
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015 2635

A Digital Liquid State Machine With Biologically
Inspired Learning and Its Application

to Speech Recognition
Yong Zhang, Peng Li, Senior Member, IEEE, Yingyezhe Jin, and Yoonsuck Choe, Senior Member, IEEE

Abstract— This paper presents a bioinspired digital
liquid-state machine (LSM) for low-power very-large-scale-
integration (VLSI)-based machine learning applications. To the
best of the authors’ knowledge, this is the first work that
employs a bioinspired spike-based learning algorithm for the
LSM. With the proposed online learning, the LSM extracts
information from input patterns on the fly without needing
intermediate data storage as required in offline learning methods
such as ridge regression. The proposed learning rule is local such
that each synaptic weight update is based only upon the firing
activities of the corresponding presynaptic and postsynaptic
neurons without incurring global communications across the
neural network. Compared with the backpropagation-based
learning, the locality of computation in the proposed approach
lends itself to efficient parallel VLSI implementation. We use
subsets of the TI46 speech corpus to benchmark the bioinspired
digital LSM. To reduce the complexity of the spiking neural
network model without performance degradation for speech
recognition, we study the impacts of synaptic models on
the fading memory of the reservoir and hence the network
performance. Moreover, we examine the tradeoffs between
synaptic weight resolution, reservoir size, and recognition
performance and present techniques to further reduce the
overhead of hardware implementation. Our simulation results
show that in terms of isolated word recognition evaluated using
the TI46 speech corpus, the proposed digital LSM rivals the
state-of-the-art hidden Markov-model-based recognizer Sphinx-4
and outperforms all other reported recognizers including the
ones that are based upon the LSM or neural networks.

Index Terms— Hardware implementation, liquid-state
machine (LSM), speech recognition, spike-based learning.

I. INTRODUCTION

IN-DEPTH study on learning mechanisms of nervous
systems [1]–[3] has motivated the development of

spiking neural networks, which have been shown to be
computationally more powerful than previous generations
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of neural networks based on McCulloch–Pitts neurons and
threshold gates [4]. As a result, many recent research works
have been geared toward more biologically inspired learning
algorithms, network structures, and applications of spiking
neural networks [5]–[11]. Bohte et al. [5] extended the
widely used backward-propagation technique to spiking
neural networks. Instead of training synaptic weights,
Natschlager and Ruf [6] computed radial basis functions
by training synaptic delays. To improve the stability of
learning, Wade et al. [7] merged spike timing dependent
plasticity with the Bienenstock–Cooper–Munro (BCM) model.
Brader et al. [9] proposed a semisupervised learning model
inspired by experimental observations for spiking neural
networks. By introducing the mechanism of winner-take-all,
McKinstry and Edelman [10] proposed a learning model to
generate desired patterns of firing activities in the correct
temporal order. Meng et al. [11] proposed the gene regulatory
network (GRN)-BCM model for human behavior recognition,
where plasticity parameters are regulated by a GRN.

On the other hand, as spiking neurons more closely resem-
ble the behavior of neurons in nervous systems, they may also
consume lower power than previous generations of neural net-
works when implemented in hardware [12]–[14]. In addition, it
was shown that spiking neural networks are error resilient [15],
a very appealing property for implementation in modern
very-large-scale-integration (VLSI) technologies in which
device reliability and process variation are the key challenges.
In recent years, various neuromorphic chips were designed or
fabricated to demonstrate their computational capability and
low power consumptions for several applications [13]–[15].

In particular, inspired by the fact that neocortex processes a
wide spectrum of information by stereotypical neural microcir-
cuitry, the network model of the liquid-state machine (LSM),
a particular form of spiking neural networks, was proposed
and subsequently proven to be efficient for various
tasks [8], [16]–[18]. Structurally, the LSM consists of a
reservoir receiving input spike trains and a group of readout
neurons receiving signals from the reservoir. With a group
of neurons randomly connected by fixed synapses, the
reservoir has a recurrent structure. This leads to decaying
transient memories represented by the dynamic response
of the reservoir to input spike trains. For this reason, the
LSM is specially competent for processing temporal patterns
such as speech signals [19], [20]. For readout neurons,
Verstraeten et al. [19] used ridge regression to calculate
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synaptic weights between the reservoir and readout neurons
for classification tasks. Ghani et al. [20] trained output
neurons using backpropagation-based multilayer perceptrons.

Compared with other standard methods for isolated
utterance recognition, such as HMM-based [21], template-
based [22], and acoustic-phonetic-based [23] approaches, the
LSM is more biologically plausible and may be considered
as a more general model for speech recognition. The internal
LSM model parameters may be trained by extracting statistical
information from the data without using acoustic and language
models that are specific to targeted languages and datasets.
Furthermore, the LSM is computationally powerful such that
its performance on isolated word recognition can be compara-
ble to state-of-art signal processing methods. Compared with
other neural-network-based methods, such as Long Short-
Term Memory nets [24] and multilayer perceptron-based
classifiers [20], the LSM is either superior in performance or
more hardware friendly and biologically plausible. However,
the offline learning in [19] required large amounts of
storage for intermediate results during training. Moreover,
the learning rule used in backpropagation-based multilayer
perceptrons [20] was arithmetically complicated and not local.
These drawbacks complicate the network model and limit its
potential application to real-time low-power hardware systems.

The key technical contribution of this paper is a new
biologically motivated learning rule, which also lends itself to
hardware-friendly implementation of the LSM. The proposed
online learning allows the LSM to extract information from
input patterns on the fly without needing intermediate data
storage as required in offline learning methods. Our learning
rule is local in the sense that each synaptic weight update
is based only upon the firing activities of the corresponding
presynaptic and postsynaptic neurons without incurring global
communications across the neural network. Compared with the
backpropagation-based learning, the locality of our approach is
amenable to efficient parallel VLSI implementation. To reduce
the complexity of the spiking neural network model without
performance degradation for speech recognition, we study the
impacts of synaptic models on the fading memory of the
reservoir, which is strongly correlated with the computational
power of the network. Moreover, all model parameters of the
proposed LSM are digitized for digital CMOS implementation.
We examine the tradeoffs between synaptic weight resolution,
reservoir size, and recognition performance and present tech-
niques to further reduce the hardware overhead targeting either
a dedicated customized IC or an field-programmable gate array
implementation [25]. Our simulation results show that in terms
of isolated word recognition evaluated using the TI46 speech
corpus, the proposed digital LSM rivals that of the state-
of-the-art hidden Markov-model (HMM)-based recognizer
Sphinx-4 [21], and outperforms all other reported speech
recognizers including the ones that are based upon the LSM
or neural networks.

The rest of this paper is organized as follows. Section II
briefly introduces the LSM and its application to speech
recognition. Section III presents the motivation behind the
proposed learning rule, followed by the presentation of the
design and implementation of the new rule in Section IV.

Fig. 1. Network structure of the LSM. Dots and arrows represent neurons
and synapses, respectively. The neurons on the left provide input spike trains
to the reservoir neurons in the middle. The reservoir receives input spike trains
and projects through plastic synapses to the readout neurons on the right.

