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Predicted hotspots of overlap between highly
migratory fishes and industrial fishing fleets
in the northeast Pacific

Timothy D. White1*, Francesco Ferretti1, David A. Kroodsma2, Elliott L. Hazen3,4,5,
Aaron B. Carlisle6, Kylie L. Scales3,7, Steven J. Bograd3,4, Barbara A. Block1
Many species of sharks and some tunas are threatened by overexploitation, yet the degree of overlap between
industrial fisheries and pelagic fishes remains poorly understood. Using satellite tracks from 933 industrial
fishing vessels and predictive habitat models from 876 electronic tags deployed on seven shark and tuna spe-
cies, we developed fishing effort maps across the northeast Pacific Ocean and assessed overlap with core hab-
itats of pelagic fishes. Up to 35% of species’ core habitats overlapped with fishing effort. We identified overlap
hotspots along the North American shelf, the equatorial Pacific, and the subtropical gyre. Results indicate where
species require international conservation efforts and effective management within national waters. Only five
national fleets (Mexico, Taiwan, China, Japan, and the United States) account for >90% of overlap with core
habitats of our focal sharks and tunas on the high seas. These results inform global negotiations to achieve
sustainability on the high seas.
INTRODUCTION
Approximately 75% of pelagic sharks and 30% of tunas are threatened
by overexploitation, yet many are still subject to intense fishing pressure
(1, 2). Themovements and habitat preferences of many pelagic fishes
include the use of the “high seas,” or the ~60% of global oceans that
lie beyond any individual nation’s control (3, 4). This exposes pelagic
populations to multinational fishing fleets and diffuses accountabil-
ity across dozens of nations that collectively fish these shared waters
(4–6). In addition to jurisdictional challenges, many shark and tuna
species are particularly susceptible to overfishing due to their relatively
late ages at sexual maturity and tremendous commercial value; the
global value of tuna and shark fisheries are estimated at $42 billion
and $1 billion, respectively, which motivates ongoing overfishing of
some species (1, 7–9).

Currently, high seas [also known as areas beyond national jurisdic-
tion (ABNJs)] fisheries are primarily managed by regional fisheries
management organizations (RFMOs). The effectiveness of high seas
fisheriesmanagement has been debated (9);manyhigh seas populations
are depleted or overfished (5), and RFMOagreements only pertain to
participating member nations (10). RFMOs have improved stock
biomass when strongmanagementmeasures such as quotas are adopted,
yet 36% of RFMO-managed tuna populations and 61% of billfish
populations globally have biomasses below target levels (11). The
United Nations’ recent commitment to create the world’s first legally
binding treaty on global high seas conservation (12) presents a historic
opportunity to stabilize global pelagic fish populations (13). However,
a better understanding of high seas fisheries and their effects on pe-
lagic species is needed to inform the priorities of this treaty, which
will be formally negotiated until 2020. Although fishing is the strongest
driver of declining population trends in sharks and tunas (14), the distri-
butions and relative pressures of high seas and domestic fishing fleets
on many migratory species remain poorly understood (15), making
it unclear which species or regions may warrant prioritization in a
high seas treaty.

Global understanding of industrial fishing activity has traditionally
derived from the Food and Agriculture Organization of the United
Nations (FAO) statistics or aggregated catch data (e.g., longlines are
typically presented at 5° grid cell size, while purse seine data are often
provided at 1° resolution) reported by RFMOs (16). A primary limita-
tion of official datasets and finer-scale catch reconstructions from these
data is that individual countries with competing national interests self-
report data to international fisheries organizations, leading to misre-
porting that may compromise suitability for spatial management (17).
For example, China’s distant-water fleet, among the world’s most
active fleets, is estimated to underreport catch by one order of magni-
tude (0.4 million metric tons per year reported versus 4.6 million
metric tons per year estimated in reconstructed catches) (18). There
are typically no punishments for nations that do not self-report shark
catch data, and the effectiveness ofmeasures to penalizemisreporting of
shark and tuna catch data varies by RFMO (5, 19). As a result, some
official datasets contain sparse reported shark catches from major fishing
fleets including China, Taiwan, Japan, and South Korea (20). Fisheries ob-
server programs, government-mandated vessel monitoring systems, and
vessel logbooks have provided higher-quality data on industrial fishing, al-
though these data are only available for a small fraction of fishing fleets and
are typically kept private by individual nations (21). For example, over two-
thirds of RFMO-managed fisheries lack regional observer programs,
leading to continued uncertainties over the global impacts of pelagic fish-
eries in both national and international waters (22).

