with the following guarantee: 〈v(w, y),θ〉 ≤ ε/2 for any y. Using this
guarantee, and if we plug in x = 1

T

∑T
t=1 v(wt, yt) (5.14), we arrive at:

dist1

(∑T
t=1 v(wt, yt)

T
,B1(ε/2)

)
= −ε/2− min

θ:‖θ‖∞≤1

〈
−
∑T

t=1 v(wt, yt)

T
,θ

〉

≤ 1

T

(
T∑
t=1

〈−v(wt, yt),θt〉 −min
θ∈K

T∑
t=1

〈−v(wt, yt),θ〉

)

This is precisely the necessary guarantee (5.13).

Constructing the Oracle We now turn our attention to designing the required oracle in
an efficient manner. In particular, given any θ with ‖θ‖∞ ≤ 1 we must construct w ∈ ∆m+1

so that 〈`(w, y),θ〉 ≤ ε/2 for any y. The details of this oracle are given in Algorithm 7. It

Algorithm 7 Efficient Oracle mapping O : w 7→ θ

Input: θ such that ‖θ‖∞ ≤ 1
if θ(0) ≤ 0 then

w← δ0 // That is, choose w to place all weight on the 0th coordinate
else if θ(m) ≥ 0 then

w← δm // That is, choose w to place all weight on the last coordinate
else

Binary search θ to find coordinate i such that θ(i) > 0 and θ(i+ 1) ≤ 0

w← θ(i)−1

θ(i)−1−θ(i+1)−1 δi + −θ(i+1)−1

θ(i)−1−θ(i+1)−1 δi+1

end if
Return w

is straightforward why, in the final else condition, there must be such a pair of coordinates
i, i+ 1 satisfying the condition. We need not be concerned with the case that θ(i+ 1) = 0,
where we can simply define 0

∞ = 0 and ∞
∞ = 1 leading to w ← δi+1. It is also clear that,

with the binary search, this algorithm requires at most O(logm) = O(log 1/ε) computation.

In order to prove that this construction is valid we need to check the condition that,
for any y ∈ {0, 1}, 〈v(w, y),θ〉 ≤ ε/2; or more precisely,

∑m
i=1 θ(i)w(i)

(
y − i

m

)
≤ ε/2.

72

Recalling that m = 1/ε, this is trivially checked for the case when θ(1) ≤ 0 or θ(m) ≥ 0.
Otherwise, we have

〈v(w, y),θ〉 = θ(i)
θ(i)−1

θ(i)−1 − θ(i+ 1)−1

(
y − i

m

)
+ θ(i+ 1)

−θ(i+ 1)−1

θ(i)−1 − θ(i+ 1)−1

(
y − i+ 1

m

)
=

1

θ(i)−1 − θ(i+ 1)−1

1

m
≤ max(|θ(i)|, |θ(i+ 1)|)

2
ε ≤ ε

2

The Learning Algorithm The final piece is to construct an efficient learning algorithm
which leads to vanishing regret. That is, we need to construct a sequence of θt’s in the unit
cube (denoted B∞(1)) so that

T∑
t=1

〈vt,θt〉 − min
θ∈B∞(1)

T∑
t=1

〈vt,θ〉 = o(T),

where vt := v(wt, yt). There are a range of possible no-regret algorithms available, but we
use the one given by Zinkevich known commonly as Online Gradient Descent [77]. The details
are given in Algorithm 8. This algorithm can indeed be implemented efficiently, requiring

Algorithm 8 Online Gradient Descent

Input: convex set K ⊂ Rd

Initialize: θ1 = 0
Set Parameter: η = O(T−1/2)
for t = 1, . . . , T do

Receive vt
θ′t+1 ← θt − ηvt // Gradient Descent Step
θt+1 ← Project2(θ′t+1,K) // L2 Projection Step

end for

only O(1) computation on each round and O(min{m,T}) memory. The main advantage is
that the vectors vt are generated via our oracle above, and these vectors are sparse, having
only at most two nonzero coordinates. Hence, the Gradient Descent Step requires only O(1)
computation. In addition, the Projection Step can also be performed in an efficient manner.
Since we assume that θt ∈ B∞(1), the updated point θ′t+1 can violate at most two of the `∞
constraints of the ball B∞(1). An `2 projection onto the cube requires simply rounding the
violated coordinates into [−1, 1]. The number of non-zero elements in θ can increase by at
most two every iteration, and storing θ is the only state that online gradient descent needs
to store, hence the algorithm can be implemented with O(min{T,m}) memory. We thus
arrive at an efficient no-regret algorithm for choosing θt.

Putting it all Together We can now fully specify our calibration algorithm given the
subroutines defined above. The precise description is in Algorithm 9, which makes queries
to Algorithms 7 and 8.

73

Algorithm 9 Efficient Algorithm for Asymptotic Calibration

Input: ε = 1/m for some natural number m
Initialize: θ1 = 0, w1 ∈ ∆m+1 arbitrarily
for t = 1, . . . , T do

Sample it ∼ wt, predict pt = it
m

, observe yt ∈ {0, 1}
Set vt := v(wt, yt) // Vector-valued game defined in (5.12)

Query learning algorithm: θt+1 ← Update(θt|vt) // Subroutine from Algorithm 8
Query halfspace oracle: wt+1 ← O(θt+1) // Subroutine from Algorithm 7

end for

of Theorem 57. Here we have bounded the distance directly by the regret, using equation
(5.13), which tells us that the calibration rate is bounded by the regret of the online learning
algorithm. Online Gradient Descent guarantees the regret to be no more than DG

√
T , where

D is the `2 diameter of the set, and G is the `2-norm of the largest cost vector. For the ball

B∞(1), the diameter D =
√

1
ε
, and we can bound the norm of our loss vectors by G =

√
2.

Hence:

Cε
T = dist(cT , B1(ε/2)) ≤ RegretT

T
≤ GD√

T
= O

(
1√
εT

)
(5.15)

74

Chapter 6

Gambler versus Casino

6.1 Introduction

This chapter analyzes the problem of sequential prediction and decision making from the
perspective of a two player game. The game is played by a learner, called here the Gambler,
who makes a sequence of betting decisions. The Gambler’s opponent is the Casino in which
he plays.

Gambler vs. Casino:

1. On each day, the Gambler arrives at the Casino with $1. The Casino presents n events
and each event is played once per day. The Gambler chooses a distribution vector
w ∈ [0, 1]n, where

∑
wi = 1, and bets the portion wi of his $1 budget on event i.

2. On each day the Casino determines the outcome of each event with the objective of
winning as much money from the Gambler as possible. In particular, after observing
the distribution of the Gambler’s bets the Casino decides between a loss or a no loss for
all daily events. These choices are summarized by a loss vector ` ∈ {1, 0}n where `i = 1
implies that on event i, the Gambler lost. (For simplicity, we assume the only relevant
quantities are losses. By shifting our baseline we can model wins as non-losses).

3. At the end of each day, the Gambler leaves the Casino having lost w · ` =
∑

iwi`i and
the cumulative loss of the gambler is updated as L ← L + w · `. The Gambler also
monitors the cumulative performance of each event with a state vector s ∈ Nn, where
si is the current total loss of event i. After incurring loss ` at the current day, the state
vector is updated to s← s + `.

4. The Gambler stops playing as soon as he observes that each even has suffered more
than k losses, where k is some fixed positive integer known to both. The Casino is
aware of this decision and behaves accordingly.

Gambling against a casino may seem an unlikely starting point for a model of sequential
decision making – we generally consider the typical environment for learning to be stochastic

75

rather than adversarial. Yet are these two environments necessarily incompatible? Among
the objectives of this chapter is to address questions such as: “What will be the Gam-
bler’s worst-case cumulative loss?”; and “What is the optimal betting strategy?” These
questions, while clearly game-theoretic, are ultimately answered here by considering a ran-
domized Casino rather than an adversarial one. From this perspective, randomness may
indeed be the Gambler’s worst adversary.

Early work on sequential decision making focused on the problem of predicting a binary
outcome given advice from a set of n experts. In that setting, the goal of the predictor is
to combine the predictions of the experts to make his own prediction, with the objective of
performing well, in hindsight, compared to the best expert. The performance of both the
learner and the experts is measured by a loss function that compares predictions to outcomes.
One of the early algorithms, the Weighted Majority algorithm [53], utilizes a distribution
corresponding to the degree of trust in each expert.

It was observed by Freund and Schapire [38] that the analysis of the Weighted Majority
algorithm can be applied to the so-called hedge setting. Rather than predict a binary out-
come, the learner now plays some distribution over the experts on every round, a loss value
is assigned to each expert independently, and the learner suffers the expected loss according
to his chosen distribution. In this case, the learner bears the exact burden of the Gambler
- that of “hedging” his bets so as to minimize his cumulative loss. To emphasize that the
Gambler/Casino game is useful for settings other than prediction, we use the term “event”
rather than “expert”.

A central theme of much of the sequential decision making literature is the use of so-
called “exponential weights” to determine the learner’s distribution on each round. Use of
the exponential weighting scheme in the case of the Casino game results in the following
strategy for the Gambler: At a state s, bet

wi =
βsi∑
j β

sj
on event i, (6.1)

where the factor β lies in [0, 1).

From the analysis of the Weighted Majority algorithm it follows that the cumulative loss
of the Gambler using the above strategy is bounded by

lnn+ k ln 1
β

1− β
.

Under the assumption that the loss of the best event is at most k, the factor β can be tuned
[38] so that the above bound becomes

k +
√

2k lnn+ lnn.