In Section V, the influence of synaptic models on fading
memory is studied. Section VI presents design optimization
techniques for efficient hardware-friendly implementation of
the proposed LSM. Section VII evaluates the performance
of the proposed LSM for speech recognition and the impacts
of synaptic weight precision and reservoir size on recogni-
tion performance. The proposed LSM is also compared with
several existing speech recognition techniques. Finally, this
paper is concluded in Section VIII.

II. LIQUID STATE MACHINE FOR SPEECH RECOGNITION

A. General Network Structure

The network structure of the LSM is shown in Fig. 1.
The reservoir in the middle is comprised of a set of
neurons connected by fixed synapses generated either in
a way approximating the spatial distribution of biological
neurons [8] or purely randomly [26]. As multiple recurrent
loops are created by these synaptic connections, the reservoir
features transient behavior that memorizes information of its
inputs in the past. Reservoir neurons and readout neurons
are connected by plastic synapses whose weights are to be
adjusted according to the adopted learning rule. Through its
plastic synapses, each readout neuron receives a weighted
sum of input signals from the reservoir neurons.

From Fig. 1, it is clear that the input signals are processed
in two steps. The first step involves input neurons, reservoir
neurons, and synapses connecting these neurons. Since the
number of neurons in the reservoir is generally larger than that
of the neurons providing inputs, in this step, the reservoir maps
each input signal to its liquid response, a higher dimensional
transient state. Note that this mapping is nonlinear in nature
and that after being nonlinearly cast to a higher dimensional
space, complex patterns are more likely to be linearly
separable [27]. In the second step, the liquid response is
projected to each readout neurons through plastic synapses

Io(t) =
∑

i

wi,o · ri (t) (1)

where t is time, Io(t) is the net input to a readout neuron,
ri (t) is the output of the i th reservoir neuron, and wi,o is the
weight of the synapse connecting the i th reservoir neuron and
the readout neuron. Over the duration of [0, T ] of an input
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Fig. 2. Preprocessing of speech signals. The speech signal is processed by
a filter representing the outer ear and middle ear followed by 77 cascaded
bandpass filters modeling the cochlea. After each half-wave rectifier, the
magnitude of the time-domain signal in each frequency band is compressed
by an automatic control module. The resulting signal is converted to spike
trains by the BSA.

temporal signal, the net integrated input to the readout
neuron is

∫ T

0
Io(t) =

∑

i

wi,o ·
∫ T

0
ri (t). (2)

Since the net integrated input to each readout neuron is a
linear combination of outputs of all reservoir neurons, each
readout neuron can be viewed as a linear classifier with
respect to the liquid responses. During the process of linear
classification, only liquid responses produced by inputs of
a certain class are expected to activate a specific readout
neuron. In the corresponding feature space, a hyperplane
defined by all wi,o separates these inputs from others. This
linear classification problem was solved by determining
the weights of the plastic synapses mathematically using
the Ridge regression [19]. In [20], a hidden layer was
added between the reservoir and readout neurons. Thus,
backpropagation-based training algorithms for multilayer
perceptrons were used such that the liquid responses of
different classes do not have to be linearly separable.

B. Preprocessing of Speech Signals

To apply the LSM to speech recognition, speech signals
shall be preprocessed and encoded by spike trains. A number
of methods exist for this step, such as temporal based linear
predictive coding [20] and techniques summarized in [19],
which are the Hopfield coding [28], Mel-frequency cepstral
coefficients (MFCCs) [29], [30], passive ear model [31], [32],
and the Ben coding algorithm (BSA) [33]. For good perfor-
mance and biological plausibility, we use the speech data pre-
processed by the Lyon passive ear model [31], [34] and BSA.

The preprocessing stage combining the Lyon passive ear
model and BSA is shown in Fig. 2. After the filter modeling

Fig. 3. Entire LSM system for speech recognition. Seventy-seven spike
trains from the preprocessing stage are used as the inputs to the reservoir of
the LSM. The BSA is implemented in each input neuron of the LSM.

the outer ear and middle ear, the speech signal is processed
by the cochlea modeled by 77 cascaded bandpass filters with
each extracting certain frequency band of the voice spectrum.
Filter 1 extracts the highest frequency band and filter 77
the lowest. The signal extracted from each filter is further
processed by a half wave rectifier and compressed by an
automatic gain control module. The use of compression by
AGC is inspired by the fact that the human ear can hear
sound levels in a dynamic range of about 120 dB, while the
firing frequency of neurons in response to sound only varies
within about two orders of magnitude. After the compression,
the time-domain signal is converted to a spike train by the
BSA [33], where a stronger signal is converted to a spike
train with a higher instantaneous spiking rate. In summary,
the preprocessing stage converts the input speech signal
into 77 parallel spike trains representing different frequency
channels covering the entire voice spectrum.

C. Entire System for Speech Recognition

In the LSM of this paper, the reservoir has a regular grid
structure [16]. It is an k × l × m grid with an neuron at
each grid point, as shown in Fig. 3. Synaptic connections
are allocated randomly such that neurons that are closer to
each other have a higher probability to be connected. The
probability for forming a connection [8] is

Pconnection(N1, N2) = k · e− D2(N1 ,N2 )

r2 (3)

where N1 and N2 represent two neurons, D(N1, N2) is the
Euclidean distance between the two neurons, and k and r are
two appropriately chosen constants.

The 77 spike trains produced by the preprocessing stage
are fed to the LSM as the inputs. Conceptually, there is an
input layer of 77 neurons whose outputs are generated by
the BSA. The entire speech recognition system combining the
preprocessing stage and the LSM is shown in Fig. 3.

III. MOTIVATION FOR THE PROPOSED BIO-INSPIRED

ONLINE LEARNING RULE

A. Hebbian Learning

As stated in the previous section, each readout neuron is
viewed as a linear classifier. The online training process of a
linear classifier is shown in Fig. 4 (left), where the hyperplane
corresponding to the linear classifier is iteratively adjusted to
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Fig. 4. Left: online training of a linear classifier. The orientation of the
hyperplane is adjusted iteratively to separate two classes of data. Right: the
linear classifier with a margin for improved generalization performance.

separate two classes of data in the feature space. Our goal is
to find a spike-based learning rule for this training process.

In the neuroscience community, activity-based synaptic
plasticity is believed to be the basic phenomenon in
learning [1]. Based on this observation, the Hebb postulate
was proposed. This widely accepted postulate states that
neurons that fire together wire together [35]. More specifically,
if the firing activity of neuron A tends to induce/inhibit spikes
from another neuron B, the synaptic connection from neuron A
to neuron B may be potentiated/depressed. The basic plasticity
rule that follows the Hebb postulate is:

τl
dw

dt
= upreupost (4)

where w is the synaptic weight, upre and upost represent
the activities of the presynaptic and postsynaptic neurons,
respectively, and τl is the time constant corresponding to
the learning speed. To include synaptic depression into the
learning rule, different forms of covariance rules have been
proposed, as summarized in [1].

B. Instability and Saturation

The Hebbian learning rules capture the most fundamental
behavior of plastic synapses and are of great theoretical
importance. However, there are practical instability issues
associated with these rules, that is, synaptic weights may
exhibit uncontrolled growth under the governing of these rules.
One solution to this problem is to impose upper and lower
limits to synaptic weights. However, with this solution, these
rules suffer from a new problem of synaptic saturation in
which all synaptic weights may be driven to the upper/lower
limit such that the learning process is stopped and the network
loses its capability to discriminate different input patterns.

