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David M. ROCKE and Geoffrey JONES

Graduate School of Management

University of California

Davis, CA 95616

(dmrocke@ucdavis.edu)

In enzyme-linked immunosorbent assay (ELISA), as well as in many other kinds of immunoassay, a
log-logistic or similar-shaped calibration curve is fit using standards at a series of known levels and
then used to transform the measured values for the unknowns into estimated concentrations. The
choice of the number of standards, the concentration of the standards, and the number of replicates
of the standards and of the unknowns all affect the precision of the measurement. This article
develops an optimal design paradigm for this type of problem and shows how optimal choices can
be calculated so that the system achieves the maximum precision of which it is capable. Although
exact calculation of optimal designs requires use of a computer program, close approximations to
the optimum can be derived from simple rules for hand calculation.

KEY WORDS: Calibration; Log-logistic curve; Precision.

1 shows an example template. The number of calibration
wells and the known concentrations used for the calibra-
tion curve affect the precision of the determinations of the
unknowns, as does the choice of the number of replicates
of each unknown. This amounts to a problem of resource
allocation. Within the framework of a 96-well plate, how
does one maximize the number of samples analyzed while
maintaining the best possible accuracy and precision? We
pr~~~lcaD:'"aftalysis-~~~ the calibrationand~li-
cation parameters may be selected to give the maximum
precision of which the system is capable and to allow com-
parison among different protocols. The statistical optimiza-
tion procedure described here is generalizable to virtually
any calibration-curve type and to n-well plates.

Suppose that a plate with nw wells is divided between
ns samples, each replicated k times, and nca! wells de-
voted to calibration. An example is the ELISA protocol
presented by Harrison, Braun, Gee, O'Brien, and Hammock
(1989), which was used as an assay for the direct analysis of
the herbicide molinate in rice-field water. A 96-well plate
was used, with 15 unknown samples, quadruply replicated.
The remaining 36 wells were devoted to calibration. There
was one zero-concentration sample and one method blank,
which should theoretically correspond to infinite concen-
tration. (For the type of immunoassay used as an example.
water placed in a well of the microplate provides a reading
similar to that of a very large concentration, which would
bind all of the coloring agent.) There were seven other cal-
ibration samples at a series of dilutions from 500 ppb by a
factor of two (i.e., 500, 250, 125, etc.). Each of these nine
calibration samples was quadruply replicated.

Enzyme-Jinked immunosorbent assay (ELISA) is a form
of chemical analysis that can be used for detection or quan-
titation. Originally developed for clinical use, it has been
broadened t) other areas, including environmental measure-
ment. The ])rinciple on which it works is that antibodies
developed tJ the target compound or a related compound
cause inhibi tion, which leads to a measurable response. In
ELISA, this is usually in the form of a color change that is
measured b:"~_QPtic~ re~q~r.

ELISA's have been developed in many configurations and
for many a]oplications. One widespread application is for
the determil'lation of low molecular weight analytes in un-
known samples by using calibration curves. These immuno-
chemical arlalytical systems are often configured for 96-
well microplates because of the ease of analysis and capac-
ity for han(iling large numbers of samples. Such systems
have been described in many areas, including clinical anal-
ysis for hormones (Rajkowski, Hanquez, Bouzoumou, and
Cittanova 1989) and drugs (Laurie, Manson, Rowell, and
Seviour 1989); analysis of foods for toxins, natural (Chu et
al. 1987) or synthetic (Dixon-Holland and Katz 1988); mon-
itoring of human exposure to toxicants (Niewola, Hayward,
Symington, and Robson 1985; Bjercke et al. 1986); and
analysis of environmental samples for agricultural chem-
icals (Hall, Deschamps, and Krieg 1989; Jones et al. 1994;
Jones, Wor[berg, Kreissig, Hammock, and Rocke 1995;
Wortberg, Jlones, Kreissig, Rocke, and Hammock 1995;
Wortberg, I<reissig, Jones, Rocke, and Hammock 1995) and
hazardous v"astes (Vanderlaan, Stanker, Watkins, Petrovic,
and Gorbacill 1988).

