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ABSTRACT: This work aims to address the challenge of developing interpretable
ML-based models when access to large-scale computational resources is limited. Using
CoMoFeNiCu high-entropy alloy catalysts as an example, we present a cost-effective
workflow that synergistically combines descriptor-based approaches, machine learning-
based force fields, and low-cost density functional theory (DFT) calculations to
predict high-quality adsorption energies for H, N, and NHx (x = 1, 2, and 3)
adsorbates. This is achieved using three specific modifications to typical DFT
workflows including: (1) using a sequential optimization protocol, (2) developing a
new geometry-based descriptor, and (3) repurposing the already-available low-cost
DFT optimization trajectories to develop a ML-FF. Taken together, this study
illustrates how cost-effective DFT calculations and appropriately designed descriptors
can be used to develop cheap but useful models for predicting high-quality adsorption
energies at significantly lower computational costs. We anticipate that this resource-
efficient philosophy may be broadly relevant to the larger surface catalysis community.

■ INTRODUCTION
The development of machine learning (ML) models has
revolutionized the computational catalysis community in
several different ways.1−3 One powerful application of these
techniques is the use of ML to predict adsorption energies of
key reaction intermediates. These adsorption energies serve as
descriptors to accelerate theory-guided design of promising
catalysts.4,5 Here, ML is used to circumvent the computational
costs associated with exhaustive density functional theory
(DFT) calculations. Specifically, instead of using brute force
DFT to sample the entire composition-space (e.g., for
bimetallic and multimetallic alloys) and configuration-space
(e.g., various facets and binding sites) of interest, a smaller
database of DFT calculations (i.e., the training data set) is used
to develop a surrogate predictive model. Once validated, the
resulting ML model is then used explore a much broader
catalyst design space that is generally inaccessible with DFT.
This design philosophy has motivated the development of
several large catalysis-focused databases (e.g., the open catalyst
database6,7), open source software,8 and a growing list of ML
models and descriptors.9−15 The recent advances, challenges,
and opportunities in this field have been previously
reviewed.16−19

Assuming an idealized scenario where the computationally
identified active site motif is experimentally realizable and
stable under the reaction conditions, which may not always be
true, the overall success of the aforementioned screening
studies depends on the accuracy and reliability of the surrogate
ML model.20 Thus, it becomes necessary to ensure that the
initial training data set is sufficiently large and diverse to

capture the underlying complexity of the entire phase space.
With the advent of new descriptors21−24 and highly complex
ML models,25−27 in our opinion, the development of
“universal” models of adsorption energies for surface-mediated
reactions can often be limited by the access to high-
performance computing (HPC) resources. Specifically, the
computational costs are associated with creating a large
database of DFT calculations and training ML models; the
latter step is usually accelerated by using GPUs. For example,
the OC22 database, comprising more than 62,000 DFT
relaxations, required approximately 10 million individual
single-point energy (SPE) calculations. This data set, which
utilized the PBE + U method (similar to the Materials
Project),8,28 required over 240 million core-hours.7

However, we note that these scales of HPC resources are
often not available to academic research groups. These
observations echo similar trends within the ML community.
For example, while the development of large language models
(e.g., ChatGPT, LLAMA, Bard, etc.) is led by commercial
entities, the academic ML community tends to focus on
developing new algorithms, demonstrating computational
frameworks and workflows, and fine-tuning the existing open
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source models. Thus, even within the context of catalysis
science, it is plausible that compute-intensive aspects of the
data-generation and model development will stay (or become)
outside the purview of university-led research. Thus, in this
study, we focus on exploring strategies to develop interpretable
ML models while being mindful of the associated computa-
tional costs.

As the first step toward this goal, here, we demonstrate how
low-cost DFT calculations (performed using four-layer con-
strained slabs, 300 eV energy cutoff, 2 × 2 × 1 k-points) can be
used to predict adsorption energies at a significantly higher
accuracy (i.e., four-layer slab with top two layers allowed to
relax, 700 eV cutoff, 3 × 3 × 1 k-points). We illustrate the
efficacy of this approach by investigating the catalytic
properties of CoMoFeNiCu high-entropy alloy (HEA)
catalysts for the ammonia decomposition reaction. The chosen
system is motivated by the experimental results of Xie et al.29

In this study, the authors present NH3 decomposition rates for
a range of Co/Mo compositions (i.e., 15/55% to 55/15%).
Compared to Ru-based catalysts, the authors showed improved
catalytic activities for the ammonia decomposition reaction,
which was attributed to the continuously varying alloy
composition. More recently, this reaction has been computa-
tionally investigated by Saidi et al.14 The authors used a
convolutional neural network (CNN) model to predict that a
25/45% Co/Mo composition will result in higher rates for
ammonia decomposition. The Saidi et al. data set consists of
19,911 DFT calculations using a 300 eV energy cutoff, 3 × 3 ×
1 k-points, and the PBE functional. The CNN model, which
uses a combination of element-specific features, d-band
properties, and geometric parameters as fingerprints, results
in mean absolute errors (MAE) of 0.05 eV for the binding
energies. We note that the plane wave cutoff used by the
authors (i.e., 300 eV) is lower than the typical values (usually
400 eV or higher) used within the field. In light of this
discussion, our goal is to develop predictive and interpretable
models that can achieve higher numerical accuracies (e.g.,
using a 700 eV cutoff) but require lower computational costs.