Recently, analysis of a publicly accessible, globally available vessel
transmission system known as the Automatic Identification System
(AIS) has provided maps of global fishing effort at unprecedented spa-
tial and temporal resolution, allowing the direct observation of over
70,000 industrial fishing vessels (23–25). AIS can be used to observe
50 to 75% of all fishing vessels greater than 24 m despite known limita-
tions (e.g., many smaller vessels do not transmit AIS detections and a
1 of 11
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small subset of vessels tamper with AIS devices), thus providing a high-
resolution assessment of global fishing that is not reliant on self-reporting
(25). This innovation facilitates novel investigation into the spatio-
temporal dynamics of fishing effort, the influence of the physical
environment in driving fisheries trends, and potential spatial overlaps
with core habitats of commercially valuable and threatened pelagic
species. Effectively quantifying overlap between marine predators
and industrial fishing effort is essential for identifying regions of con-
servation concern (26, 27) and predicting bycatch hotspots for threatened
species (21, 28). AIS analysis provides an opportunity to independent-
ly inform fisheries management practices and conservation initiatives,
including efforts to better manage the overexploited and data-poor
high seas (29).

Here, we used shipboard AIS signal analysis, electronic tagging
datasets of pelagic species, and predictive habitat models to identify re-
gions of overlap between commercial fishing effort and the core habitats
[defined as the top quartile of monthly habitat model predictions
following Hazen et al. (30) and Kappes et al. (31)] for seven species
of pelagic sharks and tunas in the northeast Pacific Ocean. The north-
east Pacific Ocean provides an ideal setting to investigate the interac-
tions between pelagic fishes and fisheries due to the high commercial
value of regional fisheries and the unprecedented amount of publicly
available, fisheries-independent data available on habitat utilization by
pelagic species; the Tagging of Pacific Predators (TOPP) program
produced 876 tracks of our seven study species in this region (3). This
biologging program also supported development of the predictive hab-
itat models, which quantify relationships between animal movements
and dynamic oceanographic variables and predict how species may
respond to contemporaneous oceanographic conditions (30). Tem-
poral differences between animal movement and fishing effort data-
sets (up to 5- to 10-year differences) are common in studies that
examine overlap of fishing effort and species distributions (21, 28).
AIS-derived maps of fishing effort are only available for recent years
(25), so most animal tracking datasets predate observations of fishing
(3). We used habitat models (30) to address this discrepancy by gener-
ating habitat predictions for the exact time period of our fishing effort
observations.

