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summary, dietary sugar-induced increases of circulating 
ANGPTL3 concentrations after metabolic dysregulation cor-
related positively with leptin levels, HOMA-IR, and dyslipid-
emia.  Targeting ANGPTL3 expression with RNAi inhibited 
dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and 
APOE levels in rhesus macaques.—Butler, A. A., J. L. 
Graham, K. L. Stanhope, S. Wong, S. King, A. A. Bremer, R. 
M. Krauss, J. Hamilton, and P. J. Havel. Role of angiopoietin-
like protein 3 in sugar-induced dyslipidemia in rhesus ma-
caques: suppression by fish oil or RNAi. J. Lipid Res. 2020. 
61: 376–386.

Supplementary key words  triglycerides • insulin resistance • apolipo-
proteins • lipoproteins • inflammation • C-reactive protein • nonhuman 
primate • metabolic disorders • RNA interference

Elevated circulating lipids and lipoproteins are the major 
known modifiable risk factors for CVD, the leading cause 
of death in the United States (1–4). Severe hypertriglyceride-
mia (e.g., >800 mg/dl) also increases the risk for acute 
pancreatitis, which can be life-threatening (5). The preva-
lence of hyperlipidemias increases with obesity and aging, 
although less common genetic disorders can also lead  
to moderate to severe dyslipidemias. Current treatments  
focus on reducing fasting plasma concentrations of choles-
terol packaged in LDLs and triglycerides (TGs). Multiple 
treatment options are available that lower plasma lipids/
lipoproteins. However, monogenic disorders causing familial  

Abstract  Angiopoietin-like protein 3 (ANGPTL3) inhibits 
lipid clearance and is a promising target for managing car-
diovascular disease. Here we investigated the effects of a 
high-sugar (high-fructose) diet on circulating ANGPTL3 
concentrations in rhesus macaques. Plasma ANGPTL3 con-
centrations increased 30% to 40% after 1 and 3 months of 
a high-fructose diet (both P < 0.001 vs. baseline). During 
fructose-induced metabolic dysregulation, plasma ANGPTL3 
concentrations were positively correlated with circulating in-
dices of insulin resistance [assessed with fasting insulin and 
the homeostatic model assessment of insulin resistance 
(HOMA-IR)], hypertriglyceridemia, adiposity (assessed as 
leptin), and systemic inflammation [C-reactive peptide (CRP)] 
and negatively correlated with plasma levels of the insulin-
sensitizing hormone adropin. Multiple regression analyses 
identified a strong association between circulating APOC3 
and ANGPTL3 concentrations. Higher baseline plasma lev-
els of both ANGPTL3 and APOC3 were associated with an 
increased risk for fructose-induced insulin resistance. Fish 
oil previously shown to prevent insulin resistance and hy-
pertriglyceridemia in this model prevented increases of 
ANGPTL3 without affecting systemic inflammation (increased  
plasma CRP and interleukin-6 concentrations). ANGPTL3 
RNAi lowered plasma concentrations of ANGPTL3, triglyc-
erides (TGs), VLDL-C, APOC3, and APOE. These decreases 
were consistent with a reduced risk of atherosclerosis. In 
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hypercholesterolemia or hypertriglyceridemia and polygenic 
disorders causing severe hypertriglyceridemia often require 
alternative approaches to achieve treatment goals (1, 6). 
New approaches for increasing lipid clearance from the cir-
culation and reducing residual risk for CVD are needed.

Angiopoietin-like protein 3 (ANGPTL3) is a secretory 
protein expressed in the liver (a “hepatokine”) and is con-
sidered a promising lead target in the development of 
lipid-lowering therapies (7). ANGPTL3 belongs to a family 
of secretory proteins (ANGPTL3, ANGPTL4, and ANG-
PTL8) that affect the clearance of circulating lipids by 
regulating endothelial lipase and lipoprotein lipase (8). 
Specifically, ANGPTL3 interacts with ANGPTL8 to sup-
press lipoprotein lipase activity after feeding (9–11). ANG-
PTL3 also regulates the clearance of HDLs by binding to 
and inhibiting the activity of endothelial lipase (12). The 
clinical potential of ANGPTL3 for reducing plasma lipids 
is supported by human genetics. Specifically, inactivating 
ANGPTL3 gene variants associate with lower plasma levels 
of LDL-C and TGs and a lower risk of CVD (13–19). More-
over, small trials using antisense or monoclonal antibodies 
to inhibit ANGPTL3 have shown clinically significant 
reductions in plasma LDL-C and TG concentrations in  
patients with familial hypercholesterolemia (20–22).

APOC3 has been recently targeted for the treatment of 
dyslipidemia. APOC3 is a 8.8 kDa glycoprotein released pri-
marily from the liver and is a major structural component 
of atherogenic VLDL particles; it is also found in HDLs and 
chylomicron particles (23). APOC3 inhibits the processing  
of large, TG-rich VLDLs (23) and has important intracel-
lular functions in hepatocytes that facilitate VLDL produc-
tion (24). Loss-of-function APOC3 gene variants associate 
with significant (40%) reductions in CVD risk and 
plasma concentrations of TGs and LDL-C (6–9). Preclinical 
studies in rodent and porcine models indicate that increased 
APOC3 synthesis is sufficient for producing hypertriglyc-
eridemia (10, 11, 25). Clinical trials using antisense oligo-
nucleotides to suppress APOC3 synthesis (Volanesorsen, 
Ionis 304801) have demonstrated substantial antihyper-
lipidemic effects in patients with severe hypertriglyceri-
demia (12, 13).