For the rcutine analysis of unknown samples, such meth-
ods typicall~" specify a protocol that includes a fixed 96-well
template. These templates designate a specified number of
wells for pr{~paration of a calibration curve, either with each
batch of plates or, more commonly, on each plate-Figure
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variance function v( such that

I

"---'
y N(p" V(p,)o-2) ,

-'--t-

A-DJl = 1 + (x/C)ff + D

(Raab 1981; Carroll and Ruppert 1982; Davidian and Car-
roll 1987; Davidian, Carroll, and Smith 1988).

In general, it may be necessary to determine either the
transformation t( ) or the variance function v( ) from the
data. For the purpose of this article, we will treat this as
fixed because this issue is extensively dealt with in the pre-
viously cited literature. In future work, this could be in-
corporated also in the estimation and design problems that
are addressed in this article. We will develop the remainder
of the model using the transform-both-sides method, with
the formulas being for a general monotonic transformation
t( ). Note that the development easily follows also for the
variance- function formulation.

P"p thc DT TC' A ---tocol we are using for illustration in

!lined that the variance of the y val-
e log scale so that we would take
levelop the model first for a general
:ion, which will usually consist of one
~) class. This class includes both the
rtion (widely used in ELISA) and the
ation (widely used in radioimmuno-
pecification of the model in general

~I

I 10>r-~~
,-

r--

~

~

unkhowns

Figure 1. Typical Immunoassay Template.

~

~v~ I.U'; CLJ.;:)f\. pro!1. STJ.TISTICAL METHODS FOR CALIBRATION this article, we detern
IN IMMUNOASSAY ues was stable on thl

From th~ calibration samples, a four-parameter log- t(y) = In(y), but we (
logistic calibration can be fit by a variety of methods. The monotonic transformat
most widely used is apparently least squares or weighted of the Box-Cox (19~
least squarc:s, although with most commercial implemen- logarithmic transform.
tations it i~ not easy to determine the method because it square root transform;
is rarely dccumented. We use maximum likelihood for its assay). Thus the full s
good statisical properties; least squares with a variance is
functioncb~~ch InaxiInumijkeliQood ,.will yiek.l~c~",,""!,,"
asymptotic..lIy iaenfical results. Optical density readiiigsTor -~z=t(y) =t
unknowns <:an then be transformed, using this curve, into
estimated cl)ncentrations. The equation for this curve relat- where c '" N(O, 0"2).
ing concentration x to optical density y is The log-likelihood for this model is

n
L = -.5nln(21r) -n1n(o-) -.50--2 Lr;

i=l

A -D + D,
Y = f(x) = 1 + (xjC)B

ri = t(Yi) -t(fi)

and

A-DIi = 1 +(XJC)ff + D.

The gradient 9 of the log-likelihood of the ith data point
with respect to the parameters (A, B, C, D) is given by

where A is :he response (absorbance) at zero dose, B is the
slope or cUJvature parameter, C is the concentration (ppb)
giving 50% inhibition, and D is the response at infinite dose.

Suppose that true concentrations Xl,X2 ,Xn are the
concentrations chosen for calibration. Replications are sep-
arately listed here. Before we develop the maximum like-
lihood estimation procedure for the parameters of the cali-
bration cune, it is necessary to address the question of the
dependence of the variance of the response on the mean
response.

There are two major approaches to this problem. In the
first, the transform-both-sides model of Carroll and Ruppert
(1988), then: is assumed to exist a transformation t( ) such
that the conrect model is B

where E '"'"' :V(O. (12). This is the approach used in this ar-
ticle. The s(~cond approach is to assume the existence of a 8£94 = aD = Ti(l- h;)t'(fi)U-:
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where If 9 is the ~ra.die.nt .of this function with respect to the pa-
rameters (A, B, C, D), then the delta-method variance of w
is

h. -
.-1 + (Xi/C)B

If we write the ,grradient of log-likelihood of the ith point

(2.1)as
- / 2Ui = Uiri (J' ,

where the compo",~nts of Ui are given by

Uil = hit' (Ii)

B

93 = (--Ui3 -

Ui4 =, (1 -hi)t'(fi)
194 = B(y -D)

,

) i

then the observed information is

E L r?(r-4UiU:" 
i

Note that this method separates the effect of the num-
ber of replicates from the effect of the calibration design.