To inform how national and international management actions
may address the impacts of fishing on these species, our primary ob-
jectives were to (i) map commercial fishing effort by tracking all
fishing vessels that transmitted AIS signals in the northeast Pacific
Ocean in 2015–2017, (ii) calculate fisheries overlap with the pre-
dicted core habitats of pelagic sharks and tunas using habitat models
(3, 30), (iii) determine which species may require an international
approach to conservation and management due to fisheries overlap
in the high seas, and (iv) identify which nations’ fisheries most fre-
quently overlap with these pelagic species. These analyses may be
used to identify regions of concern for ongoing United Nations ne-
gotiations on the conservation and sustainable use of the high seas
and to evaluate fisheries self-reporting by identifying where countries
may be targeting or landing species that are not reported to manage-
ment agencies.
RESULTS
Patterns of fishing effort
Using 80million detections of AIS transmissions, 933 industrial fishing
vessels flagged to 12 different nations were tracked in the northeast
Pacific study region (10°N to 60°N, 110°W to 180°W) from 1 January
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019
2015 to 31 December 2017. These vessels produced 1.7 million total
hours of fishing effort across diverse gear types including drifting long-
lines, bottom-set longlines, tuna purse seines, non-tuna purse seines,
trawlers, trollers, pot/trap vessels, and squid jiggers (Fig. 1 and fig.
S1). The gear type used by 111 fishing vessels (12%) could not be iden-
tified due to their absence from international vessel registries and vessel
information websites (table S2). These vessels accounted for <3% of
total fishing hours in the region (44,529 hours; fig. S1) and thus were
omitted from the overlap analyses. TheUnited States accounted for 63%
of fishing vessels and 68% of fishing effort detected via AIS, largely due
to activity within the U.S. exclusive economic zone (EEZ; Table 1). The
high seas were primarily fished by vessels flagged to Taiwan (29% of
fishing hours), China (24%), Japan (19%), Vanuatu (12%), Mexico
(7%), and the United States (7%) (Table 1). The three North American
EEZswithin our study region (Canada,United States, andMexico)were
almost exclusively fished by vessels flagged to that same EEZ (91 to 99%
of total fishing hours within each EEZ).

We identified substantial hotspots of fishing effort that could affect
pelagic fishes along the North American continental shelf, the sub-
tropical gyre, and the equatorial Pacific (Fig. 1). In contrast, the tempe-
rate waters of the northeast Pacific were largely devoid of pelagic fishing
effort in 2015–2017.We detected minimal pelagic fishing effort in large
marine protected areas (MPAs) within our study region, including the
Papahānaumokuākea Marine National Monument and Johnston Atoll
of the Pacific Remote Islands Marine National Monument (Fig. 1). In
contrast, we detected some of the northeast Pacific’s most intense hot-
spots of longline fishing effort in the regions outside the boundaries of
these protected areas. These regional patterns were present across all 3
years of vessel tracking analyses (figs. S2 to S4). In addition, the annual
total of fishing effort variedonly slightly (3.6 to9.6%annual change) across
2015 (572,939 fishinghours), 2016 (593,499hours), and2017 (538,128hours).

Fishing effort and core habitat overlap
By combining species-specific habitat modeling with AIS-detected
fishing effort, we identified regions of overlap in the northeast Pacific
between predicted core habitats (top 25% of habitat predictions) and
fishing effort (Figs. 2 to 4). The core habitats of all seven shark and tuna
species overlapped with industrial fisheries, with the percent of core hab-
itats fished ranging from 4 to 35% across species (Fig. 2C). Although
all seven species used both coastal and offshore habitats, there was
considerable variation across species as to where fisheries overlap oc-
curred. For example, 94% of salmon shark overlap occurred within
EEZs of the United States and Canada, and 74% of yellowfin tuna
overlap occurred in Mexico’s EEZ. In contrast, 87% of blue shark
overlap occurred in international waters, while Pacific bluefin tuna
and albacore tuna overlap (50 and 46% in high seas, respectively)
were more evenly distributed across international and domestic
waters. Regional hotspots of overlap were generally consistent across
years, although the relative intensity displayed interannual variabil-
ity (figs. S6 to S8).