To solve the synaptic saturation problem, several research
works have been conducted. The BCM rule [36] uses a
sliding threshold to modulate synaptic plasticity. Several
techniques, e.g., the Oja rule [1], modify the Hebb rule to
include various forms of synaptic normalization or synaptic
competition. Theoretically, they all successfully solve the
saturation problem, thus demonstrating their potential for
practical applications. On the other hand, these techniques
also have obvious drawbacks as a candidate for hardware
implementation. First of all, the complicated computation
involved in these learning rules requires a great deal of hard-
ware resource. In addition, synaptic normalization/competition

based rules are not local, that is, the learning dynamics of a
synapse does not depend only on the firing activities of the
presynaptic and postsynaptic neurons. The additional nonlocal
communications between different parts of the neural network
and the associated computations are not hardware friendly
and may limit the scalability of these rules.

IV. PROPOSED LEARNING RULE

According to the discussions presented in the previous
section, the main objective of our LSM-based online learning
rule design is to develop a biologically inspired rule that
is local and free from synaptic saturation. In addition, as a
common issue in machine learning [37], overfitting shall be
also considered in the design of learning algorithms. In this
section, we first introduce an abstract learning rule that meets
the above three requirements. A similar abstract rule for binary
synapses has been used for two-layer feed-forward spiking
networks in [9]. Then we specifically adopt and implement
the abstract learning rule for the proposed LSM. Compared
with the learning rule of [9], our implemented learning rule is
greatly simplified and hence more hardware-friendly.

A. Abstract Learning Rule

We introduce the abstract local learning rule, which is local
and free from saturation. The rule is then further improved in
terms of its generalization performance.

As shown in Fig. 4 (left), the learning process is driven by
incorrectly classified data points. In a neural network, if an
inactive (active) neuron is desired to be active (inactive), the
corresponding synapses that provide inputs to this neuron tend
to be potentiated (depressed). Considering this for each output
readout neuron in the LSM leads to
{

potentiation of wi , if ui = A & ur = I & ud = A

depression of wi , if ui = A & ur = A & ud = I
(5)

where ur and ud represents the real (actual) and desired
activities of the neuron, respectively, ui is the activity of the i th
presynaptic neuron, wi is the corresponding synaptic weight,
and A and I denote the active and inactive states, respectively.
In a slightly different way, we use each presynaptic spike to
trigger the update of the synaptic weight. Quantitatively, the
value of wi after a presynaptic spike may become

{
wi + �w, if ur < uθ & ud > uθ

wi − �w, if ur > uθ & ud < uθ
(6)

where ur and ud are the quantitative values of neuron
activity, uθ is a threshold value used to determine whether
the postsynaptic neuron is active or not, i.e., whether the
data represented by the firing activities of all its presynaptic
neurons is classified into one class or the other. It is clear that
for any data point which is exactly on the hyperplane of the
corresponding linear classifier, ud = uθ = ∑

i wi · ui .
For better generalization performance, a margin is intro-

duced around the hyperplane for the linear classifier, as shown
in Fig. 4 (right). By this way, the learning process is not
only driven by incorrectly classified data but also by the
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correctly classified data falling within the margin, i.e., between
the two hyperplanes p and n. For any data on p (or n),
uθ + �u = ud = ∑

i wi · ui (or uθ − �u = ud = ∑
i wi · ui ),

where �u corresponds to d in Fig. 4 (right).
Since a slow learning rate is usually used in neural net-

works for good performance [9], [38], correspondingly smaller
learning steps are preferred in the training. To target at
hardware implementation, we use discrete synaptic weights
that have a finite resolution. To effectively reduce the learning
rate, a stochastic weight update scheme is adopted. As such,
the further modified learning rule states that the value
of wi following a spike from the i th presynaptic neuron may
become:
{

wi + �w with prob. p+, if ur < uθ + �u & ud > uθ

wi − �w with prob. p−, if ur > uθ − �u & ud < uθ

(7)

where �w is the granularity of potentiation/depression,
p+ and p− are the probabilities of potentiation and depression,
respectively, and �u is the margin.

The internal calcium concentration of a biological neuron is
a good indicator of its instantaneous activity within a specified
time window [9]. Replacing neuron activity u by calcium
concentration c, (7) becomes
{

wi + �w with prob. p+, if cr < cθ + �c & cd > cθ

wi − �w with prob. p−, if cr > cθ − �c & cd < cθ .

(8)

Note that this rule is mathematically similar to a more abstract
rule for binary synapses in [9], which has been shown to
be able to classify linearly separable patterns within a finite
number of training iterations [39], [40].

B. Learning in Spiking Neural Networks

We describe the hardware-friendly implementation of
the abstract learning rule described in the previous section.
To mimic the behavior of a biological synapse, the
implemented plasticity shall follow the Hebb’s postulate that
synaptic potentiation/depression takes place only if the presy-
naptic neuron tends to induce/inhibit firing of the postsynaptic
neuron. From this perspective, the update of the synaptic
weight after a presynaptic spike is expected to take the form

{
wi → wi + �w with prob. p+, if cr > c′

θ

wi → wi − �w with prob. p−, if cr < c′
θ

(9)

where c′
θ is another threshold of calcium concentration used

to determine if synaptic potentiation or depression is possible.
To take advantage of the merits of both forms of learning

in (8) and (9), we combine these two principles. To be
intuitive, we first illustrate these two rules in Fig. 5, where
each subfigure is divided into several regions that show the
learning activity of a synapse under different combinations of
cr and cd . The subfigure on the left shows the abstract learning
rule in (8), where the direction of learning is determined by
the difference between the real activity of the postsynaptic
neuron and its desired activity. The subfigure on the right

Fig. 5. Left: the abstract learning rule of (8) that determines potentiation or
depression based upon the difference between the real and expected neuronal
activities. Right: the Hebbian learning of (9) where a presynaptic spike
leads to synaptic potentiation (depression) when the postsynaptic neuron is
active (inactive).

shows (9), where the direction of the learning is determined
by the activity of the postsynaptic neuron.

We choose c′
θ to be the same as cθ when combining these

two principles. Since in a biological neuron synaptic learning
is determined only by the actual activities of the presynaptic
and postsynaptic neurons but not the desired activity, learning
is expected to be independent of cd , thereby only depend-
ing on cr . To avoid synaptic saturation, we incorporate two
stop learning regions corresponding to cr > cθ + �c and
cr < cθ − �c, respectively. In the region of cθ − �c <
cr < cθ + �c, the Hebbian learning is employed such that
potentiation happens when cθ < cr < cθ +�c and depression
happens when cθ −�c < cr < cθ . Now, the combined learning
rule dictates the learning of a synapse following a presynaptic
spike according to:
{

wi → wi + �w with prob. p+, if cθ < cr < cθ + �c

wi → wi − �w with prob. p−, if cθ − �c < cr < cθ .

