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Abstract

Dynamic contrast-enhanced MRI (DCE-MRI) is routinely included in the prostate MRI protocol 

for a long time; its role has been questioned. It provides rich spatial and temporal information. 

However, the contained information cannot be fully extracted in radiologists’ visual evaluation. 

More sophisticated computer algorithms are needed to extract the higher-order information. The 

purpose of this study was to apply a new deep learning algorithm, the bi-directional convolutional 

long short-term memory (CLSTM) network, and the radiomics analysis for differential diagnosis 

of PCa and benign prostatic hyperplasia (BPH). To systematically investigate the optimal amount 

of peritumoral tissue for improving diagnosis, a total of 9 ROIs were delineated by using 3 

different methods. The results showed that bi-directional CLSTM with ± 20% region growing 

peritumoral ROI achieved the mean AUC of 0.89, better than the mean AUC of 0.84 by using 

the tumor alone without any peritumoral tissue (p = 0.25, not significant). For all 9 ROIs, deep 

learning had higher AUC than radiomics, but only reaching the significant difference for ± 20% 
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region growing peritumoral ROI (0.89 vs. 0.79, p = 0.04). In conclusion, the kinetic information 

extracted from DCE-MRI using bi-directional CLSTM may provide helpful supplementary 

information for diagnosis of PCa.

Keywords

Prostate cancer; Dynamic contrast-enhanced MRI (DCE-MRI); Bi-directional convolutional long 
short-term memory (CLSTM); Radiomics; Peritumoral

1 Introduction

Prostate cancer (PCa) is one of the most common malignant tumors in men [1]. Patients 

with PCa and benign conditions such as prostatic hyperplasia and prostatitis can present 

with similar symptoms and elevated prostate-specific antigen (PSA), which makes diagnosis 

challenging [2]. The distinction of benign diseases from PCa, and the accurate staging 

for cancer, is critical for an individual patient to make the optimal management decision 

[3]. Currently, multi-parametric MRI (mpMRI) is routinely performed for the detection 

and diagnosis of PCa in the clinic. The protocol typically includes T2-weighted imaging 

(T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-

MRI), exploring both anatomical and functional information of the suspicious tissues in the 

whole prostate gland and the surrounding pelvic region [4].

Acquired MR images are visually evaluated by radiologists according to the guideline of PI-

RADS (Prostate Imaging–Reporting and Data System), and the suspicious lesion is assigned 

with a risk score. Patients with a PI-RADS v2 score ≥ 3 lesions will be suggested to take 

a biopsy, which has approximately 70% to be confirmed as PCa by MRI-targeted biopsy 

[1, 5]. However, even with the standardized reading criteria, the diagnosis of PCa based 

on MR images may vary considerably, and the agreement for the biopsy decision among 

experienced radiologists was 78% [5]. In prostate mpMRI protocol, the DWI is considered 

as the most important sequence, which demonstrates excellent performance in the detection 

and diagnosis of PCa [6–8]. In the latest version of PI-RADS v2.1, DCE-MRI was degraded 

as a supplemental sequence [4]. Yet, DCE-MRI can reflect the hemodynamic information 

related to angiogenesis, which is essential for the growth of cancer. The sequence usually 

acquires multiple frames of post-contrast images with a high spatial resolution, which 

contain more information not interpretable by radiologists’ visual viewing. More research is 

needed to fully explore the role of DCE-MRI for diagnosis of PCa.

Artificial intelligence (AI)-based image analysis has been proven as a valuable method to 

extract quantitative imaging features from the entire lesion and provide information related 

to tissue heterogeneity to aid in the differentiation of benign and malignant lesions. Several 

studies have applied AI analysis using deep learning with various convolutional neural 

network (CNN) and machine learning for diagnosis of PCa [9–11]. However, most of them 

are based on T2WI and DWI. DCE-MRI acquires a series of images with rich spatial and 

temporal information, which can only be fully explored by using sophisticated computer 

algorithms. There are two main AI methods: radiomics with machine learning algorithms 
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and deep learning using the convolutional neural network. Both methods provide an efficient 

approach to extract information and train diagnostic models.

It is well known that the peritumoral tissue surrounding the tumor also contains important 

diagnostic information; however, how much tissue should be included in the analysis has not 

been systematically investigated. In this study, we used three different methods to extract the 

peritumoral region: (1) volumetric expansion to 1.2 and 1.5 times; (2) boundary expansion 

using 5-, 10-, and 15-pixels; and (3) region growing using ± 20%, ± 30%, and ± 40% of 

the averaged tumor intensity as the stopping criteria. The diagnostic results obtained using 

the tumor alone and the 8 expanded ROIs with different amounts of peritumoral tissues were 

compared.