Vessels flagged to seven nations were detected overlapping with the
core habitats of pelagic fishes (Fig. 2D). These nations span North
America, Central America, Asia, and Oceania, while globally active
European fleets (e.g., Spain) were not detected in this study region. The
vastmajority of high seas overlap in this region (94%)was driven by just
five nations: Mexico (30.4%), Taiwan (22.7%), China (14.4%), Japan
(13.3%), and the United States (13.3%). The core habitats of individual
species in the high seas overlapped with an average of six different na-
tional fleets (Fig. 2D).
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DISCUSSION
Interactions between industrial fishing fleets and highly migratory spe-
cies are directly relevant to international agreements pertaining to the
management of the high seas and EEZs. We demonstrate how com-
bining predictive habitat models for pelagic fishes with novel datasets
on fishing vessel activity can better resolve these key interactions. Our
results highlight regions and national fishing fleets that drive overlap
between fishing activity and the core habitats of pelagic sharks and tunas
(4 to 35% overlap across seven species). Six of our seven study species
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019
are listed as Near Threatened or Vulnerable on the International Union
for Conservation of Nature’s (IUCN) Red List of Threatened Species,
although salmon sharks are classified as a species of Least Concern
and albacore and blue shark populations are above target population
thresholds in the north Pacific Ocean (32). Strategically reducing
overlap between threatened species’most crucial habitats and industrial
fishing effort may be an important step toward their global population
recoveries. However, “overlap” carries different significance for sustain-
ably caught species; overlap for a sustainably fished population may
Fig. 1. Fishing effort by fishing gear type. Fishing activity detected by AIS for (A) all vessels, (B) purse seiners, (C) longliners, and (D) trawlers. (E) Registered na-
tionality and primary fishing gear type for fishing vessels active in the northeast Pacific Ocean in 2015–2017. Color scales represent unique gear types in (A) to (D) and
unique nations in (E). Vessels from 12 nations were detected in our study region (10°N to 60°N, 110°W to 180°W). Purse seiners and longliners are subdivided into two
classes (tuna and non-tuna) based on permits from RFMOs. In (A), black lines denote EEZs and red lines show two large MPAs: Papahānaumokuākea Marine National
Monument (north; boundaries expanded from the inner line to the outer line in 2016) and Johnston Atoll of the Pacific Remote Islands Marine National Monument
(south). In (E), “Other” vessel types include trollers, squid jiggers, pole-and-line, and pot or trap vessels.
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indicate efficient fishing activity, while overlap for a threatened popula-
tion may indicate a conservation concern.

The seven study species vary greatly in their location of overlap with
industrial fisheries, indicating which jurisdiction (national or interna-
tional) may be most appropriate for a species’management. For exam-
ple, although salmon sharks regularly undertake migrations to the high
seas, 94% of their predicted overlap with commercial fisheries occurs in
coastal waters of the United States and Canada, suggesting that these
two nations can implement meaningful conservation measures for this
species without commitments from other nations. In contrast to patterns
of domestic fisheries overlap, 87% of blue shark overlap and 46% of
albacore tuna overlap occur in international waters. These results
suggest that high seas conservation measures are crucially important
if domestic efforts to manage these pelagic fishes are to be successful.

Pacific bluefin tuna and the eastern Pacific population of yellowfin
tuna are overfished (11), and high seas quotas do not exist for any
pelagic sharks despite the efficacy of quotas for increasing biomass of
pelagic fishes (11, 19). International catch restrictions for pelagic sharks
remain globally scarce, although the Inter-American Tropical Tuna
Commission (IATTC), the international body that manages pelagic
populations in the eastern Pacific Ocean, recently adopted promising
measures that aim to reduce catch of silky sharks (19, 33). The degree
of international overlap presented here further suggests that a legally
binding high seas treaty could include language to improve manage-
ment of these species. Large MPAs in national and international waters
have been proposed as an additional tool for managing overfished po-
pulations of pelagic fishes, although their effectiveness for highly migra-
tory species is debated (13, 34). We observe minimal fishing effort in two
large MPAs in our study region (the Papahānaumokuākea and Pacific
Remote IslandsMarineNationalMonumentswithin theU.S. EEZ), while
we detect high rates of fishing effort in the regions beyond their bound-
aries, suggesting that well-enforcedMPAsmay help reduce overlap be-
tween pelagic fishes and fisheries. Further studies are necessary to better
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019
resolve the population-level impacts of large MPAs on mobile species,
including potential edge effects related to those management zones.