Nonhuman primates are an important resource for the 
translational research of novel therapies against obesity-
related metabolic diseases (26, 27). Previous studies have  
demonstrated that rhesus macaques provided with fructose 
or high-fructose corn syrup (HFCS) supplements (300–600 
kcal/d) rapidly gain weight and develop features of meta-
bolic syndrome (insulin resistance, hypertriglyceridemia, 
and increased APOC3) (28–30). Using this model, we re-
cently reported that an RNAi construct targeting hepatic 
APOC3 expression reduces plasma TG concentrations 
(30). Moreover, elevations of plasma TG concentrations 
during fructose consumption are positively correlated with 
increases of circulating APOC3 concentrations (30). How-
ever, the impact of dietary composition and diet-induced 
obesity/metabolic dysfunction on plasma ANGPTL3 con-
centrations has not been investigated.

The current experiments determined the effects of a 
high-sugar diet on circulating ANGPTL3 levels and the ef-

fects of fish oil supplementation in male rhesus macaques. 
The results of a large (n = 59) study into the effects of fruc-
tose supplements on weight gain and indices of insulin re-
sistance [fasting insulin, fasting glucose, and homeostatic 
model assessment of insulin resistance (HOMA-IR)] and 
dyslipidemia have previously been reported (28–31). These 
studies reported rapid gains in body weight, fasting hyper-
insulinemia, fasting hypertriglyceridemia, and elevated 
plasma APOC3 concentrations with fructose consumption 
that are largely prevented by fish oil supplementation (29, 
30). The current investigation examined dietary effects and 
relationships between plasma concentrations of ANGPTL3 
and indices of insulin resistance, systemic inflammation, 
and lipoprotein metabolism. We also report on the effects 
of dietary fish oil supplementation on ANGPTL3 responses 
to fructose. The plasma samples used for this experiment 
are from a study whose outcomes were reported previously 
(29). Finally, we report on the effects of inhibiting hepatic 
ANGPTL3 expression with RNAi on plasma lipid/lipopro-
tein profiles. This study includes comparisons with the re-
sponses to inhibiting hepatic APOC3 concentrations, 
which have been reported previously (30).

MATERIALS AND METHODS

Protocols for all animal studies were approved by the University 
of California, Davis Institutional Animal Care and Use Committee 
and were conducted in accordance with the U.S. Department of 
Agriculture Animal Welfare Act and the National Institutes of 
Health’s Guide for the Care and Use of Laboratory Animals.

Rhesus macaques
The animal studies, feeding protocols, and dietary effects of 

fructose and fish oil on body weight and blood chemistries have 
been described previously (29–31). In brief, adult male rhesus 
macaques (n = 59) (age: 12.0 ± 2.8 years; range: 6.4–17.8 years) 
maintained at the California National Primate Research Center 
were provided a standard commercial nonhuman primate diet 
(5047; LabDiet, St. Louis, MO) and water. This grain-based diet 
provides 30%/kcal as protein, 11%/kcal as fat, and 59%/kcal as 
complex carbohydrates.

After determining baseline body weights and collecting fasting 
blood samples, animals were provided a solution containing 75 g 
fructose (300 kcal) daily in a total volume of 500 ml flavored Kool-
Aid (Kraft Foods, Chicago, IL) beverages. Male rhesus macaques 
consume on average 800–900 kcal/day. These animals consumed 
approximately 30% of their daily caloric intake from fructose. 
Body weight measurements and fasting blood samples were col-
lected after 1 and 3 months of fructose consumption.

Ten additional adult male fructose-fed rhesus monkeys were 
supplemented with 4 g/day whole fish oil (Jedwards Interna-
tional, Inc., Braintree, MA) for 6 months. These animals were 
compared with a subset of nine animals from the group of 59 ani-
mals that were studied concurrently for 6 months (29). Body 
weight measurements and fasting blood samples from these ani-
mals were collected at baseline and after 1, 3, and 6 months.

ANGPTL3 RNAi study
The six animals used for this experiment received a modified 

moderate-fat diet protocol supplemented with HFCS. The ratio-
nale for this protocol was to achieve a closer match to a typical 
human diet and to maximize hypertriglyceridemia. The animals 
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were provided HFCS-sweetened beverages (500 ml; 15% by weight 
sugar) twice per day, ingesting a total of 150 g (2 servings/day of 
300 kcal for a total of 600 kcal/d) of HFCS. HFCS is 55% fructose 
(330 kcal) and 45% glucose (270 kcal). These animals are likely to 
have received up to 60% of energy intake in the form of simple 
sugars. The New World monkey diet (LabDiet) has moderate fat 
content (23%/kcal vs. 11%/kcal as fat for the 5047 diet).

Fasting blood samples were collected at baseline, after which 
animals were started on the HFCS/moderate fat diet. After 6 weeks, 
an RNAi construct targeting ANGPTL3 mRNA (ARO-ANGPTL3; 
4 mg/kg) was administered in four animals via subcutaneous 
injection on day 0 and day 29 (n = 4). Two additional animals 
received vehicle injections.