(10)

Comparing (10) with (8) makes it clear that these two
descriptions disagree in the region of {(cd , cr )|cd < cθ ,
cr > cθ } and the region of {(cd , cr )|cd > cθ , cr < cθ },
where depression and potentiation occur, respectively,
according to (8).

To this end, we employ a teacher signal to alter the actual
(real) activity of the postsynaptic neuron to induce the desired
learning of the synapse. Take region {(cd , cr )|cd > cθ ,
cr < cθ } as an example. Since the desired learning according
to (8) is potentiation, while depression occurs according
to (10), the teacher signal is applied in such a way it moves
each point in {(cd , cr )|cd > cθ , cr < cθ } to {(cd , cr )|cd > cθ ,
cθ < cr < cθ + �c}, where potentiation occurs according
to (10). The effects of the teacher signal under various
scenarios are shown by the arrowed lines in Fig. 6.

More specifically, the application of the teacher signal
modulates the activity of the postsynaptic neuron such that
its calcium concentration is driven to{

[cθ , cθ + �c], if c′
r < cθ & cd > cθ

[cθ − �c, cθ ], if c′
r > cθ & cd < cθ

(11)

where c′
r is the internal calcium concentration of the

postsynaptic neuron without applying the teacher signal.
The teacher signal of a postsynaptic neuron is implemented

as a large constant current. In the case of a positive teacher
signal, which increases the activity of the corresponding
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Fig. 6. Proposed learning rule. The eight regions shows how different
combinations of cd and cr of the postsynaptic neuron determine the plasticity
of a synapse. The four arrows show how the teacher signal drives the output
neuron activity to the desired region.

postsynaptic neuron, a large constant current is injected to the
targeted neuron if cd > cθ and cr < cθ + δ, where δ is a value
in [0,�c], such that the teacher signal moves the current state
of (cd , cr ) deep into the region of {(cd , cr )|cd > cθ , cθ < cr <
cθ +�c}, where potentiation is induced according to (10). Note
that the teacher signal is stopped when cr > cθ +δ. A negative
teacher signal works in a complimentary way. The quantitative
model of the teacher signal is introduced in the next section.

The use of the teacher signal in our proposed learning
rule implements a supervised learning scheme for the LSM.
We label the readout neurons by their corresponding class label
Ri (i = 1, 2, 3, . . .). The goal of training is that when an input
signal in class i is applied to the system shown in Fig. 3, Ri is
the most active readout neuron, i.e., Ri emits more spikes than
all other readout neurons. Thus, during training, a positive
teacher signal is applied to Ri , while negative teacher signals
are applied to other readout neurons.

To summarize, the proposed learning rule described
by (10) and (11) is free from saturation, Hebbian and local,
i.e., synaptic plasticity operates only upon the activities of
the presynaptic and postsynaptic neurons. In addition, the
performance of generation is ensured using margin �c.

C. Models for Implementing the Proposed Learning Rule

In the LSM, we adopt the widely used leaky integrate-and-
fire (LIF) model for each reservoir and readout neuron. The
dynamics of the membrane potential of a neuron is described
by the following differential equation:

dvm

dt
= −vm

τm
+

∑

i

∑

j

wmi · s(t − ti j − di ) (12)

where vm and τ are the membrane potential of the mth neuron
and the time constant of its first-order dynamics, respectively,
i and j are the indices of the presynaptic neurons and spikes
from them, respectively, wmi is the weight of the synapse
connecting the i th presynaptic neuron to the mth neuron,
ti j is the spiking time of the j th spike emitted from the i th
presynaptic neuron, di is the corresponding synaptic delay, and
s(·) is the dynamic response of a synapse to an input spike.
Including the teacher signal to the neuron model gives

dvm

dt
= −vm

τm
+

∑

i

∑

j

wmi · s(t − ti j − di ) + it (c) (13)

where it (·) is the injected current due to the teacher signal,
modeled as a function of calcium concentration c.

The above mode is digitized for hardware implementation
as follows:

V n
m = V n−1

m − V n−1
m

τm
+

∑

i

∑

j

Wmi · S(T n, Ti, j + Di ) + I n−1
t

(14)

where capitalized letters represent the digitized variables, and
the superscripts of V , T , and It are the indices of time steps.
If the membrane voltage of a neuron reaches or exceeds Vth,
it fires and then resets its membrane voltage to resting potential
Vrest. Following each fired spike, there is an absolute refractory
period τrefrac within which the neuron cannot fire again.

The dynamics of calcium concentration c is

dc

dt
= − c

τc
+

∑

i

δ(t − ti ) (15)

where τc is the time constant for the first-order dynamics of
calcium concentration c and i is the index of spikes emitted
from the neuron itself. From this differential equation, it is
clear that the internal calcium concentration level of the neuron
increases with its firing frequency. The digitized dynamics is

Cn = Cn−1 − Cn−1

τc
+

∑

i

δT n,Ti (16)

where the same conventions for capitalization and superscripts
as mentioned above are used, δi, j is the Kronecker delta whose
value is 1 if i = j , and 0 if i �= j .

Let Wmax and Wmin denote the upper and lower limits of
weight values. To digitize synaptic weights, we also denote the
quantization step size Wmax − Wmin/2b − 1 by �W , where
b is the number of bits used to represent each weight.
In the digitized learning rule, the update of synaptic weights
is initialized by a spike emitted by the presynaptic neuron.
If a presynaptic fires at time Tn , then synaptic potentiation,
i.e., W n = W n−1 + �W , happens with a probability of p+ if
the following conditions are satisfied:

{
Cθ < Cn−1 < Cθ + �C

W n−1 < Wmax
(17)

where Cθ is the threshold of calcium concentration. Similarly,
synaptic depression, i.e., W n = W n−1 − �W , happens with a
probability of p− when the following requirements are met:

{
Cθ − �C < Cn−1 < Cθ

W n−1 > Wmin.
(18)

D. Comparison With Other Learning Rules

In recent years, several biologically inspired learning
rules that can be potentially used for the LSM have been
proposed. By training the output neurons to fire or not to
fire by decoding the information in input spiking patterns,
the so-called tempotron neuron [41] was designed for
binary classification of spatiotemporal patterns. However, the
learning rule used was offline and required a large amount of
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memory. Thus, it has limited application to hardware based
systems. More recently, several techniques, namely, remote
supervised method (ReSuMe) [42], chronotron [43], and Spike
Pattern Association Neuron (SPAN) [44], were proposed for
processing temporally coded information by online learning.
With these biologically inspired learning algorithms, neural
networks were trained to reproduce spike trains with precise
spike timing. As a spiking analogy of the Widrow–Hoff
rule [45], ReSuMe minimized the error between the output
and target spike trains during the training. The rule was
also local and hence amenable to hardware implementation.
The work of chronotron [43] proposed two learning rules:
E-learning and I-learning. Similar to ReSuMe, E-learning
minimized the error function measured by a new distance
metric for improved continuity. Since E-learning was offline,
a similar but more biologically plausible rule, I-learning, was
proposed for online learning. In SPAN [44], to simplify the
error calculation, spiking signals were transformed to analog
signals, which, however, is not well suited for large-scale
VLSI realization using digital CMOS circuits.