The exponential weights framework, as well as other online learning techniques, can
be motivated using the method of relative entropy regularization [51]. While the resulting
algorithms are elegant and in some cases can be shown to be asymptotically optimal [22], they

76

do not optimally solve the underlying game. Some improvements have been made using, for
example, binomial weights that lead to slightly better but still non-optimal solutions [22] in
a setting where the experts must produce a prediction. While it is formally easy to define the
optimal algorithms using minimax expressions, it has generally been assumed that actually
computing an efficient solution is quite challenging [23]. More recently, however, a minimax
result [4] was obtained for the specific game of prediction with absolute loss. The resulting
algorithm, Binning, is efficient and optimal in a slightly relaxed setting.

In this chapter we show that the minimax solution to the Gambler/Casino prediction
game, which is identical to the underlying game of the hedge setting with binary losses, can
be obtained efficiently. In addition, the game can be fully analyzed using a simple Markov
process: a random walk on an n-dimensional lattice. The value of the game, that is the
cumulative loss of an optimal Gambler, can be interpreted as the expected length of such
a random walk. The Gambler’s optimal play, the portion of his budget he should bet on a
given event, can similarly be interpreted as manifesting an assessment of the probability of
a specific random outcome of this walk.

The game’s stopping criterion, that is when all events have lost at least k + 1 times,
may seem unusual at first yet fits quite naturally within the experts framework. Indeed,
online learning bounds are often tuned with an explicit a priori knowledge of the cumulative
loss of the best expert, which here would be k1. While perhaps not realistic in practice, k
can be estimated and various techniques such as successive doubling can be used to obtain
near-optimal bounds [23].

The chapter is structured as follows. In Section 6.2 we give a minimax definition of
the optimal value of the game considered here. In Section 6.2.1 we modify the game by
restricting the adversary’s choices to unit loss vectors. In Section 6.3, we then turn our
attention to a specific Markov process with a number of relevant properties. We apply this
randomized approach to the Casino game in Section 6.4, where we prove our main results.
In Section 6.5 we give recurrences and exact formulas, based on sums over multinomials, for
the value of the game and for the optimal probabilities. We set out an efficient method to
compute both the optimal strategy of the Gambler and the value of the game. In Section
6.6 we compare the optimal regret bound to previous results, and in Section 6.7 we draw a
connection between our game and a well studied version of the coupon collector problem. We
also briefly summarize what is known about the asymptotics of this problem. We conclude
with a discussion of our results and list open problems (Section 6.8).

6.2 The Value of the Game

Assume that in each event the Gambler has already suffered some losses specified by state
vector s. Define V (s) to be the total money lost by an optimal Gambler playing against an

1Strictly speaking, in the expert setting it is assumed that at least one expert has not crossed the k-
mistake threshold, while here we stop the Gambler/Casino game when the loss of the last expert/event goes
beyond this threshold. It is easy to show that this slight modification, made for convenience, increases the
worst-case loss of the Gambler by exactly 1.

77

optimal Casino starting from the state s. That is, V (s) is the amount of money that the
optimal Gambler will lose (against an optimal Casino) from now until the end of the game.
Roughly speaking, the value of the game is computed as:

V (s)
?
= min

dist. w
max
`∈{0,1}n

w · `+ V (s + `)

The Gambler chooses w to minimize the loss while the Casino chooses ` to maximize the loss,
where the loss is computed as the loss w ·` on this round plus the worst case loss V (s+`) on
future rounds. However, we have to be careful, as this recursive definition doesn’t address
the following issues:

• When is the game over? What is the base case of V (·)?

• Is this recursion bounded?

• Do we need to record the losses si that go above k?

We address these issues beginning with some simplifications and notational conventions.
First, we assume that the state vector s lies within the set S = {0, 1, . . . , k+ 1}n. Note that
it is not necessary to record the losses of events that have already crossed the k threshold.
We call such events dead. Since the losses of dead events are not restricted, having loss
k + 3 is the same as loss k + 100. We therefore “round” all states s into the state space
{0, 1, . . . , k + 1}n using the notation +̇ which we define below. We use the notation λ(s) to
record the set of live events; the statement i /∈ λ(s) is exactly the statement si = k + 1.

Second, as the game is defined recursively, we must guarantee that this recursion ter-
minates. If the Casino repeatedly chose ` = 〈0, . . . , 0〉, for example, the game would make
no progress. The same problem occurs if the Casino causes losses on only dead events. We
must therefore place additional restrictions so that the dead state is reached eventually. The
simplest way to ensure this is to forbid the Casino from inflicting loss on only dead events.
Yet this is not sufficient: with this restriction alone the Gambler would have a guaranteed
non-losing strategy by betting solely on dead events. We thus assume that neither can the
Casino can inflict losses on dead events nor can the Gambler bet money on them (keeping
in mind that all such bets are in any case non-optimal). We must enforce this explicitly in
order to have a well-defined game.

We use two notational conventions to describe the above restrictions. First, we write
w ∼ λ(s) to describe the set {w ∈ ∆n | wi = 0 ∀i /∈ λ(s)} where ∆n is the n-simplex. We
also abuse notation slightly and write ` ⊂ λ(s) to mean that ` ∈ {0, 1}n and `i = 0 for all
i /∈ λ(s).

We now define the value of the game precisely.

Definition 58. Define the value V (s) of the game as follows.

• At the dead state, V (d) := 0.

78

• For any other s ∈ S, we define V (s) recursively as

V (s) := min
w∼λ(s)

max
0 6=`⊂λ(s)

w · `+ V (s + `). (6.2)

In our notation, we commonly make use of several special states. The state where the
game begins is the “initial” state, s = 0. Once all events have lost more than k times the
game is over and we refer to this as the dead state d. It will also be useful to consider
one-live states oi, where all events except i are dead, and the remaining event has exactly
k losses. By the game definition, it is easy to check that V (oi) = 1, since the Gambler must
bet all of his money on this event, and the Casino must inflict a corresponding loss, charging
the Gambler $1 and ending the game.

Below, we include a list of notations for reference:

Notation:

S :={0, . . . , k + 1}n (the state space)

0 := 〈0, 0, . . . , 0〉 = 〈0n〉 (the initial state)

d := 〈(k + 1)n〉 (the dead state)

oi := d− ei (ith one-live state)

λ(s) := {i ∈ [n] : si ≤ k} (set of live events)

s+̇` := 〈min(si + `i, k + 1)〉 (“rounded” addition)

|s| :=
∑

si (elementwise sum)

∆n := {w ∈ Rn
+ : |w| = 1} (the n-simplex)

6.2.1 The Modified Game

We also consider a modified game that we make easier for the Gambler. In this new
game, we restrict the Casino to inflict loss on exactly one event in each round, i.e. ` must
be a basis vector e1, . . . , en. So for ` = ei we have w · ` = wi. We can then precisely define
the value V̂ (·) of the modified game:

Definition 59. Define V̂ (d) := V (d) = 0. Otherwise

V̂ (s) := min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei). (6.3)

One of the central results of this chapter is that the above game, while seemingly more
restricted, is ultimately just as difficult for the Gambler as the original game. It is easy to
show that V (s) ≥ V̂ (s), since the Casino has strictly more choices in the original game. We
go further and prove as our main result in Theorem 69 that

V (s) = V̂ (s).

79

Thus both games have the same worst-case outcome.

Both the analysis of the modified game, as well as the proof of the above result, requires
a different formulation of the Casino’s actions.

6.3 A Randomized Casino

In Section 6.2 we presented a game-theoretic analysis of a well-known sequential pre-
diction problem characterized as a game between a Gambler and a Casino. In the present
section, we consider a different framework, in which the Casino uses random events. We will
show that introducing a randomized strategy of the Casino enables us to specify the optimal
strategy of the Gambler.

6.3.1 A Random Walk on the State Graph

Let us now imagine that our Casino does not fix outcomes deterministically, but instead
chooses the outcome of each event using the following random process. Assume we are at
state s and that, on each day, an event i is chosen uniformly at random from {1, . . . , n} and
a loss is assigned to event i. In other words, the loss vector ` is a uniformly sampled unit
vector ei, and after the loss the new state is s+̇ei. This process continues until we reach the
dead state d.

We can model this behavior as a Markov process on the state space as follows. Consider
any sequence of indices I1, I2, . . . ∈ [n], and let St :=

∑t
m=1 eIm , where S0 := 0. Assuming

that we start at state s, this induces a sequence of states

s = s+̇S0 → s+̇S1 → s+̇S2 → . . .→ s+̇St.

Notice that this process has “self-loops”; i.e. it is quite possible that s+̇St = s+̇St+1. This
occurs when (s+̇St)It+1 is already at k + 1.

If we imagine the state space S as an n-dimensional lattice, which we will call the state
lattice, then the Markov process above can be interpreted as a random walk on this lattice.
The walker starts at the initial state 0, and on every time interval a positively directed single
step is taken along an axis drawn uniformly at random. If the walker has already reached
the k + 1 boundary in this dimension, he remains in place. The walk stops once the dead
state d is reached. We will show that the value V is 1/n times the expected total number
of random draws that achieves this position. Thus V is the expected walk/path length from
s to d.

6.3.2 Survival Probabilities

We now define a survival probability at a state s. We will show in the next section that
such probabilities are the basis for the Gambler’s optimal strategy.

80

Definition 60. Assume we are at state s, and let the random state s+̇St be the result of the
above random walk after t steps. Define the ith survival probability p̂i(s) to be the probability
that

∃t : s+̇St = oi.

Equivalently,
p̂i(s) = Pr(λ(s+̇St) = {i} for some t).

We call these survival probabilities since p̂i(s) is the probability that, if the losses were
assigned randomly to the events in sequence, the ith event would be the last non-dead event.