= 0--2 L UiU~ = W. For a given number of calibration points to be used, one
.may optimize a criterion that depends only on g'Vg, which

is the only part of (2.1) that is affected by the choice of
calibration values. Note also that, because this is a first-
order approximation, the results from any transformation
t(y) apply equally to the variance function method with

.v(J.L) = [t'(J.L)]-2.
Many previous analyses have tended to use only the sec-

ond term of (2.1), which implicitly assumes that the calibra-
tion curve is estimated very precisely (e.g., Rodbard 1981)
and which also assumes that the choice of calibration val-
ues is irrelevant (but see Bunch, Rocke, and Harrison 1990

."'.-~;=-' c~~ke 199-'),:Th~~wnn du~toestimatiOtf:or~ curve
should not be neglected, however, because it may form a
significant proportion of the uncertainty. Figure 2 shows
the asymptotic variance of the log concentration as a func-
tion of the concentration for a curve with true parameters
A = .501, B = .872, C = 105.8, and D = .151 as given
by Harrison et al. (1989). [Note that, to the order consid-
ered, the asymptotic variance of the log concentration is
equal to the square coefficient of variation of the concentra-
tion, which is (the square of) a popular measure of accuracy
among practitioners.] The calculations for this graph were
made assuming the use of four dilutions, each replicated
four times, and one observation each of the zero-dose and
method blank; unknowns were replicated. The transforma-
tion iCy) = In(y) was used. The dashed line is using Rod-
bard's assumption that the curve is known exactly, and the
solid curve incorporates the curve-uncertainty factor explic-
itly. As can be seen, there is often a substantial difference
between the commonly used expression for the coefficient
of variation and the real accuracy.

Simulation-derived variances due to replication, curve-
uncertainty, and total are also shown on this figure. The
close agreement between the simulated and asymptotic val-
ues, especially in the central region where the precision of
the method falls within a reasonable range, supports the use
of the asymptotic expressions in deriving suitable calibra-
tion designs.

Let V = -W-1. TIllen this represents the asymptotic vari-
ance of the parameter vector (Cox and Hinkley 1974). We
will use as an estimate of 0-2 the approximately unbiased
version

n

~12 = (n -4)-1 }:r?

i=l

rather than the maximum likelihood estimator version with
divisor n.

2.
Now suppose th~lt Yl, Y2, ..., Yk are replicate measure-

ments of an unkno,vn. Because of the specification of the
model, the correct summary of these replicates is

ii = t--1(z) =t-1 (k-l L Zi) ,

where Zi = t(Yi)' The difference between the estimated
value of w = In(x) :given by

A-yw = 1111(6) + iJ-lln
y-D.J

and the true value 'Lv has two parts. The first is due to the
difference between :~ and the value it would have taken on
with an infinite numlber of replicates and the second is due
to use of estimated coefficients.

One approach to separation of these effects is the
delta method (Stua,.t and Ord 1987). We have a vector
(A, ii, C, D) with estimated variance V and, independently,
an observation z which has variance 0-2/ k. The calibration
can be considered a~i a transformation

w ([i(z,A,iJ,C,D)

1~(C) + iJ-lln (~
y~D

TECHNOMETRICS, MA" 1997, Val. 39, NO.2
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3. OPTIMAL DESIGN CRITERIA

There are many criteria for optimal design that have been
proposed (Atkinson and Donev 1992). The majority of these
focus on the variability of parameter estimates, or combi-
nations thereof. Criteria that focus on predictions include V
optimality, 'which minimizes the average variance of a pre-
diction, and G optimality, which minimizes the maximum
variance of a prediction.

For calibration problems, coefficient estimation is sec-
ondary; the primary purpose of the exercise is to produce
precise estimated concentrations for one or more unknowns.
In this case. it would make sense to focus on the precision
of an estim;~ted concentration (Buonaccorsi 1986). In fact,
we will focus on the precision of the estimated log concen-
tration for a number of reasons. First, many measurement
methods have standard deviations that rise with the con-
centration of the analyte (Rocke and Lorenzato 1995). This
makes the log scale a natural one for quantitative analytical
chemistry. ~;econd, it is the logarithm of the concentration
that is presumed to have a logistic relationship with the

response.
Expression (2.1) measures the uncertainty at any fixed

value of In(x), the log concentration of the unknown. Be-
cause this i!, by definition, not known in advance, one can-
not choose the calibration concentrations to minimize the
variance. C,mceptually, one could imagine minimizing the

average variance over some prior distribution of x, but this
is generally unavailable. An unweighted average is not fea-
sible because the variance is unbounded. This leaves at least
two possibilities. One is to use a weighted average variance
with a user-chosen weight function (this includes restricting
the range as a special case). The weights would probably
be large in the region where precise estimation would be
possible if the curve were known and small outside that
area. This approach was pursued by Bunch et al. (1990).
Because this suffers from the disadvantage of introducing
a somewhat arbitrary weighting scheme, a different tack is
taken here.
~stead, we will maximize the total precision of 'Ii; =