Our results suggest that observing and potentially modifying the
fishing activities of a limited number of nations can bring substantial
improvements to the sustainability of fishing on the high seas. Although
dozens of nations fish the high seas (25, 35), just five nations fromNorth
America (Mexico andUnited States) and East Asia (China, Taiwan, and
Japan) account for 94% of predicted overlap with core habitats of pelagic
fishes in the high seas of the northeast Pacific Ocean. In the absence
of a legally binding high seas treaty, the economic benefits of fishing
on the high seas (36) and the resulting impacts on pelagic fishes will
likely continue to be disproportionately driven by a relatively small
number of nations with the capacity and interests to fish these global
commons. Identifying nations that contribute to patterns of overlap with
pelagic fishes may reveal which national interests must be considered if
international protected areas or other management strategies are to be
cooperatively established in the high seas. In addition, given persistent
underreporting of catch in self-reported datasets (17), AIS-derived
patterns of overlap may be useful in detecting potential instances of na-
tional underreporting. For example, while China is estimated to under-
report catch data to some RFMOs, particularly for sharks (18, 20), we
find that Chinese fisheries account for the highest national overlap
(36%) with core habitats of blue sharks in the high seas.

We emphasize, however, that the overlap patterns we present pertain
specifically to our study populations that were tracked extensively
throughout the northeast Pacific Ocean (3). Populations in other oceanic
regions may display different overlap patterns, and important hotspots
of catch or bycatch overlapmay fall outside the geographic scope of this
study if our tagged populations did not occupy those areas (e.g.,
potential bycatch of white sharks in coastal Mexico) (37). Our analyses
demonstrate how dynamic tools like predictive habitat modeling and
high-resolution vessel trackingmay be used to identify overlap patterns
in these places where predictions are not currently available (38). The
Table 1. Industrial fishing activity in the northeast Pacific Ocean by nation and jurisdiction in 2015–2017. Values are in units of fishing hours. The values
listed in parentheses are the percentage of fishing hours in each jurisdictional column that are attributed to vessels flagged to a given nation.
Nation
 Total hours
 High seas
 Mexico EEZ
 U.S. EEZ
 Canada EEZ
 Clipperton EEZ
United States
 1,181,281 (68%)
 23,489 (7%)
 1,046 (4%)
 1,154,246 (98%)
 2,500 (1%)
 0
Canada
 206,058 (12%)
 3,504 (1%)
 1,294 (5%)
 12,729 (1%)
 188,530 (99%)
 0
Taiwan
 98,680 (6%)
 98,378 (29)
 0
 303 (<1%)
 0
 0
China
 81,004 (5%)
 81,004 (24%)
 0
 0
 0
 0
Japan
 71,824 (4%)
 66,256 (19%)
 0
 5,568 (<1%)
 0
 0
Mexico
 49,753 (3%)
 24,952 (7%)
 23,831 (91%)
 0
 0
 970 (100%)
Vanuatu
 41,560 (2%)
 41,536 (12%)
 0
 24 (<1%)
 0
 0
South Korea
 3,906 (<1%)
 3,906 (1%)
 0
 0
 0
 0
Nicaragua
 108 (<1%)
 108 (<1%)
 0
 0
 0
 0
Venezuela
 106 (<1%)
 106 (<1%)
 0
 0
 0
 0
Colombia
 62 (<1%)
 62 (<1%)
 0
 0
 0
 0
Russia
 26 (<1%)
 21 (<1%)
 0
 5 (<1%)
 0
 0
Sum
 1,734,369
 343,323
 26,172
 1,172,875
 191,030
 970
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potential spatial bias caused by the initial tagging location was reduced
in the synthesis analyses of tracks of Block et al. (3) by implementing a
weighting scheme that assigned a higher weight to tracks of longer