Lemma 61. For any s 6= d, the vector

p̂(s) := 〈p̂i(s)〉ni=1

defines a distribution on {1, . . . , n}.

Proof. The quantity
∑

i p̂i(s) is the probability that eventually there is exactly one live event.
This probability is exactly 1, given that the current state is not the dead state d.

We list some examples of survival probabilities:

• When s = 0 (or any other symmetric state), we have

p̂i(s) =
1

n
, ∀i

bexause there is a uniform chance of survival.

• When i is a dead event, i.e. si = k + 1, then

p̂i(s) = 0

because no dead event can be the last remaining live event.

• If there is only one remaining live event, i.e. λ(s) = {i}, then

p̂i(s) = 1.

Computing p̂i(s) for more general s requires a recursion, and we leave this discussion for
Section 6.5.

81

6.3.3 Expected Path Lengths

Another important quantity we consider is the length of a random path, i.e. the number
of steps in the random walk on the state lattice required until the dead state d is reached.

Definition 62. For a sequence S0, S1, . . ., let

T (s) := min{t ≥ 0 : s+̇St = d}.

That is, T (s) is the length of the random path starting at s and just entering d. Furthermore,
let

τ(s) := E T (s)

be the expected path length.

We note that paths may be infinitely long due to self-loops, yet such paths occur with
probability 0. A key fact is that the expected path length τ(s) can be rewritten using
indicator variables:

T (s) =
∞∑
t=0

1[s+̇St 6= d], (6.4)

i.e. T (s) is the number of initial segments (including the empty segment) of a random path
starting at s that has not reached the dead state d.

We now prove a relationship between expected path length τ(s) and survival probabilities
p̂i(s):

Lemma 63. For any state s and event i,

p̂i(s) =
1

n
(τ(s)− τ(s+̇ei)).

Proof. When i /∈ λ(s), then s = s+̇ei and it is trivially true that

p̂i(s) = 0 =
1

n
(τ(s)− τ(s+̇ei)).

The interesting case is when i ∈ λ(s). Indeed, Using (6.4), we have

τ(s)− τ(s + ei)

= E T (s)− E T (s + ei)

= E

[
∞∑
t=0

1[s+̇St 6= d]− 1[(s + ei)+̇St 6= d]

]
.

Since the dead state d is an absorbing state we have that for any path S, if s+̇S = d, then
s + ei+̇S = d as well. Equivalently, if (s + ei)+̇S 6= d, then s+̇S 6= d. Thus in the difference
between the expectations, we only need be concerned with sequences St that are accounted
for in the first expectation but not in the second. Therefore the above difference becomes

= E

[
∞∑
t=0

1[(s+̇St 6= d) ∧ ((s + ei)+̇St) = d]

]
.

82

We claim that any sequence St that satisfies the conjunction must have the property that
(St)i = k − si. This is true because (s + ei)+̇St = d and therefore (St)i ≥ k + 1 − si. Also
(St)j ≥ k + 1− sj, for j 6= i. This implies that s+̇St = oi and the above difference becomes

E
[∑∞

t=0 1[s+̇St = oi]
]
.

The last term is exactly p̂i(s), the probability that s+̇St eventually arrives at oi, times the
expected number of iterations spent in state oi before arriving at d. To leave oi, the random
walk must make a step in the ith direction, and thus the expected “waiting time” at oi is
can be computed as

∞∑
q=1

q (1− 1

n
)q−1︸ ︷︷ ︸

prob. of q − 1 loops

1

n︸︷︷︸
prob. of leaving

= n.

The last lemma implies an important fact about the state lattice. Interpret the state
lattice as a directed graph with directed edges at all pairs (s, s + ei) for each i ∈ λ(s). Also
associate the edge (s, s + ei) with the survival probability p̂i(s). Consider starting at state s
and walking through this directed graph:

s→ s + ei1 → s + ei1 + ei2 → . . .

Corollary 64. Consider any two states s, s′. For any path from s to s′ through the directed
state graph, the sum of all edge weights p̂i(·) along this path is independent of the choice of
path.

Proof. Assume the path s = s1, s2, . . . , sT , sT+1 = s′ defined by a sequence of moves is
i1, i2, . . . , iT , where st+1 = st + eit . By Lemma 63 the total weight sum is

T∑
t=1

p̂it(s
t) =

T∑
t=1

1

n
(τ(st)− τ(st+1)) =

1

n
(τ(s)− τ(s′)),

which is independent of the choice of path.

Note that in the definition of the directed state graph above and in the corollary we
ignore loops, which occur when s = s+̇ei (or equivalently i /∈ λ(s)). Such loops out of state
s are immaterial because they correspond to dead events, and i /∈ λ(s) iff p̂i(s) = 0.

6.4 The Optimal Strategy

We now have the all the tools to express V̂ (s) in terms of the expected path length τ(s),

prove that V (s) = V̂ (s), and show that the optimal betting strategy for the gambler is p̂(s).

We prove two major theorems in this section. We provide the mathematically precise
argument for each but, as formality often obscures the true intuition, we also provide an

83

“English Version” so that the reader sees a rough sketch. Our mathematical proofs require
induction on the state space S, so we need a “measure of progress” for state vectors s. For
any s ∈ S, define m(s) := n(k + 1) − |s|, the number of steps required before reaching the
dead state. Clearly m(s) = 0 if and only if s = d.

Theorem 65. For all states s,

V̂ (s) =
1

n
τ(s).

Proof. (English Version) Assume that the Gambler always plays according to the distribu-
tion vector p̂(s). Then we may think of the Casino’s choices as a walk around the state graph
and, as we discussed at the end of Section 6.3, a collection of the “weights” p̂i(·) along the
way, ending at d. But as we proved in Corollary 64 for the weights p̂(.), it doesn’t matter
what path is taken: the Casino will always receive 1

n
(τ(s)− τ(d)) = 1

n
τ(s) on any path from

s that just ended in d.

If the Gambler ever chooses a distribution w different from p̂(s) at some state s, then the
Casino can simply let ` = ej for any j for which wj > p̂j(s), and on this round the casino
will force loss greater than p̂j(s). This means that on some path starting from s, the Casino
will accrue total weight/loss larger than 1

n
τ(s), and therefore that the distribution w at s

was non-optimal for the Gambler. We conclude that for the Gambler p̂(.) is the only optimal
assignment of distributions to states.

Proof. (Formal Version) We induct on m(s). First we check the base case s = d. In this
case, the expected path length is exactly 0 since we have already reached the dead state.
Thus τ(s)

n
= 0 = V̂ (d) as desired.

Now assume that m(s) > 0. Then

V̂ (s) = min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei)

(induc.) = min
w∼λ(s)

max
i∈λ(s)

wi +
1

n
τ(s + ei)

≤ max
i∈λ(s)

p̂i(s) +
1

n
τ(s + ei)

(Lem. 63) = max
i

1

n
(τ(s)− τ(s + ei)) +

1

n
τ(s + ei)

=
1

n
τ(s).

We prove V̂ (s) ≥ 1
n
τ(s) by a similar induction. Assume that the Gambler chooses the

optimal distribution w∗ which may indeed be different from p̂(s). For any i /∈ λ(s), p̂i(s) is
defined as zero. For the optimal strategy w∗i = 0 as well because otherwise the Casino can
incurr unbounded loss by playing ei repeatedly. Since w∗ and p̂(s) are different distributions

84

on the live events λ(s), there must exist some j ∈ λ(s) for which w∗j > p̂j(s). We now have

V̂ (s) = max
i∈λ(s)

w∗i + V̂ (s + ei)

(induc.) = max
i∈λ(s)

w∗i +
1

n
τ(s + ei)

≥ w∗j +
1

n
τ(s + ei)

> p̂j(s) +
1

n
τ(s + ei)

(Lem.63) =
1

n
(τ(s)− τ(s + ei)) +

1

n
τ(s + ei)

=
1

n
τ(s).

Corollary 66. For any s 6= d, p̂(s) is the unique optimal probability vector for the learner

for the game related to V̂ .

Proof. See end of last proof.

Corollary 67. For all s and all i ∈ [n],

p̂i(s) = V̂ (s)− V̂ (s+̇ei)

Proof. This follows from the previous theorem and Lemma 63.

We need one more lemma before we can prove our main result.

Lemma 68. For any state s and distinct events i, j ∈ λ(s), we have

p̂i(s) < p̂i(s + ej).

This fact is intuitive: if losses are randomly assigned then the probability that the ith
event will survive last strictly increases when another event suffers a loss. We prove this
precisely below.

Proof. To show that p̂i(s) ≤ p̂i(s + ej) is straightforward. Any sequence S0, S1, S2, . . . that
brings s to the one-live state oi also brings s + ej to oi. Indeed, if s+̇St = oi for some t then
certainly (s + ej)+̇St = oi as well.

To show that this inequality is strict, we need only find one random sequence for which
s + ej is brought to oi but not s. Take any sequence S0, S1, . . . such that s+̇St = d− ei− ej
(where the only events remaining are i and j) and where St+1 = St+ei. Then (s+ej)+̇St = oi
but s+̇St+1 = s+̇(St + ei) = oj.

85

Theorem 69. For all states s,

V (s) = V̂ (s) =
1

n
τ(s).