In(x), where the precision is defined as the reciprocal of
the variance and where total signifies an unweighted in-
tegral over the reals with respect to w. We will use the
theoretical precision defined for each w using the value of
y corresponding to the expected response y = (A -D)(l +
C-BeBw)-l + D. Theorem 1 shows that this criterion is
well defined.

This criterion should capture at least a rough measure of
the goodness of the calibration. For the total precision to
be high, there must be a wide region on which the assay is
accurate. This region cannot be any larger than the region
on which the assay would be accurate if the calibration
curve were known exactly, but it can be much smaller if bad
choices are made for the calibration values. This criterion,
then, will encourage the assay to be as accurate as it can
be, given the existing budget for calibration.

Theorem 1. The precision of an ELISA calibration at
a log concentration w = In(x), given by the reciprocal of
*2.1,}" ~i& i~ec with ~ respect. tocfAT.~ real,line.(As-
suii1ptiori~'oilparametervalues are.o.(f~"'D~<A,H>i), and
C> 0.)

Proof The first term in (2.1) involves the asymptotic
variance V of the estimated parameters, which does not
depend on x, and the gradient of the calibration function.
The issue in the integrability of this function is the behavior
as the concentration x goes to 0 or 00. First, as x gets large,
y tends to D. The difference y-D tends to x-B(A-D)CB.
For the gradient, then,

B-1(A -D)-91

B-1ln(xjC) = _B-l(W -In(C))92 -.

93 --

and

A -D)-lC-BXBB94

A -D)-lC-B eBw=B

so that the dominant term in g'Vg is of order e2Bw,
The second term in the expression for the variance ofFigure 2. \Iariance of the Estimated Log Concentration as a Function

of the Concentration. The dashed lines represent the variance due to
measurement errors in the response for the unknown. The dotted lines
represent the variance due to errors in the calibration values leading to
an inaccurate calibration curve. The solid lines show the total variance.
Heavy lines a 'e from asymptotics; light lines are from a simulation.

-D)8G
) :l 0-2 [ y(A I ] 20-2

8i T = -B(A ~ y)(y-D) T. (3.5)

TECHNOMETRICS. MAY 1997. YOLo 39. NO.2
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When x
0
c,j

::x:J, this tends to

X2BD2(J2 _0 (3 6)kB2(A -D)2C2B .

so that this too is of order x2B = e2Bw as w -.00.
Because the whi)le expression for the variance at w is

of order e2Bw, the precision, which is the reciprocal of the
variance, is of ordt:r e-2Bw, as ILl -.oc, and consequently
can be integrated as the upper limit of integration goes
to 00.

Similarly, when x -..0, the variance of w tends to a
term of order e-B", so that the dominant term in ii/Vii is
also of order e-2Bw. Then the precision is of order e2Bw,
and consequently t;an be integrated as the lower limit of
integration goes to -oc.

""!-
'"t:' 0
.9 ..:

a
is:=- In
.8' 0
..J

0
0

In

c;i

4. AN EXAMPLE

In this section :J1n application is presented to an assay
for molinate (Harrison et al. 1989). As in any optimal de-
sign problem, the solution depends on the true parameters.
Unlike the usual c:Jlse in experimental design, however, the
scientist will have had extensive experience with an assay
before standardizirlg a protocol so that typical values for
the parameters will be known, at least within some degree
of certainty. From a set of 56 molinate assay calibrations,
typical values of A = .501, B = .872, C = 105.8 (parts per
billion), and D = .151 were chosen. These values, along
with an average replication standard deviation of the log
absorbance of 0' = 045, are used for this illustration. Later,
we show that variations from these figures within the range
of occurrence in thl~ 56 datasets did not importantly reduce
the quality of the designs.