Our approach is facilitated by three modifications to the
typical workflows used within the field. First, instead of relying
on a direct single-step DFT optimization at the required
computational accuracy, we use a sequential multistep
optimization protocol, which provides useful information at
each step. This approach results in faster convergence at a
lower computational cost. Second, we utilize a new geometry-
based descriptor to predict adsorption energies. Specifically,
the Generalized Local Structure-Sensitive (GLaSS) descriptor
uses DFT-optimized structures as inputs and captures
geometric proprieties such as interatomic distances, angles,
and dihedrals. This work is inspired by the recent studies by
Batchelor et al.11 and Pedersen et al.,30 where the highly
symmetric site motifs of HEA surfaces are represented using
combinatorial linear relationships. Instead, the proposed
GLaSS descriptor does not require any assumptions about
the specific high-symmetry binding sites and, thus, can be
effortlessly extended to arbitrary binding sites. As shown later,
the resulting MAEs (obtained using the GLaSS descriptor) are
comparable to or lower than the state-of-the-art geometric
descriptors, e.g., Smooth Overlap of Atomic Positions
(SOAP).21,23,31 As the third modification, we investigate the
potential of utilizing low-quality DFT data (denoted as
ΔEDFT

cons,low) to predict higher accuracy results (denoted as
ΔEDFT

relax,high). Thus, in addition to the geometric information

provided by the GLaSS descriptor, the inclusion of ΔEDFT
cons,low

provides information about the binding energies, which also
improves the interpretability of the model.

A key limitation of the GLaSS approach, however, is that it
requires the use of DFT-optimized geometries as inputs to the
ML model. Although this results in accurate predictions, using
DFT-optimized structures to predict DFT-binding energies
defeats the entire purpose of developing an ML model. As a
potential solution, we show that the trajectories obtained
during the ΔEDFT

cons,low calculation can be repurposed to
overcome this bottleneck. Specifically, we show that the
already available DFT data from low-cost geometry relaxations
can be used to develop a machine learning force field (ML-
FF). This ML-FF, in turn, serves as a DFT-free approach that
provides reasonably accurate estimates of the DFT-optimized
binding geometries. Combined with the GLaSS descriptor, the
ML-FF-derived geometries can then be used to calculate
ΔEDFT

cons,low and EDFT
relax,high. This sequential workflow is schemati-

cally illustrated in Figure 1. Impressively, the final daisy

chained DFT-free model shows reasonable MAEs (max of 187
meV/atom) across five adsorbates (H, N, NH, NH2, and NH3)
for CoMoFeNiCu HEA. We note that the proposed refine-
ment strategy has been discussed previously by Chen et al.32

In summary, this study illustrates a potential strategy for
generating high-quality DFT data using fewer computational
resources while also reusing low-quality data that is already
available during a geometry optimization. Although this work
has focused on investigating the CoMoFeNiCu HEA catalysts
for a specific reaction (i.e., ammonia decomposition), we
anticipate that an analogous approach can be applied for other
HEA-catalyzed reactions and, subsequently, to other types of
catalysts.

■ METHODS
DFT Calculations. The CoMoFeNiCu HEAs catalysts are

modeled as an ideal FCC(111) surface using 3 × 3 × 4 slab model.
The Co/Mo elemental ratio is varied from 15/55% to 55/15% in 10%
increments, resulting in five distinct HEA compositions. The fraction
of Fe, Ni, and Cu is kept fixed at 10% to reflect the HEA systems
studied by Xie et al. For each of the five Co/Mo compositions, we
created 100 unique surfaces with random arrangements of the five
elements. Following Batchelor et al.,11 a composition-dependent
lattice constant is used. The simulated lattice constants ranged from
3.628 Å for Co55Mo15FeNiCu to 3.766 Å for Co15Mo55FeNiCu.
These values are in close agreement with the experimental lattice
constant of 3.74 Å.29 Five different adsorbates relevant to the NH3

Figure 1. Schematic overview of the proposed daisy chained model
used to predict high-accuracy DFT adsorption energies (ΔEDFT

relax,high).
This approach, which requires less expensive DFT calculations,
provides comparable accuracies at lower costs.
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decomposition reaction are considered: H, N, NH, NH2, and NH3.
Additionally, as several different binding sites with varying local
environments are possible for a given surface [e.g., 9 on-top sites, 27
bridge sites, and 18 hollow sites for a 3 × 3 fcc(111) facet], we obtain
ca. 135,000 total possible sites for 100 HEA surfaces across five Co/
Mo compositions. This ensemble of possible unique binding sites
further emphasizes the need of developing cheaper ML alternatives
instead of using brute force DFT calculations.

To capture the diversity of possible local environments, we
carefully selected one to two binding sites from each surface. As a
result, a total of 2643 (i.e., 480 sites for H, 466 for N, 586 for NH, 570
for NH2, and 541 for NH3) sites are sampled for DFT geometry
optimizations. This sampling approach ensures that the training data
set is representative of the desired exploration space. As described
previously, two separate sequential optimizations are performed for
each of the 2643 sites. Specifically, while all the metal atoms are held
fixed for the constrained surfaces (i.e., at 300 eV, 2 × 2 × 1 k-points),
the top two layers are allowed to relax for the high-accuracy
optimization (i.e., at 700 eV, 3 × 3 × 1 k-points). Taken together, the
CoMoFeNiCu HEA database consists of 5286 adsorption energies
and geometries. The high-accuracy adsorption energies (ΔEDFT

relax,high)
and the low DFT-accuracy adsorption energies ΔEDFT

cons,low are
calculated as

E E E EDFT
relax,high

ads/relaxed relaxed ads= (1)

E E E EDFT
cons,low

ads/constrained constrained ads= (2)

where Eads/relaxed and Eads/constrained represent the energies of relaxed and
constrained adsorbate-bound surfaces, respectively; Erelaxed and
Econstrained represent the energies of bare relaxed and constrained
surfaces, respectively; and Eads represents the DFT energy of each
adsorbate in the gas phase. As entropic contributions are not included,
here, we limit our discussion to the DFT-calculated binding energies.