duration and to location estimates that occur later in a given track (3).
Despite the application of this weighting scheme, our resultsmay still be
influenced by the coastal location of most tag deployments (3), so our
assessment of fisheries overlap on the high seas may be minimum esti-
mates of potential overlap.We also note thatmapping overlap is crucial
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019
for understandingwhich regionsmaywarrant finite conservation atten-
tion (e.g., present efforts to manage salmon sharks should prioritize
Alaskan waters over international waters, and white sharks may re-
quire more attention in international waters where hotspots of overlap
are located), although our findings are best interpreted at a regional
scale as opposed to the scale of individual pixels. As is often the case
with broad-scale studies, predictions for individual cellsmay differ from
more localized and geographically limited data collection. We further
Fig. 2. Location, jurisdiction, and vessel nationality of fish/fisheries overlap. The predicted overlap between industrial fishing effort and core habitats for seven
species of (A) tunas (Pacific bluefin, yellowfin, and albacore tunas) and (B) pelagic sharks (white, shortfin mako, salmon, and blue shark). The scale in (A) and (B) indicates
the log-transformed relative overlap values, which sum to 1 for each species and are summed across species in these multispecies plots. Solid lines on the maps denote
the U.S. EEZ, and dashed lines indicate the EEZs of Canada and Mexico. (C) Jurisdiction of fisheries overlap (within an EEZ or on the high seas). (D) National contributions
to high seas overlap: Bar length is equivalent to the percent of each species’ total fisheries overlap that occurs in the high seas [i.e., gray bar in (C)].
5 of 11
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Fig. 3. Core habitat predictions for seven species of pelagic sharks and tunas. (A to G) Core habitats are defined as the top 25% of predicted habitat use
values (30, 31). Black lines denote minimum convex polygons (MCPs) constructed around position data available from Block et al. (3) for an individual species; to
avoid spatial extrapolation, habitat model predictions pertain only to these regions. The color scale indicates the predicted relative use of cells (i.e., probability that
a cell contains core habitat relative to other cells) from 1 January 2015 to 31 December 2017.
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019 6 of 11
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Fig. 4. Predicted fisheries overlap with the core habitats of seven shark and tuna species. (A to G) Black lines denote MCPs formed around all location data
available from Block et al. (3) for an individual species; to avoid spatial extrapolation, habitat model and fishing overlap predictions pertain only to these regions. The
color scale indicates the relative intensity of predicted overlap.
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019 7 of 11
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acknowledge that a species’ overlap with industrial fisheries is not
necessarily equivalent to its catch rate or mortality, as different gear
types may affect species to different extents. Reliable information on re-
lative catchability, mortality, and post-release survival is unavailable for
most species–gear type combinations (39), although future studies may
better elucidate population-level impacts of overlap once this
information is available.