For deep learning, since DCE images contained time information, a recurrent neural network 

(RNN), convolutional long short-term memory (CLSTM), that could consider the temporal 

change of input images was applied. For RNN, if the input train was too long, the early 

information would be discarded due to the use of forget gate; therefore, to solve the problem, 

we implemented the bi-directional CLSTM to fully utilize the entire set of DCE images. 

These methods were applied to differentiate between PCa and benign prostatic hyperplasia 

(BPH).

There are two main objectives in this study: (1) comparison of the diagnostic performance 

achieved by deep learning and radiomics and (2) comparison of the diagnostic performance 

of 9 ROIs with different amount of peritumoral tissues. We summarize our contributions as 

follows. Firstly, we acquired a DCE-MRI dataset with a high spatial and temporal resolution 

from patients confirmed with PCa and BPH. Secondly, we applied three different methods 

to define the peritumoral tissues based on volumetric expansion, boundary pixel, and region 

growing to evaluate and compare their diagnostic performance. Thirdly, we developed a new 

bi-directional CLSTM as the convolutional neural network to fully utilize the long train of 

DCE-MRI images for diagnosis. Lastly, we also performed radiomics analysis so the results 

obtained from the sophisticated deep learning could be compared to the results obtained 

from the more straightforward radiomics.

2 Materials and methods

2.1 Dataset

A total of 136 patients receiving prostate mpMRI from September 2014 to August 2019 who 

had confirmed histological diagnosis of PCa and BPH were included in this study. Among 

them, 74 PCa patients received radical prostatectomy subsequently. A total of 62 BPH 

patients had identified suspicious lesion with PI-RADS v2 score ≤ 2 and received biopsy 

within 6 months of MRI. The median prostate-specific antigen (PSA) was 9.80 ng/mL in the 

PCa group and 6.18 ng/mL in the BPH group, and their median age was 66 and 65 years 

old, respectively. This is a single-center study, and all datasets were collected at the First 

Affiliated Hospital of Wenzhou Medical University. The institutional review board approved 

this retrospective study and waived the requirement for informed consent.
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The MR examinations of all patients were carried out on a 3.0 T scanner (Achieve; Philips, 

The Netherlands) by using the abdominal-phased array sensitivity-encoding (SENSE) torso 

coil, with the same imaging protocol. Four hours of fasting before MR examination was 

required to suppress bowel peristalsis. The DCE-MRI protocol was acquired by using the 3D 

Fast Field Echo (FFE) sequence in the axial direction, with the following parameters: echo 

time (TE)/repetition time (TR) = 2.4/4.6 ms; flip angle (FA) = 12°; field of view (FOV) = 

352 × 264 mm2; matrix = 320 × 228; slice thickness = 5.0 mm without gap; number of slices 

= 16; fat suppression = SPAIR; number of average = 1; SENSE = 2.5; temporal resolution 

= 8.0 s; number of DCE frames = 40; total acquisition time = 5 min 22 s. During the 

acquisition, the contrast agent (Omniscan, GE) with a dose of 0.1 mmol/kg of body weight 

was injected via a power injector (Spectris Solaris EP, Samedco Pvt Ltd.) at a flow rate of 2 

mL/s, followed by a 20 mL saline flush. The injection was started after 5 pre-contrast frames 

were acquired. A total of 40 frames were acquired, including 5 pre-contrast (F1–F5) and 35 

post-contrast (F6–F40). Only the DCE-MRI images were analyzed in this study. The age, 

tPSA, PI-RADS v2 scores in the two groups, and ISUP (International Society of Urological 

Pathology) grades of the diagnosed PCa are listed in Table 1.

2.2 Generation of expanded peritumor ROI

The main objective of this study was to apply deep learning and radiomics to build 

diagnostic models, by considering different amounts of peritumoral tissues extracted using 

different methods. The analysis flowchart is shown in Fig. 1. The first task was to segment 

the lesion ROI, on the subtraction map generated by subtracting averaged pre-contrast 

images (F1–F5) from the 25th post-contrast image (F25). Two radiologists outlined the 

index suspicious lesion in consensus on DCE-MRI using ImageJ (NIH, Bethesda, USA). 

For PCa, the surgical pathological report from the radical prostatectomy was used as the 

reference for determining the location and the extent of cancer. Figure 2 shows a case 

example from a PCa patient, demonstrating one pre-contrast and two post-contrast DCE-

MRI images acquired at the 15th and 40th frames and the DCE-MRI time course showing 

the washout pattern. The segmented ROIs on three consecutive slices are shown. For deep 

learning, a square box is needed as the input, which is generated by projecting all tumor 

ROIs together, and the smallest bounding box covering the outline of all projected ROIs is 

illustrated.