The Vienna ab initio simulation package (VASP)33−35 was used for
all DFT calculations. The revised PBE from Hammer et al.36 (RPBE)
exchange−correlation functional was used; dispersion corrections
were not included. The conjugate gradient algorithm was used for
geometry optimizations. The DFT optimizations were terminated
when the forces on each atom were below the 0.05 eV/Å threshold.
For the sequential DFT optimization protocol, we used a range of
energy cutoffs (i.e., 300:100:700 eV) and k-meshes (i.e., 2 × 2 × 1
and 3 × 3 × 1). Specifically, the sequential optimization consisted of
(30 optimization steps at 300 eV, 2 × 2 × 1), (30 steps at 400 eV, 2 ×
2 × 1), (10 steps at 400 eV, 3 × 3 × 1), (10 steps at 500 eV, 3 × 3 ×
1), (10 steps at 600 eV, 3 × 3 × 1), and final convergence at (700 eV,
3 × 3 × 1). Note that our ML models aim to predict the high-
accuracy adsorption energies (i.e., ΔEDFT

relax,high), which are obtained
using relaxed surfaces at 700 eV energy cutoff and 3 × 3 × 1 k-points.
The entire DFT data set is available in the Supporting Information.

ML-FF Training. A staged downsampling strategy was used to
obtain configurations for ML-FF training using the low-cost, low-
accuracy geometry optimizations. For example, if a geometry
optimization (i.e., at 300 eV, 2 × 2 × 1 k-points) required 300
total ionic steps, then every configuration from the first 50 ionic steps
was included in the training. Subsequently, the sampling frequency
was reduced such that every other configuration was sampled for steps
51−100, 1 in 3 for steps 101−150, and 1 in 4 for steps 151−200, and
so on. This approach increases the diversity of the configurations used
in the ML-FF development while reducing the inclusion of almost
similar structures that are often encountered during the final stages of
DFT geometry optimization.

The above data set was used to develop a ML-FF using the
neuroevolution potential (NEP) interatomic potential, as imple-
mented in the Graphics Processing Units Molecular Dynamics
(GPUMD) package (version 3.8).37,38 The performance of the NEP
potential is strongly dependent on several key parameters. These
include (1) Rcutradial and Rcutangular, which determine the effective range of
interatomic interactions and (2) λe and λf, which control the relative
contributions of the force and energy terms to the NEP loss function.

As summarized in Table 1, these parameters were chosen by using a
series of hyperparameter sensitivity studies.

As the NEP ML-FF is used as a surrogate model for constructing
the geometry-based GLaSS descriptor, we use mean square deviations
(MSDs) to quantify the efficacy of the ML-FF. Here, the MSDs
between pairs of configurations optimized via DFT and NEP-ML-FF
are calculated as follows

N
x xMSDs

1
(NEP ) (DFT)

atoms i

N
i i

1

( )
ML FF

( ) 2
atoms

= | |
= (3)

As the atoms within the HEA surfaces remained fixed in the low-
accuracy optimization, the MSD is calculated using only the positions
of the N atom of each adsorbate. The vectors x(i)(DFT) and
x(i)(NEPML‑FF) denote the positions of the i-th atoms subsequent to
DFT and NEP-ML-FF optimizations, respectively.

XGBoost and Optuna. We utilized XGBoost in conjunction with
Optuna (for hyperparameter optimization (HPO)) to develop the
necessary ML models. For the learning task parameters, we used the
default regression with squared loss as the learning objective and
MAE as the evaluation metric. We considered two booster types,
gbtree and dart, excluding the gblinear booster due to its lower
performance. The HPO for tree boosters focused on general
parameters such as the learning rate (eta), minimum loss reduction
for further partitioning (gamma), maximum tree depth (max_depth),
and minimum sum of instance weight (min_child_weight). The tree
growing policy was chosen to be either depthwise or lossguide. For
the dart booster, additional hyperparameters were considered,
including the type of sampling algorithm (sample_type), normal-
ization algorithm (normalize_type), dropout fraction (rate_drop),
and dropout skipping probability (skip_drop). Furthermore, regula-
rization parameters such as L2 and L1 regularization terms (lambda
and alpha), the subsample ratio for training data (subsample), and the
sampling ratio per tree (colsample_bytree) were included to prevent
overfitting.