Although, in the ocy.,thc;-Optin)a1,cdesign.p!Qb!~!!!'ci¥c~
choose independen1ly the location of all the calibration val-
ues, certain practiclll considerations restrict the possible so-
lutions. The set of concentrations needs to be easily pre-
pared by a technician; therefore, we consider only the case
in which the conclentrations are serial dilutions with the
same dilution ratio. These may each be replicated several
times. Added to thls, we will have (replicated) zeros (cor-
responding to zero concentration), which are obtained by
running pure water through the analysis. In addition, we
will assume (replic;ilted) method blanks, in which pure wa-
ter is placed directly on the plate reader. For some assays,
such as the molin~lte assay under consideration, this cor-
responds to infinite concentration. For assays where this is
not the case, a very high concentration would be used. Note

.Design Factors for ELISA
~-

nw
ns

nd
km

ko
k=
ncal
M
m
Q

Table 1
---"i.""i:".i!!!~

Number of wells per plate
Number of s;amples (unknowns) per plate
Number of rE'plicates per sample
Number of dilutions used for calibration
number of replicates of each calibration dilution
Number of zero-concentration replicates
Number of rr ethod blanks
Total number of wells used for calibration = ko + koo + kmnd

Maximum concentration used for calibration
Midpoint of the dilution series
Calibration d lution factor

TECHNOMETRICS, MAY 1997, YOLo 39. NO.

1.0 1.5 2.0 2.5 3.0 3.5

Log10(Midpoint)

Figure 3. Contour Plot of the Total Precision for Differing Values of the
Dilution Midpoint and Ratio. The horizontal axis is the base- to logarithm
of the dilution midpoint. The vertical axis is the logit of the dilution ratio.

that we are ignoring for the purposes of this article the di-
lution error. This could be incorporated into the analysis as
in the work of Racine-Poon, Weihs, and Smith (1991).

For this formulation, this leaves several decision variables
as given in Table 1. We will consider the optimization prob-
lem in three stages-varying the continuous variables with
the integer variables held fixed, varying the integer vari-
ables within a fixed allocation of calibration wells while
maintaining always the continuous variables at their opti-
mum, and then varying the allocation of calibration wells.

First, for fixed values of the other values, consider vary-
ing m, the midpoint of the calibration series, and a, the
~lutipn ratio. FigJJre,~...s90W-§c,a ...~ypi!;~9~Q~9,.~91;

~~iO;and
km = ko = koo = 3. The horizontal axis is the base-l0
logarithm of the dilution midpoint, and the vertical axis is
the logit of the dilution factor a. The response is the total
precision. The peak of the "hill" is at a dilution midpoint of
210.4 ppb and a dilution factor of .666, which corresponds
on the plot to 2.32 on the horizontal axis and .69 on the
vertical axis. The response at the peak is 1.36.

From this plot we can see that the choice of dilution mid-
point and ratio can be critical. Especially using too large
a value of a (corresponding to placing the concentrations
too close together) can give bad results. Using too small
a value for a is less risky. The optimal midpoint of 210.4
may be somewhat surprising because it is larger than the
50% inhibition point C = 105.8, and large departures from
this value cause considerable deterioration of the precision.
This somewhat counterintuitive result may be explained by
the assumption that the variance of y increases with y.
This means that more points are needed above the mid-
point C than below it. The bad results when the points are
too closely spaced suggest that the idea of calibration only
in the so-called linear region of the curve is not a very good
idea, even though this is sometimes thought by practitioners
to simplify the problem.

Suppose now that we fix the number of samples (un-
knowns) and the number of replicates of each, and consider
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T ota.l Precision It may be of some interest to see in what way the re-
sults depend on knowing exact values for the parameters
A, B, C, and D. To investigate this issue, we considered an
additional 16 parameter sets, which consisted of the comers
of the hypercube at the center::!: two standard deviations
for each parameter as given by Harrison et al. (1989). We
then computed the true optimal design criterion at that cor-
ner, as well as the precision of the design chosen using the
center point but evaluated at the comer. The logarithm of
the ratio of these quantities provides an estimate of the loss
due to lack of precise advance knowledge of the coefficient
values. Naturally, there is always a loss, but it is usually
quite small. The average value of the log ratio over the 16
comers was -.01, corresponding to about a 1 % loss in pre-
cision. The worst of the 16 had a log ratio of -.04, and
the second worst had a log ratio of -.02. Note that this
assessment is a kind of worst case because most of the ac-
tual distribution of the parameters lies on an ellipsoid well
inside the hypercube (because the estimates are correlated).