Proof. (English Version) Imagine a gambler who plays the distribution p̂(s) at every state
s. We already know that the Casino can use its modified game strategy and simply play
unit vectors ` = ei on each round to force 1

n
τ(s) loss. Yet since ` is unrestricted, can it

obtain more? The answer is No: consider what happens if the Casino decides to choose `
larger than a unit vector, e.g. let ` = ei + ej for simplicity. Then on this round it obtains
p̂i(s)+ p̂j(s), but it can do better! We proved in Lemma 75 that survival probabilities strictly
increase and therefore p̂i(s) < p̂i(s + ej). Thus, a more patient Casino could choose ` = ej
on this round, obtain p̂j(s), and then choose ` = ei on the next round to obtain p̂i(s + ej).
As p̂j(s) + p̂i(s + ej) > p̂j(s) + p̂i(s), the Casino only does worse by playing non-unit vectors.
Indeed, this suggests that the Gambler has a strategy by which the Casino can inflict only
as much loss as in the modified game, and thus the value V (s) is no different from V̂ (s).

Proof. (Formal Version) Certainly V (s) ≥ V̂ (s), since the Casino is given strictly fewer

choices in the modified game. Thus we are left to show that V (s) ≤ V̂ (s). We proceed via

induction on m(s). By definition, V (s) = V̂ (s) for the case s = d. Now assume that, for all

successive states s′ where m(s′) < m(s), V (s′) = V̂ (s′). We proceed by directly analyzing the
recursive definition (6.2). Assume that the Gambler has chosen the (possibly non-optimal)
distribution w = p̂(s) to distribute his wealth on the live events λ(s), and let `∗ ∈ {0, 1}n be
an optimal choice of the Casino (which can depend on the Gambler’s choice). By definition
(58) of V (s), the chosen loss vector can’t be 0 and all events with loss one must be in λ(s).
More precisely,

V (s) = min
w∼λ(s)

max
0 6=`⊂λ(s)

w · `+ V (s + `)

(ind.) = min
w∼λ(s)

max
0 6=`⊂λ(s)

w · `+ V̂ (s + `)

≤ max
0 6=`⊂λ(s)

p̂(s) · `+ V̂ (s + `)

= p̂(s) · `∗ + V̂ (s + `∗)

If `∗ is any unit vector ei, s.t. i ∈ λ(s), then

V (s) ≤ p̂(s) · ei + V̂ (s + ei)

= p̂i(s) + V̂ (s + ei) = V̂ (s)

and in this case, V (s) = V̂ (s) and we are done. We now prove by contradiction that `∗ can
have no more than one non-zero coordinate. Assume indeed that |`∗| > 1, i.e. it admits a
decomposition `∗ = ei + ¯̀ for some i and bit vector ¯̀ 6= 0 with ¯̀

i = 0. Applying Lemma 75

86

repeatedly, we have that p̂i(s) < p̂i(s + ¯̀) and therefore

p̂(s) · `∗ + V̂ (s + `∗)

= p̂i(s) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Lem. 75) < p̂i(s + ¯̀) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Cor. 67) = V̂ (s + ¯̀)− V̂ (s + `∗) + p̂(s) · ¯̀ + V̂ (s + `∗)

= p̂(s) · ¯̀ + V̂ (s + ¯̀).

But the statement p̂(s) ·`∗+ V̂ (s+`∗) < p̂(s) · ¯̀+ V̂ (s+¯̀) implies `∗ is a non-optimal choice
for the Casino and this contradicts our assumption that `∗ was optimum.

Corollary 70. For any s 6= d, if the learner plays with the optimum probability vector p̂(s),
then the only optimal responses of the adversary in the recurrence (6.2) for V is to choose a
unit vector of a live event.

Proof. Proved at the end of the last theorem.

6.5 Recurrences, Combinatorics and Randomized Al-

gorithms

The quantities V (s), τ(s) and p̂i(s) have a number of interesting properties that we lay
out in this section.

6.5.1 Some Recurrences

The expected path length, τ(s) satisfies a very natural recursion. When s = d, then
the path length is deterministically 0 and therefore τ(d) = 0. Otherwise, we see that the
expected path length is

τ(s) = 1 +

∑n
i=1 τ(s+̇ei)

n
. (6.5)

That is, the expected path length is 1, for the current step in the path, plus the expected
path length of the next random state. Since the next state is chosen randomly from the set
{s+̇ei : i = 1, . . . , n}, the probability of any given state is 1

n
, hence the normalization factor.

Of course, our original quantity of interest is V (s), and as we showed in Theorem 69
V (s) = 1

n
τ(s). This immediately gives us a recursion for V :

V (s) =
1

n

(
1 +

1

n

n∑
i=1

τ(s+̇ei)

)

=
1 +

∑n
i=1 V (s+̇ei)

n
.

87

This recurrence, while true for the function V (·), is ambiguous because V (s) can occur on
both sides of the equation. Indeed, whenever i /∈ λ(s), V (s+̇ei) = V (s). However, we can
rearrange all V (s) terms to obtain the following well-defined recursion:

V (s) =
1 +

∑
i∈λ(s) V (s + ei)

|λ(s)|
. (6.6)

We can find a similar recurrence for p̂i(·). For the one-live states oi we have p̂j(oi) = 1
if i = j and 0 otherwise. If |λ(s)| > 1, then

p̂i(s) =

∑n
j=1 p̂i(s+̇ej)

n
.

As p̂i(s) is the probability of ending at state oi after executing the Markov chain, this formula
is obtained by conditioning on one step of the Markov process. That is, the probability of
ending at state oi is∑

j

Pr(j chosen)Pr(random process takes s+̇ej to oi).

This recurrence suffers from the same problem as did our initial recurrence for V (·): p̂(s)
can occur on both sides of the equality. We again solve this problem by rearranging terms
and obtain

p̂i(s) =

∑
j∈λ(s) p̂i(s + ej)

|λ(s)|
.

6.5.2 Combinatorial Sums

A further analysis gives us exact expressions for both p̂i(s) and V (s) in terms of infinite
sums of multinomials.

Proposition 71. For any state s ∈ S,

p̂i(s) =
∑

r:s+̇r=oi

(
|r|

r1, r2, . . . , rn

)(
1

n

)|r|+1

.

Proof. By definition, p̂i(s) is the probability that s reaches the one-live state oi eventually.
To compute this probability, we consider at what point the Markov process exits the state
oi and into d. Recall the random variable St defined in Section 6.3. Take any r for which
s+̇r = oi and condition on St = r. Then

p̂i(s) =
∑

r:s+̇r=oi

Pr(St = r)Pr(St+1 = r + ei|St = r)

The first probability is exactly
(|r|
r1,r2,...,rn

)
n−|r| and the second probability is exactly 1/n.

88

Since V (s) can be written as an expected path length, we can obtain a similar expression
as a sum of multinomials for V (s):

Proposition 72.

V (s) =
n∑
i=1

∑
r:r+̇s=oi

(|r|+ 1)

(
|r|

r1, r2, . . . , rn

)(
1

n

)|r|+1

.

6.5.3 Randomized Approximations

Computing the exact value V (s) for large but non-asymptotic values of the state vector
is difficult because we have no polynomial time algorithm. On the other hand, finding a
randomized approximation to V (s) can be done very efficiently. Indeed, as we now have
a representation of V (s) in terms of the length of a random walk, we can simply run the
random walk S1, S2, . . . several times, note the length T (s), and return the mean. Such
random approximations require that the distribution on T (s) has low-variance, yet this
certainly holds in the case at hand. While the random walk requires at least n(k + 1)
iterations to finish, a simple argument shows that with probability 1 − δ the random walk
completes in less than nk log(nk/δ) rounds.

Algorithm 10 Random Approximation to V (s)

Input: state s
t← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei
t← t+ 1

until z = d
end for
Return t

n·NUMITER .

If R(s) is the random variable returned by the above algorithm, then clealy ER(s) =
V (s). By increasing NUMITER, the variance of this estimate can be reduced quickly.

A randomized approximation for p̂(s) can be obtained similarly. Again the above algo-
rithm approximately computes p̂(s) in the following sense: If R(s) is the random variable
returned by the above algorithm, then clearly ER(s) = p̂(s). Again increasing NUMITER,
reduces the variance of the estimate.

89

Algorithm 11 Random Approximation to p̂(s)

Input: state s 6= d
p← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei

until z = oj for some j
p← p + ej

end for
Return p

NUMITER
.

6.5.4 A Simple Strategy in a Randomized Setting

In the particular case of betting against the Casino, it may be necessary for the Gambler
to compute p̂i(s) in order to place his bets optimally. In an alternative setting, however,
a randomized algorithm may be sufficient. Let us consider the case in which the Gambler
chooses to bet according to the outcome of several coin tosses. Further assume that the
Casino can observe his strategy but cannot see the outcome of the coin tosses or his final
bets. In this scenario, the Gambler can even bet all of his money on a random event
I ∈ {1, . . . , n} drawn according to some distribution as long as E1[I = i] = p̂i(s) for all i,
and indeed his expected loss would be p̂(s) · `.

For this scenario, randomly approximating p̂ is not necessary: only one sample is needed!
To be precise, the Gambler can take the state s, run the random walk until the state reaches
oi for some i, and then bet his full dollar on event i. This bet will be correct in expectation,
i.e. he will pick event i with probability p̂i(s), and thus his expected loss will be exactly
p̂ · `. The key here is that sampling from the distribution p̂(s) may be quite easy even when
computing it exactly may take more time.

Note that the above method based on one sample is similar to the way the Randomized
Weighted Majority algorithm approximates the Weighted Majority algorithm (more precisely
the WMC algorithm of [53]). More precisely NUMITER=1 of Algorithm 6.5.3 corresponds to
WMR, and NUMITER →∞ corresponds to WMC.

6.6 Comparison to Previous Bounds

As mentioned in the introduction, the bound obtainable base on exponential weights [38]
is

k +
√

2k log n+ log n (6.7)

and can be shown to be asymptotically optimal [75]. Having computed the minimax solution
to the same game, we can compute the game-theoretically optimal bound of V (0) using

90

Algorithm 10. For small values of n and k, these bounds do differ quite substantially. We
present in Figure ?? a comparison of the regret for n = 2, 10, 100 and k = 1, . . . , 20.