Enabling the Optuna HPO is a straightforward process. Our
objective was to minimize the average MAE obtained through fivefold
cross-validation (CV) in XGBoost. The number of boosting iterations
ranged from 50 to 70, and the number of early stopping rounds varied
from 5 to 10 to address overfitting issues. To further limit overfitting,
we incorporated XGBoostPruningCallback integrated with Optuna
into the CV process. The hyperparameters of XGBoost that were
subject to optimization were suggested using a trial object with some
hyperparameters (eta, gamma, lambda, alpha, rate_drop, and
skip_drop) sampled from the logarithmic domain. A study object
was created to execute the HPO, which involved conducting 300
trials, each representing the evaluation of an objective function. We
also used the Optuna-integrated MedianPruner to perform pruning if
a trial’s best intermediate result was inferior to the median of
intermediate results from previous trials at the same step.

The training loss curves for all the XGBoost models using the
GLaSSrelax,high descriptor and the GLaSSNEP

cons,low + ΔEML
cons,low descriptor

are plotted and presented in Figures S9 and 10, respectively. These
curves provide a visual representation of the training process.

■ RESULTS AND DISCUSSION
We begin the discussion by examining the costs of generating
high-quality DFT data for the chosen CoMoFeNiCu HEAs

Table 1. Optimal Hyper-Parameters for the NEP-ML-FF

Rcut
radial (Å) Rcut

angular (Å) Nbas
radial Nbas

angular nmax
radial

7.5 7.5 12 12 8
nmax
angular l3bmax/l4bmax/l5bmax Nneu λe λf

8 4/2/0 50 0.01 0.99
λ1 λ2 Nbat Npop Ngen

−1 (default) −1 (default) 1000 50 100,000
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system. Here, the high-quality binding energies, denoted as
ΔEDFT

relax,high, are obtained using the revised Perdew−Burke−
Ernzerhof (RPBE)36 functional, 700 eV energy cutoff, and 3 ×
3 × 1 k-points (denoted as 700/331). For a subset of 125
randomly selected relaxed HEA sites equally across five
adsorbates, Figure 2a compares the computational cost of
the sequential DFT optimization protocol (as shown in Figure
2b) to the one-step direct optimization protocol. Within the
sequential optimization protocol, energy cutoffs are gradually
increased from 300 to 700 eV in intervals of 100 eV. The 2 × 2
× 1 k-point mesh is used for 300 and 400 eV cutoffs, while the
3 × 3 × 1 k-point mesh is adopted for the remaining stages. On
average, we observe that the sequential optimization is 64%

faster than the direct optimization protocol and requires fewer
number of ionic steps at the desired DFT parameters. As
shown in Figure 2b, this is because a large fraction of the ionic
steps are performed at lower accuracy settings that require a
lower per self-consistent field step cost. On average, the low-
quality adsorption energies calculations (obtained using
constrained surfaces with 300 eV cutoff and 2 × 2 × 1 k-
points) are 4.26 times faster than an analogous 700/331
calculations for the same geometry. Thus, the sequential
protocol depicted in Figure 2b was employed to obtain
ΔEDFT

relax,high until convergence to a DFT accuracy of 700/331. In
parallel, direct optimizations carried out at an accuracy of 300/
221 were utilized for the computation of ΔEDFT

cons,low. Both of

Figure 2. CPU cost comparison of sequential DFT optimization protocol versus the direct DFT optimization protocol. (a) CPU cost comparison
(in hours) for two optimization protocols performed on the same subset of randomly selected relaxed CoMoFeNiCu sites across five adsorbates.
(b) Average number of ionic steps and associated CPU time costs between two optimization protocols.

Figure 3. Comparison of ΔEDFT
cons,low vs ΔEDFT

relax,high. (a) Parity plot of ΔEDFT
cons,low and ΔEDFT

relax,high for each pair of constrained and relaxed CoMoFeNiCu
binding sites. Distribution of errors between ΔEDFT

cons,low and ΔEDFT
relax,high for (b) H, (c) N, (d) NH, (e) NH2, and (f) NH3 adsorbates outliers outside

the range between −1 and 1 eV are not shown in the plot but were included into the MAE calculations.
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these two sets of low-accuracy and high-accuracy DFT
optimizations are performed across the same training data
set, encompassing a total of 2109 distinct sites. More details
about CoMoFeNiCu HEAs surface slab modeling and
corresponding DFT optimizations are provided in the
Methods section.

As depicted in Figure S1, ΔEDFT
cons,low exhibits a wider range of

values than the analogous ΔEDFT
relax,high. Specifically, ΔEDFT

relax,high

values vary from −1.2 to 0 eV for H, −2.0 to 1.0 eV for N,
−3.0 to 0.2 eV for NH, −2.3 to −0.3 eV for NH2, and −3.5 to
0 eV for NH3. These distributions of ΔEDFT

relax,high highlight the
diversity of the adsorption configurations in our database.

Consistent with previous results, we reproduce the preferential
binding of H, N, and NH species at the threefold sites, the
bridge adsorption of NH2, and the on-top adsorption of
NH3.

14 For the NH2 species, depending on the local
environment, we observe that all threefold sites (10%), on-
top sites (7%), and bridge sites (83%) can be occupied.
Although the computational cost of acquiring ΔEDFT

cons,low is 4.26
times cheaper than the ΔEDFT

relax,high calculations, Figure 3a shows
that the ΔEDFT

cons,low predictions are only moderately correlated to
the ΔEDFT

relax,high with an overall R2 value of 0.58. Specifically,
Figure 3b−f shows the distribution of errors in two calculations
(ΔEDFT

cons,low − ΔEDFT
relax,high) for each adsorbate. We observe the

Figure 4. Illustration of the three possible site motifs with atoms considered in the GLaSS descriptor and the histogram distribution of binding site
labels. (abc): The GLaSS applied to three types of binding sites: (a) hollow site, (b) bridge site, and (c) on-top site. The labels “1”, “2”, and “3”
correspond to the closest three surface atoms, the next three closest surface atoms, and the nearest three subsurface atoms to the adsorbate,
respectively. Color scheme of the atoms: Co atom: pink, Mo atom: light blue, Ni atom: green, Cu atom: brown, Fe atom: orange, N atom: deep
blue, and H atom: white. (d) Histogram distribution of the binding site labels formed by the possible combinations of three zone-1 atoms in the
training set and test set.