Cross-evaluating maps of fishing effort derived from AIS alongside
datasets released by management organizations (e.g., fisheries observer
datasets, self-reported catch and effort datasets) may provide the
clearest view of industrial fisheries, as both classes of datasets have
strengths and limitations.While we focused on developingAIS analyses
to identify regional patterns of overlap between fishes and fisheries,
future efforts may build on this work by uniting insights from both
vessel tracking andmanagement organization datasets. For example,
modeling the relationship between RFMO datasets and vessel tracking
datasets may be used to generate predictions for time periods or regions
for which only one dataset is available. Similarly, comparing overlap
indices with reliable catch and effort datamay improve estimates and
predictions of catch rates for underreported species.

Both human and marine predators respond to a dynamic set of
biotic and abiotic drivers (22). The recent expansion of vessel tracking
data, combinedwith the increasing sophistication of species distribution
and habitat models derived from biologging datasets, can facilitate
dynamic approaches to fisheries management, such as high seas
closures that directly account for variable ocean conditions and pre-
dicted hotspots of overlap. Our approach uses habitat models that con-
sider the relationship between animal movements and the biophysical
drivers of thosemovements (30, 40). Similar efforts to better understand
the processes governing human behavior, including both biophysical
and bioeconomic drivers, will further improve future predictions of
overlap between fishes and fisheries. As climate change is predicted to
redistribute species richness in the north Pacific Ocean (41), data-rich
tools such as AIS analysis, telemetry, and dynamic habitat models may
play a vital role in managing a changing ocean.
MATERIALS AND METHODS
Tracking fishing vessels
Vessels were remotely tracked using satellite and terrestrial detections of
AIS vessel transmissions (23–25) provided by Global Fishing Watch.
We accessed the raw detections used to analyze global fishing effort
by Kroodsma et al. (25). Likely fishing events were identified using
the convolutional neural network published by Kroodsma et al. (25)
(code available at https://github.com/GlobalFishingWatch/vessel-
classification). This algorithm identifies fishing events with >90%
accuracy by comparing a vessel track’s characteristics (e.g., speed, course,
and distance to shore) to a training database of labeled fishing events
from 503 vessels (25). The training dataset of labeled AIS tracks was
originally produced through interviewswith fishermen, former fisheries
observers, and a literature review (25). Each AIS position is classified as
fishing or not fishing based on this convolutional neural network. We
analyzed the tracks of all identified fishing vessels that entered our
study region (10°N to 60°N, 110°W to 180°W) from 1 January 2015 to
31 December 2017. We summed fishing hours, defined as hours of
all positions identified as fishing (25), within 1° by 1° grid cells as this
resolution is appropriate for longlines, which can span up to 100 km
in length (nearly 1°) (21) and are the largest gear type considered.We
note that overlap metrics would decrease at higher resolutions of input
White et al., Sci. Adv. 2019;5 : eaau3761 13 March 2019
data (42, 43). Our chosen resolution also matches our habitat models,
which were limited by the accuracy of location estimates from light-
based geolocation tags (3, 21).

A second convolutional neural network was developed in (25) to
estimate the fishing gear classes of global fishing fleets. Those fishing
gear classifications (including purse seiners, trawlers, drifting longliners,
squid jiggers, and fixed gear) contain both vessels that catch pelagic
fishes and those that do not (e.g., tuna-targeting purse seiners were
not distinguishable from those targeting forage fish, vessels using set
longlines were not separated from those setting crab pots, and maps
of trollers were not available). As risks associated with different gear
types vary in terms of potential catch and bycatch of pelagic sharks and
tunas, we disaggregated these broader gear classifications and mapped
fishing effort to the fishing gear type resolution needed to isolate effort
relevant to our study species (table S1). Vessel gear types were primarily
determined bymatching identifying vessel information fromAIS trans-
missions to official vessel registries (83% of identified vessels; table S2).
For vessels that did not have gear type listed on a registry, we identified
gear type using photographs frommarine vessel websites (14% of iden-
tified vessels; table S2), and expert knowledge of fishery seasons was
used to identify an additional 3% of vessels (i.e., coastal vessels fishing
exclusively during crab season in the same region as other known crab
vessels were labeled “pots and traps” vessels). We excluded vessels that
could not be identified to gear type (12% of all vessels).

Predicted core habitats
We assessed overlap between AIS-observed fishing effort and the pre-
dicted core habitats of seven shark and tuna species electronically tagged
in the TOPP program (3). These species were Pacific bluefin tuna
(Thunnus orientalis), yellowfin tuna (Thunnus albacares), albacore tuna
(Thunnus alalunga), white shark (Carcharodon carcharias), shortfin
mako shark (Isurus oxyrinchus), salmon shark (Lamna ditropis), and
blue shark (Prionace glauca). All species, except for the salmon shark,
are currently listed as Threatened or Near Threatened on the IUCN’s
Red List of Threatened Species, although the International Scientific
Committee for Tuna and Tuna-like Species in the North Pacific Ocean
(ISC) has determined that albacore and blue shark populations are
above target population thresholds in the north Pacific region (32).
The animal movement dataset used for this study spans from October
2000 to September 2009 and consists of 876 tag events from which
tracks were previously derived and modeled (table S3). Tracking data
were produced from a combination of deployments that included Lotek
2310 and Wildlife Computer mk9 archival tags, Wildlife Computer
pop-up satellite archival tags, and SPOT Argos satellite tags. Daily
position estimates of tagged animals were obtained from a Bayesian
state-space model that accounts for uncertainty and gaps in position
estimates (3).