6.7 Connections to classic problems of probabilistic

enumerative combinatorics.

Theorem 69 shows that an optimal strategy for the Casino requires unit vector plays. This
leads to alternative interpretations of the game in terms of well studied random processes.

For example, one can easily confirm that our game also describes the random process
underlying a generalized form of the Coupon Collector’s Problem [32] in which the collector
buys cereal boxes one by one in order to obtain K = k + 1 complete sets of n baseball
cards, assuming one card is randomly placed within each cereal box. The value of our game,
V (0, 0), is in fact the expected number of cereal boxes, per baseball card, needed to obtain
the desired K complete sets.

Specifically, the probability generating function for the generalized Coupon Collector’s
Problem is [59]

Gn,K(z) =
n

(K − 1)!

∫ ∞
0

e−nt/ztK−1

[∑
j≥k

tj

j!

]n−1

dt.

Taking the derivative at z = 1 and dividing by n, we derive the expected number of steps
to obtain K sets, which is also the value of our game, viz.

V (0n) =
n

(K − 1)!

∫ ∞
0

tKe−nt

[∑
j≥k

tj

j!

]n−1

dt. (6.8)

Equation (6.8) gives us an elegant closed form for the two-card case (n = 2):

V (〈0, 0〉) = K +
K

22K

(
2K

K

)
From (6.8) we also obtain the well known asymptotic expression for the value, for large n
and fixed K,

V (0n)→n→∞ log n+ (K − 1) log log n[1 + o(1)].

The same asymptotic form appears in the analysis of an evolving random graph. [29] The
random walk on the state lattice provides yet another interpretation of the same dynamics.

For K >> n >> 1, the law of large numbers gives [64]

V (〈0n〉) = K +O(K1/2).

91

6.8 Conclusion

We showed in Corollary 70 that against the optimal learning algorithm the optimal
strategy of the adversary is to choose one of the unit loss vectors as his response. Curiously
enough it can be show that this is also true of the Weighted Majority algorithm (6.1). That
is, any trial in which q > 1 experts incurred a unit of loss can be split into q trials in which a
single expert has a unit of loss, and doing this always increases the loss of the algorithm for
all update factor β ∈ [0, 1). This observation about the Weighted Majority algorithm might
actually lead to improved loss bounds for this algorithm, perhaps in the way the parameter
β is tuned.

There remains also a deep question regarding the techniques introduced in this chapter:
how general is this method of computing the value of a game based on a random path? Can
it handle slightly more involved problems? Examples we have considered include competing
against m-sized sets of experts, discussed in [76], in which the loss of the algorithm is
compared to the loss of the best m-subset. Another example is the problem of competing
against permutations of n objects [49], where the loss of a permutation is linearly assigned.
Our preliminary investigation suggests that similar techniques can be adapted to also handle
such more complex problems.

92

Chapter 7

Repeated Games and Budgeted
Adversaries

7.1 Introduction

How can we reasonably expect to learn given possibly adversarial data? Overcoming
this obstacle has been one of the major successes of the Online Learning framework or, more
generally, the so-called competitive analysis of algorithms: rather than measure an algorithm
only by the cost it incurs, consider this cost relative to an optimal “comparator algorithm”
which has knowledge of the data in advance. A classic example is the so-called “experts
setting”: assume we must predict a sequence of binary outcomes and we are given access
to a set of experts, each of which reveals their own prediction for each outcome. After each
round we learn the true outcome and, hence, which experts predicted correctly or incorrectly.
The expert setting is based around a simple assumption, that while some experts’ predictions
may be adversarial, we have an a priori belief that there is at least one good expert whose
predictions will be reasonably accurate. Under this relatively weak good-expert assumption,
one can construct algorithms that have quite strong loss guarantees.

Another way to interpret this sequential prediction model is to treat it as a repeated two-
player zero-sum game against an adversary on a budget ; that is, the adversary’s sequence
of actions is restricted in that play ceases once the adversary exceeds the budget. In the
experts setting, the assumption “there is a good expert” can be reinterpreted as a “nature
shall not let the best expert err too frequently”, perhaps more than some fixed number of
times.

In the present chapter, we develop a general framework for repeated game-playing against
an adversary on a budget, and we provide a simple randomized strategy for the learner/player
for a particular class of these games. The proposed algorithms are based on a technique,
which we refer to as a “random playout”, that has become a very popular heuristic for
solving games with massively-large state spaces. Roughly speaking, a random playout in an
extensive-form game is a way to measure the likely outcome at a given state by finishing
the game randomly from this state. Random playouts, often known simply as Monte Carlo

93

methods, have become particularly popular for solving the game of Go [20], which has led to
much follow-up work for general games [41, 40]. The Budgeted Adversary game we consider
also involves exponentially large state spaces, yet we achieve efficiency using these random
playouts. The key result of this chapter is that the proposed random playout is not simply
a good heuristic, it is indeed minimax optimal for the games we consider.

Abernethy et al [6] was the first to use a random playout strategy to optimally solve an
adversarial learning problem, namely for the case of the so-called Hedge Setting introduced
by Freund and Schapire [38]. Indeed, their model can be interpreted as a particular special
case of a Budgeted Adversary problem. The generalized framework that we give in the first
half of the chapter, however, has a much larger range of applications. We give three such
examples, described briefly below. More details are given in the second half of the chapter.

Cost-sensitive Hedge Setting. In the standard Hedge setting, it is assumed that each
expert suffers a cost in [0, 1] on each round. But a surprisingly-overlooked case is when the
cost ranges differ, where expert i may suffer per-round cost in [0, ci] for some fixed ci > 0.
The vanilla approach, to use a generic bound of maxi ci, is extremely loose, and we know of
no better bounds for this case. Our results provide the optimal strategy for this cost-sensitive
Hedge setting.

Metrical Task Systems (MTS). The MTS problem is decision/learning problem simi-
lar to the Hedge Setting above but with an added difficulty: the learner is required to pay the
cost of moving through a given metric space. Finding even a near-optimal generic algorithm
has remained elusive for some time, with recent encouraging progress made in one special
case [12], for the so-called “weighted-star” metric. Our results provide a simple minimax
optimal algorithm for this problem.

7.2 Preliminaries

Notation: We shall write [n] for the set {1, 2, . . . , n}, and [n]∗ to be the set of all finite-
length sequences of elements of [n]. We will use the greek symbols ρ and σ to denote such
sequences i1i2 . . . iT , where it ∈ [n]. We let ∅ denote the empty sequence. When we have
defined some T -length sequence ρ = i1i2 . . . iT , we may write ρt to refer to the t-length
prefix of ρ, namely ρt = i1i2 . . . it, and clearly t ≤ T . We will generally use w to refer to
a distribution in ∆n, the n-simplex, where wi denotes the ith coordinate of w. We use the
symbol ei to denote the ith basis vector in n dimensions, namely a vector with a 1 in the ith
coordinate, and 0’s elsewhere. We shall use 1[·] to denote the “indicator function”, where
1[predicate] is 1 if predicate is true, and 0 if it is false. It may be that predicate is a
random variable, in which case 1[predicate] is a random variable as well.

7.2.1 The Setting: Budgeted Adversary Games

We will now describe the generic sequential decision problem, where a problem instance
is characterized by the following triple: an n×n loss matrix M , a monotonic “cost function”

94

cost : [n]∗ → R+, and a cost budget k. A cost function is monotonic as long as it satisfies
the relation cost(ρσ) ≤ cost(ρiσ) for all ρ, σ ∈ [n]∗ and all i ∈ [n]. Play proceeds as follows:

1. On each round t, the player chooses a distribution wt ∈ ∆n over his action space.

2. An outcome it ∈ [n] is chosen by Nature (potentially an adversary).

3. The player suffers w>t Meit .

4. The game proceeds until the first round in which the budget is spent, i.e. the round T
when cost(i1i2 . . . iT−1) ≤ k < cost(i1i2 . . . iT−1iT).

The goal of the Player is to choose each wt in order to minimize the total cost of this
repeated game on all sequences of outcomes. Note, importantly, that the player can learn
from the past, and hence would like an efficiently computable function w : [n]∗ → ∆n, where
on round t the player is given ρt−1 = (i1 . . . it−1) and sets wt ← w(ρt−1). We can define
the worst-case cost of an algorithm w : [n]∗ → ∆n by its performance against a worst-case
sequence, that is

WorstCaseLoss(w;M, cost, k) := max
ρ = i1i2 . . . ∈ [n]∗

cost(ρT−1) ≤ k < cost(ρT)

T∑
t=1

w(ρt−1)>Meit .

Note that above T is a parameter chosen according to ρ and the budget. We can also define
the minimax loss, which is defined by choosing the w(·) which minimizes WorstCaseLoss(·).
Specifically,

MinimaxLoss(M, cost, k) := min
w:[n]∗→∆n

max
ρ = i1i2 . . . ∈ [n]∗

cost(ρT−1) ≤ k < cost(ρT)

T∑
t=1

w(ρt−1)>Meit .

In the next section, we describe the optimal algorithm for a restricted class of M . That is,
we obtain the mapping w which optimizes WorstCaseLoss(w;M, cost, k).

7.3 The Algorithm

We will start by assuming that M is a nonnegative diagonal matrix, that is M =
diag(c1, c2, . . . , cn), and ci > 0 for all i. With these values ci, define the distribution q ∈ ∆n

with qi := 1/ci∑
j 1/cj

.