Table 2. Example with Detailed Geometric Meaning of Each Feature in the GLaSS Descriptor Applied to the Adsorption
configuration of Figure 4b (NH2 Binding on the Bridge Site)a

Co Cu Fe Mo Ni

zone-1 first atom distance 2.06 (A-1a) 0 0 0 0
second atom distance 0 2.93 (A-1b) 0 0 0
third atom distance 0 0 0 2.12

(A-1c)
0

angle_0a1/a01/a10 angle_0a2/a02/a20 angle_1a2/a12/a21
73.7/63.9/42.4
(∠1a-A-1b/∠A-1a-1b/∠A-1b-1a)

51.9/78.3/49.7
(∠1a-A-1c/∠A-1a-1c/∠A-1c-1a)

43.6/64.2/72.2
(∠1b-A-1c/∠A-1b-1c/∠A-1c-1b)

dihedral_a012 dihedral_a021 dihedral_a120
55.1 (∠A-1a → ∠1b-1c) 90.8 (∠A-1a → ∠1c-1b) 53.3 (∠A-1a → ∠1b-1c)

Co Cu Fe Mo Ni

zone-2 sum of distances HTML]FFFFFF HTML]FFFFFF HTML]FFFFFF HTML]FFFFFF 0 HTML]FFFFFF
Co Cu Fe Mo Ni

zone-3 sum of distances HTML]FFFFFF 0 0 0 0
aFeatures are ordered by zones 1−3 and geometric properties. Symbol A refers the adsorbing atom (N).
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relatively high MAEs consistently across all adsorbates, except
for H, because of its narrower range of adsorption energy
distribution. Despite this weak correlation, we now explore
whether it is possible to develop ML models to bridge the
accuracy gap between the two calculations. This is illustrated
using the GLaSS descriptor below.

Figure 4a−c provides schematic representations of hollow,
bridge, and on-top sites observed from the optimized
CoMoFeNiCu binding surfaces. The GLaSS descriptor is
determined by a fixed size of nine atoms and consists of a 37-
dimension feature vector that captures the local environment
of the adsorption site using atomic distances, angles, and
dihedrals. First, the local atomic environment is divided into
three zones based on the proximity of the HEA atoms to the
adsorbate. Specifically, zone-1 represents the closest three
atoms on the first layer of the surface (atoms labeled as “la”,
“1b”, and “1c”), zone-2 represents the next three closest atoms
within the same layer (“2a”, “2b”, and “2c”), and zone-3 refers
to the closest three atoms in the subsurface layer (“3a”, “3b”,
and “3c”). Importantly, the labeling “a”, “b”, and “c” within
each zone signifies their membership and alphabetical ordering
in GLaSS descriptor. We utilize a default alphabetical ordering
based on the chemical composition of the HEA system, i.e., the
features are sequentially ordered by Co, Cu, Fe, Mo, and Ni for
the CoMoFeNiCu HEAs across each previously defined zone.

To illustrate this protocol, Table 2 shows the detailed
implementation of the GLaSS descriptor for the bridge site, as
depicted in Figure 4b. The first 27 features are associated with
the local element-specific environment of the adsorbing atom
with its three zone-1 neighbors: we use 15 distances, 9 angles,
and 3 dihedral angles. The distances are represented by
concatenating three one-hot-encoded feature vectors (the first,
second, and third atom distance in Table 2); the length and
ordering of the vector correspond to the number of distinct
elements present in the CoMoFeNiCu HEA. The angle and

dihedral terms account for all three-body and four-body
interactions, respectively, comprising the adsorbing atom and
the three zone-1 atoms. The zone-2 features are encoded as the
sum-of-distances of the adsorbing atom from each of the zone-
2 atoms; this results in five sum-of-distances corresponding to
each element (i.e., zone-2 sum of distances for Co, Cu, Fe, Mo,
and Ni in Table 2). An analogous approach for zone-3
provides the final five features of the GLaSS descriptor (zone-3
sum of distances in Table 2).

The development of the GLaSS descriptor is inspired by the
previous work of generalized coordination number (GCN)22,39

and the linearly parameterized representation of adsorption
sites proposed by Batchelor et al.11,30 Here, we use a one-hot
encoding philosophy, where the binary yes/no assignments are
replaced by the distances (for zone-1) and sum-of-distances
(for zone-2 and zone-3) to capture the differences in the
adsorbate binding. Thus, while previous strategies require a
priori labeling of the adsorbate binding site, the GLaSS
encoding can be generalized more easily to any adsorption site.
However, the critical shortcoming of this approach is that a
DFT-optimized structure is required to obtain the geometric
parameters that form the descriptor. Before outlining our
strategy to overcome this challenge, we first demonstrate the
efficacy of this descriptor for predicting the ΔEDFT

relax,high of the
five adsorbates that are relevant for the NH3 decomposition
reaction.

