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ARTICLE

Anomalous X-ray diffraction studies of ion
transport in K+ channels
Patricia S. Langan 1,5, Venu Gopal Vandavasi 1,6, Kevin L. Weiss 1, Pavel V. Afonine2,3, Kamel el Omari 4,

Ramona Duman4, Armin Wagner 4 & Leighton Coates 1

Potassium ion channels utilize a highly selective filter to rapidly transport K+ ions across

cellular membranes. This selectivity filter is composed of four binding sites which display

almost equal electron density in crystal structures with high potassium ion concentrations.

This electron density can be interpreted to reflect a superposition of alternating potassium

ion and water occupied states or as adjacent potassium ions. Here, we use single wavelength

anomalous dispersion (SAD) X-ray diffraction data collected near the potassium absorption

edge to show experimentally that all ion binding sites within the selectivity filter are fully

occupied by K+ ions. These data support the hypothesis that potassium ion transport occurs

by direct Coulomb knock-on, and provide an example of solving the phase problem by K-SAD.
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Potassium ion (K+) channels are highly selective membrane
protein pores and operate with near diffusion limited effi-
cacy1. Their high selectivity and flow rates allow them to

function as critical elements in electrically excitable cells, such as
neurons, muscle cells, and endocrine cells2, facilitating the use of
electricity in biological organisms. The high conduction rates and
ion selectivity of all K+ channels are conferred by a highly con-
served selectivity filter3 formed by a TVGYG sequence4,5. This
selectivity filter consists of four equidistant potassium ion
binding sites which are formed at the interface of four protein
subunits3,6–8 (Fig. 1). Each subunit contributes a linear backbone
consisting of five or six residues with their carbonyl groups
pointing inward to generate a fourfold symmetrical binding
pore3,9. Crystal structures of the potassium channel from the soil
bacteria S. lividans (KscA) clearly show the four discrete K+

binding sites3,6. However, it is not possible to determine how
many K+ sites are occupied with ions at one given time, as the
observed electron density at each binding site is an average value
based on all possible states present within the crystal6. In addi-
tion, binding sites not fully occupied by K+ ions are likely to be at
least partially occupied with water molecules, furthering the
inability to assign electron density to a K+ alone. The correlation
between the atomic displacement parameters (ADPs) and the
occupancy of an atom coupled with the inability to distinguish
between electron density of a K+ ion and that of a water molecule
make anomalous diffraction studies necessary. To fully under-
stand the characteristics of K+ movement in a single file through
the channel, we have experimentally determined the number of K
+ ions within a selectivity filter, using anomalous X-ray
diffraction.

Previous anomalous scattering data has been collected from
KscA in which K+ ions were replaced with thallium ions7 (Tl+)7,
to indirectly determine the total number of K+ ions in the filter.
This data indicated that the average occupancy at each site in the
selectivity filter was 0.63 which inferred an occupancy of 0.53
for K+ ions, and therefore a total number of ions in the selectivity
filter of two7. This structural observation suggested an averaging
of two alternating states during which individual water mole-
cules are translocated in between individual K+ ions across the-
filter7, a commonly accepted co-translation conduction
mechanism10–12. However, despite a multitude of studies sup-
porting this mechanism, using a variety of in silico and experi-
mental techniques13–17, it has been proposed that potassium ions
may translocate by direct coulomb knock-on18–20, a scheme in
which multiple adjacent binding sites in the selectivity filter are
occupied by a K+ ion20.

To experimentally determine which of these two models is
correct, we conducted single wavelength anomalous diffraction
(SAD) studies of K+ selective NaK2K21,22 (NaK D66Y and
N68D) at a K+ ion concentration of 100 mM. This selective NaK
mutant contains the same selectivity filter as KcsA (TVGYG), and
therefore four equivalent K+ binding sites21.

Results
Determination of K+ occupancy in NaK2K. The structure could
be directly solved by K-SAD using the Shelx program suite23 and
Anode24 identified strong anomalous difference peaks between 28
and 39 sigma corresponding to the K+ ions within the ion
channel (Fig. 2). Using the SAD data directly, we were able to
refine the occupancy of the four K+ ions within the ion channel
in each of two protein molecules (subunit A and subunit B)
present in the crystallographic asymmetric unit (Table 1), with
the phenix.refine program25. On the top and bottom of the K+

ions in the selectivity filter are bound water molecules. The
structure and experimental data have been deposited into the

protein data bank with the accession code 6DZ1. As ADPs and
occupancy are closely coupled, we carefully analyzed the refined
occupancies and ADPs of the K+ atoms and the oxygen atoms
that are in contact with them. All of the four K+ ions in the
channel refine to occupancy values close to the maximum pos-
sible value (0.25) (Table 1) with ADPs that are almost identical to
the oxygen atoms located at the sides of the ion channel with
which they are interacting. Finally, we used phenix.refine to
conduct occupancy refinements on the K+ ions using 100 starting
models with random occupancy and ADP values. Phenix.refine
refines occupancies and ADP (or B-factors) separately at all
times25. After refinement, the occupancy values for all the K+

ions in the channel clustered around 0.25, suggesting that all four
K+ binding sites in the NaK2K selectivity filter are fully occupied
with K+ ions (Fig. 3).