From this prior biologging dataset (3), we predicted core habitats for
2015–2017 at a monthly 1° resolution throughout the northeast Pacific
Ocean through temporal extrapolation of habitat suitability predictions
generated using generalized additive models (GAMs) by Hazen et al.
(30). Because we used habitat models developed by Hazen et al. (30),
we matched their study region boundaries (10°N to 60°N, 110°W to
180°W) for our analyses. These boundaries were originally selected
to ensure adequate spatial and temporal coverage of the TOPP tagging
dataset within the study region (30). The habitat models used a wide
range of ocean conditions across years of species-environment relation-
ships to align the time range of core habitats and fishing activity; the
habitat models predict core habitats for the exact year of our fisheries
8 of 11
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dataset (2015–2017) (3, 30). These single-species GAMs were fit using
the tracking dataset generated from 876 satellite tags (table S3) and are
used to predict animal space use as a function of sea surface temperature
(SST), chlorophyll a (Chl-a), depth, latitude, and longitude at monthly
temporal resolution.Wedownloadedmonthly SST andChl-a data from
the National Oceanic and Atmospheric Administration (NOAA)
Environmental Research Division’s Data Access Program (ERDDAP)
server [0.01° Multiscale Ultrahigh Resolution (MUR) and 0.025° Mod-
erate Resolution Imaging Spectroradiometer (MODIS) datasets, respec-
tively] and regridded the data at a common 1° resolution using bilinear
interpolation functions from the “raster” and “ncdf4” packages in R
statistical software version 3.3.1. A spatial resolution of 1° was used to
account for positional uncertainty in location estimates from electronic
tagging data (3, 21). To avoid unrealistic spatial extrapolations beyond
species’ observedmovements (44, 45), we only generatedmodel predic-
tions within minimum convex polygons (MCPs) created from all
electronic tagging data available for individual species (table S3). The
deviance explained by these models ranges from 18.3 to 44.1% (30).
Core habitats were identified by selecting the top quartile of distribution
values, as predicted by habitat models, for a given species andmonth to
ensure that infrequently used habitats would not bias results (30, 31).
This previously identified threshold is chosen to represent themost crit-
ical habitat while excluding transitory habitat and to provide a more
conservative overlap metric.

Overlap with fishing effort
To investigate how the distributions of pelagic predators interact with
spatiotemporal dynamics of industrial fishing fleets, we calculated the
monthly relative overlap between fishing effort and species’ core habi-
tats in 2015–2017. For each grid cell, we summed the fishing hours of all
vessels with primary gear types that capture a particular study species
within a given year (table S1). To facilitate comparisons amongmonths
and different species, we then converted fishing hour sums and a given
species’ predicted distributions into probabilities that are relative to all
other grid cells in all other months within that year for that species
(28, 46). To calculate the probability that vessels and animals overlap in
space and time (relative to their likelihood of overlapping in all other
cells and months within that year), we applied the following equations
modified from (28, 46), where i is an individual grid cell, n is the total
number of all cells, and t is 1 month

PrelðspeciesÞit ¼
densityit

∑ni¼1∑
12
t¼1densityit

ð1Þ

PrelðfishingÞit ¼
effortit

∑ni¼1∑
12
t¼1effortit

ð2Þ

PrelðoverlapÞit ¼
PrelðspeciesÞit � PrelðfishingÞit

∑ni¼1∑
12
t¼1ðPrelðspeciesÞit � PrelðfishingÞitÞ

ð3Þ

We then averaged these standardized results across years to calculate
species’ mean predicted overlap throughout the study period.

We allocated core area/vessel overlap to an EEZ within our study
region or to the high seas. To assess how overlap was distributed across
waters of national jurisdictions and the high seas, we calculated the re-
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lative proportions of overlap grid cells that fell either within a national
EEZ or in the high seas. In addition, as AIS transmissions include a
vessel’s reported flag state and the majority of vessels were matched to
registries with known flag states, we gridded high seas fishing effort by
nation and calculated the relative proportions of overlapped cells
attributed to national fishing fleets.
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Fig. S2. Fishing activity detected by AIS in 2015.
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