In addition to the aforementioned database comprising 2109
CoMoFeNiCu HEA sites that form the training set, an
additional 534 (25.3% of the training set) HEA sites were
considered as a test set. Figure 4d shows the distribution of
binding site labels, derived from the combinations of three
zone-1 atoms for each binding configuration, for both the
training and test sets. We note that all 35 possible
combinations of zone-1 atoms, considering the presence of
five elements, were sampled and included in our database for

Figure 5. Performance evaluation of GLaSSrelax,high descriptors for each type of adsorbate (a−e): DFT-calculated vs XGBoost-predicted adsorption
energies for each adsorbate. Each parity plot indicates (a) H, (b) N, (c) NH, (d) NH2, and (e) NH3. The purple dots refer the training set binding
sites, and the orange dots refer the test set binding sites. The insets are the distribution of the prediction errors. (f) Comparison plot of model
performance using MAEs on the same test set across four types of SOAP descriptors and our GLaSSrelax,high descriptor.
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training purposes. However, in the test set, 32 out of the 35
possible combinations were observed, with the exceptions of
the “FeFeMo”, “FeFeFe”, and “NiNiNi” labels. These three
cases are considered rare owing to the limited presence of Fe
and Ni in the CoMoFeNiCu HEA composition. The frequency
of these enumerated combinations varies, reflecting the
composition-dependent distribution of the binding config-
urations within the HEA. Overall, the training and test sets
exhibit a well-distributed diversity of local environments.

The GLaSS descriptor was used to encode the optimized
relaxed binding configurations present within the training set
(i.e., GLaSSrelax,high). Subsequently, GLaSSrelax,high and their
corresponding ΔEDFT

relax,high was used to develop a series of ML
models using the Extreme Gradient Boosting algorithm
(XGBoost).40 XGBoost uses an ensemble of parallel tree-
boosting machines that enables the visualization of feature
importance and cross-feature relationships. Hyperparameter
tuning was implemented using Optuna,41 which is an
automatic framework designed for optimizing hyperparameters
in complex search spaces. Five separate XGBoost models were
trained for each adsorbate type. To optimize the performance
of each XGBoost model, a fivefold CV was performed within
the training set. During this process, onefold of the data set was
used as a validation set, enabling Optuna-enabled automatic
hyperparameter tuning to achieve the best performance for
each XGBoost model.

Figure 5a−e summarizes the efficacy of the GLaSSrelax,high/
XGBoost model in predicting the ΔEDFT

relax,high of the five
adsorbates considered in this study. The XGBoost models
achieved MAEs of 0.068 and 0.112 eV for H and NH3 test sets,
respectively, while a slightly higher MAEs is observed for N,
NH, and NH2 test sets. The normally distributed absolute
prediction errors, provided as insets within each parity plot,
indicate the absence of systematic bias in our predictions.
Although prior work achieved higher prediction accuracy using
more complex CNN models and hybrid ensemble of

descriptors,14 we note that this approach is advantageous
due to the simplicity of the GLaSS descriptor and
interpretability of the XGBoost algorithm. Note that these
MAEs are obtained from the test set, which is somewhat
different than the training set. Although higher MAEs are
observed, this sampling strategy allows us to assess the
transferability of the model to previously unseen configurations
(e.g., “NiNiNi”). We anticipate that the performance of our
models can be further improved by using a larger training set.

To further access the performance of the GLaSS descriptor,
we used the above train/test data set to develop additional
XGBoost models for each adsorbate using SOAP descrip-
tors,42−45 as implemented in the DScribe software package.31

In this study, the cutoff radius of the local region (rcut) was
fixed at 6 Å. We observed that previous work, particularly that
of Jag̈er et al.,43 employed larger radial and angular basis
functions. However, it is worth noting that our study
encompasses six to seven distinct chemical element types
within our HEA systems. In contrast, the prior study primarily
focused on relatively simpler systems such as molybdenum
disulfide and copper−gold clusters. As the SOAP features scale
exponentially with the number of distinct elements in the
system, the range of radial basis functions (nmax) was set at 1−
3, and the maximum degree of spherical harmonics (lmax) was
set to 0 or 1 (by imposing a soft constraint of nmax ≥ max + 1)
in this work. Consequently, we systematically selected nmax/lmax
combinations of 1/1, 2/0, 2/1, and 3/0, resulting in SOAP
descriptor feature sizes ranging from 42 to 171 for H@HEA
and N@HEA systems and from 56 to 231 for NH, NH2, and
NH3 binding on HEA systems. We have compiled and
provided parity plots for all of these models in Figures S2−S5.
The comparison of model performance and the corresponding
MAEs are summarized in Figure 5f. Encouragingly, the
GLaSSrelax,high descriptor consistently outperformed all the
SOAP descriptors with different combinations of nmax and lmax
parameters, especially for systems consisting of N as binding

Figure 6. Overall performance assessment of NEP-ML-FF: the inherent model accuracy and its predictability of the optimized binding site
configurations for the test set. (a,b) Parity plots comparing NEP-ML-FF predicted (a) configuration potential energies and (b) forces with
corresponding DFT values. (c−g) Distribution of MSDs between the NEP-ML-FF-predicted sites and the DFT-optimized sites for each adsorbate.
(h) Distribution of MSDs of the DFT-disagreed NEP-ML-FF-optimized binding configurations. MSDs were calculated between the original DFT-
optimized configurations and their predicted sites after rerun by NEP-ML-FF.
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species. However, we did observe that other geometric
descriptors, like the Localized version of Many Body Tensor
Representation,46 as briefly analyzed in the Supporting
Information (Figure S6), may show better performance than
our GLaSSrelax,high descriptor, especially with careful fine-tuning.