1

0.8

0.6

o.~

0.2
5. APPROXIMATE RULES FOR OPTIMAL DESIGNS

0 0 2 4 6 8 10 12 14 16 18

Number of Dilutions
Figure 4. Total Precision of Several Choices of Number of Dilutions

and Other Cc mbinatorial Parameters. In each case, the total number of
points devote:J to calibration is 18; there are 36 unknown samples, each
replicated tw. ceo For each choice of combinatorial parameters within
these constra ;nts, optimal values for the dilution ration and midpoint were
used.

~

1.2

1.

1

varying the martgementof points withiri-the~:OL~~
bration poillts, while always maintaining the optimal choice
of midpoint and dilution ratio. For example, with 36 cali-
bration points we could have 2 each of zeros and blanks
and 2 replcates of 16 dilutions, or 3 each of zeros and
blanks and 6 replicates of 5 dilutions. Figure 4 shows a
plot of the total precision for a case with 39 samples and
k = 2 replicates. After optimizing the dilution midpoint
and factor, the arrangement otherwise is without much im-
portance. l'his allows these to be chosen for convenience
without mlch loss of efficiency.

The finaJ important factor is the number of samples (un-
knowns) tc be analyzed and the number of replicates of
each. Clearly, analyzing more samples with the same num-
ber of replicates decreases the precision of each because
the number of calibration runs is reduced. The effect of in-
creasing th ~ number of replicates with the number of sam-
ples held filxed is less clear. A larger number of replicates
reduces the error due to response uncertainty but, by reduc-
ing calibration data, increases the error due to curve uncer-
tainty. Figure 5 illustrates this phenomenon and shows that
the optimal number of replicates depends on the number
of samples that one wishes to analyze. Note that the preci-
sion values given in this figure are for the optimal choice
of the dilution midpoint and dilution factor. The choice of

h N b f U k S f, d th., Figure 5. Effect of Varying t e um er 0 n nown amp es an e
the number of samples to be analyzed depends on the user s Number of Replicates of Each: -, k = 2: --, k = 3; ...', k =
preference for precision versus cost. 4.

0.9

0.8

0./

o. 5010 20 30 40
Number of Samples
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5.1 Equivariance Results

It turns out that the optimal transformation can be chosen
by performing the calculations with a simpler model and
then transforming that optimum in a simple way to obtain
optimal values for the given model. To do this, we need
an alternative formulation of the model that is obtained by
making a simple linear data transformation. Instead of w =

Precision
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In(x) and y, formulate the model in terms of w. = B(w-
In(C)),x. = exp(1~'), and y. = (y -D)j(A -D). In this
case, we can expr~~ss the model as

x. = exp( tJ

and

y* = (y -D)j(A -D).

This leaves a single parameter, fI = AID, to determine the
optimum. Given fI, one obtains the optimal dilution ratio
and midpoint, then transforms back to the original scale.
Because w = w* / B + In( C) and x = exp( w), the midpoint
m on the original scale is given in terms of the midpoint
m * on the standardized scale by

(5.5)

t*.;[y*) = t*

m = C(m*)l/B (5.6)

where t*(u) = t((A -D)u + D) and E "-' N(O,a2). This
concentrates all of the parameter dependence in the trans-
formation function, which enters into the optimal design
calculation then olilly in terms of the influence on V, the
covariance matrix of the estimated parameters.

If we restrict attention to the class of power transforma-
tions t(u) = uA [oJr equivalently the Box-Cox (1964) class
of transformations], we obtain as the model

and the dilution ratio Q on the original scale is given in
terms of the dilution ratio Q* on the transformed scale by

Q=(Q*)~/B. (5.7)D)~,*». = ( D + (AD+(A D)~) +E:
1 \

and

(1 + (AID -l)y*)'\

+(AjD-l) ~) (5.1)

+x'

where 1::* '"" N (0, u:! I D2>'). This means that the optimal de-
signs depend in a certain sense only on 15 = AID. Thus,
one can always cal,culate optimal designs for the case with
altered parameters A * = 15, B* = C* = D* = 1 in terms of

{xi} and then transform to the original scale using the data
transformation Xi == C(xi)l/B (using the original parame-
ters B and C); the 'Jattern of the observations on the curve
is equivariant to]iE:ear~chan-g~~~;c-~,"",~",",~c' cC",~",

One special case is of interest. If the variance of the op-
tical densities is constant, so that t(u) = u (corresponding
to >. = 1), then (5.1) becomes

(5.2)-+g
+x'

which corresponds to the case A = B = C = 1, D = O.
Thus, there is only one set of optirnality computations to
be done. We now use these observations to derive some
approximations for hand calculation.