The image pre-processing was performed, with main purpose of normalizing the signal 

intensity acquired during the DCE sequence. First of all, the subtraction images were 

inspected to determine whether motion correction was needed as a pre-processing step. We 

did not observe severe motion artifacts in any cases in our dataset, so the motion correction 

was not necessary. Then, to properly consider the change of signal intensity over time, the 

selected sets of DCE images were normalized together to a mean = 0 and standard deviation 

= 1 inside the ROI areas. To reduce the redundant information from the DCE-MRI sequence 

into the CLSTM network, the length of the image train was reduced from 40 to 25. The 

5 pre-contrast frames were averaged as the reference for normalizing post-contrast frames. 

The early 14 post-contrast DCE-MRI frames that showed a rapid change were included, and 

the last 20 frames that showed a slow-varying change were down-sampled to 10 frames, by 
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only selecting every other frame. So, altogether, a total of 25 normalized enhancement maps 

were used. For all cases, PCa or BPH, the same reduction method was applied.

The peritumoral region was determined by using three different methods with a total of 8 

different ROIs. The expanded peritumor region of the Fig. 2 PCa case is shown in Fig. 3. 

The first method was the volumetric expansion, by enlarging the segmented tumor ROI to 

1.2 and 1.5 times. The second method used the boundary pixel expansion by extending the 

segmented tumor boundary with 5, 10, and 15 pixels. The volumetric and boundary pixel 

expansion methods were based on the anatomic expansion without considering the intensity 

information, which can be done by the third method, region growing. First, the mean signal 

intensity from the entire tumor was calculated from the subtraction map of F25 (the image 

used for ROI drawing), and the expansion was generated by outward growing used ± 20%, 

± 30%, and ± 40% of the mean tumor intensity as the stopping criteria [12]. For example, 

for ± 20%, the lower stopping criterion was 80% of the mean tumor intensity, and the 

higher stopping criterion was 120%. For ± 30%, the lower and higher stopping criteria were 

70% and 130% of the mean tumor intensity. Figure 4 shows the DCE-MRI images from 

a patient with confirmed BPH, whose DCE-MRI time course demonstrating the persistent 

enhancing pattern, and Fig. 5 illustrates the expanded peritumor regions. The manual lesion 

segmentation was performed using ImageJ (NIH, Bethesda, USA). For the expansion of 

ROI, it was performed using our own programs written in Matlab (The Mathworks Inc. 

USA).

2.3 Long short-term memory (LSTM) network

A second module in the flowchart in Fig. 1 is the deep learning using a recurrent neural 

network (RNN). RNN is a popular model that has been shown great promise in applications 

involving sequential inputs [13–17], particularly for utilizing temporal information. One 

issue of the general RNN architecture is the long-term dependencies [18]. This means that 

the output at any time point can rely on the information from all previous inputs. For 

the long sequential inputs, the later outputs can gather all of the information from the 

initial inputs, which works as a crucial feature of RNN [13, 14, 18]. However, during the 

back-propagation of the training process, after a new input is added into the system, less 

information can be processed due to the gradients that are difficult to be modified. This is 

known as “gradient vanishing.” As the gradient is backpropagated to earlier layers, repeated 

multiplication may make the gradient infinitely small. However, in practice, the present 

output usually depends on the close context, which means closer inputs and states should be 

weighted more than others.

LSTM is designed for value-based inputs. All parameters or weights are vectors and the 

input-to-state and state-to-state transitions are all linear combinations. This is accomplished 

by the fully connected layers. In our study, the inputs are images [19]. To adjust for 

this, the fully connected layers are replaced by convolutional layers. Also, the weights 

become convolutional kernels which reduce the number of parameters and that formulates 

convolutional long short-term memory (CLSTM). The conceptual workflow of deep 

learning using the architecture of 7 bi-directional convolutional LSTM layers is shown in 

Fig. 6. Due to the forget gate implemented in LSTM, information from early time points 
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contributes less than later time points. To minimize this problem, a bi-directional CLSTM 

model was applied, as shown in Fig. 7. These implementation details are shown in Fig. 8. 

Ht and Ct are the temporal hidden states, which are transferred to the cells at the next time 

point. The 25 selected DCE time frames reduced from the total of 40 frames were used as 

input. The CLSTM layers consist of 25 cells in each direction, and the whole network is 

made up of 7 bi-directional CLSTM layers, as shown in Fig. 9.