ARO-ANGPTL3 is a synthetic double-stranded (both strands 
contain 21 nucleotides) hepatocyte-targeted N-acetylgalactos-
amine-conjugated RNAi molecule. The N-acetylgalactosamine 
moiety targets the RNAi into hepatocytes by acting as a ligand for 
the highly expressed hepatocyte-specific asialoglycoprotein recep-
tor. The RNAi construct was designed to silence ANGPTL3 mRNA 
in hepatocytes in humans and nonhuman primates with high 
specificity. The RNAi was synthesized with 2′-O-methyl/2′-fluoro-
modified nucleotides in order to be resistant to nucleases and to 
abrogate potential immune activation (32). Fasting blood samples 
were collected at days 8, 15, 21, 29, 36, 43, 50, 57, 71, and 85.

Plasma analyses
Plasma glucose concentrations were measured using a glucose 

analyzer (YSI Life Sciences, Yellow Springs, OH). Plasma adipo-
nectin, insulin, and leptin concentrations were measured using 
RIA assays from Millipore (Burlington, MA). Plasma total choles-
terol (TC), HDL-C, direct LDL-C, TGs, APOA1, APOB, APOC3, and 
APOE concentrations were measured using a Polychem chemistry 
analyzer (Polymedco, Cortlandt Manor, NY); reagents were pur-
chased from MedTest DX (Canton, MI). VLDL-C was calculated 
by subtracting HDL-C and LDL-C from TC. Plasma ANGPTL3 
concentrations were measured using ELISA (DANL30; R&D Sys-
tems, Minneapolis, MN) for human ANGPTL3 that cross-reacts 
with macaque ANGPTL3. Plasma adropin concentrations were 
measured by ELISA (Peninsula Laboratories, San Carlos, CA).

Plasma concentrations of VLDL and IDL, LDL, and HDL par-
ticle subfractions were measured using specific particle-size inter-
vals determined by ion mobility. This approach allows for direct 
particle quantification as a function of particle diameter (33), fol-
lowing a procedure to remove other plasma proteins (34). The 
ion mobility instrument uses an electrospray to create an aerosol 
of particles that then pass through a differential mobility analyzer 
coupled to a particle counter. Particle concentrations (in nano-
moles per liter) are determined for subfractions defined by the 
following size intervals: VLDL: large (42.40–54.70 nm), medium 
(33.50–42.39 nm), and small (29.60–33.49 nm); IDL: large 
(25.00–29.59 nm) and small (23.33–24.99 nm); LDL: large (22.0–
23.32 nm), medium (21.41–21.99 nm), small (20.82–21.40 nm), 
and very small (18.0–20.81 nm); and HDL: large (10.50–14.50 
nm) and small (7.65–10.49 nm). Peak LDL diameter (in nanome-
ters) was determined as previously described (33).

Statistical analysis
Data were input and managed using Microsoft Excel. Statistical 

analyses (repeated-measures ANCOVA, multiple linear regres-
sion, calculation of correlation coefficients) using log-trans-
formed data were performed using SPSS Statistics version 24 
(IBM, Armonk, NY).

Correlations between plasma ANGPTL3 concentrations with 
indices of glucose metabolism, lipid metabolism, and inflammation 
in the larger fructose consumption study (n = 59) were assessed by 
calculating correlation coefficients, performing regression, or 

separating animals into tertiles. For simple modeling, we calcu-
lated partial correlation coefficients (r) that controlled for varia-
tions in age and body weight using two-tailed tests for significance. 
Multiple linear regression was used to identify factors determin-
ing variations in plasma ANGPTL3 concentrations between ani-
mals using data collected at baseline or after 1 or 3 months of 
fructose consumption.

To identify metabolic features defining animals exhibiting 
small or large fructose-induced changes of plasma ANGPTL3 con-
centrations, animals were ranked low to high by changes () in 
plasma ANGPTL3 concentrations after 3 months of fructose con-
sumption. Differences were assessed using repeated measures 
(baseline and 1- and 3-month time points) with time on the diet 
and tertile as fixed variables; age, body weight at baseline (BW), 
and BW (3 months) were used as covariates for blood chemis-
tries. Pairwise comparisons to determine the level of significance 
between tertiles used Bonferroni correction to adjust confidence 
intervals.

For the RNAi experiment, paired t-tests compared baseline 
data with the mean of the last three measures. For each analysis,  
P < 0.05 was considered statistically significant between groups.

RESULTS

Effects of fructose consumption on plasma ANGPTL3 
concentrations

The effects of dietary fructose consumption on weight 
gain, indices of insulin sensitivity, and lipid/lipoprotein me-
tabolism in rhesus macaques have previously been reported 
(30). Here we report that fructose consumption increases 
plasma ANGPTL3 concentrations approximately 30% to 
40% after 1 or 3 months (both P < 0.001) (Fig. 1A). Fasting 
concentrations and absolute changes in values relative to 
the baseline of plasma ANGPTL3 and TG levels correlated 
positively during fructose consumption (supplemental Fig. 
S1A, B). In addition, higher plasma ANGPTL3 concentra-
tions were associated with an accumulation of circulating 
large TG-rich VLDL particles during fructose consumption 
(supplemental Tables S1 and S2).