This much is exact. As it turns out, quite accurate ap-
proximations can be given for the optimal values of m and
Q, regardless of the choice of the other parameters. We
computed the optimal choice of m and Q for all reason-
able choices of combinatorial design factors in Table I with
D = 1, B = 1, and C = 1 (the standardized values), and for
15 = 3,10, and 20. (Reasonable means that no more than half
the wells are devoted to calibration, that there are at least
two calibration dilutions, and that the number of replicates
of each calibration dilution, zero, and blank is at least 2.)
We did this both for the value>. = 0, which is appropriate
for ELISA, and for>. = .5, which is appropriate for RIA. In
addition, calculations were done for the constant variance
case>. = 1.

When>. = 0, it. turns out that the optimal midpoint is

a more complex relationship emerges. Here the predicted
optimal midpoint is given by m = .946 + .330 In(A/ D).
When>. = 1, the optimal midpoint is always exactly at the
center of symmetry C of the logistic curve. Table 2 shows
the mean and standard deviation of the optimal midpoint
divided by this prediction over all the cases for each dilution
ratio.

Second, there is a strong linear relationship between the
number of dilutions chosen and Q/(1 -Q), where Q is the
dilution ratio. Table 3 shows the slope, intercept, and resid-
ual root mean squared error (RMSE) of the regression of
Q/(1 -Q) on nd. In interpretation of the residual RMSE,
note that the ratio Q / (1 -Q) varies over a range from about
.15 to about 5. If we approximate the equation by

5.2 Empirical Analysis of the Optima

As observed pre1iiously, all of the analysis can be done
in terms of

-a) = -.37 + .2571
BI (5.3)

and rearrange, we obtain

nd L.48
( )a ;= 2 52 ' 5.9

nd+ .

which is conveniently approximated by

a = ~. (5.10)
nd + 2.5

In terms of the choice of combinatorial parameters, the
results do not depend greatly on the distribution of design
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points witllin a fixed ncal. but in general it is better to have
ko and koo close in size and relatively small (2 or 3). It is
also theoretically slightly better to use a few dilutions with
many replicates. but this has significant practical problems
in cases in which the curve fits imperfectly.

5.3 SomE' Rules of Thumb
1. From preliminary runs, identify approximate values

for the parameters A, B, C, and D.
2. Choose a moderate number of dilutions nd, perhaps

3-5, for ccmvenience. Choose a number of replicates km
for the calibration runs (2 to 3) and several replicates k for
the unkno~vns (2 to 3).

3. Let tl1le calibration midpoint be m = C(m*)l/B, where
m* = Jjl7I5 for ELISA and m* = .946 + .33In(Aj D)
for RIA.

4. Let tile dilution ratio be

(5.11)a= nd -1.5 ) 1/8

nd + 2.5

~,,~~~--_c c-~'~~~'-~"""""_C"~
6: CONCLUSIONS

In this article, a new method was developed of evaluat-
ing the effe~ctiveness of an immunoassay protocol by its in-
tegrated precision (reciprocal variance). Three conclusions
emerged. First, the choice of dilution midpoint and dilution
factor can be extremely important; a poor choice can lead
to greatly reduced precision. Second, given that the dilution
midpoint aJ1d factor are optimally chosen, the particular ar-
rangement!, of calibration points among zeros and blanks
and the number of different dilutions are not important. For
example, one may wish to use only a few dilutions to re-
duce technilcian effort. Third, there is an inevitable trade-off
between the number of samples analyzed and the precision
of each determination. The method given in this article al-
lows this trade-off to be quantified and helps determine the
correct nurnber of replicates of each unknown.

This method can be used to determine optimality and
judge convenient but nonoptimal arrangements for any form
of immunoassay in which a log-logistic curve is appropriate.
The error structure (in the sense of the transform-both-sides
model or tile variance-function model) is quite general. and
the computations are not difficult given a good integration
routine anc: a good numerical optimization routine. Conve-
nient apprclximations are given that require only hand cal-
culation allid approximate the results of the exact analysis
quite well.
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