Given a current state ρ, the algorithm will rely heavily on our ability to compute the
following function Φ(·). For any ρ ∈ [n]∗ such that cost(ρ) > k, define Φ(ρ) := 0. Otherwise,
let

Φ(ρ) :=
1∑
i 1/ci

E
∀t:it∼q

[
∞∑
t=0

1[cost(ρi1 . . . it) ≤ k]

]

95

Notice, this is the expected length of a random process. Of course, we must impose the
natural condition that the length of this process has a finite expectation. Also, since we
assume that the cost increases, it is reasonable to require that the distribution over the
length, i.e. min{t : cost(ρi1 . . . it) > k}, has an exponentially decaying tail. Under these
weak conditions, the following m-trial Monte Carlo method will provide a high probability
estimate to error within O(m−1/2).

Algorithm 12 Efficient Estimation of Φ(ρ)

for i=1. . . m do
Sample: infinite random sequence σ := i1i2 . . . where Pr(it = i) = qi
Let: Ti = max{t : cost(ρσt−1) ≤ k}

end for
Return

∑m
i=1 Ti
m

Notice that the infinite sequence σ does not have to be fully generated. Instead, we
can continue to sample the sequence and simply stop when the condition cost(ρσt−1) ≥ k is
reached. We can now define our algorithm in terms of Φ(·).

Algorithm 13 Player’s optimal strategy
Input: state ρ
Compute: Φ(ρ),Φ(ρ, 1),Φ(ρ, 2), . . . ,Φ(ρ, n)

Let: set w(ρ) with values wi(ρ) = Φ(ρ)−Φ(ρ,i)
ci

7.4 Minimax Optimality

Now we prove that Algorithm 13 is both “legal” and minimax optimal.

Lemma 73. The vector w(ρ) computed in Algorithm 13 is always a valid distribution.

Proof. It must first be established that wi(ρ) ≥ 0 for all i and ρ. This, however, follows
because we assume that the function cost() is monotonic, which implies that cost(ρσ) ≤
cost(ρiσ) and hence cost(ρiσ) ≤ k =⇒ cost(ρσ) ≤ k, and hence 1[cost(ρiσ) ≤ k] ≤
1[cost(ρσ) ≤ k]. Taking the expected difference of the infinite sum of these two indicators
leads to Φ(ρ)− Φ(ρi) ≥ 0, which implies wi(ρ) ≥ 0 as desired.

We must also show that
∑

iwi(ρ) = 1. We claim that the following recurrence relation
holds for the function Φ(ρ) whenever cost(ρ) ≤ k:

Φ(ρ) =
1∑
i 1/ci︸ ︷︷ ︸

first step

+
∑
i

qiΦ(ρi)︸ ︷︷ ︸
remaining steps

, for any ρ s.t. cost(ρ) < k.

96

This is clear from noticing that Φ is an expected random walk length, with transition prob-
abilities defined by q, and scaled by the constant (

∑
i 1/ci)

−1. Hence,

∑
i

wi(ρ) =
∑
i

Φ(ρ)− Φ(ρi)

ci
=

(∑
i

1/ci

)
Φ(ρ)−

∑
i

Φ(ρi)

ci

=

(∑
i

1/ci

)(
1∑
i 1/ci

+
∑
i

qiΦ(ρi)

)
−
∑
i

Φ(ρi)

ci
= 1

where the last equality holds because qi = 1/ci∑
j 1/cj

.

Theorem 74. For M = diag(c1, . . . , cn), Algorithm 13 is minimax optimal for the Budgeted
Adversary problem. Furthermore, Φ(∅) = MinimaxLoss(M, cost, k).

Proof. First we prove an upper bound. Notice that, for an sequence ρ = i1i2i3 . . . iT , the
total cost of Algorithm 13 will be

T∑
t=1

w(ρt−1)>Meit =
T∑
t=1

wit(ρt−1)cit =
T∑
t=1

Φ(ρt−1)− Φ(ρt)

cit
cit = Φ(∅)− Φ(ρT) ≤ Φ(∅)

and hence the total cost of the algorithm is always bounded by Φ(∅).

On the other hand, we claim that Φ(∅) can always be achieved by an adversary for any
algorithm w′(·). Construct a sequence ρ as follows. Given that ρt−1 has been constructed
so far, select any coordinate it ∈ [n] for which wit(ρt−1) ≤ w′it(ρt−1), that is, where the
the algorithm w′ places at least as much weight on it as the proposed algorithm w we
defined in Algorithm 13. This must always be possible because both w(ρt−1) and w′(ρt−1)
are distributions and neither can fully dominate the other. Set ρt ← ρt−1i. Continue
constructing ρ until the budget is reached, i.e. cost(ρ) > k. Now, let us check the loss of w′

on this sequence ρ:

T∑
t=1

w′(ρt−1)>Meit =
T∑
t=1

w′it(ρt−1)cit ≥
T∑
t=1

wit(ρt−1)cit = Φ(∅)− Φ(ρ) = Φ(∅)

Hence, an adversary can achieve at least Φ(∅) loss for any algorithm w′.

7.4.1 Extensions

For simplicity of exposition, we proved Theorem 74 under a somewhat limited scope: only
for diagonal matrices M , known budget k and cost(). But with some work, these restrictions
can be lifted. We sketch a few extensions of the result, although we omit the details due to
lack of space.

First, the concept of a cost() function and a budget k is not entirely necessary. Indeed,
we can redefine the Budgeted Adversary game in terms of an arbitrary stopping criterion

97

δ : [n]∗ → {0, 1}, where δ(ρ) = 0 is equivalent to “the budget has been exceeded”. The only
requirement is that δ() is monotonic, which is naturally defined as δ(ρiσ) = 1 =⇒ δ(ρσ) = 1
for all ρ, σ ∈ [n]∗ and all i ∈ [n]. This alternative budget interpretation lets us consider the
sequence ρ as a path through a game tree. At a given node ρt of the tree, the adversary’s
action it+1 determines which branch to follow. As soon as δ(ρt) = 0 we have reached a
terminal node of this tree.

Second, we need not assume that the budget k, or even the generalized stopping criterion
δ(), is known in advance. Instead, we can work with the following generalization: the
stopping criterion δ is drawn from a known prior λ and given to the adversary before the
start of the game. The resulting optimal algorithm depends simply on estimating a new
version of Φ(ρ). Φ(ρ) is now redefined as both an expectation over a random σ and a
random δ drawn from the posterior of λ, that is where we condition on the event δ(ρ) = 1.

Third, Theorem 74 can be extended to a more general class of M , namely inverse-
nonnegative matrices, where M is invertible and M−1 has all nonnegative entries. (In all
the examples we give we need only diagonal M , but we sketch this generalization for com-
pleteness). If we let 1n be the vector of n ones, then define D = diag−1(M−11n), which is
a nonnegative diagonal matrix. Also let N = DM−1 and notice that the rows of N are the
normalized rows of M−1. We can use Algorithm 13 with the diagonal matrix D, and attain
distribution w′(ρ) for any ρ. To obtain an algorithm for the matrix M (not D), we simply
let w(ρ) = (w′(ρ)>N)>, which is guaranteed to be a distribution. The loss of w is identical
to w′ since w(ρ)>M = w′(ρ)>D by construction.

Fourth, we have only discussed minimizing loss against a budgeted adversary. But all the
results can be extended easily to the case where the player is instead maximizing gain (and
the adversary is minimizing). A particularly surprising result is that the minimax strategy
is identical in either case; that is, the the recursive definition of wi(ρ) is the same whether
the player is maximizing or minimizing. However, the termination condition might change
depending on whether we are minimizing or maximizing. For example in the expert setting,
the game stops when all experts have cost larger than k versus at least one expert has gain
at least k. Therefore for the same budget size k, the minimax value of the gain version is
typically smaller than the value of the loss version.

Simplified Notation. For many examples, including two that we consider below, record-
ing the entire sequence ρ is unnecessary—the only relevant information is the number of
times each i occurs in ρ and not where it occurs. This is the case precisely when the function
cost(ρ) is unchanged up to permutations of ρ. In such situations, we can consider a smaller
state space, which records the “counts” of each i in the sequence ρ. We will use the notation
s ∈ Nn, where st = ei1 + . . .+ eit for the sequence ρt = i1i2 . . . it.

98

7.5 The Cost-Sensitive Hedge Setting

A straightforward application of Budgeted Adversary games is the “Hedge setting” in-
troduced by Freund and Schapire [38], a version of the aforementioned experts setting. The
minimax algorithm for this special case was already thoroughly developed by Abernethy et
al [6]. We describe an interesting extension that can be achieved using our techniques which
has not yet been solved.

The Hedge game goes as follows. A learner must predict a sequence of distributions
wt ∈ ∆n, and receive a sequence of loss vectors `t ∈ {0, 1}n. The total loss to the learner
is
∑

t wt · `t, and the game ceases only once the best expert has more than k errors, i.e.
mini

∑
t `t,i > k. The learner wants to minimize his total loss.

The natural way to transform the Hedge game into a Budgeted Adversary problem is as
follows. We’ll let s be the state, defined as the vector of cumulative losses of all the experts.

M =

[
1

...
1

]
cost(s) = min

i
si

∑
t

wt · `t =
∑
t

w>t Meit

The proposed reduction almost works, except for one key issue: this only allows cost vectors
of the form `t = Meit = eit , since by definition Nature chooses columns of M . However, as
shown in Abernethy et al, this is not a problem.

Lemma 75 (Lemma 11 and Theorem 12 of [6]). In the Hedge game, the worst case adversary
always chooses `t ∈ {e1, . . . , en}.