We previously reported that changes in HOMA-IR during 
fructose consumption are primarily driven by increased fasting 
plasma insulin concentrations, with fasting glucose concentra-
tions changing only slightly during fructose consumption 
(28, 29). Here we report an increase (>80%) in plasma con-
centrations of CRP (mean ± SEM: 1.8 ± 0.2 mg/l at baseline, 
3.1 ± 0.3 mg/l at 1 month, and 3.3 ± 0.2 mg/l at 3 months; 
effect of diet at baseline vs. 1 and 3 months: P < 0.001).

Separating animals into tertiles ranked low to high by 
increases of plasma ANGPTL3 concentrations at 3 months 
resulted in animals exhibiting either modest reductions 
(7%) or intermediate (+26%) to marked increases (+67%) 
(Table 1). The metabolic phenotype of animals in each 
tertile was related to the effects of fructose on ANGPTL3 
responses, specifically with larger increases of indices of 
insulin resistance (HOMA-IR, fasting insulin), systemic 
inflammation (CRP), and adiposity (leptin) (Table 1, sup-
plemental Fig. S2A, B). Therefore, increases of ANGPTL3 
with fructose consumption in rhesus macaques associate 
with increases of HOMA-IR, systemic inflammation, and 
increases of circulating leptin concentrations.
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High baseline plasma ANGPTL3 and APOC3 levels 
correlate with increases of HOMA-IR

Multiple linear regression analyses identified a strong re-
lationship between plasma ANGPTL3 and APOC3 concen-
trations (supplemental Table S3, Fig. 1B). Revising the 
modeling equation to identify variables predicting plasma 
APOC3 concentrations identified ANGPTL3 levels as a 
consistent and highly significant predictor, along with 
APOB (supplemental Table S4).

ANGPTL3 and APOC3 both have positive effects in in-
creasing circulating lipid concentrations. Elevated baseline 
activity of either alone or in combination could thus predis-
pose circulating lipids to accumulation during fructose 
consumption. These hypotheses were assessed in a pro-
spective analysis of the relationship between baseline 
plasma concentrations of APOC3 or ANGPTL3 alone or 
in combination on the effects of 3 months of fructose 
consumption on cardiometabolic risk factors. As plasma 

Fig.  1.  Increased plasma ANGPTL3 concentrations 
during fructose consumption and correlations be-
tween plasma ANGPTL3 and APOC3 concentrations. 
A: Plasma ANGPTL3 concentrations at baseline and 
after 1 or 3 months of dietary supplementation with a 
fructose-containing beverage (300 kcal/d). ***P < 
0.001 versus baseline. B: Scatterplots showing actual 
values of plasma ANGPTL3 (x-axes) and APOC3  
(y-axes) concentrations at baseline and during fruc-
tose consumption. Significantly positively correlations 
are evident at all time points.

TABLE  1.  Physical characteristics and plasma parameters of animals separated into groups ranked by ANGPTL3 after  
3 months of fructose consumption

Tertile

Statistics1st (n = 20) 2nd (n = 19) 3rd (n = 20)

ANGPTL3 (ng/ml)
  Baseline 67.5 ± 3.9 56.2 ± 4.0 57.8 ± 3.9 Diet × tertile, P < 0.001
  3 months 63.3 ± 4.2 70.7 ± 4.3 96.5 ± 4.2
   4.3 ± 1.8*** 14.5 ± 1.9*** 38.8 ± 1.8*** ***P < 0.001 between all tertiles
Age (y) 11.7 ± 2.2 (7.8–16.2) 12.6 ± 3.1 (6.4–16.9) 11.6 ± 3.2 (6.4–17.8)
Body weight (kg)
  Baseline 16.3 ± 0.5 15.6 ± 0.5 15.8 ± 0.5 Diet, P < 0.005
  3 months 18.1 ± 0.5 17.1 ± 0.5 17.2 ± 0.5
   +1.9 ± 0.2 +1.5 ± 0.2 +1.4 ± 0.2
HOMA-IR
  Baseline 11.2 ± 2.5 16.1 ± 2.6 12.4 ± 2.5
  3 months 15.0 ± 9.5 25.0 ± 10.0 36.6 ± 9.7
   +3.8 ± 9.5 +9.0 ± 9.7 +23.2 ± 9.4
Leptin (ng/ml)
  Baseline 18.3 ± 2.5 18.7 ± 2.5 22.2 ± 2.4 Diet, P = 0.001
  3 months 21.2 ± 2.6 23.7 ± 2.7 29.3 ± 2.6*
   2.9 ± 1.3 5.0 ± 1.3 7.1 ± 1.3* *P < 0.05 vs. 1st tertile
Adiponectin (mg/dl)
  Baseline 8.1 ± 1.7 10.0 ± 1.8 9.9 ± 1.7 Diet, P = 0.001
  3 months 5.6 ± 1.0 7.2 ± 1.0 5.7 ± 1.0 Diet × BW, P = 0.001
   2.4 ± 0.9 2.9 ± 0.9 4.2 ± 0.9 Tertile, P = 0.07
CRP (mg/l)
  Baseline 1.8 ± 0.3 1.9 ± 0.3 1.8 ± 0.3 Diet, P = 0.058
  3 months 2.7 ± 0.4 3.5 ± 0.3 3.6 ± 0.3 Diet × tertile, P < 0.01
   0.9 ± 0.3 1.6 ± 0.3 1.8 ± 0.3* *P < 0.05 vs. 1st tertile
TGs (mg/dl)
  Baseline 71 ± 8 92 ± 8 87 ± 8
  3 months 140 ± 37 170 ± 38 245 ± 37
   69 ± 32 78 ± 33 159 ± 32 Tertile, P = 0.11
LDL-C (mg/dl)
  Baseline 66 ± 4 69 ± 4 64 ± 4
  3 months 72 ± 5 68 ± 5 66 ± 5
   6 ± 3 1 ± 3 2 ± 3
HDL-C (mg/dl)
  Baseline 66 ± 4 60 ± 4 62 ± 4
  3 months 68 ± 4 60 ± 4 54 ± 4
   2 ± 3 0 ± 3 8 ± 3* *P < 0.05 vs. 1st tertile