These learning rules demonstrated good performance on
reproducing spike trains with precise timing information, while
the proposed rule in this paper is specifically optimized for
challenging real-life classification tasks. As shown in follow-
ing sections, the proposed learning rule consistently produces
high classification rates on isolated word speech recognition
with various settings, while tests on real-world classification
tasks were not reported for tempotron [41], ReSuMe [42], and
chronotron [43]. In addition, tempotron was only designed for
binary classification tasks. Last but not least, because of its
hardware friendliness, the proposed learning rule is well suited
for VLSI implementation.

V. INFLUENCE OF SYNAPTIC MODELS ON LSM
PERFORMANCE AND IMPLICATIONS ON

HARDWARE IMPLEMENTATION

Theoretical studies show that the computational
performance of a recurrent neural network depends critically
on its dynamics [46]–[48]. For superior computational
performance, the reservoir in a LSM shall operate at the edge
of chaos, where the system has long lasting transients (fading
memory). This is in sharp contrast to an ordered or chaotic
system, where the state evolves to a simple steady state or
stable limit cycle (a state cycle relatively short in time) in the
former, while exhibits chaotic behavior in the latter [47]. This
implies that maintaining a sufficiently long fading memory is
of great importance in boosting the computational performance
of the LSM in terms of its separation property [8], [47].
Since fading memory arises from recurrent loops formed by
synapses, the model of synapse may have a great impact
on the length of fading memory, and consequently the LSM
performance. However, this issue has not been well studied.
In addition, for hardware-based LSMs, evaluating the
complexity of different synaptic models and their impacts
on the LSM performance at the same time provides design
guidance to minimize hardware cost. We empirically study the
influence of synaptic models with different complexities on
the length of fading memory and the performance of the LSM.

Fig. 7. Top left: performance of the LSM using synapses with static
response. Top right: performance of the LSM using the first-order synaptic
model with a time constant of 4 ms. Bottom left: performance of the
LSM using the first-order synaptic model with a time constant of 8 ms.
Bottom right: performance of the LSM using the second-order synaptic model.

A. Impacts of Synaptic Models on LSM Performance

Since our LSM is hardware oriented, simple synaptic
models are preferred over complicated ones. Therefore, we
first test the performance of the LSM with the simplest
static synaptic model, i.e., the model’s synaptic response to
an incoming spike is static, or in other words, the model’s
synaptic response function is the Dirac delta function δ(·), as
used in many research works [13]–[15]. With this choice, the
overall LIF model becomes

dvm

dt
= −vm

τm
+

∑

i

∑

j

wmi · δ(t − ti j − di j ). (19)

We test this model by training the LSM with the same
settings used in [19] except that the proposed spike-based
learning rule is adopted. The more detailed information of the
LSM including settings and parameter values are described
in Section VII. To study the influence of synaptic models on
network performance, we use 500 utterances of digits 0–9 with
five-fold cross validation to test the LSM. We train the LSM
for 500 iterations and test its classification rate on the fly.
The results are plotted in the top left panel of Fig. 7. It is
observed that the recognition rate reaches about 88.85% with
a standard deviation of 0.44%. Note that the finally reached
performance is reported as the averaged classification rate of
the last 20 epochs, i.e., epochs from 481 to 500. The same
evaluation method is used hereinafter.

For comparison, we test the LSM performance with dynami-
cal behavior involved in the synaptic model, where the synapse
has a first-order dynamical response to a presynaptic spike.
The corresponding LIF model is described as

dvm

dt
= −vm

τm
+

∑

i, j

wmi · 1

τ s
e− t−ti j −di j

τ s · H (t − ti j − di j )

(20)

where τ s = 4 ms is the time constant of the first-order
response used for all synapses, H (·) is the Heaviside
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step function, and 1/τ s normalizes the first-order response
function. Without modifying any other models or parameters,
solely adding the first-order dynamical response in the
synaptic model improves the recognition performance
to 90.49% with a standard deviation of 0.38%, as shown
in Fig. 7 (top right). We also test the LSM performance
using a different time constant of 8 ms. As shown
in Fig. 7 (bottom left), the recognition rate is increased slightly
to 90.73% with a standard deviation of 0.38% accordingly.

We further test the network performance with a
second-order dynamic synaptic model

dvm

dt
= −vm

τm
+

∑

i

∑

j

wmi · e
− t−ti j −di j

τ s
1 · H (t − ti j − di j )

τ s
1 − τ s

2

−
∑

i

∑

j

wmi · e
− t−ti j −di j

τ s
2 · H (t − ti j − di j )

τ s
1 − τ s

2
(21)

where τ s
1 and τ s

2 are the time constants of the second order
response, and the term 1/τ s

1 − τ s
2 normalizes the second-order

dynamical response function. For excitatory synapses,
τ s

1 and τ s
2 are set to 4 and 8 ms, respectively. For inhibitory

synapses, τ s
1 and τ s

2 are set to 4 and 2 ms, respectively.
As shown in Fig. 7 (bottom right), the recognition rate is fur-
ther improved to 99.09% with a standard deviation of 0.04%.

The above results show that the use of synaptic models
with higher orders dynamics significantly improves the LSM
performance. A more complicated synaptic model with
short-term plasticity (STP) was used in [19]. We compare
the LSM performance reported in [19] with that of our LSM
with a simpler second-order synaptic model in Section VII-F.
This comparison shows that our LSM achieves a comparable
performance. Avoiding incorporating STP in the synaptic
model is very beneficial for hardware-friendly implementation
since the state variables and computations associated with STP
can be eliminated, leading to a reduced hardware complexity.

B. Fading Memory—Linking Synaptic Model
to LSM Performance

It is evident from the discussions of the previous section
that the LSM performance can be significantly improved using
a dynamic synaptic model especially when a second-order
synaptic model is used. To shed light on this key observation,
we examine the impacts of the synaptic model on the fading
memory of the reservoir as fading memory plays a critical role
in the temporal pattern memorizing capability of a recurrent
network.

The simulated impacts of synaptic models on the fading
memory of the reservoir are shown in Figs. 8 and 9. In each
panel of Fig. 8, the three plots show the activity of the
reservoir in response to input spike trains ending at 23 ms.
Each plot shows the total number of spikes in the reservoir
within each 1 ms bin. The top plot of each panel uses the same
input spike trains. The frequency of the input spike trains are
3 times and 10 times higher for the plots in the middle and
bottom of all panels, respectively. As shown in Fig. 8 (top left),
the responses of the reservoir vanish shortly after the end of

Fig. 8. Top left: the responses of the reservoir using the static synaptic
model. With the input spike trains ending at 23 ms, the reservoir shows
little temporal memory. With an ascending firing frequency for the
input spike trains, the top, middle, and bottom plots show that only the
magnitude of the reservoir response increases with the input firing frequency.
Top right: the reservoir responses with the first-order synaptic model whose
time constant is 4 ms. Different from the previous case, the reservoir exhibits
temporal memory whose duration increases with the firing frequency of the
input spike trains. Bottom left: the reservoir responses with the first-order
synaptic model whose time constant is 8 ms. Compared with the case of the
first-order model with a time constant of 4 ms, temporal memory is extended
in this case. Bottom right: the reservoir responses with the second-order
synaptic model. The temporal memory here is longer than those of the
first-order models.