Given the potential of the GLaSS descriptor for achieving
robust and reliable predictions for ΔEDFT

relax,high, we further
propose to take advantage of the already available low-accuracy
DFT calculations, i.e., using an ensemble descriptor of
GLaSScons,low and ΔEDFT

cons,low to predict the high-accuracy
adsorption energies (i.e., ΔEDFT

relax,high). This approach draws
inspiration from the concept of scaling relations and aims to
circumvent the computationally expensive geometric optimi-
zations, thus reducing the overall computational costs
associated with high-throughput surface screening. However,
a significant constraint of the proposed approach lies in the fact
that the ensemble descriptor still necessitates DFT calcu-
lations, thereby failing to achieve the desirable DFT-free
attribute. To overcome this bottleneck, we trained a ML-FF
using NEP37 interatomic potential with data from the SPEs
during the calculation of ΔEDFT

cons,low. We adopted the state-of-
the-art NEP version 4 potential, which is made available in
GPUMD package with superior performance regarding
multicomponent atomistic systems.38

The ML-FF aims to predict the energetically minimized
binding configuration of the low-accuracy constrained surfaces.
As discussed previously, a downsampling strategy was used to
obtain 67,577 configurations. We adopted 90−10% train-test
set split to train and validate the NEP-ML-FF. The parity plots
comparing NEP predictions to DFT values for the potential
energies (per binding configuration) and forces are shown in
Figure 6a,b, respectively. NEP-ML-FF was found to be able to

predict DFT values with excellent accuracy, as seen by the
MAE of 1.6 × 10−3 eV/configuration for energies and 1.5 ×
10−3 eV/Å for forces.

The validated NEP-ML-FF is subsequently applied for the
optimization of the 534 initial configurations within the test
set. The optimization process is facilitated by the FIRE local
atomic structure optimization algorithm,47 which is imple-
mented in the Atomic Simulation Environment (ASE)
software package.48 We then computed the mean squared
displacements (MSDs) between the sites predicted by the
NEP-ML-FF and the sites optimized through DFT calcu-
lations. Details of the MSDs calculations are provided in the
Methods section. The distribution of MSDs for each adsorbate
is presented in Figure 6c−g. A visual comparison between a
pair of representative binding site geometries, each optimized
separately using DFT and NEP-ML-FF, is presented in Figure
S7. Notably, the NEP-ML-FF model effectively reproduces
DFT-optimized site geometries, evident from the fact that
approximately 83% of the binding sites within the test set
exhibit MSD values below 0.2. This result underscores a
significant degree of structural similarity. Among the five
adsorbates, it is noteworthy that NEP-ML-FF faces challenges
in replicating DFT results for NH and NH2. For these two
adsorbates, 37 out of 117 NEP-ML-FF-predicted sites and 42
out of 116 such sites, respectively, exhibit MSD values greater
than the predefined threshold of 0.2, indicative of disagree-
ments with DFT results.

While the observation of site changes during independent
trials of geometry optimizations might not come as a surprise,
owing to the presence of multiple locally optimal sites for the
HEA surfaces, we took an additional step to improve the
robustness and effectiveness of the NEP-ML-FF. Specifically,

Figure 7. Performance evaluation of the GLaSSNEP
cons,low + ΔEML

cons,low ensemble descriptor in the prediction of ΔEDFT
relax,high for each type of adsorbate

decomposed by site changed and unchanged scenarios and comparison with models solely using the GLaSSrelax,high descriptor. (a−e) DFT-
calculated vs XGBoost-predicted adsorption energies for each adsorbate. Each parity plot indicates (a) H, (b) N, (c) NH, (d) NH2, and (e) NH3.
The purple dots refer to the training set binding sites, and the green/orange dots refer to the test set binding sites with/without site changes,
respectively. (f) Comparison plot of model performance using MAEs for individual adsorbate. Yellow bins: overall MAEs achieved by the
GLaSSNEP

cons,low + ΔEMLcons,low ensemble descriptor; green bins: decomposed overall MAEs for site-unchanged binding sites; red bins: reference of
MAEs achieved by solely using the GLaSSrelax,high descriptor.

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.3c03401
Langmuir 2024, 40, 3691−3701

3698

https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.3c03401/suppl_file/la3c03401_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.3c03401/suppl_file/la3c03401_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.3c03401/suppl_file/la3c03401_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03401?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03401?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03401?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03401?fig=fig7&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.3c03401?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


we employed the DFT-optimized configurations as inputs for a
rerun of the NEP-ML-FF. The resulting distribution of the
MSDs, calculated before and after the NEP-ML-FF, is depicted
in Figure 6h. Among the 90 binding sites where prior site
changes were observed, a remarkable 83 sites displayed MSD
values below 0.2, alongside the corresponding optimization
steps spanning from 2 to 10. In essence, our NEP-ML-FF
demonstrated 92% success in reproducing the DFT-predicted
binding site, which suggests that this approach can be used to
create the geometry-based GLaSS descriptor to predict
ΔEDFT