Discussion
We have successfully refined potassium occupancies against
anomalous diffraction data collected close to the K absorption
edge. Despite the long wavelength of λ= 3.35 Å the data was of
high quality allowing the crystallographic phase problem to be
solved by K-SAD. The average K+ occupancy value based on
the anomalous data for the A subunit and B subunit is 0.25,
which is the maximum occupancy value . The high K+ ion
refined occupancies at all sites in the selectivity filter indicate
that all sites are fully occupied with K+ ions with a total of four
K+ ions being present within the selectivity filter at a K+ ion
concentration of 100 mM. These results suggest that water is
not co-translocated with K+ ions, which is seemingly in dis-
agreement with ion/water co-translocation ratios determined
from earlier experiments26,27. However, it is in total agreement
with earlier molecular dynamics simulations and crystal-
lographic data analysis20, suggesting that ion transport occurs
via direct coulomb knock-on.

Methods
Protein purification. A plasmid containing the NaK2K from Bacillus cereus
m1550 in the pD441 vector was purchased from ATUM and transformed into
Escherichia coli BL21 competent cells (Millipore Sigma). Briefly, NaK2K was
overexpressed and purified as previously described22. Cultures were inoculated
by scraping colonies from transformation plates into LB media, grown at 37 °C,
and induced at A600 0.6 with 0.4 mM IPTG for 18 h at 25 °C. The cells were
pelleted by centrifugation and resuspended in 5 ml lysis buffer per 1 g cells (50
mM Tris pH 7.8, 100 mM KCl), SIGMAFAST™ protease inhibitor tablets
(Millipore Sigma), 1 mg ml−1 of lysozyme (Calbiochem), and benzonase
nuclease (Millipore Sigma). Cell resuspension was slowly stirred at room
temperature for 30 min and further lysed by sonication. Cell debris was
removed by centrifugation at 10,000 × g. NaK2K was then solubilized by
incubating supernatant at room temperature for 2 h, with 40 mM Sol-grade n-
Decyl-β-D-maltopyranoside n-Decyl-β-D-maltoside (DM) from Anatrace.
Further debris was removed from lysate by centrifugation at 21,000 × g for 30
min. Protein was purified on a Clontech labs TALON® metal affinity resin using
buffers containing 4 mM DM. Protein containing fractions were pooled and the
6XHis-Tag was removed by adding 1 unit of thrombin per 1 mg of protein and
incubating at room temperature for 16 h. NaK2K was then concentrated using a
30KDa Vivaspin® 20 concentrator and further purified on a Superdex 200
increase 10/300 GL column using 20 mM Tris:HCl pH 7.8, 100 mM KCl, and 4
mM Anagrade DM.

Protein crystallization. NaK2K protein solution was concentrated to 14 mg/ml
using a 50 kDa MWCO Vivaspin® 20 concentrator (A280 of 0.55). The crystal
used for long-wavelength data collection was grown in sitting drops with a final
K+ concentration of 100 mM, prepared by mixing equal volumes of protein
solution in buffer (20 mM Tris:HCl pH 7.8, 100 mM KCl, and 4 mM Anagrade
DM) with well solution (72.5% MPD, 100 mM KCl, and 100 mM MES pH 6).
The crystal was flash frozen in liquid nitrogen with no further cryoprotectant
added.

Data collection. A 2.26 Å resolution SAD dataset was collected using X-rays with a
wavelength of 3.35 Å on the long-wavelength beamline I2328 at Diamond Light
Source, UK. 360° of data were collected as an inverse-beam dataset of 20° wedges,
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with an exposure of 0.1 s per 0.1° rotation, and beam attenuated to 20%. A second
360° dataset was collected from the same crystal, using a different crystal orien-
tation, by opening the goniometer kappa axis by 10° and the phi axis by 70°.