Age (mean ± SD, range) and age- and body weight-adjusted physical and biochemical parameters (estimated marginal mean ± SEM) are shown 
at baseline and after 3 months of fructose consumption. The change with fructose after 3 months is also shown. Body weight data are adjusted for 
age. The statistical analysis used repeated measures (baseline, 1 month, 3 months) to compare the effects of time on the diet and tertile as fixed 
variables; age, BW, and BW (3 months) were used as covariates for blood chemistries. Asterisks refer to significance determined by post hoc 
comparisons between tertiles.
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concentrations of ANGPTL3 and APOC3 differ by orders 
of magnitude (ng/ml vs. mg/dl), log-transformed data 
were converted to z scores (SD from the mean). Age, 
body weight, and weight gain were controlled for in the 
analysis.

For baseline [APOC3]z there was a strong inverse corre-
lation with HDL-C (r = 0.53, P < 0.001) and less robust 
but still significant positive correlations with insulin and 
HOMA-IR (r = 0.29 and 0.28, P < 0.05). Similar associa-
tions were observed for [ANGPTL3]z + [APOC3]z (for 
HDL-C, r = 0.38 and P < 0.005; for insulin, r = 0.30 and 
P < 0.05; and for HOMA-IR, r = 0.29 and P < 0.05). How-
ever, no significant correlations were observed for 
[ANGPTL3]z.

Animals were next ranked (from low to high) into ter-
tiles by baseline [APOC3]z, [ANGPTL3]z, or [ANGPTL3]z 
+ [APOC3]z. Both variables contributed equally to in-
creases of [ANGPTL3]z + [APOC3]z (supplemental Fig. 
S3). While both baseline [APOC3]z or [ANGPTL3]z cor-
related with the severity of fructose-induced hyperinsu-
linemia/increases in HOMA-IR, [ANGPTL3]z + [APOC3]z 
proved superior for identifying animals exhibiting the larg-
est increases of HOMA-IR (Fig. 2A) and lowering plasma 
HDL-C concentrations (Fig. 2B). There were no significant 
differences for TG or LDL-C when baseline [APOC3]z, 
[ANGPTL3]z, or [ANGPTL3]z + [APOC3]z tertiles were 
used as the fixed variable (Fig. 2C, D).

Low plasma ANGPTL3 levels are associated with higher 
plasma adropin concentrations

Plasma concentrations of adropin, a secreted peptide 
with insulin-sensitizing actions in skeletal muscle and liver 
in mouse models (35–42), were inversely correlated with 
plasma ANGPTL3 concentrations after 3 months of fruc-
tose consumption (Fig. 3). The relationship between 
plasma adropin and APOC3 concentrations has previously 
been reported (31). There was no improvement in pre-
dicting circulating adropin concentrations by combining 
APOC3 and ANGPTL3 in the model (data not shown).

Dietary fish oil prevents fructose-induced increases of 
plasma ANGPTL3

The effects of fish oil supplementation in preventing 
fructose-induced dyslipidemia and increasing fasting insu-
lin and HOMA-IR have previously been reported (29). 
Here we report new results on the effects of fish oil on 
fructose-induced changes of ANGPTL3 and CRP concen-
trations. There was a significant effect of time and high-
fructose diet on plasma concentrations of ANGPTL3 
(effect of time on diet in repeated-measures ANOVA: P < 
0.01) (Fig. 4A), APOC3 (P = 0.001) (Fig. 4B), and CRP  
(P < 0.001) (Fig. 4C). Fish oil supplementation pre-
vented the increases of plasma concentrations of ANGPTL3  
(Fig. 4A) and APOC3 (Fig. 4B) but had no effect on the 
increase of plasma CRP levels (Fig. 4C).