the input spike trains with only the amplitude of the reservoir
firing activity increasing with the input frequency, indicating
little temporal memory of the reservoir. Fig. 8 (top right) shows
that the use of a first-order synaptic model with a time constant
of 4 ms makes the reservoir exhibit temporal memory, that is,
the reservoir activity persists for a period of time after the
end of the input spike trains. Increasing the time constant of
the first-order synaptic model extends the temporal memory,
as shown in Fig. 8 (bottom left). In addition, the network
performance also increases accordingly. It shall be noted that
increasing the synaptic model time constant only dramatically
increase the fading memory when strong (high-frequency)
input spikes are applied to the LSM, as shown in the bottom
two plots of the panel. As shown in Fig. 8 (bottom right),
the second-order synaptic model further extends the fading
memory for the three input cases. Fig. 9 shows the averaged
reservoir fading memory over all 500 isolated word utterances
from the TI46 speech corpus used as the inputs to the LSM.
Fading memory is recorded from the end of each utterance.
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Fig. 9. Fading memory of the reservoir with different synaptic models
averaged over 500 utterances. Fading memory is recorded starting from the
end of each utterance.

In other words, the reservoir response to an input is recorded
starting from the end of the input signal. The durations of the
averaged memories in Fig. 9 are consistent with the results
shown in Fig. 8.

These two figures show that higher order synaptic dynamics
helps the reservoir produce longer fading memory, which
further leads to richer dynamics and improved recognition
performance. With higher order synaptic dynamics, the
influence of an input spike to the postsynaptic neuron is
spread out in time. The resulted long lasting effects promote
the interactions between asynchronously emitted spikes
throughout the recurrent reservoir. These interactions create
rich dynamics that forms short-term memory and enhance the
readout neurons’ ability to recognize the given input patterns.

VI. HARDWARE-FRIENDLY DESIGN OPTIMIZATION

A. Simplified Division Operations

To implement the proposed LSM in hardware, several key
modules including the neuron model and the synaptic model
of (16) and (21), and the learning rule of (17) and (18) must
be efficiently realized. Several important arithmetic operations
are involved in the above modules. Among these, addition
and comparison operations [51] and random number genera-
tion [52] can be efficiently realized in VLSI. However, division
operations are generally expensive to implement in hardware.

In (16) and (21), division operations are used to calculate
the spontaneous exponential decrease of each neuron’s
calcium concentration and membrane potential. Lookup
tables (LUTs) have been used to implement the exponential
decrease of digitized variables [15]. However, one limitation

of this approach is that its precision is limited by the
affordable LUT area overhead.

It is useful to note that the time constants of calcium
concentration and membrane voltage of our LSM are fixed
across the entire neural network. Hence, a general-purpose
division module is not necessary. The division of a binary
number n by another number m can be easily realized when
m = 2k for some nonnegative integer k. In this case, division
can be done by simply right shifting the binary number n
by k bits. Shifters are much cheaper to implement [51].
To explore this, we set the time constants of calcium concen-
tration and membrane voltage to some powers of two. This
choice does not have any significant negative impact on the
LSM performance according to our experimental study.

B. Optimization of Synaptic Models

Efficient realization of synaptic models is critical as the
number of synapses is usually much greater than that of
neurons in a neural network. Consider the LSM for speech
recognition as an example. To fully connect hundreds of
reservoir neurons and 10 output neurons already requires
thousands of plastic synapses, not to mention the synapses
between the reservoir neurons.

To reduce the implementation complexity of synaptic
models, we first take a closer look at these models.
We rewrite (21), which describes the dynamics of both the
neuron and its incident synapses
dvm

dt
= −vm

τm
+

∑

i

Ii (22)

Ii =
∑

j

wmi · 1

τ s
1 − τ s

2
e
− t−ti j −di j

τ s
1 · H (t − ti j − di j )

−
∑

j

wmi · 1

τ s
1 − τ s

2
e
− t−ti j −di j

τ s
2 · H (t − ti j − di j ) (23)

where (22) and (23) are the models of membrane voltage and
the i th incident synapse, respectively, and Ii is the current
injected to the neuron from the i th incident synapse. Without
loss of generality, let the values of all ti j s be positive.
Interestingly, the expressions of e−t−ti j −di j /τ

s
1 · H (t − ti j −di j )

and e−t−ti j −di j /τ
s
2 · H (t − ti j − di j ) in (23) are, respectively,

the solutions to the following differential equations:
⎧
⎨

⎩

dx

dt
= − 1

τ1
x + δ(t − ti j − di j )

x(t)|t=0 = 0
(24)

and ⎧
⎨

⎩

dx

dt
= − 1

τ2
x + δ(t − ti j − di j )

x(t)|t=0 = 0.
(25)

By the principle of superposition, it is not difficult to see that
the expressions of wmi

∑
j · e−t−ti j −di j /τ

s
1 · H (t − ti j − di j )

and wmi
∑

j ·e−t−ti j −di j /τ
s
2 · H (t − ti j − di j ) are, respectively,

the solutions to⎧
⎨

⎩

dx

dt
= − 1

τ1
x + wmi

∑
j
· δ(t − ti j − di j )

x(t)|t=0 = 0
(26)
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Fig. 10. Merging of linear synapses. The three synapses incident to a neuron
are effectively merged into a single synapse.

and
⎧
⎨

⎩

dx

dt
= − 1

τ2
x + wmi

∑
j
· δ(t − ti j − di j )

x(t)|t=0 = 0.
(27)

From a hardware-design point of view, (26) and (27) imme-
diately suggest that a second-order synaptic model can be
modeled using only two state variables associated with these
two differential equations. This fact can be leveraged in design
for efficient implementation of synaptic models.

To further minimize the implementation cost of a large
number of synapses, we explore the linearity of the synaptic
models to reduce the effective number of synapses that must
be realized [53], [54], as shown in Fig. 10. We first reexamine
the summed synaptic current of (23)

∑

i

Ii =
∑

i, j

wmi
e
− t−ti j −di j

τ s
1 − e

− t−ti j −di j
τ s
2

τ s
1 − τ s

2
H (t − ti j − di j )

=
∑

i, j

wmi

τ s
1 − τ s

2
· e

− t−ti j −di j
τ s
1 · H (t − ti j − di j )

−
∑

i, j

wmi

τ s
1 − τ s

2
· e

− t−ti j −di j
τ s
2 · H (t − ti j − di j ). (28)

By the principle of superposition, the following two terms
from the right-hand side of (23):
∑

i

wmi

∑

j

· e
− t−ti j −di j

τ s
1 · H (t − ti j − di j )

=
∑

i, j

wmi · e
− t−ti j −di j

τ s
1 · H (t − ti j − di j ) (29)

and

∑

i

wmi

∑

j

·e− t−ti j −di j
τ s
2 · H (t − ti j − di j )

=
∑

i, j

wmi · e
− t−ti j −di j

τ s
2 · H (t − ti j − di j ) (30)

are, respectively, the solutions to the same two linear
differential equations with multiple inputs shown by

⎧
⎨

⎩

dx

dt
= − 1

τ1
x +

∑
i
wmi

∑
j
· δ(t − ti j − di j )

x(t)|t=0 = 0
(31)

and
⎧
⎨

⎩

dx

dt
= − 1

τ2
x +

∑
i
wmi

∑
j
· δ(t − ti j − di j )

x(t)|t=0 = 0.
(32)

For example, (31) represents the same linear differential
equation of (26) but with more inputs. Therefore, the solution
to (31) is the linear combination of solutions to (26) with all
inputs applied separately. The same principle applies to (27)
and (32). This implies that the summed synaptic current of
(23) or (28) can be efficiently evaluated by solving the two
state variables in (31) and (32). As in (28), these two state
variables shall be divided by τ s

1 − τ s
2 . For this, we use the

shifter based division introduced in the previous section by
setting τ s

1 , τ s
2 , and τ s

1 − τ s
2 to some powers of two.