relax,high.
While the DFT-free GLaSS descriptor (denoted as

GLaSSNEP
cons,low) can be directly obtained from the NEP-ML-

FF, the energetic component of the ensemble descriptor
(denoted as ΔEML

cons,low) necessitates prediction through a
separate XGBoost model, which is trained using the DFT-
optimized GLaSScons,low and ΔEDFT

cons,low. In line with our aim for
a completely DFT-free approach, the inputs for the XGBoost
model should exclusively originate from the NEP-ML-FF.
While we constructed the test set using paired data of
GLaSSNEP

cons,low against ΔEDFT
cons,low for all 534 sites in our test set,

we note that the site changes discussed above may worsen the
prediction errors. Specifically, the MAE of the XGBoost model
for predicting ΔEML

cons,low was 0.230 eV, exclusively based on the
binding sites that did not undergo site changes (total of 444
points). The parity plot is shown in Figure S8. We observe that
this larger deviation is predominantly attributable to the
presence of “rare” configurations, as evidenced by outliers in
the distribution of the ΔEDFT

cons,low data set.
Figure 7a−e summarizes the effectiveness of the ensemble

descriptor/XGBoost model in predicting high-accuracy
adsorption energies on a relaxed slab for the same five test
sets of adsorbates. In comparison to previous models that
exclusively utilized the GLaSSrelax,high descriptor to encode
optimized relaxed binding configurations, the overall MAEs
when employing the ensemble descriptor tend to be system-
atically higher, with the smallest and largest MAE deviations of
10 and 25 meV for the H and NH models, respectively.
However, the overall MAEs still fall within the acceptable
threshold of 0.2 eV for reproducing DFT-level accuracy. To
address the issues with the site changes, we further decompose
the overall MAEs based on binding sites with and without site

changes. For the 444 sites without site changes (represented by
orange dots), similar MAEs with normally distributed absolute
prediction errors were observed, comparable to the results
obtained using the previous GLaSSrelax,high descriptor, as
illustrated in Figure 7f. However, there is a noticeable bias in
the perturbation of errors, with larger discrepancies to the
ΔEDFT

relax,high for the 90 site-changed binding sites (represented by
green dots in Figure 7a−e). These site-changed sites
contributed significantly to and explained the overall higher
MAEs when employing the ensemble descriptor. Nevertheless,
considering the benefits gained from the overall DFT-free
approach, the utilization of the GLaSSNEP

cons,low + ΔEML
cons,low

ensemble descriptor for predicting previously unobserved
binding sites within HEAs remains a favorable strategy.

Since XGBoost is a specific implementation of the gradient
boosted trees algorithm, we employed the Tree-SHapley
Additive exPlanations (TreeSHAP) method,49,50 tailored for
tree-based ML models, to evaluate the feature importance of
encoded optimized constrained binding configurations
(GLaSSNEP

cons,low) + ΔEML
cons,low ensemble descriptor. To obtain a

comprehensive assessment of feature importance, we calcu-
lated the average absolute Shapley values for each feature
across the test set and organized the features in descending
order of importance. We then visualized the top six most
influential features in an ensemble bar plot for all five
adsorbates, as illustrated in Figure 8. From the figure, it is
evident that the energetic descriptor ΔEML

cons,low displayed the
highest Shapley values among the five models and significantly
exceeded the second most important feature, which belonged
to the GLaSS descriptor. Among the features within the GLaSS
descriptor, the following features were identified as the most
influential in explaining the predictability of ΔEDFT

relax,high:
distances of zone-1 Mo atoms to the adsorbing atom, four
types of angles within zone-1, sum of distances of zone-2 Mo
atoms, and sum-of-distances features for three zone-3 atoms
(Co, Cu, and Mo). This overarching Shapley analysis
underscores the substantial contribution of the energetic
descriptor ΔEML

cons,low, in addition to geometric features, when
predicting our target ΔEDFT

relax,high.

Figure 8. Ensemble bar plot of the top six most important features and their Shapley values in the GLaSSNEP
cons,low + ΔEML

cons,low ensemble descriptor,
calculated and ranked based on the TreeSHAP method.
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■ CONCLUSIONS
This work aims to address the challenge of developing
interpretable ML-based models when access to large-scale
computational resources is limited. Specifically, we have
presented a cost-effective workflow that synergistically
combines interpretable ML models (e.g., XGBoost) and ML-
FFs (e.g., NEP) to predict high-accuracy adsorption energies
for CoMoFeNiCu HEA catalysts using a daisy-chained
approach. This is made possible by using three specific
modifications to typical DFT workflows used within the field.
First, we use a sequential multistep optimization protocol to
reduce the computational cost of generating large DFT data
sets. Second, we introduce a new descriptor (called GLaSS)
that can be generalized to arbitrary surface binding sites. Third,
we use low-quality DFT binding energies as an energetic
descriptor in the XGBoost model. More importantly, these
low-cost DFT optimization trajectories are also repurposed to
develop a ML-FF that provides the geometric information
necessary for creating the GLaSS descriptor. Taken together,
this study illustrates how cheap DFT calculations and
appropriately designed descriptors can be used to develop
useful models for predicting high-quality adsorption energies at
significantly lower computational costs. Although this work has
focused on developing a cheap predictive model for one
specific HEA composition (i.e., CoMoFeNiCu), we anticipate
that our resource-efficient training philosophy may be broadly
relevant to the larger surface catalysis community.
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