2.3.1 CLSTM training configurations—The bi-directional CLSTM network was used 

to train the diagnostic model, by inputting the 25 DCE-MRI images into the network in a 

time order [18, 19]. Each 2D imaging slice was used as an independent input. The number 

of the input channel was 1 at each time point. For each case, the smallest bounding box 

containing the ROI was used as the input, as illustrated in Figs. 2 and 4. The ROIs from all 

slices were projected together, and the smallest bounding box to cover the outer boundary of 

projected ROIs was used. The 25 sets of DCE-MRI images were normalized together to a 

mean = 0 and standard deviation = 1.

For the CLSTM network, 7 stacked CLSTM layers were fed into a final fully connected 

layer before output. The algorithm was implemented with a standard cross-entropy loss 

function and the Adam optimizer with an initial learning rate of 0.001, which was kept as a 

constant throughout the training [20]. The software code was written in Python 3.7 using the 

open-source TensorFlow 2.0 library (Apache 2.0 license). Experiments were performed on a 

GPU-optimized workstation with a single NVIDIA GeForce GTX Titan X (12 GB, Maxwell 

architecture). A forward pass for the classification test of a new patient could be achieved in 

< 0.01 s. The results were evaluated using fourfold cross-validation by ROC analysis. The 

range and the mean AUC from the fourfold analyses were calculated to show the diagnostic 

performance.

2.3.2 Radiomics analysis—The second AI method in the flowchart in Fig. 1 is to 

perform the radiomics analysis, so the results can be compared to those generated by the 

deep learning models. The tumor alone and tumor with 8 different peritumoral regions were 

analyzed. For each case, the ROIs on all slices were combined to generate a 3D mask for 

extraction of radiomic features by using the PyRadiomics, an open-source radiomics library 

written in Python [21]. A total of 107 features were extracted on each DCE-MRI image [22], 

and thus, there were 107 × 40 = 4280 features for each case. For feature reduction, Student’s 

t-test was applied to get the corresponding p-values between the PCa and BPH groups. Here, 

we chose a threshold of p < 0.1 as a preliminary selection criterion, and only features with 

p-values lower than 0.1 were considered.

This preliminary reduction could reduce the number of features from thousands down to 

hundreds, and the next step was to select features for differentiation between BPH and PCa. 

The sequential feature selection process was performed by constructing the multiple support 

vector machine (SVM) classifiers [23]. The loss function of SVM can be formulated as

minw ∥ w ∥2
2 , s . t :yi wTxi + b ≥ 1
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where xi is the ith inputs and yi is the ith corresponding label. w is the trainable weights and 

b is the bias. To penalize the misclassified cases, we can apply the hinge function to reformat 

the loss function as

minw ∥ w ∥2
2 + λ

i
ℎinge yi wTxi

where the hinge function is

ℎinge z = max 0,1 − z

The hinge function is a convex function. Then, the loss function can be solved by using the 

gradient descent algorithms.

For feature selection, we used the SVM with Gaussian kernel as the objective function 

to test the performance of models built with a subset of features [24, 25]. The methods 

were implemented using our own programs written in Matlab. In the beginning, an empty 

candidate set was presented, and features were sequentially added. The fourfold cross-

validation method was applied to test the model performance [26]. The split of the training 

and validation subsets was assigned before the feature selection process. Only features 

extracted from cases in the training dataset were considered to build the model, and then, 

the developed model was applied to the set-aside cases in the validation dataset. In each 

iteration, the training process was repeated 1000 times to explore the robustness of each 

feature. After each iteration, the feature which led to the best performance was added to the 

candidate set. When the addition of a new feature did not meet the criterion, the selection 

process stopped. Here, we used 10−6 as termination tolerance for the objective function 

value. In each test, the originally selected features were larger than 20, which was too many 

considering the small number of cases. Based on the selection results, the discriminating 

capability of features could be assessed and ranked. According to the ranking, the top 1, 2, 

3, 4, 5, … 20 features were selected, and they were used to build the diagnostic model by 

adding them one by one. The discrimination accuracy was evaluated by ROC. We found that 

by increasing the number of features from 1 to 4, the accuracy improved substantially, and 

when adding more features from 4 to 6, the accuracy improved slightly. When adding more 

features beyond 6, the accuracy did not increase further. Therefore, finally 6 features were 

selected to build the classification model.

After the feature selection was completed, the 6 selected features were used to train the 

SVM model with Gaussian kernel to serve as the final diagnostic classifier. The diagnostic 

performance was evaluated using fourfold cross-validation, i.e., the model developed using 

75% cases was tested in the remaining 25% cases, balanced between PCa and BPH cases. 