The above analysis can lead to a significant reduction of
hardware implementation cost of linear synaptic models we
consider in this paper. It is clear that instead of having
two state variables for each second-order synapse, the state
variables of all synapses incident to the same postsynaptic
neuron can be effectively merged into only two first-order
synapses, one associated with each of (31) and (32). In other
words, the number of state variables describing the dynamic
behaviors of synapses is reduced from two per synapse to
two per postsynaptic neuron. For LSMs that are comprised of
hundreds of neurons and at least thousands of synapses, this
merging techniques reduces the effective number of synaptic
state variables by at least one order of magnitude.

C. Precision of Synaptic Weights

Due to the large number of synapses, the number of bits
used to represent each synaptic weight also has a considerable
influence on the hardware overhead. Using a less number
of bits reduces the hardware cost but limits the precision
of synaptic weights. For example, reducing the precision of
synaptic weights may immediately impact the precision in
adjusting the location and orientation of the hyperplane of each
linear classifier, as shown in Fig. 4, thereby potentially degrad-
ing the LSM performance. The detailed tradeoffs between the
number of synaptic bits and network performance are studied
in the next section.

VII. EXPERIMENTAL RESULTS

In this section, we first introduce the settings of our
experiments. To reduce hardware resources of potential
implementations, we study the impacts of the bitwidth of
synaptic weights and reservoir size on network performance.
Finally, our LSM are compared against the existing work
on speech recognition. The presented simulation results are
based on a C++ simulation program running on a single-core
2.2-GHz AMD Opteron 6174 processor.

A. Experimental Settings

The proposed LSM is set up using parameters summarized
in Tables I–III for parameter values used in the LIF neuron
model, synaptic connectivity, and learning rule, respectively.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:35:05 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DIGITAL LSM WITH BIOLOGICALLY INSPIRED LEARNING 2645

TABLE I

PARAMETER VALUES IN LIF NEURON MODEL

TABLE II

PARAMETER VALUES IN SYNAPTIC MODEL

TABLE III

PARAMETER VALUES IN THE LEARNING RULE

In Table II, E and I denote excitatory and inhibitory neu-
rons, respectively. E → I denotes the type of synapses with
excitatory presynaptic neurons and inhibitory postsynaptic
neurons. Note that the time constants of membrane voltage and
calcium variable in Table I are set to powers of two for sim-
plified division, as discussed in Section VI-A. In each neuron,
16-bit binary numbers are used for membrane voltage and
calcium concentration. Within the reservoir, 20% neurons are
inhibitory and 80% are excitatory. The weights of synapses
connecting these neurons are fixed. In the LSM, to feed the
input signal to the reservoir, each spike train produced in the
preprocessing stage is sent to four randomly chosen reservoir
neurons through synapses with fixed values randomly chosen
to be 8 or −8. To classify the output signals from the
reservoir, reservoir neurons are fully connected to each
readout neuron by plastic synapses, which are trained by the
proposed learning rule.

To evaluate the performance of the proposed LSM, we
use three subsets of TI46 speech corpus as benchmarks. The
first is widely used in several related existing works, which
contains isolated word utterances of five different speakers.
Ten different utterances of each word in the 10-word set of

zero, two, . . ., and nine have been recorded for each speaker.
Thus, the benchmark contains 500 speech samples. This is
also the main benchmark used to evaluate the performance
of the proposed LSM in this paper except for the results
presented in Sections VII-D and VII-E for which the following
two subsets are used. The second subset includes all digit
utterances in the TI46 speech corpus. This large subset
contains 1590 recorded speech samples from 16 speakers,
eight males and eight females. For each speaker, there are
about 10 recordings of each spoken digit. The third subset
contains 10 utterances of each letter from A to Z from a
single speaker with a total of 260 speech samples.

We adopt a five-fold cross validation scheme to test the LSM
performance. In this setup, all samples in the benchmark are
divided into five groups: G1, G2, G3, G4, and G5, based on
which five different LSMs are trained and tested. For the kth
(k = 1, 2, 3, 4, 5) LSM, the testing dataset is group Gk and
training dataset is the union of all other groups. During the
training of an LSM, the temporal signal (speech) is applied to
the system shown in Fig. 3. In the meantime, a teacher signal
is applied to each readout neuron. After the preprocessing,
the input signal is transformed into 77 spike trains that are
fed into the reservoir. After applying each training sample to
the LSM once, the LSM is trained for one epoch. To optimize
the LSM performance, the LSM is trained for multiple epochs.
During the testing phase, at a time, a testing speech sample
is applied to the network while no teacher signal is applied
to any readout neuron. The recognition decision is based on
the activities of readout neurons and made at the end of each
testing speech sample. The neuron that has fired the greatest
number of spikes is the winner, whose associated class label
is deemed to be the classification decision of the LSM.

B. Precision of Synaptic Weights

As discussed in Section VI-B, the number of synapses
in the LSM is much larger than that of neurons. Efficient
realization of synaptic models is important for minimizing the
overall hardware cost of the system. We study the influence
of the bitwidth (precision) of synaptic weights on the LSM
performance. The reservoir size used is 3 × 3 × 15 [8].

Fig. 11 shows the performances of the LSM with different
precisions of synaptic weights. The influence of the bitwidth
of synaptic weights is summarized in Table IV, where the
initial results and best results are shown for synapses using
different bitwidths. The initial results are obtained by training
the LSM for only one epoch. The best results represent the
highest performance levels achieved after the LSM is trained
for 500 epochs. To reduce the performance fluctuations over
different epochs, as observed in Fig. 11, the best performance
is the averaged recognition rate over a 20-epoch interval.
Note that in Table IV, the sum of each recognition rate and
the corresponding error rate may be less than 100%. This is
because the network may not be able to recognize a small
number of speech samples when more than one readout neuron
have fired the largest number of spikes. Since in this case
these input samples may be further recognized by an additional
classifier, the situation is better than misclassification.
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Fig. 11. Influence of the precision of synaptic weights on the LSM
performance as synaptic weight resolution varies between 5 and 10 bits. The
LSM performances for the first 500 epochs of training are evaluated using the
five-fold cross validation with 500 speech samples. The network performance
generally improves as the number of bits increases and is saturated at
a resolution of 8 bits.