We previously reported that supplementing the fruc-
tose diet with fish oil attenuates fructose-induced hyperin-
sulinemia and hypertriglyceridemia (29). The effects of 
fish oil in protecting against the development of insulin 

resistance and dyslipidemia in this model thus appear to be 
independent of the attenuation of systemic inflammatory 
responses to a high-sugar diet. This relationship was fur-
ther explored by measuring plasma concentrations of in-
terleukin-6 (IL-6), which is also a circulating biomarker of 
inflammation. IL-6 concentrations increased nearly 2-fold 
(baseline concentrations for all animals: 1.1 ± 0.2 and 2.1 ± 
0.3 pg/ml after 6 months of fructose; effect of time of diet: 
P < 0.005). This effect was not attenuated with fish oil, with 
similar increases in both fructose and fructose + fish oil 
groups (from 1.2 ± 0.2 to 1.8 ± 0.3 pg/ml in animals pro-
vided fructose and from 1.0 ± 0.1 to 2.3 ± 0.5 pg/ml in ani-
mals consuming fructose + fish oil in combination).

RNAi suppression of ANGPTL3 improves dyslipidemia 
induced by high-sugar diet

We next determined whether suppressing ANGPTL3 
prevents dyslipidemia induced by a high-sugar diet. For 
these experiments, animals were fed a moderate fat chow 
and provided 600 kcal/d of an HFCS-sweetened beverage 
in 2 servings of 300 kcal/d. Treatment of HFCS-fed rhesus 
macaques with RNAi targeting the Angptl3 gene (ARO-
ANGPTL3) resulted in a marked (>90%) reduction of 
plasma ANGPTL3 concentrations (Fig. 5A).

The HFCS diet rapidly induced hypertriglyceridemia 
(Fig. 5). A comparison of the mean of the last 3 days of 
measurements with baseline levels (days 0–8) indicated the 
effect of ARO-ANGPTL3 was highly significant (from 84 to 
6 ng/ml; P < 0.01). ARO-ANGPTL3 treatment markedly 
reduced fasting plasma TG concentrations by approxi-
mately 80% to levels observed prior to the high-fructose 
diet (from 301 ± 132 to 53 ± 14 mg/dl; P = 0.06) (Fig. 5B). 
TC levels also declined by 50% (from 131 ± 5 to 63 ± 8 mg/
dl; P < 0.005) (Fig. 5C). Plasma concentrations of LDL-C 
tended to also be lowered by RNAi treatment (52 ± 8 vs. 
30 ± 6 mg/dl; P = 0.10) (Fig. 5D). Reductions were also 
observed for plasma concentrations of HDL-C (from 47 ± 13 
to 22 ± 6 mg/dl; P < 0.05) (Fig. 5E) and VLDL-C (from 
33 ± 10 to 11 ± 2 mg/dl; P = 0.07) (Fig. 5F). When normalized 
to baseline values, the effects of RNAi were significant for 
TGs (23 ± 5% of baseline; P < 0.001), TC (48 ± 6%; P < 
0.005), VLDL-C (43 ± 13%; P < 0.05), and HDL-C (51 ± 5%; 
P < 0.001).

With the exception of APOB, animals treated with ARO-
ANGPTL3 exhibited decreases in the plasma concentra-
tions of the major apolipoproteins (A1, C3, and E) (Fig. 6). 
The effects of ARO-ANGPTL3 on plasma concentrations 
of specific apolipoproteins were related to the changes of 
the lipoprotein classes. APOA1 is a major component of 
HDL-C, and plasma APOA1 concentrations decreased by 
40% (from 90 ± 16 to 51 ± 6 mg/dl; P = 0.05) (Fig. 6A). Plasma 
APOB concentrations also tended to decrease (49 ± 6 vs. 
40 ± 4 mg/dl; P = 0.07) (Fig. 6B). Plasma APOC3 concentra-
tions decreased by 60% (from 6.6 ± 0.1 to 2.9 ± 0.4 mg/dl; 
P < 0.005) (Fig. 6C), while APOE levels declined by nearly 
50% (3.9 ± 0.4 to 2.2 ± 0.2 mg/dl; P < 0.005) (Fig. 6D). 
Although there was a trend for treatment with ARO-
ANGPTL3 to attenuate the insulin resistance as assessed 
with an intravenous glucose tolerance test, this did not 
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Fig.  2.  A combination of high baseline plasma concentrations of 
both APOC3 and ANGPTL3 correlates with the effects of fructose 
on HOMA-IR and HDL-C. Bar graphs show estimated marginal 
means and SEMs for changes () after 3 months of fructose con-
sumption. Animals are grouped into tertiles ranked low (1st) to 
high (3rd) by baseline values for [APOC3]z + [ANGPTL3]z, 
[APOC3]z, or [ANGPTL3]z, where z is defined as the SD from the 
mean. The y-axes are changes in log-transformed values (HOMA-IR, 
HDL-C, TGs, LDL-C). Individual unadjusted data points are also 
shown (gray circles). A: Changes in HOMA-IR after 3 months of 

fructose. A significant effect of tertile was observed only between 
[APOC3]z + [ANGPTL3]z tertiles (P < 0.005). Increases in HOMA-IR 
with 3 months of fructose consumption are markedly more fre-
quent in animals with high baseline plasma levels of both APOC3 
and ANGPTL3. ***P < 0.005 versus 1st and 2nd tertiles. B: Changes 
in plasma HDL-C concentrations. Significant effects of tertile were 
observed for [APOC3]z + [ANGPTL3]z (P < 0.05) and [APOC3]z  
(P < 0.001). **P = 0.01 versus 1st and 2nd tertiles and ***P < 0.005 
versus 2nd and 3rd tertiles. Declining HDL-C concentrations are 
more frequently observed in animals with high baseline levels of 
both APOC3 and ANGPTL3 or with high levels of APOC3 only. 
Changes in plasma concentrations of TG (C) and LDL-C (D) after 
3 months of fructose consumption are not significantly different in 
any of the tertiles.