The standard and more well-known, although non-minimax, algorithm for the Hedge
setting [38] uses a simple modification of the Weighted Majority Algorithm [53], and is

described simply by setting wi(s) = exp(−ηsi)∑
j exp(−ηsj) . With the appropriate tuning of η, it is

possible to bound the total loss of this algorithm by k +
√

2k lnn+ lnn, which is known to
be roughly optimal in the limit. Abernethy et al [6] provide the minimax optimal algorithm,
but state the bound in terms of an expected length of a random walk. This is essentially
equivalent to our description of the minimax cost in terms of Φ(∅).

A significant drawback of the Hedge result, however, is that it requires the losses to be
uniformly bounded in [0, 1], that is `t ∈ [0, 1]n. Ideally, we would like an algorithm and
a bound that can handle non-uniform cost ranges, i.e. where expert i suffers loss in some
range [0, ci]. The `t,i ∈ [0, 1] assumption is fundamental to the Hedge analysis, and we see
no simple way of modifying it to achieve a tight bound. The simplest trick, which is just
to take cmax := maxi ci, leads to a bound of the form k +

√
2cmaxk lnn + cmax lnn which we

know to be very loose. Intuitively, this is because only a single “risky” expert, with a large
ci, should not affect the bound significantly.

In our Budgeted Adversary framework, this case can be dealt with trivially: letting
M = diag(c1, . . . , cn) and cost(s) = mini sici gives us immediately an optimal algorithm
that, by Theorem 74, we know to be minimax optimal. According to the same theorem,
the minimax loss bound is simply Φ(∅) which, unfortunately, is in terms of a random walk

99

length. We do not know how to obtain a closed form estimate of this expression, and we
leave this as an intriguing open question.

7.6 Metrical Task Systems

A classic problem from the Online Algorithms community is known as Metrical Task
Systems (MTS), which we now describe. A player (decision-maker, algorithm, etc.) is
presented with a finite metric space and on each of a sequence of rounds will occupy a
single state (or point) within this metric space. At the beginning of each round the player
is presented with a cost vector, describing the cost of occupying each point in the metric
space. The player has the option to remain at the his present state and pay this states
associated cost, or he can decide to switch to another point in the metric and pay the cost
of the new state. In the latter case, however, the player must also pay the switching cost
which is exactly the metric distance between the two points.

The MTS problem is a useful abstraction for a number of problems; among these is job-
scheduling. An algorithm would like to determine on which machine, across a large network,
it should process a job. At any given time point, the algorithm observes the number of
available cycles on each machine, and can choose to migrate the job to another machine. Of
course, if the subsequent machine is a great distance, then the algorithm also pays the travel
time of the job migration through the network.

Notice that, were we given a sequence of cost vectors in advance, we could compute the
optimal path of the algorithm that minimized total cost. Indeed, this is efficiently solved
by dynamic programming, and we will refer to this as the optimal offline cost, or just the
offline cost. What we would like is an algorithm that performs well relative to the offline cost
without knowledge of the sequence of cost vectors. The standard measure of performance for
an online algorithm is the competitive ratio, which is the ratio of cost of the online algorithm
to the optimal offline cost. For all the results discussed below, we assume that the online
algorithm can maintain a randomized state—a distribution over the metric—and pays the
expected cost according to this random choice (Randomized algorithms tend to exhibit much
better competitive ratios than deterministic algorithms).

When the metric is uniform, i.e. where all pairs of points are at unit distance, it is known
that the competitive ratio is O(log n), where n is the number of points in the metric; this
was shown by Borodin, Linial and Saks who introduced the problem [19]. For general metric
spaces, Bartal et al achieved a competitive ratio of O(log6 n) [13], and this was improved to
O(log2 n) by Fiat and Mendel [31]. The latter two techniques, however, rely on a scheme of
randomly approximating the metric space with a hierarchical tree metric, adding a (likely-
unnecessary) multiplicative cost factor of log n. It is widely believed that the minimax
competitive ratio is O(log n) in general, but this gap has remained elusive for at least 10
years.

The most significant progress towards O(log n) is the 2007 work of Bansal et al [12] who
achieved such a ratio for the case of “weighted-star metrics”. A weighted star is a metric such
that each point i has a fixed distance di from some “center state”, and traveling between any

100

state i and j requires going through the center, hence incurring a switching cost of di + dj.
For weighted-star metrics, Bansal et al managed to justify two simplifications which are quite
useful:

1. We can assume that the cost vector is of the form 〈0, . . . ,∞, . . . , 0〉; that is, all state
receive 0 cost, except some state i which receives an infinite cost.

2. When the online algorithm is currently maintaining a distribution w over the metric,
and an infinite cost occurs at state i, we can assume1 that algorithm incurs exactly
2diwi, exactly the cost of having wi probability weight enter and leave i from the center.

Bansal et al provide an efficient algorithm for this setting using primal-dual techniques
developed for solving linear programs. With the methods developed in the present chapter,
however, we can give the minimax optimal online algorithm under the above simplifications.
Notice that the adversary is now choosing a sequence of states i1, i2, i3 . . . ∈ [n] at which
to assign an infinite cost. If we let ρ = i1i2i3 . . ., then the online algorithm’s job is to
choose a sequence of distributions w(ρt), and pays 2dit+1wit+1(ρt) at each step. In the end,
the online algorithm’s cost is compared to the offline MTS cost of ρ, which we will call
cost(ρ). Assume2 we know the cost of the offline in advance, say it’s k, and let us define
M = diag(2d1, . . . , 2dn). Then the player’s job is to select an algorithm w which minimizes

max
ρ = (i1, . . . , iT)

cost(ρ) ≤ k

T∑
t=1

w(ρt−1)>Meit .

As we have shown, Algorithm 13 is minimax optimal for this setting. The competitive ratio
of this algorithm is precisely lim supk→∞

(
1
k
MinimaxLoss(M, cost, k)

)
. Notice the convenient

trick here: by bounding a priori the cost of the offline at k, we can simply imagine playing
this repeated game until the budget k is achieved. Then the competitive ratio is just the
worst-case loss over the offline cost, k. On the downside, we don’t know of any easy way to
bound the worst-case loss Φ(∅).

1Precisely, they claim that it should be upper-bounded by 4di. We omit the details regarding this issue,
but it only contributes a multiplicative factor of 2 to the competitive ratio.

2Even when we do not know the offline cost in advance, standard “doubling tricks” allow you to guess
this value and increase the guess as the game proceeds. For space, we omit these details.

101

Bibliography

[1] J. Abernethy, A. Agarwal, P. Bartlett, and A. Rakhlin, “A stochastic view of optimal
regret through minimax duality,” in Proceedings of the 22nd Annual Conference on
Learning Theory, 2009.

[2] J. Abernethy, P. Bartlett, and E. Hazan, “Blackwell approachability and low-regret
learning are equivalent,” in COLT, 2011.

[3] J. Abernethy, P. Bartlett, A. Rakhlin, and A. Tewari, “Optimal strategies and mini-
max lower bounds for online convex games,” in Proceedings of the Nineteenth Annual
Conference on Computational Learning Theory. Citeseer, 2008.

[4] J. Abernethy, J. Langford, and M. K. Warmuth, “Continuous experts and the Bin-
ning algorithm,” in Proceedings of the 19th Annual Conference on Learning Theory
(COLT06). Springer, June 2007, pp. 544–558.

[5] J. Abernethy and A. Rakhlin, “Beating the adaptive bandit with high probability,” in
COLT, 2009.

[6] J. Abernethy, M. K. Warmuth, and J. Yellin, “Optimal strategies from random walks,”
in Proceedings of the 21st Annual Conference on Learning Theory (COLT 08), July
2008, pp. 437–445.

[7] J. Abernethy and M. Warmuth, “Repeated games against budgeted adversaries,” Ad-
vances in Neural Information Processing Systems, vol. 22, 2010.

[8] J. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark: An efficient algorithm
for bandit linear optimization,” in COLT, 2008, pp. 263–274.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multi-
armed bandit problem,” SIAM J. Comput., vol. 32, no. 1, pp. 48–77, 2003.

[10] B. Awerbuch and R. Kleinberg, “Online linear optimization and adaptive routing,” J.
Comput. Syst. Sci., vol. 74, no. 1, pp. 97–114, 2008.

[11] B. Awerbuch and R. D. Kleinberg, “Adaptive routing with end-to-end feedback: dis-
tributed learning and geometric approaches,” in STOC ’04: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing. New York, NY, USA: ACM,
2004, pp. 45–53.

102

[12] N. Bansal, N. Buchbinder, and J. S. Naor, “A Primal-Dual randomized algorithm for
weighted paging,” in Proceedings of the 48th Annual IEEE Symposium on Foundations
of Computer Science. IEEE Computer Society, 2007, pp. 507–517. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1333875.1334222

[13] Y. Bartal, A. Blum, C. Burch, and A. Tomkins, “A polylog (n)-competitive algorithm
for metrical task systems,” in Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, 1997, p. 711719.

[14] P. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and A. Tewari, “High-probability
bounds for the regret of bandit online linear optimization,” 2008, in submission to COLT
2008.

[15] P. Bartlett, E. Hazan, and A. Rakhlin, “Adaptive online gradient descent,” in Ad-
vances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA: MIT Press, 2008.

[16] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, ser. MPS/SIAM Series on Optimization.
Philadelphia: SIAM, 2001, vol. 2.

[17] D. Blackwell, “Controlled random walks,” in Proceedings of the International Congress
of Mathematicians, vol. 3, 1954, pp. 336–338.

[18] D. Blackwell, “An analog of the minimax theorem for vector payoffs,” Pacific Journal
of Mathematics, vol. 6, no. 1, 1956.

[19] A. Borodin, N. Linial, and M. E. Saks, “An optimal on-line algorithm for metrical task
system,” Journal of the ACM (JACM), vol. 39, no. 4, p. 745763, 1992.