At the time of the experiment, the fluorescence detector at the beamline had not
yet been fully commissioned. Therefore, rather than optimizing the anomalous
contribution based on an energy scan across the absorption edge and subsequent
quantitative analysis of the scan to determine f″, we tuned the X-ray energy to
3700 eV, 91.6 eV above the tabulated potassium K absorption edge (3608.4 eV).
This is far enough in energy from the near edge region (XANES) characterized by
large fluctuations of f″ due to resonance effects within the specific coordination
sphere of the potassium atoms. While the absolute value of f″ is slightly reduced
further away from the absorption energy, this approach allows using the theoretical
approximation of 3.9 electrons29 for sufficiently accurate anomalous occupancy
refinements. In summary, we collected a complete SAD dataset at a wavelength of
3.35 Å, which is close to the K absorption edge (3.44 Å), resulting in a very strong
anomalous signal (Table 2) from a theoretical anomalous contribution f″ of 3.9
electrons from K29.

As water molecules do not generate a significant anomalous signal at the X-ray
wavelength used for data collection, this method is able to experimentally
discriminate between a superposition of K+ ions and water molecules and a fully
occupied K+ ion in each binding site. This data was reduced with XDS30 and scaled
with XSCALE31. Analysis of the data showed strong anomalous scattering of CC1/2

anomalous= 59% overall and CC1/2 anomalous= 33% at Dmin= 2.26 Å. The
source of this signal could only be the K+ ions, since the protein sequence lacks
any sulfur-containing amino acids. The known structure of the selective NaK2K
mutant21 was used as a starting model and refinement was conducted using the
Phenix32 suite of programs,while the coot33 molecular graphics program was used
to model the structure in between rounds of refinement. The Ramachandran plot

K1

K2

K3

K4

Fig. 1 Structure of the NaK2K ion channel protein. The four integral K+ binding sites within the ion channel of a K+ selective NaK2K (NaK D66Y and N68D)
at a K+ ion concentration of 100mM are shown as white spheres. For clarity one of the four subunits that make up the ion channel has been removed

Fig. 2 Anomalous difference map. The anomalous difference Fourier map
contoured at 8σ is shown as a magenta mesh for subunit A. Strong
anomalous difference peaks corresponding to the K+ ions (cyan spheres)
are present within the selectivity filter of the ion channel. For clarity only
two of the four subunits that make up the ion channel are shown
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Fig. 3 Results of occupancy refinement with differing starting points. One
hundred starting models with initial occupancies and ADP values for K+

ions randomly drawn from [0–1] to [10–50] ranges for each of eight K+

ions per structure (gray dots). The refined K+ occupancy values for each K
+ ion (blue dots) cluster around 0.25

Table 1 Anomalous occupancy refinement values of K+ ions
within the ion channel

Binding site Residue ID Anomalous refined
occupancy [100
mMK+]

Anomalous peak
height (σ)

A1 K1 0.23 28.50
A2 K2 0.25 30.03
A3 K3 0.28 35.67
A4 K4 0.27 36.74
B1 K1 0.22 36.66
B2 K2 0.24 36.74
B3 K3 0.26 39.37
B4 K4 0.30 38.63

Sites A1 to A4 occur within the A chain while sites B1 to B4 occur within the B chain. Each K+ ion
within the selectivity filter is shared between four unit cells and thus has a maximum occupancy
value of 0.25. Occupancy values >0.25 arise due to the correlation between atomic
displacement parameter (B-factor) and occupancy
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of the final model contained 98.91% of residues in favored conformations with no
outliers. The data collection and refinement statistics are shown in Table 2. The
figures within this manuscript were made using the pymol program34. The
program Xtriage from the Phenix suite32 was used to check for data for signs of
crystal twinning, with no twin fraction being detected.

Data availability
The refined protein structure and associated structure factors have been deposited in the
protein data bank with the accession code 6DZ1. All other data supporting the findings
of this study are available from the corresponding author on reasonable request.

Received: 23 July 2018 Accepted: 24 September 2018
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Table 2 Data collection and refinement statistics

NaK2K

Data collection
Space group I4
Cell dimensions

a, b, c (Å) 68.07, 68.07, 89.38
α, β, γ (°) 90, 90, 90

Resolution (Å) 54.15–2.26 (2.33–2.26)
Rmerge 3.70 (12.90)
I /σI 33.40 (10.70)
Completeness (%) 97.80 (93.40)
Redundancy 8.20 (6.30)

Refinement
Resolution (Å) 54.15–2.26
No. reflections 18417
Rwork/Rfree 0.1782/0.2112
No. atoms
Protein 1482
Ligand/ion 10
Water 28

B-factors
Protein 39.18
Ligand/ion 38.35
Water 43.41

R.m.s. deviations
Bond lengths (Å) 0.014
Bond angles (°) 1.09
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