 

achieve statistical significance (P = 0.09) (supplemental 
Fig. S4).

DISCUSSION

These results provide important new insights into the 
role of ANGPTL3 in metabolic homeostasis using a nonhu-
man primate model of diet-induced obesity. Increases of 
plasma concentrations of ANGPTL3 are related to fructose- 
induced increases of insulin and HOMA-IR values and to 
markers of systemic inflammation (CRP) and adiposity  
(leptin). The responses of ANGPTL3 to a high-sugar diet 
are significantly correlated with changes in the plasma lipid 
profile (increases of TGs and lowering of HDL-C levels) 
that predispose humans to CVD. This study defines for  
the first time significant positive relationships between cir-
culating levels of ANGPTL3 and APOC3. Measuring 
APOC3 and ANGPTL3 in plasma may be informative, as 
animals with high plasma levels of both were more suscep-
tible to the adverse effects of fructose consumption on cir-
culating insulin and HOMA-IR. It is also interesting to note 
that the inflammatory responses to fructose consumption 
(increased plasma levels of CRP and IL-6) are dissociated 
from dyslipidemia and fasting hyperinsulinemia by fish oil 
supplementation. The beneficial effects of marine-derived 
fatty acids therefore appear to be independent of their 
known anti-inflammatory actions (43).

The mechanism explaining the strength of the relation-
ship between ANGPTL3 and APOC3 is unclear at this time. 
However, one explanation is ANGPTL3 inhibiting the 
clearance of TG-rich VLDL particles containing APOC3 
from the circulation. In fact, strong correlations were also 
observed between plasma ANGPTL3 concentrations and 
the levels of IDL and VLDL particles.

During fructose consumption negative correlations de-
veloped between ANGPTL3 and HDL-C levels. APOA1 is a 
component of HDL-C and also correlated inversely with 
ANGPTL3 levels. The inverse relationships between 
ANGPTL3, HDL-C, and APOA1 are anticipated because 
ANGPTL3 influences HDL-C levels by suppressing the 
activity of endothelial lipase (12).

Experiments performed in obese mice resulting from 
leptin receptor mutations or with streptozotocin- 
induced diabetes indicate increased ANGPTL3 mRNA 
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and protein levels in liver (44, 45). Insulin also acts directly 
on hepatocytes to suppress ANGPTL3 expression (45). The 
positive correlation between fructose-induced hyperinsu-
linemia and elevated plasma ANGPTL3 concentration 
might therefore be anticipated if the animals develop 
hyperinsulinemia.

The design of the current study allowed for a prospective 
analysis of variables that predict plasma ANGPTL3 concen-
trations both in the baseline state (low-sugar/chow-fed) 
and in animals challenged with a high-sugar diet. Our data 
suggest plasma concentrations of ANGPTL3 and APOC3 
may identify animals most at risk for developing fasting 
hyperinsulinemia and atherogenic dyslipidemia during 
fructose consumption. Baseline plasma concentrations 
of ANGPTL3 and APOC3 appear to be weak predictors 
of the effects on fructose on fasting hyperinsulinemia. 
However, modeling that uses both proteins together was 
superior in identifying animals at greater risk for increas-
ing fasting insulin concentrations and HOMA-IR during 
fructose consumption. Surprisingly, no relationship was 
evident for fructose-induced hypertriglyceridemia. However, 
animals with high APOC3 levels, or APOC3 and ANGPTL3 
levels combined, exhibited large decreases of HDL-C con-
centrations after 3 months of fructose consumption.

Previous reports have suggested that certain gene vari-
ants that lower TG concentrations and reduce CVD risk 
can also influence the risk of type 2 diabetes (15, 46–50). 
Previous studies have also implicated a relationship between 

ANGPTL3 levels and risk of type 2 diabetes (15, 46). 
ANGPTL3 deficiency enhances insulin sensitivity in mice and 
humans (15, 22, 51), while loss-of-function ANGPTL4 gene 
variants are associated with improved glucose homeostasis 

Fig.  4.  A fish oil supplement prevents increases in plasma  
ANGPTL3 (A) and APOC3 (B) but does not affect increases in 
CRP observed with fructose consumption. The data shown are 
from a subset of the group of 59 animals shown in Fig. 1 (n = 9; 
green circles), and another group of animals provided the fructose 
beverage and 4 g/d of fish oil (n = 10; orange circles). *P < 0.05 
and **P < 0.01. The data shown in panel B were published in 
Bremer et al. (29).