[20] B. Brügmann, “Monte carlo go,” Master’s Thesis, Unpublished, 1993.

[21] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization ability of on-line
learning algorithms,” Information Theory, IEEE Transactions on, vol. 50, no. 9, pp.
2050 – 2057, sept. 2004.

[22] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. K. Warmuth, “On-line prediction
and conversion strategies,” Machine Learning, vol. 25, pp. 71–110, 1996.

[23] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K.
Warmuth, “How to use expert advice,” J. ACM, vol. 44, no. 3, pp. 427–485, 1997.

[24] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge Univer-
sity Press, 2006.

[25] T. Cover, “Universal portfolios,” Mathematical Finance, vol. 1, no. 1, pp. 1–29,
January 1991. [Online]. Available: citeseer.ist.psu.edu/article/cover96universal.html

103

[26] V. Dani, T. Hayes, and S. Kakade, “The price of bandit information for online optimiza-
tion,” in Advances in Neural Information Processing Systems 20, J. Platt, D. Koller,
Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008.

[27] V. Dani and T. P. Hayes, “Robbing the bandit: less regret in online geometric opti-
mization against an adaptive adversary,” in SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm. New York, NY, USA: ACM,
2006, pp. 937–943.

[28] A. Dawid, “The well-calibrated Bayesian,” Journal of the American Statistical Associ-
ation, vol. 77, pp. 605–613, 1982.

[29] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publ. Math. Inst. Hung.
Acad. Sci., vol. 5A, pp. 17–61, 1960.

[30] E. Even-Dar, R. Kleinberg, S. Mannor, and Y. Mansour, “Online learning for global
cost functions,” in 22nd Annual Conference on Learning Theory (COLT), 2009.

[31] A. Fiat and M. Mendel, “Better algorithms for unfair metrical task systems and ap-
plications,” in Proceedings of the thirty-second annual ACM symposium on Theory of
computing, 2000, p. 725734.

[32] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge U. Press, 2008.

[33] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the
bandit setting: gradient descent without a gradient,” in SODA ’05: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2005, pp. 385–394.

[34] D. P. Foster, “A proof of calibration via blackwell’s approachability theorem,” Games
and Economic Behavior, vol. 29, no. 1-2, p. 7378, 1999.

[35] D. P. Foster and R. V. Vohra, “Asymptotic calibration,” Biometrika, vol. 85, no. 2, p.
379, 1998.

[36] D. Foster, “Prediction in the worst case,” The Annals of Statistics, pp. 1084–1090, 1991.

[37] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-line learning and
an application to boosting,” in Computational learning theory. Springer, 1995, pp.
23–37.

[38] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning
and an application to Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139,
1997, special Issue for EuroCOLT ’95.

[39] D. Fudenberg and D. K. Levine, “An easier way to calibrate* 1,” Games and economic
behavior, vol. 29, no. 1-2, p. 131137, 1999.

[40] S. Gelly and D. Silver, “Combining online and offline knowledge in UCT,” in Proceedings
of the 24th international conference on Machine learning, 2007, p. 280.

104

[41] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT with patterns in
Monte-Carlo go,” 2006.

[42] A. György, T. Linder, G. Lugosi, and G. Ottucsák, “The on-line shortest path problem
under partial monitoring,” Journal of Machine Learning Research, vol. 8, pp. 2369–2403,
2007.

[43] J. Hannan, “Approximation to Bayes risk in repeated play,” Contributions to the Theory
of Games, vol. 3, pp. 97–139, 1957.

[44] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated equilib-
rium,” Econometrica, vol. 68, no. 5, p. 11271150, 2000.

[45] D. Haussler, J. Kivinen, and M. Warmuth, “Sequential prediction of individual se-
quences under general loss functions,” Information Theory, IEEE Transactions on,
vol. 44, no. 5, pp. 1906 –1925, sep 1998.

[46] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for online convex
optimization,” Machine Learning, vol. 69, no. 2, pp. 169–192, 2007.

[47] E. Hazan, “The convex optimization approach to regret minimization.” in To appear in
Optimization for Machine Learning. MIT Press, 2010.

[48] E. Hazan, A. Kalai, S. Kale, and A. Agarwal, “Logarithmic regret algorithms for online
convex optimization.” in COLT, 2006, pp. 499–513.

[49] D. Helmbold and M. K. Warmuth, “Learning permutations with exponential weights,”
in Proceedings of the 20th Annual Conference on Learning Theory (COLT07). Springer,
2007.

[50] N. Karmarkar, “New polynomial-time algorithm for linear programming,” Combinator-
ica, vol. 4, pp. 373–395, 1984.

[51] J. Kivinen and M. K. Warmuth, “Averaging expert predictions,” in Computational
Learning Theory, 4th European Conference, EuroCOLT ’99, Nordkirchen, Germany,
March 29-31, 1999, Proceedings, ser. Lecture Notes in Artificial Intelligence, vol. 1572.
Springer, 1999, pp. 153–167.

[52] N. Littlestone, “Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm,” Machine learning, vol. 2, no. 4, pp. 285–318, 1988.

[53] N. Littlestone and M. K. Warmuth, “The Weighted Majority algorithm,” Inform. Com-
put., vol. 108, no. 2, pp. 212–261, 1994, preliminary version in FOCS 89.

[54] S. Mannor and N. Shimkin, “Regret minimization in repeated matrix games with vari-
able stage duration,” Games and Economic Behavior, vol. 63, no. 1, pp. 227–258, 2008.

[55] S. Mannor and G. Stoltz, “A Geometric Proof of Calibration,” arXiv, Dec 2009.
[Online]. Available: http://arxiv.org/abs/0912.3604

105

[56] H. B. McMahan and A. Blum, “Online geometric optimization in the bandit setting
against an adaptive adversary,” in COLT, 2004, pp. 109–123.

[57] N. Merhav and M. Feder, “Universal schemes for sequential decision from individual
data sequences,” Information Theory, IEEE Transactions on, vol. 39, no. 4, pp. 1280
–1292, jul 1993.

[58] N. Merhav and M. Feder, “Universal prediction,” Information Theory, IEEE Transac-
tions on, vol. 44, no. 6, pp. 2124–2147, 1998.

[59] A. Myers and H. S. Wilf, “Some new aspects of the Coupon-Collector’s problem,” SIAM
J. Disc. Math., vol. 17, pp. 1–17, 2003.

[60] A. Nemirovski and M. Todd, “Interior-point methods for optimization,” Acta Numerica,
pp. 191—234, 2008.

[61] A. Nemirovskii, “Interior point polynomial time methods in convex programming,”
2004, lecture Notes.

[62] Y. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Algorithms in Convex
Programming. Philadelphia: SIAM, 1994.

[63] J. V. Neumann, O. Morgenstern, H. W. Kuhn, and A. Rubinstein, Theory of games and
economic behavior. Princeton university press Princeton, NJ, 1947.

[64] D. Newman and L. Shepp, “The Double Dixie Cup problem,” Amer. Math Monthly.,
vol. 67, pp. 541–574, 1960.

[65] E. Ordentlich and T. M. Cover, “The cost of achieving the best portfolio in hindsight,”
Math. Oper. Res., vol. 23, no. 4, pp. 960–982, 1998.

[66] V. Perchet, “Calibration and internal no-regret with random signals,” in Proceedings
of the 20th international conference on Algorithmic learning theory. Springer-Verlag,
2009, pp. 68–82.

[67] A. Rakhlin, K. Sridharan, and A. Tewari, “Online Learning: Beyond Regret,” Arxiv
preprint arXiv:1011.3168, 2010.

[68] A. Sandroni, R. Smorodinsky, and R. Vohra, “Calibration with many checking rules,”
Mathematics of Operations Research, vol. 28, no. 1, pp. 141–153, 2003.

[69] S. Shalev-Shwartz and Y. Singer, “Convex repeated games and Fenchel duality,” Ad-
vances in Neural Information Processing Systems, vol. 19, p. 1265, 2007.

[70] S. Shalev-Shwartz and Y. Singer, “A primal-dual perspective of online learning algo-
rithms,” Mach. Learn., vol. 69, no. 2-3, pp. 115–142, 2007.

[71] M. Sion, “On general minimax theorems,” Pacific J. Math, vol. 8, no. 1, pp. 171–176,
1958.

106

[72] E. Takimoto and M. K. Warmuth, “The minimax strategy for gaussian density estima-
tion. pp,” in COLT ’00: Proceedings of the Thirteenth Annual Conference on Computa-
tional Learning Theory. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000, pp. 100–106.

[73] V. Vovk, “Aggregating strategies,” in Proceedings of the Third Annual Workshop on
Computational Learning Theory. Morgan Kaufmann, 1990, pp. 371–383.

[74] V. Vovk, “Competitive on-line linear regression,” in NIPS ’97: Proceedings of the 1997
conference on Advances in neural information processing systems 10. Cambridge, MA,
USA: MIT Press, 1998, pp. 364–370.

[75] V. Vovk, “A game of prediction with expert advice,” J. of Comput. Syst. Sci., vol. 56,
no. 2, pp. 153–173, 1998, special Issue: Eighth Annual Conference on Computational
Learning Theory.

[76] M. K. Warmuth and D. Kuzmin, “Randomized PCA algorithms with regret bounds
that are logarithmic in the dimension,” in Advances in Neural Information Processing
Systems 19 (NIPS 06). MIT Press, December 2006.

[77] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient as-
cent,” in International Conference on Machine Learning, vol. 20, 2003, p. 928.

[78] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient as-
cent.” in ICML, 2003, pp. 928–936.

107