The predicted radiomic scores from cases in the testing dataset were used to construct the 

ROC curve, and the AUC was calculated. The range of AUC from the 4 runs of validation 

tests and the mean AUC was obtained. Each case had only one chance to be included in the 

testing dataset, and the obtained radiomics scores from all cases were combined to build a 

final ROC.
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2.3.3 Statistical analysis—The DeLong test was applied to compare the ROC curves 

generated using the deep learning and the radiomics analysis. For the comparison of 

different ROIs, the best performance ROI was used as the reference to check whether the 

result of other ROI was significantly worse. p < 0.05 was considered significant.

3 Results

3.1 ROC analysis of deep learning using bi-directional CLSTM

The diagnostic results using 9 ROIs as the input into the bi-directional CLSTM are 

summarized in Table 2. For the tumor alone without any peritumoral tissue, the range of 

AUC in the fourfold cross-validation was 0.72–0.89 (mean 0.84). When using the expanded 

ROI as input, in general, adding a small amount of peritumoral tissue achieved a higher 

AUC compared to using tumor alone. When using the 1.2 times volumetric expansion, the 

mean AUC = 0.85; when using the 5-pixel boundary expansion, the mean AUC = 0.87; 

and when using the ± 20% region growing, it had the highest mean AUC of 0.89 [range 

0.81–0.93]. For each expansion method, the AUC decreased with the enlarged ROI. When 

going from 1.2 to 1.5 times volumetric expansion, the mean AUC decreased from 0.85 to 

0.75. With the increasing boundary expansion using 5, 10, and 15 pixels, the mean AUC 

decreased from 0.87 to 0.85 to 0.74. In the region growing using ± 20%, ± 30%, and ± 

40% stopping criteria, the mean AUC decreased from 0.89 to 0.77 to 0.65. The DeLong test 

results using the 20% region growing ROI as the reference are shown in Table 3. The p value 

compared with the lesion-only ROI was 0.25, not significantly different. The difference 

compared with the ROI generated using 1.2 times shell; 5- and 10-pixel expansions were 

also not significant.

3.2 Diagnostic results of radiomics analysis

The radiomics diagnostic results are also summarized in Table 2, and the DeLong 

comparison z and p values between radiomics and deep learning are listed in the table. 

The range and mean AUC obtained from fourfold cross-validation are listed for all 9 ROIs. 

The mean AUC for the tumor alone was 0.77 [range 0.70–0.82]. Including peritumoral tissue 

generated with ± 20% region growing had the best performance, with a mean AUC of 0.79 

[range 0.74–0.85], not significantly different, p = 0.72 by the DeLong test. For the radiomics 

analysis, there were 6 features selected by SVM. Their box plots between the PCa and BPH 

groups are shown in Fig. 10. The calculated radiomics score between the two groups, which 

represents the malignancy probability, is shown in Fig. 11. The results for the expanded ROI 

were also consistent with those obtained from deep learning, showing worse AUC with more 

inclusion of peritumoral tissues. When going from 1.2 to 1.5 times volumetric expansion, 

the mean AUC decreased from 0.77 to 0.74. When using 5-, 10-, and 15-pixel expansions, 

the AUC were 0.78, 0.78, and 0.69, respectively. In the region growing with ± 20%, ± 

30%, and ± 40% stopping criteria, similarly, as the peritumoral areas expanded larger the 

performance became worse, showing decreased AUC from 0.79 to 0.72 to 0.62. The DeLong 

test results using the 20% region growing ROI as the reference are shown in Table 4. The 

values of the mean AUC were close, and most comparisons did not reach the significant 

level.
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The ROC curves of the tumor alone and the tumor with ± 20% region growing peritumor 

are shown in Fig. 12. It shows that deep learning has a higher AUC than radiomics and that 

including peritumoral tissue using ± 20% region growing has a better yet non-significant 

performance than tumor alone ROI.

4 Discussion

In this study, we demonstrated that the recurrent neural network using bi-directional CLSTM 

could consider the change of signal intensity in the DCE-MRI series, and reached the 

highest AUC of 0.89 [range 0.81–0.93] in differentiating PCa and BPH. We performed 

a systematic analysis comparing 9 different ROIs with different amounts of peritumoral 

tissue outside the lesion. When using the ± 20% region growing to determine the expansion 

according to the tumor enhancement intensity, the diagnostic performance was the best. 

Compared to using tumor alone, the mean AUC was improved from 0.84 to 0.89, but did not 

reach the significance level. For radiomics analysis, the best model was also obtained when 

using the 20% region growing ROI, with a mean AUC of 0.79 [range 0.74–0.85]. Overall, 

the performance of deep learning models was better than the radiomics models, yet only 

20% region growing ROI reached a significant difference (p = 0.04).