Fig.  3.  Low plasma ANGPTL3 concentrations correlate with high 
plasma adropin concentrations in situations of fructose-induced 
metabolic dysregulation. The data shown as bar graphs are esti-
mated marginal means for fasting plasma adropin concentrations at 
baseline and after 1 and 3 months of fructose. Individual unad-
justed data points are also shown (gray circles). The animals were 
separated in tertiles ranked low to high by baseline plasma ANG-
PTL3 concentrations. There was a significant effect of tertile at the 
3-month time point (P = 0.001); animals with low plasma ANGPTL3 
concentrations had significantly higher plasma adropin concentra-
tions. **P < 0.005 and ***P = 0.001 compared with the 1st tertile.
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Fig.  5.  Treatment of rhesus macaques with an RNAi construct targeting liver ANGPTL3 expression 
markedly suppresses circulating levels of ANGPTL3 and reduces plasma lipid load. The data shown are 
fasting plasma concentrations of ANGPTL3 (A), TGs (B), TC (C), LDL-C (D), HDL-C (E), and VLDL-C (F). 
Actual values are shown to the left; data expressed as a percentage of baseline (days 0–8) are shown on the 
right. Animals were fed a moderately high-fat chow with an HFCS supplement (600 kcal/d). The RNAi 
construct (n = 4) or control (n = 2) was administered at day 0 and day 29 (indicated by red lines). Values 
shown are means ± SEMs, with data for individual animals also provided in lighter shading.
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and reduced risk of type 2 diabetes (52). Mechanistically, these 
associations may relate to differences in the uptake of free 
fatty acids into insulin-responsive tissues. Factors that regu-
late lipase activity will alter the flux of free fatty acids into 
target tissues, thereby affecting the response of these tis-
sues to insulin (51).

Plasma adropin concentrations are related to indices of 
hepatic lipid metabolism in nonhuman primates and hu-
mans (31, 53–56). Adropin is a secreted peptide that has 
insulin-sensitizing actions in mouse models of insulin resis-
tance (35–42). Lower adropin levels observed in animals 
with high ANGPTL3 could thus contribute to poor glyce-
mic control.

Elevated levels of both IL-6 and CRP are associated with 
an elevated risk of type 2 diabetes (57). Plasma CRP has 
been implicated as an important independent predictor of 
CVD risk (58). Increases of both CRP and IL-6 concentra-
tions in fructose-fed animals indicate rapid development of 
a proinflammatory response. However, fish oil supplemen-
tation appears to disassociate the relationship between sys-
temic inflammation and metabolic dysregulation. Fish oil 
prevented fructose-induced fasting hyperinsulinemia, insu-
lin resistance assessed by the intravenous glucose tolerance 
test, and dyslipidemia (increased TGs and APOC3) (29). 
Here we report that fish oil also prevents fructose-induced 
increases of ANGPTL3 concentrations. However, increases 
of circulating CRP or IL-6 levels in response to fructose 
consumption are not affected by fish oil supplementa-
tion. The impact of fructose in insulin sensitivity and 
dyslipidemia thus appears to be independent of inflamma-

tion. Alternatively, fish oil may limit the impact of inflam-
mation on metabolic dysregulation.

The RNAi construct targeting ANGPTL3 synthesis is 
highly effective in decreasing ANGPTL3 expression, as re-
flected by the marked decrease of plasma ANGPTL3 as well 
as lowering circulating levels of most lipids/lipoproteins 
that we measured (plasma TGs, VLDL-C, APOC3, and 
APOE) that are implicated as risk factors for CVD in hu-
mans. Plasma HDL-C concentrations were also lowered by 
RNAi, which could be considered to increase CVD risk. 
However, subjects with homozygous null ANGPTL3 muta-
tions that result in lower CVD risk have been reported to 
also exhibit lowered HDL-C levels (14). Interestingly, the 
administration of an RNAi construct directed at hepatic 
APOC3 expression that we previously reported lowers TG 
levels in rhesus macaques (30) does not influence circulat-
ing ANGPTL3 concentrations (data not shown). This sug-
gests circulating ANGPTL3 levels are not regulated by 
pathways involving APOC3. The strong correlations ob-
served between plasma APOC3 and ANGPTL3 concentra-
tions are primarily driven by actions of the latter on the 
clearance of lipoproteins from the circulation.

CONCLUSIONS

Increased circulating ANGPTL3 concentrations in re-
sponse to fructose consumption may be best explained by 
the development of fasting hyperinsulinemia and increases 
in HOMA-IR, which are indicators of insulin resistance. 

Fig.  6.  Fasting plasma concentrations of APOA1 
(A), APOB (B), APOC3 (C), and APOE (D) before 
and after treating rhesus macaques with an RNAi 
construct targeting hepatic ANGPTL3 expression. 
Refer to the Fig. 4 legend for a description of the 
study.
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This response is prevented in animals concurrently re-
ceiving supplementation with fish oil. The inhibition of  
ANGPTL3 expression with RNAi reduces circulating ANG-
PTL3, as well as plasma concentrations of TGs, APOC3, 
and APOE in rhesus macaques. This is potentially clinically 
significant, as APOC3 is also an important determinant of 
TG-rich lipoprotein clearance from the circulation. Finally, 
this is the first study to demonstrate an effect of diet (fruc-
tose and n-3 fatty acids) on ANGPTL3 and suggests that 
ANGPTL3 is a promising therapeutic target for hypertri-
glyceridemia and related disorders of lipid metabolism.

The authors thank Vanessa Bakula, Ross Allen, Marinelle Nunez, 
Sarah Davis, Jenny Short, and the staff and administration of the 
California National Primate Research Center for their technical 
and logistical contributions to this study.
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