TABLE IV

PERFORMANCE OF LSM VERSUS BITWIDTH OF SYNAPTIC WEIGHTS

It is clear that the performance of the LSM generally
increases with the bitwidth of synaptic weights. The LSM
performances improve rapidly at the beginning of the training
process. However, the performance almost saturates when
the bitwidth of synaptic weights exceeds eight. This implies
that with a resolution of 8-bits or more, the precision of
synaptic weights is no longer a performance-limiting factor.
This observation provides practical design guidance for
maintaining a good performance level without overdesign.

Training and testing of the five recognizers in the five-fold
cross validation based upon 500 epochs takes about 25.8-h
wall-clock time, or 5.16 h for each recognizer. On average,
the training and testing of each recognizer for one epoch takes
only about 37 s in total.

C. Size of the Reservoir

We examine the recognition rate and error rate as functions
of the size of the reservoir. We use the same settings and

TABLE V

PERFORMANCE OF LSM WITH VARIOUS RESERVOIR SIZES

Fig. 12. Recognition and error rates of the LSM as functions of the size
(number of neurons) of the reservoir.

parameter values introduced at the beginning of this section
and 10-bit binary numbers for synaptic weights. In Table V,
the first and second columns show the shape and the size
of the reservoir. The third and fourth columns show the
recognition rates and error rates, respectively. Among these
tested LSMs, the best achieved performance has a recognition
rate of 99.79% and an error rate of 0.08%.

Clearly, the LSM performance varies with reservoir size.
The relation between them is visualized in Fig. 12. From the
figure, it can be observed that when reservoir size is less than
100 neurons, the LSM performance is significantly lower than
those for the cases with a larger reservoir. When the reservoir
size is 100 neurons or larger, the recognition and error rates
are around 99% and 1%, respectively. Further increasing
the reservoir size beyond 100 neurons does not significantly
boost the LSM performance. Therefore, considering both the
performance and the cost effectiveness, a reservoir of size
slightly larger than 100 neurons can be a good choice for
this application. To further verify this observation, we fix the
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Fig. 13. Classification performance of the proposed LSM on the
1590-sample dataset containing all digit utterances in TI46 speech corpus.
The final classification rate reaches 92.3%.

Fig. 14. Left: the English letter classification performance as a function of
the number of training epochs. The final LSM classification rate is 92.3%.
Right: classification performance on each letter. The row and column indices
represent the true class and output of the LSM, respectively. For example, the
grayscale square with row index E and column index F shows the probability
of letter E to be misclassified as F . The proposed LSM classifies most letters
perfectly.

reservoir size to 3 × 3 × 15 with 135 neurons, but generate
four LSMs with different randomly generated synapses within
the reservoir and between the input neurons and the reservoir
neurons. The classification rates are 97.97%, 97.93%, 98.04%,
and 97.88%, respectively, for these four cases.

D. Classification of Multispeaker Spoken Digits

To test our approach on larger test cases, we adopt an
additional subset of the TI46 speech corpus, which is the
second benchmark described in Section VII-A. This is a
larger multispeaker isolated digit subset with 1590 speech
samples. The LSM used has 83 input neurons, 135 reservoir
neurons, 10 readout neurons, a synaptic weight resolution
of 10 bits, and a membrane voltage resolution of 16 bits. For
this 1590-sample benchmark, the final classification rate of
the proposed LSM is 92.3% as shown in Fig. 13.

E. Classification of English Letters

To test the LSM performance with increased numbers of
classes, we apply the proposed LSM to the third benchmark
described in Section VII-A, which has 260 samples of utter-
ances of English letters A to Z . The LSM used here has
83 input neurons, 135 reservoir neurons, 26 readout neurons,
a synaptic weight resolution of 10 bits, and a membrane
voltage resolution of 16 bits. As shown in Fig. 14, the final

performance is 92.3% with most letters classified perfectly.
A significantly worse performance takes place only on a few
letters with similar pronunciations such as letters B and D,
which may be difficult to be distinguished by the humans
without full attention. Compared with the 10-digit utterance
dataset, these results imply that the bottleneck to further LSM
performance improvement on the 26-letter utterance dataset
is the difficulty in distinguishing a few highly similar input
classes rather than the increased number of classes.

F. Comparison With Other Methods

Since the 10-class digit subset of TI46 is widely applied to
test the LSM performance, while the 26-class English letter
subset is rarely used in the literature, we only compare our
approach with other related methods based on the former.
Systematic comparison between different methods is, in
general, a difficult task since the achieved performance may
depend on both the learning algorithm adopted and specific
experimental setups used, the latter of which may vary across
reported works and are often not fully reported. Nevertheless,
we use the final classification rate as the only performance
measure in the comparison.

Verstraeten et al. [19] used the same TI46 subset and
also experimental setups (such as the preprocessing module
introduced in Section II-B) similar to this paper. The main
difference between the two works lies in the training method
used. Verstraeten et al. [19] adopted ridge regression for
training the plastic synapse of readout neurons. With the
reservoir size ranging from 300 to 2000 neurons, the word
error rate (WER) on the testing dataset reported in [19] is
between 10% and 3%, which is significantly higher than that
of the proposed LSM.

Ghani et al. [20] used different LSM parameter settings
with a much smaller reservoir of 8 to 27 neurons. The speech
samples from the TI46 corpus were preprocessed by temporal-
based linear predictive coding. A complicated multilayer
feedforward network consisting of 62 to 168 neurons trained
using standard backpropagation algorithms was used for
backend processing. This work reported recognition rates
between 80% and 100%. Ghani et al. [20] used only a total
of 200 speech samples, which were divided into two
datasets for training and testing, respectively. The use of
small datasets in this case may lead to greater performance
variations. In addition, [20] only reported the best result from
different trials for each network configuration.

Graves et al. [24] proposed long short-term memory recur-
rent neural networks for speech recognition. Their network
was constructed by connecting 121 units of different types
with the MFCC method used for signal preprocessing. Their
reported WER on the TI46 benchmark was 2%.

The state-of-the-art HMM based recognizer Sphinx-4 was
introduced in [21] (a previous version Sphinx-2 has been
adopted in commercial products). Tested on the TI46 data
set, a WER of 0.168% was reported. Comparison between
this WER and our best error rate of 0.08% error rate and
recognition rate of 99.79% shows the top-notch performance
of the proposed LSM. Note that Sphinx-4 used dataset-specific
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language and acoustic models and was heavily tuned for the
specific dataset.

VIII. CONCLUSION

We present a bioinspired digital LSM for low-power
VLSI-based machine learning applications, such as speech
recognition. The proposed spike-based online learning rule
is local, has low algorithmic complexity, and facilitates
VLSI implementation by avoiding communications between
nonneighboring elements of the neural network. Using speech
samples from the TI46 speech corpus as the benchmark,
we study the influence of synaptic dynamics on the LSM
performance and present techniques to greatly reduce the
hardware implementation cost of the LSM. To improve the
cost effectiveness of our proposed technique, we also study
the tradeoffs between the number of bits used for synaptic
weights, the size of the reservoir, and the resulting LSM
performance. Tested on a subset of TI46 speech corpus, our
proposed LSM is demonstrated to have a top-notch perfor-
mance among several related speech recognizers including
the state-of-the-art HMM-based Sphinx-4 recognizer.
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