Radiomics and deep learning have been widely applied in the diagnosis and risk 

stratification of PCa [27–29] and also used in personalized radiation therapy planning to 

achieve precise treatment [30]. Utilization of texture analysis based on T2WI and apparent 

diffusion coefficient (ADC) maps for the diagnosis of PI-RADS 3 lesions was evaluated, 

and yielded an AUC range of 0.775–0.821 for the categorization of prostate cancer (GS ≥ 

6) versus no cancer [31]. The diagnostic performance is known to vary with the employed 

feature selection and machine learning algorithms [32].

For prostate multi-parametric MRI, diffusion-weighted imaging (DWI) is known to be the 

most important sequence. PCa is characterized by restricted molecular diffusion partially 

due to increased cell density, so DWI is widely used for the detection and diagnosis of PCa. 

Liu et al. applied intravoxel incoherent motion DWI (IVIM) to differentiate PCa from BPH, 

showing the highest AUC of 0.93 [33]. Shao et al. improved the PCa and BPH classification 

using the three-player minimax game framework and achieved an AUC of 93.4% [34]. 

However, diffusion MRI commonly suffers from relatively low spatial resolution, which 

might hamper the detection of small lesions.

DCE-MRI is commonly considered by radiologists using qualitative or semi-quantitative 

assessment. Since angiogenesis and increased perfusion can happen in both PCa and BPH, 

previous studies reported inconsistent results in terms of the contribution of DCE-MRI to 

the diagnosis of PCa. Because the normal prostate gland also showed enhancement, the 

diagnosis of PCa and BPH could not be made based on one, or a few, contrast-enhanced 

images. The pattern of the DCE-MRI kinetics (or, the signal intensity time curve) was 

needed. In our protocol, we had a total of 40 sets of DCE-MRI images with a very fine 

temporal resolution of 8 s, and this sequence could provide more information compared to 

the typical DCE-MRI included in the clinical prostate mpMRI protocol.
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The deep learning was performed using a long short-term memory (LSTM) network, 

one of the recurrent neural network (RNN) that can connect previous information to the 

present task. The LSTM is explicitly designed to avoid long-term dependency and focus 

primarily on short-term memory. The algorithm can consider the change of signal intensity 

on the images acquired at different DCE-MRI time points and thus was employed in this 

study. As illustrated in the case example, the PCa showed the washout DCE-MRI kinetic 

pattern while the BPH showed the persistent enhancing DCE-MRI kinetic pattern, and 

the information could only be utilized when the full spectrum of DCE-MRI images was 

considered. The same hierarchical features were calculated from each timeframe, and the 

collected information from all DCE-MRI frames was used for classification. The forget gate 

implemented in LSTM is designed to eliminate old information from the earlier time points. 

To preserve the information from the entire time series, we employed two methods: firstly to 

shorten the image train from 40 to 25 and secondly to combine CLSTM from 2 directions by 

implementing the bi-directional CLSTM. The results showed that this deep learning strategy 

could achieve a higher accuracy compared with radiomics.

Several studies have also applied deep learning algorithms for diagnosis of PCa [9–11]. In 

[9], Le et al. applied a multimodal CNN combined with the results based on handcrafted 

features using a support vector machine (SVM) classifier to diagnose PCa. The T2WI and 

ADC from 364 patients with a total of 463 PCa lesions and 450 identified noncancerous 

image patches were analyzed. In our study, differentiation of PCa vs. BPH was a much 

more challenging task than the differentiation of PCa vs. non-cancer prostate gland. Zhu et 

al. [10] implemented a stacked auto-encoder (SAE) to extract high-level features to build 

a random forest model to differentiate PCa and BPH using T2WI, DWI, and ADC. This 

was a pilot feasibility study, tested on 21 patients. Yuan et al. [11] established a transfer 

learning model based on ALexNet, which was pre-trained using natural images. The axial 

T2WI, sagittal T2WI, and apparent diffusion coefficient (ADC) from 132 cases were used 

to fine-tune the network. The features extracted from AlexNet were used to predict the 

malignancy probabilities. In the present study, we applied RNN to analyze DCE-MRI for 

differential diagnosis of PCa and BPH, which has not been reported in the literature so no 

results to be compared to.

Another major objective of this study was to systematically investigate the contribution 

of peritumoral tissue for diagnosis. Since altered vasculature is not confined to malignant 

tissue but infiltrates into the vicinity of the tumor, peritumoral tissue may contain useful 

diagnostic information [35]. It has been shown that adding perilesional radiomic features 

to intralesional features could improve discrimination ability in the diagnosis of PCa 

[36]. Furthermore, including peritumoral tissue outside the tumor ROI may reduce the 

uncertainties in the lesion ROI drawing. However, how much tissue should be included 

needs to be carefully determined. As shown in our results, including a small amount of 

peritumoral tissue could improve accuracy, but when the ROI was expanding too much, the 

lesion information might be diluted by including the weakly enhanced surrounding tissues 

and decreased the diagnostic accuracy. The DeLong test showed that there was no significant 

difference between lesion alone, ROI with small amount of peritumoral tissues (1.2 times 

shell, 5- and 10-pixel expansion), compared to the best performing ROI with 20% regional 
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growing. The results suggest that the drawing of lesion ROI does not need to be precise, 

which may help the clinical implementation of the developed methods for diagnosis.

Ultrasound is routinely used in the systematic biopsy of the prostate for patients presenting 

with elevated PSA. Similar to DCE-MRI, a new technique, dynamic contrast-enhanced 

ultrasound imaging (DCE-US) has been applied to quantitatively explore the vascular 

characterization of the prostate gland with the aid of an intravenously administrated US 

contrast agent. By using the 3D whole-mount histopathology as the reference, a pixel-wise 

AUC of 0.72–0.80 was obtained for the detection of PCa [37]. Also, to fully utilize 

all DCE-US information, the long short-term memory (LSTM) network was applied and 

demonstrated excellent performance in separating cancer from benign tissue with the highest 

AUC of 0.96 [38]. Another study adopted the quantitative information of the heterogeneity 

of flow derived from DCE-US and yielded an AUC of 0.85 for the detection of PCa 

[39]. However, since the analyzed patient series were different, it was difficult to compare 

diagnostic results reported in the literature.

There are several limitations in our study. Firstly, the sample size is relatively small. 

Improved differential performance is expected with a larger sample size. Secondly, all 

cases are from a single institute, which might hamper the versatility of our prediction 

model. Thirdly, automatic delineation of index lesion might avoid personal bias in the ROI 

delineation. Cao et al. used a novel multi-class CNN, FocalNet, to detect the PCa lesion and 

achieved 89.7% sensitivity for the index lesion [40]. Lastly, we only focused the analysis 

only on DCE-MRI. Some of patients included in this study also had high-quality T2WI and 

DWI, and the results for stratifying the risk based on the Gleason Score have been reported 

before. Li et al. [41] showed that the combination of DWI and hemodynamic information 

derived from DCE-MRI could stratify risk of PCa in the central gland. Chen et al. [7] also 

showed that DWI could differentiate International Society of Urological Pathology (ISUP) 

Gleason Grade (GG) ≤ 2 vs. ≥ 3 groups for the peripheral zone PCa. Zhang et al. [8]. 

showed that the combination of whole-lesion ADC and PSA could differentiate between 

low-grade (Gleason score [GS] ≤ 6) and high-grade (GS ≥ 7) PCa.

In conclusion, this study demonstrates that deep learning using the bi-directional CLSTM 

network, with appropriate consideration of the peritumoral information, can be implemented 

to analyze the DCE-MRI for differentiation of PCa and BPH. The results obtained using 

9 different ROIs showed that including a small amount of peritumoral tissue, such as 

using anatomic expansion to 1.2 times volume, 5-, 10-pixel outward boundary, or using 

enhancement intensity expansion with ± 20% regional growing, could improve diagnostic 

performance compared to using the tumor ROI alone. Even the improvement did not reach 

the significant level, the results suggest that drawing of lesion ROI does not need to 

be precise and that including small amount of peritumoral tissue will help in diagnosis. 

Our results were consistent with the current recommendation that DCE-MRI may provide 

supplementary information. For patients presenting with elevated PSA or symptoms, correct 

diagnosis of PCa and BPH, and further risk stratification of PCa, is vital for making optimal 

personalized treatment decisions. Deep learning may provide a feasible strategy to fully 

explore all information contained in a large number of MR images acquired in a prostate 

mpMRI protocol.
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Fig. 1. 
The overall analysis flowchart. The first task is to segment the lesion ROI and generate 

8 different peritumor regions. The second module is to perform two AI-based analyses, 

using deep learning with the bi-directional CLSTM network (top), and the radiomics to 

extract features and perform feature selection and classification with the SVM (bottom). The 

third module is to obtain the diagnostic results using the developed models to differentiate 

between PCa and BPH for comparison
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Fig. 2. 
A case example of an 83-year-old man with prostate cancer (tPSA = 7.13 ng/mL, Gleason 

Score = 4 + 5). The suspicious lesion is manually outlined. A The first DCE-MRI time 

frame (pre-contrast image); B the 15th time frame post-contrast image; C the 40th time 

frame post-contrast image; D the DCE-MRI time-intensity curve shows the washout pattern. 

E, F, G The tumor ROIs drawn on 3 consecutive slices; H the projection of 3 tumor ROIs, 

and the square smallest bounding box to cover the outer boundary
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Fig. 3. 
Nine different ROIs used in the diagnostic evaluation for the PCa case shown in Fig. 2, 

generated by using three different methods. A Original tumor ROI by manual drawing; B, C 
the 1.2 and 1.5 times volumetric expansion; D, E, F the boundary pixel expansion using 5, 

10, and 15 pixels; G, H, I the region growing using ± 20%, ± 30%, and ± 40% mean tumor 

intensity as the stopping criteria
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Fig. 4. 
A case example of a 72-year-old man with benign prostatic hyperplasia (tPSA = 10.8 

ng/mL). The suspicious lesion is manually outlined. A The first DCE-MRI time frame 

(pre-contrast image); B the 15th time frame post-contrast image; C the 40th time frame 

post-contrast image; D the DCE-MRI time-intensity curve shows the persistent enhancing 

pattern. E, F, G The tumor ROIs drawn on 3 consecutive slices; H the projection of 3 tumor 

ROIs, and the square smallest bounding box to cover the outer boundary
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Fig. 5. 
Nine different ROIs used in the diagnostic evaluation for the BPH case shown in Fig. 4, 

generated by using three different methods. A Original tumor ROI by manual drawing; B, C 
the 1.2 and 1.5 times volumetric expansion; D, E, F the boundary pixel expansion using 5, 

10, and 15 pixels; G, H, I the region growing using ± 20%, ± 30%, and ± 40% mean tumor 

intensity as the stopping criteria
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Fig. 6. 
Conceptual diagram of the bi-directional convolutional long short-term memory (CLSTM) 

architecture. The architecture uses 7 convolutional LSTM layers via 3 × 3 filters. The 

number of DCE-MRI time points is 25. The number of the input channels is 1 at each time 

point. The number of activation channels in deeper layers is progressively increased from 

8 to 16 to 32 to 64. The last dense layer is obtained by flattening the convolutional output 

feature maps from all states
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Fig. 7. 
Diagram of a bi-directional CLSTM layer. One bi-directional layer is made up of 2 sublayers 

from opposite directions. The two sublayers have the same inputs, with reversed time orders. 

The outputs of the 2 sublayers are concatenated together as different channels
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Fig. 8. 
Diagram of the CLSTM cell. it and ot are the input and output at time point t. Ct and Ht

represent the hidden states which are transferred to the cells on the next time points
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Fig. 9. 
The integrated architecture of the bi-directional CLSTM network. Each layer contains the 

bi-directional LSTM module as shown in Fig. 7. The 25 sets of DCE-MRI images are used 

as input. After 7 bi-directional LSTM layers, the last dense layer is obtained by flattening 

the convolutional output feature maps from all states
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Fig. 10. 
The box plot of 6 radiomics features selected by the SVM for diagnosis, by using the ROI 

of the tumor with ± 20% region growing peritumor tissue. The selected features are from 

different DCE-MRI frames, including F2, F16, F18, F26, F30, and F33
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Fig. 11. 
The malignancy probability (the radiomics score) calculated by using the model built using 

the 6 selected features extracted from the tumor with 20% region growing peritumor tissue, 

shown in Fig. 10. Using the threshold of ≥ 0.5 as malignant, the overall accuracy is 83%, 

with the sensitivity of 90% and specificity of 73%
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Fig. 12. 
The whole group ROC curve constructed by the malignancy probability obtained from 

the deep learning with the bi-directional CLSTM network and the radiomics analysis. The 

results of tumor alone and tumor with 20% region growing peritumor tissue are shown, 

indicating that including some peritumoral tissue can improve the diagnostic performance. 

Overall, the AUC of deep learning is higher than that of the radiomics analysis for all 

different ROIs
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Table 1

Subject information

PCa BPH

N = 73 N = 62

Age (years), median (IQR) 66 (47–81) 65 (47–80)

tPSA (ng/mL), median (IQR) 11.05 (0.02–157) 6.18 (0.48–36)

PI-RADS v2 Score 2 0 62 (100%)

3 17 (23.3%) 0

4 21 (28.8%) 0

5 35 (47.9%) 0

ISUP Grade 1 5 (6.8%)

2 24 (32.9%)

3 22 (30.1%)

4 5 (6.8%)

5 17 (23.3%)
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